
Motion Forecasting with Unlikelihood Training in
Continuous Space

Deyao Zhu1 Mohamed Zahran12 Li Erran Li3∗ Mohamed Elhoseiny1

1 King Abdullah University of Science and Technology, 2 Udacity,
3 AWS AI, Amazon and Columbia University

deyao.zhu@kaust.edu.sa mohammed.zahran@udacity.com
erranlli@gmail.com mohamed.elhoseiny@kaust.edu.sa

Abstract: Motion forecasting is essential for making safe and intelligent de-
cisions in robotic applications such as autonomous driving. Existing methods
often formulate it as a sequence-to-sequence prediction problem, solved in an
encoder-decoder framework with a maximum likelihood estimation objective.
State-of-the-art models leverage contextual information, including the map and
states of surrounding agents. However, we observe that they still assign a high
probability to unlikely trajectories resulting in unsafe behaviors, including road
boundary violations. Orthogonally, we propose a new objective, unlikelihood train-
ing, which forces predicted trajectories that conflict with contextual information
to be assigned a lower probability. We demonstrate that our method can improve
state-of-art models’ performance on the challenging nuScenes and Argoverse
real-world trajectory forecasting datasets by avoiding up to 56% context-violated
prediction and improving up to 9% prediction accuracy. Code is avaliable at
https://github.com/Vision-CAIR/UnlikelihoodMotionForecasting

Keywords: Motion Forecasting, Autonomous Driving

1 Introduction

For robotic applications deployed in the real world, the ability to foresee the future motions of agents
in the surrounding environment plays an essential role in safe and intelligent decision-making. In
the autonomous driving domain, to predict nearby agents’ future trajectories accurately, an agent
must consider contextual information such as their past trajectories, potential interactions, and map
information. State of the art prediction models [1, 2, 3] directly take contextual information as part
of their input and use techniques such as graph neural networks to extract high-level features for
prediction. They are typically trained with a maximum likelihood estimation (MLE) objective of
ground truth trajectories in the predicted distribution. Although MLE loss encourages the prediction
to be geometrically close to the ground truth, there is no explicit motivation to learn a distribution that
leverages contextual information. These models may predict trajectories that violate the contextual
information (e.g., go to opposite driving direction or out of the driving area) but still closes to ground
truth. In contrast, humans can quickly notice that these trajectories are unlikely in a specific context.
This observation suggests that using MLE loss cannot fully leverage contextual information, and
hence may predict unsafe trajectories more likely.

To address the problem, existing methods like [4, 5], using contextual information, either introduce
new learning parameters or apply reinforcement learning methods requiring further reward engineer-
ing. We propose a novel and simple method, unlikelihood training, that injects contextual information
as a learning signal. Our loss penalizes the trajectories that violate the contextual information, dubbed
as negative trajectories, by minimizing their likelihood in the predicted distribution. To generate
negative or unlikely trajectories, we first draw many candidate trajectories from our model’s predicted
distribution. Then, we introduce a context checker to identify the trajectories that violate contextual
information as negative trajectories2. The model is then encouraged to use contextual information to

∗Work done outside of Amazon.
2the context checker is not required to be differentiable

5th Conference on Robot Learning (CoRL 2021), London, UK.

https://github.com/Vision-CAIR/UnlikelihoodMotionForecasting

avoid predictions that violate context by minimizing the likelihood of negative trajectories. Hence,
the predicted trajectories can be more accurate and, more importantly, safer.

Unlikelihood training [6] has been applied to neural language generation in discrete space. To the
best of our knowledge, we are the first to propose unlikelihood training for continuous space of
trajectories. For the discrete space of token sequences, repeating tokens or n-grams in the generated
sequence are chosen as negative tokens. In contrast, we design a context checker to select negative
trajectories sampled from the continuous distribution of model predictions as input to an unlikelihood
loss. In this case, our learning signals contain not only the information of the ground truth trajectories
from the MLE, but also the the context information from our proposed loss. Our method can be
viewed as a simple add-on to models that estimate the distribution of future trajectories. It improves
their performance by encouraging models to focus more on contextual information without increasing
the number of model parameters. Our contributions are summarized as follows:

• We propose a novel and simple method, continuous unlikelihood training for motion fore-
casting in autonomous driving that encourages models to use contextual information by
minimizing the likelihood of context-violated trajectories. Our method can be incorporated
into state-of-the-art models that predict the future as distributions.

• Our large-scale experimental results on two challenging real-world trajectory forecasting
datasets, nuScenes, and Argoverse, show that continuous unlikelihood training can im-
prove the quality of the predicted distribution by avoiding maximally 56% context-violated
prediction and improving 9% prediction performance.

2 Related Work

Trajectory Forecasting Trajectory forecasting of dynamic agents, a core problem for robotic
applications such as autonomous driving and social robots, has been well studied in the literature.
State-of-the-art models solve it as a sequence-to-sequence multi-modal prediction problem [7, 8, 9, 3,
10, 2, 11, 1, 12]. MTP [8] and MultiPath [9] predict multiple future trajectories without learning low
dimensional latent agent behaviors. Recent works including [7, 10, 3, 12] encode agent behaviors
in continuous low dimensional latent space while MFP [2] and Trajectron++ [1] use discrete latent
variables. Discrete latent variables succinctly capture semantically meaningful modes such as turn
left, turn right. MFP [2] and Trajectron++ [1] learn discrete latent variables without explicit labels.
They adopt a maximum likelihood estimation (MLE) objective or its approximations (e.g., VAE).
In this paper, we show that MLE loss can ignore contextual information such as maps and states of
surrounding agents. As a result, models with MLE loss only may assign a very high probability to
unlikely trajectories. To alleviate this issue, R2P2 [13] trains a surrogate ground truth distribution
first and use it to regularize the training of the predictor. However, the surrogate is still trained by
MLE loss only. In contrast, we propose an unlikelihood training objective that is based directly on
the context information to reduce unlikely prediction, and we show that models with the maximum
likelihood estimation objective can benefit from it.

Unlikelihood Training. In the context of language generation, recent works including [6, 14] propose
unlikelihood training as a new method to utilize negative language data, which includes common
degenerate cases like token repetition and distribution mismatch. The distribution mismatches occur
as an artifact of beam search, which is biased to high-frequency tokens compared to low-frequency
tokens which appear rarely. The method minimizes the likelihood of negative tokens to improve text
generation quality in addition to maximizing the likelihood of the ground truth tokens. However, their
approach operates in the discrete space. In contrast, our proposed method works in the continuous
space of trajectories. We model negative data by a context checker that we propose, which operates
on predictions to populate unlikely trajectories. Predicted trajectories that violate the checker are
selected to leverage contextual information by minimizing their likelihood objective. We show the
generality of our approach on two state-of-the-art distribution-based approaches: Trajectron++ [1]
and a distribution-based variant of LaneGCN [15].

2

(a) Trajectron++[1] (b) Ours

Figure 1: Examples of predicted distribution in a complex scenario from models trained with MLE
only (a) and with our unlikelihood loss additionally (b). Some of the Trajectron++’s predicted
distributions are out of the drivable region or cover the lane in the wrong direction (Highlighted by
ellipses). Our method helps alleviate this issue. Predicted distribution is plotted as the colored region.
White points denote the ground truth trajectories. More qualitative results are in appendix.

3 Method

3.1 Problem Definition

We aim at predicting the future trajectory Yi more accurately of a vehicle i given inputXi. Xi can
include related information like rasterized maps or past positions of vehicle i and surrounding agents.
Because of the generality of our training mechanism, we skip the specific choice of this additional
information and denote it asXi for conciseness. Due to different driving strategies, driving intents,
and the complex traffic environment, there are usually multiple possible future trajectories given an
inputXi; despite that there is only one ground truth future trajectory Yi,gt in a dataset recorded in
the real world. To facilitate predicting multiple modalities, most state of the art methods [1, 2] model
a distribution of possible future trajectories pθ(Yi |Xi) to cover all the possibilities given the input
Xi instead of predicting one trajectory. θ denotes the learning parameters of the model. Training
such models can be done by Maximum Likelihood Estimation (MLE) that directly maximizes the
likelihood of ground truth trajectory Yi,gt or its lower bound in the predicted distribution.

Limitation of MLE on Motion Forecasting MLE encourages the model to predict a distribution
that allocates reasonable probability mass to the region where Yi,gt is located by minimizing the KL-
divergence between the ground truth distribution and the predicted distribution. Because the trajectory
distribution domain is over the geometric locations, MLE makes these two distributions “close” to
each other geometrically. However, we argue that maintaining the geometrical nearness only is not
good enough for motion forecasting tasks in autonomous driving. In complex traffic scenarios, there
can be many potential trajectories close enough to the ground truth geometrically but are very unlikely
to happen. For example, if the ground truth trajectory Yi,gt is on the outermost lane, a trajectory that
is close to Yi,gt but outside the drivable region is unlikely to happen in the real world. MLE loss will
not impose a significant enough penalty to avoid such a prediction. Fig.1(a) demonstrates a prediction
example from an MLE-based method Trajectron++ [1]. Part of the distribution in this example is
outside of the derivable region or on the lane in the wrong direction. The MLE-based loss only offers
learning signals that contain the geometric location information of the ground truth trajectories. All
the other contextual information like the drivable region is missing in this learning signal. Therefore,
the model is not encouraged during training to utilize the rich contextual information in the input to
avoid predictions that are geometrically close to ground truth but violates the context. In contrast,
this is quite a simple task for humans.

3.2 Unlikelihood Loss

To mitigate this problem, we design a new loss term that encourages the model to consider contextual
information more. Inspired by the positive and negative data pairs in contrastive learning and
unlikelihood training, we additionally train our model to minimize the likelihood of trajectories that
violate the contextual information given inputXi. We denote them as negative trajectories Yi,neg.

3

Let’s first assume that we already have a distribution of negative trajectories pneg(Yi | Xi). One
intuitive way is to directly minimize the log likelihood of Yi,neg in our predicted distribution, similar
to MLE but in an opposite manner, as shown in Eq.1. We call it unlikelihood loss. We use a coefficient
γ to balance Lunlike. Our loss can be combined with models that predict trajectory distribution as
output. Eq.2 shows the final training objective.

Lunlike = EXi,∼D,Yi,neg∼pneg(Yi|Xi)[log pθ(Yi,neg |Xi)] (1)

L = Lorig + γLunlike (2)

Lorig indicates the original training objective of the method we combine with. Lunlike helps leverage
the context into the learning objective, force the model to better extract and use contextual information
inXi, and generate a more reasonable distribution to avoid high Lunlike.

3.3 Negative Trajectories

Our proposed loss term is highly dependent on the negative samples Yi,neg from the distribution
pneg(Yi | Xi). However, these are not given in the dataset. To solve this issue, we approximate
the samples by directly drawing a set of trajectories from the predicted distribution and select the
trajectories that violate the contextual information out by a context checker. Note that this checker
does not need to be differentiable and it can be as complex and advanced as necessary. The type
of unlikely predictions the model learns to avoid by our method depends on the type of unlikely
trajectories the checker can identify.

Context Checker Design. We provide and implement a map-based checker design here to judge
whether a given trajectory is compliant with context and road rules. In detail, the checker examines
whether the trajectory goes into the lane in the opposite direction or out of the road. We create a
map that stores the lane direction at every location of lanes and the drivable region. Two examples
are shown in Fig.2. We first check whether all the locations of a given trajectory are in the drivable
region. If so, we further calculate angles between velocity and the lane direction at each time step
to see whether they are all within 90 degree. The velocities are approximated by differentiating the
trajectory. The trajectories that fail to pass the test are identified as negative trajectories Yi,neg . Note
that the lane direction information might be incomplete in some examples in the dataset, and in the
case, we only use the drivable region information. In addition, human drivers also go against the
context occasionally. We disable Lunlike if the ground truth trajectory violates the context to allow a
similar prediction. Although this checker is not perfect, it is able to select out meaningful negative
trajectories to support the training. Note that recent works like Beelines [16] provide other methods
to detect the unlikely trajectories and it is possible to adopt them as additional rules in our checker.
We leave it for future research.

(a) negative case (b) positive case

Figure 2: Examples of maps used in the checker in nuScences [17]. The green and blue regions
together denote the drivable region. The lane direction is available in blue region. The lane directions
are plotted as red arrows at random location. The blue line denotes the trajectory to check. Its velocity
directions are represented as yellow arrows. (a) shows a negative trajectory that goes out of the road.
(b) shows a positive trajectory that passes the checker.

3.4 Algorithm

The final algorithm is shown in Alg.1. At each iteration, we first run the forward pass of the model to
get the output distribution pθ(Yi |Xi) given the inputXi. Then, K negative candidate trajectories
are drawn from this distribution and we select the negative trajectories out Yi,neg via our checker.
After that, ground truth trajectory and negative trajectories are used to calculate the loss function, and

4

the model is updated. Finally, we proceed to the next iteration. Note that if there are no Yi,neg in the
K negative candidates judged by our checker for data i, we don’t apply Lunlike on i.

3.5 Gradient Analysis

Assume a single-mode prediction case that the future position yi,gt,t at time step t of agent
i is modeled by a simple Gaussian distribution N (yi,t; µ̂i,t, σ̂i,tI). µ̂ and σ̂i,t are calculated
by the model. With a single negative position yi,neg,t we define a simple loss for step t
Lt = − logN (ygt,t; µ̂t, σ̂tI) + logN (yneg,t; µ̂t, σ̂tI) and omit the subscript i for brevity. The
gradient of Lt with respect to µ̂t and σ̂t in this case is (derivation in supplementary):

∂Lt
∂µ̂t

= − 1

σ̂2
t

((ygt,t − µ̂t) + (µ̂t − yneg,t)) (3)

∂L

∂σ̂t
= − 1

σ̂3
t

(||ygt,t − µ̂t||2 − ||yneg,t − µ̂t||2) (4)

Eq.3 shows that the center of the predicted distribution µ̂t is pushed towards ygt,t and pushed away
from yneg,t by this learning objective. In Eq.4, when ygt,t is closer to the center than yneg,t, ∂L

∂σ̂t
is positive and σ̂t is decreased. Note that yneg,t is selected out from samples of N (µ̂t, σ̂tI)), this
means when N (µ̂t, σ̂tI)) covers context-violated region and this region is farther than ground truth
region, N (µ̂t, σ̂tI)) will shrink to exclude the negative region and become a better estimation to the
true data distribution.

Algorithm 1: Training process
Initialize the model parameters θ,

learning rate α and coefficient γ
while not converge do

Xi,Yi,gt ∼ D
Predict distribution pθ(Yi | Xi)
Draw K trajectories
Yi,k ∼ pθ(Yi | Xi)

Select Yi,neg from Yi,k via
checker

Compute original loss Lorig
Compute Lunlike using Eq.1
L = Lorig + γLunlike
θ = θ − α∇θ(L)

end

Soft γ. At the beginning of training, the model per-
forms poorly and may generate bad predictions far
away from the ground truth ygt,t. In this case, the
standard deviation σ̂t will increase according to Eq.4
and make the prediction more uncertain. To alleviate
this issue, we turn on Lunlike smoothly after the first
few training epochs by making γ in Eq.2 as a Sigmoid
function of the training epoch centered at a specified
epoch as a warm-up.

4 Experimental Results

In this section, we present the experimental results
of our method. Our method can be applied to the
state of the art models that generate a future trajectory
distribution and further improve the predicted distribution quality. We evaluated our method on
nuScenes dataset [18] applied to Trajectron++ [1] and Argoverse dataset [19] applied to a distribution-
based variant of LaneGCN [15].

Evaluation Metrics We use average l2 displacement error (ADE) and final l2 displacement error
(FDE) to evaluate the prediction. We target improving the quality of the predicted distribution. To
quantify the distribution quality, we randomly sample 200 trajectories from the predicted distribution
and average ADE and FDE over these samples as the metric ADE-Full and FDE-Full. In addition,
we report the context-violation rate of these 200 trajectories as measured by the context checker.

4.1 Experiments on nuScenes Dataset

nuScenes dataset [18] contains 1000 city driving scenes from both left-hand (Singapore) and right-
hand (Boston) traffic regions. Each scene is 20s long and recorded at 2Hz. nuScenes is one of the
most prominent open-source motion forecasting datasets with detailed semantic maps.

Test Model Trajectron++ [1] is a CVAE-based [20] model. Its inputXi contains positions, veloci-
ties, headings of the predicted and surrounding vehicles, and a map patch. The output distribution
pθ(Yi | Xi) =

∑
z pθ1(z | Xi)pθ2(Yi | Xi, z) is a Gaussian mixture model with 25 components

and modeled by an encoder net pθ1(z | Xi) and a decoder net pθ1(Yi | Xi, z). In addition, it has

5

Table 1: nuScenes: Experimental results on nuScenes dataset [18] with Trajectron++ [1]. Our pro-
posed loss avoids 16% context-violated prediction and improves the prediction accuracy performance
of Trajectron++ by more than 8%, which indicates a better-predicted distribution. Mean and standard
deviation are calculated over 5 runs.

Model FDE-Full ADE-Full Context-Violation-Rate minFDE10 minADE10
Ground Truth - - 5.44% - -
Trajectron++ 2.74±0.10 1.04±0.05 10.59%±0.54% 1.68±0.05 0.68±0.02
Trajectron++ with Lunlike 2.51±0.06 0.95±0.03 8.85% ± 0.32% 1.52±0.07 0.61±0.02
Relative Improvement +8% +9% + 16% +10% +10%

Table 2: nuScenes: Experimental results on the nuScenes dataset for single prediction. FDE and
ADE for all methods here are computed by only one predicted trajectory. For both Trajectron++ and
our method, this trajectory is sampled by greedy search. Our method helps to improve the predicted
accuracy. Mean and standard deviation are calculated over 5 runs.

Model FDE-1
1s 2s 3s 4s

Const. Velocity [1] 0.32 0.89 1.70 2.73
S-LSTM [21] 0.47 - 1.61 -
CSP [22] 0.46 2.35 1.50 -
CAR-Net [23] 0.38 - 1.35 -
SpAGNN [24] 0.36 - 1.23 -
Trajectron++ [1] 0.06±0.01 0.43±0.01 1.08±0.04 2.05±0.08
Trajectron++ with Lunlike 0.05±0.00 0.42±0.01 1.05±0.02 1.99±0.05

another encoder net qθ3(z |Xi,Yi,gt) used only in training. The original learning objective is shown
in supplementary materials. Iq denotes the mutual information.

Experiments The batch size is set to 1024. Models are trained for 35 epochs and we test the
weights from the best epoch measured by average ADE on the validation set. The coefficient γ in
Alg.1 increases gradually from 0 to 1 as a sigmoid function centered at the 24th epoch. The initial
learning rate is 3e-3 and it decays exponentially by 0.9995 per iteration. These hyperparameters
except γ are optimized for Trajectron++ and lead to better performance than that in the original paper.
To increase the numerical stability of the training, we add a small constant ε = 1e − 9 in Eq.1 to
avoid the infinite gradient region of log function. In this case, Eq.1 becomes:

Lunlike = EXi,∼D,Yi,neg∼pneg(Yi|X)[log(pθ(Yi,neg |Xi) + ε))] (5)

Mathematically, ε term scales the original gradient by pθ(Yi,neg|Xi)
pθ(Yi,neg|Xi)+ε

. Proof is shown in supplemen-
tary materials. In addition, we rotate the scenes randomly from 15◦ to 345◦ in the training set for
data augmentation following the setting of the original Trajectron++. For each model, we run five
experiments and report the mean and standard deviation of the measured metrics. The models are
trained to predict 3 seconds into the future. To evaluate generalization beyond the training horizon,
we test on both 3 second and 4-second prediction horizons.

Tab.1 shows the quantitative results of the 4s prediction measured by the FDE/ADE-Full metrics
and the context-violation rate. Our unlikelihood loss encourages the prediction to respect context
information more measured by the reduction of the context violation rate from 10.59% to 8.85%.
Besides, our method increases the prediction accuracy as both FDE and ADE are reduced by about
8%. Results indicate that our method helps improve the quality of the predicted distribution from both
context-compliant and accuracy perspectives. This is also demonstrated in the qualitative comparison
in Fig.1. The predicted distribution from our methods covers the not-drivable and wrong direction
region less. In contrast, original Trajectron++ tends to violate the contextual information when the
prediction horizon is long. This shows that our method encourages the model to be more sensitive to
the road boundary and the lane direction. Comparison with other methods is shown in Tab.2. The
FDE for the single predicted trajectory is also improved by our method.

4.2 Experiments on Argoverse Dataset

Argoverse dataset [19] contains 300,000 5-second tracked scenarios in 2 American cities Miami and
Pittsburgh with semantic maps. The data is recorded at 10 Hz. The first 2 seconds are used as input
to predict the next 3 seconds’ future.

6

Table 3: Argoverse: Experimental results on Argoverse dataset. Compared to our base model
Gaussian LaneGCN, our proposed method reduces the context violation by a large margin and
avoid 56% of prediction that violates context. ADE-Full and FDE-Full are reduced by 8% and 6%,
respectively. Results indicate a better-predicted distribution with our unlikelihood loss Lunlike.

Model ADE-Full FDE-Full Context-Vio. ADE-1 FDE-1
Ground Truth - - 0.85% - -
Gaussian LaneGCN 1.81 3.49 9.0% 1.38 3.03
Gaussian LaneGCN with Lunlike 1.67 3.29 4.0% 1.38 3.01
Relative Improvement +8% +6% + 56% 0% +1%

Test Model LaneGCN [15] is one of the state of the art models on Argoverse dataset. It takes
the historical trajectories and a graph representation of lanes as input and directly generates 6
deterministic trajectories as the prediction of each vehicle. The predicted trajectories are trained by
regression using smooth L1 loss. To investigate the effectiveness of our method on distribution-based
models, we applied our method to a distribution-based variant of LaneGCN that predicts 6 trajectory
distributions instead. The predicted position at each timestep is modeled by a simple isotropic
Gaussian distribution with predicted variance. This is done by extending the dimension of the final
output layer to include a log variance prediction additionally for each timestep. In addition, the model
is modified to predict velocity distribution. The trajectory distribution is calculated by the integration
over the velocity distribution. The smooth L1 regression loss is replaced by the minus log likelihood
of the ground truth future (MLE training). The original training objective is shown in supplementary
materials. This variant is denoted as Gaussian LaneGCN.

Experiments Argoverse does not release the ground truth future trajectories for the test dataset.
Therefore, we use the original validation set as our test set in this experiment. For both Gaussian
LaneGCN and our method, we set the batch size to 128. The initial learning rate is 1e-3 and it decays
to 1e-4 after 32 epochs. The model is trained for 36 epochs. The coefficient γ of the unlikelihood
loss in Alg.1 increases gradually from 0 to 1 as a sigmoid function centered at the 12th epoch. The
results are listed in Tab.3. With our unlikelihood training loss, we significantly reduce the context
violation rate from 9.0% to 4.0% compared to the original Gaussian LaneGCN. 56% of predictions
that violate the context are avoided with our method. In addition, ADE-Full and FDE-Full are also
reduced by 8% and 6%, respectively. Results indicate that our method successfully improves the
predicted distribution quality by encouraging the model to focus on context information more.

4.3 Ablation Study

The Influence of Our Loss Without Map Input Here we remove the map input from the model
and demonstrate the influence of our unlikelihood loss in nuScenes in Tab.4. Interestingly, our loss
helps improve the performance from 2.89 to 2.67 measured by the FDE-Full although the model
does not see the context during inference. We think the reason is that compared to the Trajectron++
without map input, our unlikelihood loss still offers context information to support the training since
this loss is calculated using the context. Therefore, our model receives more information during
training and performs better. Besides, our method without map input even achieves a comparable
result (FDE-Full 2.67) compared to Trajectron++ with map input (FDE-Full 2.74). This experiment
shows that our loss can inject context information into learning signals. In addition, using map input
only as the context information source improves FDE-Full of Trajectron++ by 0.15 (from 2.89 to
2.74). In contrast, if we use both map input and our unlikelihood loss , the performance is improved
by 0.38 (from 2.89 to 2.51). Our loss doubles the contribution of context information.

Remove Context-Violated Prediction Directly An intuitive way to avoid context-violated predic-
tions is simply removing these predictions as a post-processing step. Even though this is straight-
forward, the prediction model in this case isn’t trained to obtain the context violation knowledge.
Our method encourages the model to understand the context better and to avoid the context violation
by itself. Therefore, our model is more ‘intelligent’ compared to the method directly removing the
context-violated prediction and leads to a better prediction. In addition, context violation is sometimes
needed. A small part of the ground truth trajectories also violates the context. The model trained by
our method can still give us context-violated prediction as our context violation rate is not zero in Tab1.
We list the ADE/FDE-Full of Trajectron++, Trajectron++ removing the context-violated prediction

7

Table 4: The effect of Lunlike without map
input to the model on nuScenes. Compared
to Trajectron++ without map input, our loss
performs better, which indicates that Lunlike
offers context information for the training.

Map Input Lunlike FDE-Full ADE-Full
- - 2.89±0.11 1.08±0.03
- + 2.67±0.08 1.01±0.02
+ - 2.74±0.10 1.04±0.05
+ + 2.51±0.06 0.95±0.03

Table 5: The performance when simply remov-
ing the context-violated prediction. Although this
straightforward method improves the original base-
line, our method achieves the best scores. This
indicates that our unlikelihood loss helps models
to understand the context better.

Method ADE-Full FDE-Full
Trajectron++ 1.04 ± 0.05 2.74 ± 0.10
Trajectron++ with Removing Violation 0.98 ± 0.04 2.55 ± 0.10
Trajectron++ with Lunlike 0.95 ± 0.03 2.51 ± 0.06

Table 6: Ablation study on extended check-horizon of negative candidates on nuScenes dataset. When
the horizon is properly extended from 3s to 4s, the checker can recognize more negative trajectories
and improves the prediction accuracy. Evaluation horizon is 4s. Results are averaged over 2 runs.

Model Check-Horizon ADE-Full FDE-Full Cotext-Vio. ADE-1 FDE-1
Trajectron++ - 1.04 2.74 10.6% 0.77 2.05
Trajectron++ with Lunlike 3s 0.95 2.51 8.9% 0.74 1.99
Trajectron++ with Lunlike 4s 0.92 2.43 8.5% 0.75 1.98
Trajectron++ with Lunlike 5s 0.96 2.58 9.3% 0.77 2.03
Trajectron++ with Lunlike 6s 0.98 2.59 8.9% 0.77 2.03

directly, and our method in Tab.5. Although simply removing the context-violated prediction helps
improve the distribution accuracy, our method still performs better.

Hyperparameter γ In our previous experiments, γ is simply set to 1 and turned on smoothly
during training. We further performed ablations on γ with values including 0.1, 0.3, 3, 10. We
observed performance degradation for smaller γ, and similar performance to γ = 1 for bigger γ; see
the detailed ablations in the Section ’Hyperparameter γ’ of the Appendix.

Check-horizon for negative candidates Assume we have a 3-second predicted trajectory that
obeys our checker but tends to violate it in the near future (e.g., in 1 second). Such a trajectory is
able to pass our checker’s examination but still unlikely to happen in the real world. To classify it
as a negative trajectory, we check the future of this prediction by extending the prediction horizon
of the candidate trajectories and checking this extended version. Tab.6 shows ablation studies with
extended check-horizon from 3 seconds to 4, 5, 6 seconds to verify whether this mechanism improves
our method. Note that the extended horizon is only used for selecting out the negative trajectories.
Trajectories are truncated back to 3 seconds when computing the unlikelihood loss Lunlike. Our
method benefits from an adequately extended check-horizon as extending the negative trajectories to
4 seconds improves the FDE Full by about 0.08. Note that when we further extend the check-horizon
to 5 seconds and 6 seconds, we do not observe a better performance. This might be because the
future of the prediction itself is too inaccurate when we extend the horizon too much and make the
judgment of the original prediction unreliable. Numbers are averaged over two training instances.

5 Conclusion

We present an unlikelihood guided trajectory prediction method that leverages context information
into learning signals by minimizing the probability of unlikely trajectories. During training, our
context checker detects predicted unlikely trajectories and their probabilities are minimized using an
unlikelihood loss. Our method can be seamlessly incorporated into state-of-the-art distribution-based
models with a maximum likelihood estimation objective. Our experimental results demonstrate that
our method significantly improves the predicted distribution quality of state-of-the-art trajectory
prediction models. We hope that our work may encourage future work on exploring better unlikelihood
methods for trajectory prediction and improved context checker models.

8

6 Acknowledgement

This work is funded by a KAUST BAS/1/1685-01-0.

References
[1] T. Salzmann, B. Ivanovic, P. Chakravarty, and M. Pavone. Trajectron++: Multi-agent generative

trajectory forecasting with heterogeneous data for control. arXiv preprint arXiv:2001.03093,
2020.

[2] C. Tang and R. R. Salakhutdinov. Multiple futures prediction. In Advances in Neural Information
Processing Systems, pages 15398–15408, 2019.

[3] N. Rhinehart, R. McAllister, K. Kitani, and S. Levine. Precog: Prediction conditioned on
goals in visual multi-agent settings. In The IEEE International Conference on Computer Vision
(ICCV), October 2019.

[4] S. Casas, C. Gulino, S. Suo, and R. Urtasun. The importance of prior knowledge in precise
multimodal prediction. arXiv preprint arXiv:2006.02636, 2020.

[5] S. H. Park, G. Lee, M. Bhat, J. Seo, M. Kang, J. Francis, A. R. Jadhav, P. P. Liang, and
L.-P. Morency. Diverse and admissible trajectory forecasting through multimodal context
understanding. European Conference on Computer Vision, 2020.

[6] S. Welleck, I. Kulikov, S. Roller, E. Dinan, K. Cho, and J. Weston. Neural text generation with
unlikelihood training. arXiv preprint arXiv:1908.04319, 2019.

[7] N. Lee, W. Choi, P. Vernaza, C. B. Choy, P. H. S. Torr, and M. Chandraker. DESIRE: distant
future prediction in dynamic scenes with interacting agents. In 2017 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017,
pages 2165–2174. IEEE Computer Society, 2017. doi:10.1109/CVPR.2017.233. URL https:
//doi.org/10.1109/CVPR.2017.233.

[8] H. Cui, V. Radosavljevic, F. Chou, T. Lin, T. Nguyen, T. Huang, J. Schneider, and N. Djuric.
Multimodal trajectory predictions for autonomous driving using deep convolutional networks.
CoRR, abs/1809.10732, 2018. URL http://arxiv.org/abs/1809.10732.

[9] Y. Chai, B. Sapp, M. Bansal, and D. Anguelov. Multipath: Multiple probabilistic anchor
trajectory hypotheses for behavior prediction. arXiv preprint arXiv:1910.05449, 2019.

[10] V. Kosaraju, A. Sadeghian, R. Martı́n-Martı́n, I. Reid, S. H. Rezatofighi, and S. Savarese.
Social-bigat: Multimodal trajectory forecasting using bicycle-gan and graph attention networks.
arXiv preprint arXiv:1907.03395, 2019.

[11] D. Ridel, N. Deo, D. Wolf, and M. Trivedi. Scene compliant trajectory forecast with agent-
centric spatio-temporal grids. IEEE Robotics and Automation Letters, 5(2):2816–2823, 2020.

[12] X. Huang, S. G. McGill, J. A. DeCastro, B. C. Williams, L. Fletcher, J. J. Leonard, and
G. Rosman. Diversity-aware vehicle motion prediction via latent semantic sampling. ArXiv,
abs/1911.12736, 2019.

[13] N. Rhinehart, K. M. Kitani, and P. Vernaza. R2p2: A reparameterized pushforward policy for
diverse, precise generative path forecasting. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 772–788, 2018.

[14] M. Li, S. Roller, I. Kulikov, S. Welleck, Y. Boureau, K. Cho, and J. Weston. Don’t say that!
making inconsistent dialogue unlikely with unlikelihood training. CoRR, abs/1911.03860, 2019.
URL http://arxiv.org/abs/1911.03860.

[15] M. Liang, B. Yang, R. Hu, Y. Chen, R. Liao, S. Feng, and R. Urtasun. Learning lane graph
representations for motion forecasting. In European Conference on Computer Vision, pages
541–556. Springer, 2020.

9

http://dx.doi.org/10.1109/CVPR.2017.233
https://doi.org/10.1109/CVPR.2017.233
https://doi.org/10.1109/CVPR.2017.233
http://arxiv.org/abs/1809.10732
http://arxiv.org/abs/1911.03860

[16] S. Shridhar, Y. Ma, T. Stentz, Z. Shen, G. C. Haynes, and N. Traft. Beelines: Motion prediction
metrics for self-driving safety and comfort, 2021.

[17] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y. Pan, G. Baldan,
and O. Beijbom. nuscenes: A multimodal dataset for autonomous driving. arXiv preprint
arXiv:1903.11027, 2019.

[18] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y. Pan, G. Baldan,
and O. Beijbom. nuscenes: A multimodal dataset for autonomous driving. arXiv preprint
arXiv:1903.11027, 2019.

[19] M.-F. Chang, J. Lambert, P. Sangkloy, J. Singh, S. Bak, A. Hartnett, D. Wang, P. Carr, S. Lucey,
D. Ramanan, et al. Argoverse: 3d tracking and forecasting with rich maps. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 8748–8757, 2019.

[20] K. Sohn, H. Lee, and X. Yan. Learning structured output representation using deep conditional
generative models. In Advances in neural information processing systems, pages 3483–3491,
2015.

[21] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and S. Savarese. Social lstm:
Human trajectory prediction in crowded spaces. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 961–971, 2016.

[22] N. Deo and M. M. Trivedi. Multi-modal trajectory prediction of surrounding vehicles with
maneuver based lstms. In 2018 IEEE Intelligent Vehicles Symposium (IV), pages 1179–1184.
IEEE, 2018.

[23] A. Sadeghian, F. Legros, M. Voisin, R. Vesel, A. Alahi, and S. Savarese. Car-net: Clairvoyant
attentive recurrent network. In Proceedings of the European Conference on Computer Vision
(ECCV), pages 151–167, 2018.

[24] S. Casas, C. Gulino, R. Liao, and R. Urtasun. Spatially-aware graph neural networks for
relational behavior forecasting from sensor data. arXiv preprint arXiv:1910.08233, 2019.

10

	Introduction
	Related Work
	Method
	Problem Definition
	Unlikelihood Loss
	Negative Trajectories
	Algorithm
	Gradient Analysis

	Experimental Results
	Experiments on nuScenes Dataset
	Experiments on Argoverse Dataset
	Ablation Study

	Conclusion
	Acknowledgement

