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Abstract001

We introduce Tooka-SBERT, a002
family of Persian sentence embedding003
models designed to enhance semantic004
understanding for Persian. The models005
are released in two sizes—Small006
(123M parameters) and Large (353M007
parameters)—both built upon the008
TookaBERT backbone. Tooka-SBERT is009
pretrained on the Targoman News corpus010
and fine-tuned using high-quality synthetic011
Persian sentence pair datasets to improve012
semantic alignment. We evaluate Tooka-013
SBERT on PTEB, a Persian adaptation014
of the MTEB benchmark, where the015
Large model achieves an average score016
of 70.54% and the Small model 69.49%,017
outperforming some strong multilingual018
baselines. Tooka-SBERT provides a019
compact and high-performing open-source020
solution for Persian sentence representation,021
with efficient inference suitable for both022
GPU and CPU environments.023

1 Introduction024

Text embeddings are a foundational component025

in natural language processing, powering a wide026

array of applications such as clustering, search027

systems, text mining, and serving as feature028

representations for downstream models (Wang029

et al., 2024). Their ability to convert semantic030

relationships into spatial relationships between031

vectors is crucial for efficient information032

retrieval systems and language models.033

With the rapid adoption of Large034

Language Models and growing concerns035

about hallucinations, Retrieval Augmented036

Generation (RAG) has emerged as a critical037

approach to enhance factual accuracy (Lewis038

et al., 2020). RAG pipelines rely heavily on039

robust embedding models that can accurately040

capture semantic similarity and retrieve the041

most relevant information. These models must042

not only offer strong semantic alignment, but 043

also be computationally efficient to enable 044

fast inference and retrieval in real-world 045

pipelines. Sentence-BERT (Reimers and 046

Gurevych, 2019) introduced a paradigm for 047

generating independent, high-quality sentence 048

embeddings, making it particularly effective 049

for retrieval tasks. However, for Persian 050

language applications, the scarcity of robust 051

embedding models poses a challenge, making 052

the development of high-performing Persian 053

embeddings essential for advancing Persian 054

RAG systems. 055

This paper introduces Tooka-SBERT, a 056

family of text embedding models, designed 057

specifically for semantic textual similarity and 058

embedding tasks in Persian. These models 059

map sentences and paragraphs to a dense 060

vector space where semantically similar texts 061

are positioned closely together. The Tooka- 062

SBERT-V2 model is available in two sizes: 063

Small (123M parameters) and Large (353M 064

parameters). Our models are built upon 065

TookaBERT (SadraeiJavaheri et al., 2024), a 066

Persian pre-trained language model. 067

Our main contributions are as follows: 068

• We introduce Tooka-SBERT, a family 069

of compact sentence embedding models 070

for Persian. Despite having relatively 071

few parameters, Tooka-SBERT models 072

achieve strong performance across diverse 073

tasks in Persian. The Large-V2 variant 074

outperforms state-of-the-art baselines, 075

achieving approximately 1.2% higher 076

performance than multilingual-e5-base 077

(Wang et al., 2024) and around 3.5% 078

higher than Qwen3-Embedding-0.6B 079

(Zhang et al., 2025). The Small-V2 080

variant, with fewer parameters, also 081

surpasses multilingual-e5-base on the 082
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PTEB benchmark.083

• We present the PTEB benchmark,084

a Persian adaptation of MTEB085

(Muennighoff et al., 2022), constructed086

by collecting and curating datasets087

across a range of tasks to enable088

comprehensive evaluation of Persian089

sentence embeddings.090

2 Related Works091

2.1 General Text Embeddings092

The study of text embeddings has evolved093

significantly, beginning with statistical and094

matrix-based techniques before advancing to095

neural and transformer-based architectures.096

Early approaches such as Latent Semantic097

Indexing (LSI) (Deerwester et al., 1990) and098

Latent Dirichlet Allocation (Blei et al., 2001)099

represented documents via word co-occurrence100

or topic distributions. Later, neural methods101

using word embeddings such as Word2Vec102

(Mikolov et al., 2013) and GloVe (Pennington103

et al., 2014) introduced more efficient vector104

representations for semantic similarity, but105

they lacked context awareness. The field106

advanced significantly with deep learning-107

based contextualized models, such as ELMo108

(Peters et al., 2018) and transformer-based109

architectures like BERT (Devlin et al., 2019)110

and RoBERTa (Liu et al., 2019).111

While BERT and RoBERTa set new112

state-of-the-art performance on sentence-pair113

regression tasks like semantic textual similarity114

(STS), they require feeding both sentences115

into the network, leading to significant116

computational overhead. To overcome this,117

Sentence-BERT (Reimers and Gurevych, 2019)118

was introduced, which uses siamese and119

triplet network structures to derive fixed-size,120

semantically meaningful sentence embeddings121

that can be compared efficiently using cosine122

similarity. Contrastive learning methods, such123

as SimCSE (Gao et al., 2021b), have further124

advanced general-purpose text representations125

by fine-tuning transformers on positive and126

negative text pairs using a contrastive loss127

objective. However, models like SimCSE128

were primarily trained on single tasks and129

were not inherently suitable for broader130

applications. This led to the development of a131

new generation of models designed to generalize132

across a wider range of tasks, including 133

retrieval, classification, and question-answering. 134

Training these models often involves multi- 135

stage and multi-task fine-tuning strategies 136

that incorporate weakly-supervised contrastive 137

training. Techniques like AliBi (Press et al., 138

2022) and Rotary Position Embeddings (RoPE) 139

(Su et al., 2024) have enabled models to 140

handle longer text sequences, while Matryoshka 141

Representation Learning (Kusupati et al., 2022) 142

allows for truncating embeddings to smaller 143

dimensions without significantly compromising 144

performance. 145

2.2 Multilingual Embedding Models 146

The development of multilingual models has 147

been crucial for extending NLP capabilities 148

beyond English. Early examples include 149

Multilingual BERT (mBERT) (Devlin et al., 150

2019) and XLM-RoBERTa (XLM-R) (Conneau 151

et al., 2020), which were trained on large 152

corpora spanning many languages. Also, 153

multilingual embedding models have advanced 154

the field through novel architectures and 155

training strategies. Multilingual E5 (mE5) 156

extends the English E5 framework with a two- 157

stage approach: weakly-supervised contrastive 158

pre-training on billions of multilingual text 159

pairs, followed by supervised fine-tuning on 160

labeled datasets. BGE M3 (Chen et al., 161

2024), built on XLM-R, supports long input 162

sequences and utilizes RetroMAE pretraining 163

(Xiao et al., 2022) along with a multi-CLS 164

pooling mechanism. It undergoes contrastive 165

training on unlabeled pairs, followed by fine- 166

tuning on task-specific labeled data. Similarly, 167

Jina-embeddings-v3 (Sturua et al., 2025), also 168

based on XLM-RoBERTa, leverages RoPE 169

positional encoding and LoRA adapters (Hu 170

et al., 2022) for long-context multilingual 171

retrieval, achieving strong performance on 172

MTEB tasks. The Qwen3 (Zhang et al., 173

2025) Embedding series employs a multi-stage 174

training pipeline with LLM-generated synthetic 175

data, robust model merging strategies, and fine- 176

tuning. 177

2.3 Persian Embedding Models 178

Persian remains significantly underrepresented 179

in large-scale text embedding research. 180

While several open-source models have been 181

released on HuggingFace by the Persian NLP 182
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Dataset #Train #Test Structure
News 16M 1.8M (title, subtitle, text)
NLI 68K 7.5K (sentence, paraphrases, entailment, neutral, contradiction)
RAFT 103K 11K (question, oracle_context, answer, negative_contexts)
MIRACL 20K 2.2K (query, doc, score, relevance)

Table 1: Overview of datasets used for training and evaluation.

community, they generally lag behind models183

developed for high-resource languages in terms184

of performance. One of the early efforts to185

adapt Sentence-Transformer architectures186

for Persian was PersianSentenceTransformers187

(Farahani, 2020), which leveraged ParsBERT188

(Farahani et al., 2020) and was fine-tuned on189

FarsTail (Amirkhani et al., 2023)— the first190

Persian NLI dataset—as well as a modified191

Wikipedia-Triplet-Sections approach (Ein Dor192

et al., 2018), which involved extensive193

preprocessing and filtering of Wikipedia194

articles to generate meaningful triplets and195

Similar/Dissimilar sentence pairs. Another196

ParsBERT-based model, sentence-transformer-197

parsbert-fa (Ahmadi, 2024), was trained198

specifically to enhance Retrieval-Augmented199

Generation systems for applications such as200

QA and chatbots.201

Building on cross-lingual architectures,202

Sobhi (2024) fine-tuned XLM-RoBERTa-Large203

on a variety of Persian datasets, including204

ParsiNLU (Khashabi et al., 2021) and205

PQuAD (Darvishi et al., 2023), to support206

different tasks. Similarly, Heydari (2024)207

fine-tuned XLM-RoBERTa-Base on a large-208

scale Persian corpus to produce high-quality209

contextual embeddings for both monolingual210

and multilingual applications. The maux-211

gte-persian model (Mirzaei, 2024), derived212

from GTE-multilingual (Zhang et al., 2024),213

was fine-tuned using Persian sentence pairs214

translated from English with GPT-4, offering215

strong performance across Persian semantic216

tasks. Finally, Hakim (Sarmadi et al.,217

2025) stands out as a purpose-built Persian218

embedding model that applies the RetroMAE219

architecture in a two-stage contrastive and220

supervised training pipeline. It applies task-221

specific instructions and dedicated CLS-token222

supervision.223

3 Training Data 224

To ensure strong performance across various 225

tasks, we utilized a combination of existing 226

and synthetic datasets. Targoman Large 227

Persian Corpus (TLPC) (Targoman, 2022) is 228

the largest among them. It was collected by 229

scraping over 800 popular Persian websites, 230

resulting in more than 75 million documents 231

across diverse domains. We used its News 232

section and, after normalization, extracted the 233

title, subtitle, and main text as training data. 234

TLPC is released under the CC-BY-NC-SA- 235

4.0 license, and we used it strictly for non- 236

commercial model training. 237

NLI is a synthetic dataset generated by 238

an LLM model. For each input sentence, 239

the model generated a tuple containing 240

paraphrases, as well as entailment, neutral, 241

and contradiction sentences. 242

Another synthetic dataset, RAFT, was 243

generated by LLMs using webpages crawled 244

from Wikipedia. Each webpage was split into 245

multiple chunks; one chunk was selected as the 246

oracle context, and the LLM was prompted to 247

generate a corresponding question and answer. 248

The remaining chunks were treated as negative 249

contexts. 250

MIRACL (Zhang et al., 2023) is a 251

multilingual retrieval dataset in which each 252

sample consists of a query, a document, and 253

a binary relevance label (1 for relevant, 0 254

for irrelevant). We used its training split to 255

fine-tune our model. The dataset is released 256

under the Apache License 2.0, which permits 257

both commercial and non-commercial use with 258

attribution. Additionally, we used a cross- 259

encoder model, bge-reranker-v2-m3 (Chen 260

et al., 2024), to compute a continuous similarity 261

score between the query and document pairs, 262

which was used as a soft supervision signal 263

during training. 264

Table 1 summarizes the datasets used during 265

training. 266
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a

b

Figure 1: Training pipelines of Tooka-SBERT models. (a) Tooka-SBERT-Small, and (b) Tooka-SBERT-
Large.

4 Methodology267

4.1 Overview268

We conducted a series of experiments to269

develop high-quality sentence embeddings for270

the Persian language. Our goal was to271

train a model that performs well across a272

variety of semantic tasks such as semantic273

textual similarity (STS), information retrieval,274

reranking, and classification.275

Through these experiments, we explored276

different training strategies. We released the277

first successful result as Tooka-SBERT-V1.278

However, our main contribution in this work is279

Tooka-SBERT-V2, a more robust and versatile280

model trained using multi-stage techniques.281

We trained our model in two sizes: Small (123M282

parameters) and Large (353M parameters).283

The training strategy for V2 consists of two284

main stages:285

1. Warming-up on TLPC data286

2. Fine-tuning on a collection of datasets287

We implemented our training pipeline using288

the sentence-transformers library, which289

provides flexible support for various loss290

functions, training strategies, and efficient291

multi-dataset handling.292

4.2 Tooka-SBERT-Small293

We use TookaBERT-Base as the backbone for294

our Small model. The training process follows295

a multi-stage strategy, illustrated in Fig. 1a296

Stage 1 – Warm-up on TLPC: We297

pretrain the model on the Persian news dataset298

provided by Targoman, using an asymmetric299

input format to differentiate between query 300

and document pairs. Specifically, we prepend: 301

• «:لاوس» (”question:”) to query sentences 302

• «:نتم» (”text:”) to document passages 303

This prefix-based formatting helps the model 304

distinguish between queries and documents, 305

improving its ability to capture semantic 306

relationships between questions and relevant 307

texts. (Wang et al., 2022) 308

We primarily employed Cached Multiple 309

Negatives Ranking Loss (Gao et al., 2021a) 310

during training. This loss function is 311

widely used in sentence embedding models, 312

particularly for contrastive learning in retrieval 313

settings. It maximizes the similarity of a 314

query and its corresponding positive while 315

minimizing the similarity with all in-batch 316

negatives. Unlike traditional triplet losses, it 317

doesn’t require explicit hard negative mining, 318

making it more efficient and stable in large- 319

scale training. Furthermore, Cached Multiple 320

Negatives Ranking Loss allows training with 321

effectively larger batch sizes without the need 322

for additional VRAM, whereas Contrastive 323

Loss (Radford et al., 2021) typically requires 324

very large batch sizes to achieve good 325

convergence. 326

Stage 2 - Fine-Tuning on RAFT + 327

NLI: We used a proportional sampling strategy 328

across the Raft and NLI datasets, training 329

for 5 epochs with Cached Multiple Negatives 330

Ranking Loss. Sampling proportion was based 331

on dataset size to ensure balanced coverage. 332

• RAFT Format: (question, oracle_context, 333
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Dataset Structure Loss Function

MIRACL (query, doc, score — float) CoSENTLoss
(query, doc, relevance — binary) OnlineContrastiveLoss

NLI (sentence, contradiction, 0) SoftmaxLoss(sentence, neutral, 1)
(sentence, entailment, 2)
(sentence, paraphrase, contradiction) CMNRLoss

RAFT (question, oracle, negative1, negative2, negative3) CMNRLoss
(question, answer) CMNRLoss

Table 2: Input formats and corresponding loss functions used for each dataset during training the Large
model. CMNRLoss is Cached Multiple Negatives Ranking Loss.

negative_context1, negative_context2,334

negative_context3)335

• NLI Format: sentence, paraphrase,336

contradiction337

Stage 3 – Fine-tuning on MIRACL +338

NLI: We applied a round-robin strategy for 170339

steps, where batches are sampled alternately340

from each dataset until one is exhausted. This341

means not all samples from each dataset may342

be used, but sampling is performed equally343

across datasets. The MIRACL dataset was344

trained using CoSENT (Cosine Sentence)345

Loss (Jianlin, 2022), while NLI continued346

with Cached Multiple Negatives Ranking Loss347

to preserve classification performance on348

classification tasks. Otherwise, we observed349

a noticeable performance drop on classification350

tasks.351

• MIRACL Format: (query, doc, score352

(float))353

• NLI Format: (sentence, paraphrase,354

contradiction)355

For the MIRACL dataset, we used the356

CoSENT Loss (Jianlin, 2022), a ranking-357

based loss that emphasizes preserving the358

relative similarity order between sentence pairs.359

Given a batch of input pairs with real-valued360

similarity labels, the CoSENT loss computes:361

L = log
∑

(i,j)>(k,l)

(1 + exp(s(i,j) − s(k,l)))362

where, (i, j) and (k, l) are any pairwise363

examples in the batch such that the label of364

(i, j) is greater than that of (k, l), and s(i, j)365

is their cosine similarity. This loss encourages366

the model to maintain correct ranking among 367

sentence pairs, rather than regress to a specific 368

value. Compared to Cosine Similarity Loss, 369

anecdotal experiments and prior works suggest 370

CoSENT yields a stronger training signal, 371

faster convergence, and improved retrieval 372

performance. 373

We used a learning rate of 5e-5 across 374

all training stages. The warm-up step took 375

approximately 20 hours, and the two fine- 376

tuning stages required about four hours in total. 377

All training was performed on 8 NVIDIA A100- 378

40GB GPUs. 379

4.3 Tooka-SBERT-Large 380

We use TookaBERT-Large as the backbone for 381

our Large model, as illustrated in Fig. 1b. 382

Stage 1 - Warmup on TLPC: As in 383

the Small model, we train for one epoch on 384

the Targoman news dataset using the Cached 385

Multiple Negatives Ranking Loss. 386

Stage 2 – Fine-tuning on Raft + NLI 387

+ MIRACL: We trained for 1 epoch across 388

all three datasets using proportional sampling. 389

Different loss functions were used for different 390

views of each dataset, as shown in Table 2. To 391

effectively leverage diverse supervision signals 392

and task types, we used multiple loss functions 393

tailored to each dataset’s structure and goal. 394

Cached Multiple Negatives Ranking Loss was 395

chosen for datasets like NLI and RAFT, as it 396

enables scalable contrastive learning by using 397

all non-matching pairs in a batch as negatives. 398

For MIRACL, which contains relevance scores 399

from cross-encoder models, we used CoSENT 400

Loss to optimize ranking consistency based 401

on relative pairwise order, which aligns well 402

with retrieval tasks. Additionally, we employed 403

Online Contrastive Loss on MIRACL’s binary 404
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Model Params
Pair Classification Classification Average

FarsTail
Avg. Precision

Massive
Intent

Accuracy

Massive
Scenario
Accuracy

Multilingual
Sentiment
Accuracy

Persian Food
Sentiment
Accuracy

Pair Classification
& Classification Overall

e5-base-v2 109M 57.23 29.84 33.21 58.28 58.04 47.32 33.05

e5-large-v2 335M 59.25 35.75 38.06 57.79 57.18 49.61 34.65

multilingual-e5-small 118M 71.56 57.17 62.84 75.42 74.37 68.27 67.46

multilingual-e5-base 270M 70.76 61.53 65.22 76.34 75.74 69.92 69.33

multilingual-e5-large 560M 72.55 65.31 68.76 77.47 77.16 72.25 71.44

LaBSE 471M 62.93 62.33 67.43 72.44 72.09 67.44 55.15

gte-multilingual-base 305M 72.65 62.29 67.88 71.84 70.90 69.11 68.28

Qwen3-Embedding-0.6B 596M 73.23 68.91 72.45 69.24 68.01 70.37 67.00

jina-embeddings-v3 572M 71.88 72.60 81.88 81.48 81.11 77.79 71.37

openai-text-embedding-ada-002 - 65.03 52.00 56.75 71.11 70.27 63.03 53.83

openai-text-embedding-3-small - 68.85 51.99 57.07 66.55 65.83 62.06 54.44

openai-text-embedding-3-large - 72.45 64.80 70.26 77.01 75.98 72.10 65.77

maux-gte-persian 305M 63.80 63.51 68.19 71.88 70.68 67.61 65.39

sentence-transformer-parsbert-fa 163M 58.92 44.13 51.84 55.74 55.95 53.32 39.41

persian-embeddings 560M 71.83 64.12 73.78 67.37 66.79 68.78 64.42

Persian_Sentence_Embedding_v3 560M 69.16 63.19 71.01 72.74 72.06 69.63 62.94

bert-zwnj-wnli-mean-tokens 118M 56.09 52.76 58.24 59.64 59.38 57.22 43.07

roberta-zwnj-wnli-mean-tokens 118M 54.98 51.41 59.53 57.65 57.11 56.13 42.02

Tooka-SBERT (Ours) 353M 81.52 64.39 67.59 77.17 77.01 73.54 62.54

Tooka-SBERT-V2-Small (Ours) 123M 75.69 65.33 69.23 77.51 76.56 72.86 69.49

Tooka-SBERT-V2-Large (Ours) 353M 80.24 67.87 72.70 79.38 78.97 75.83 70.54

Table 3: Performance on Pair Classification and Classification tasks.

relevance data to directly optimize embedding405

separation between relevant and irrelevant406

pairs. For NLI’s 3-way labeled format407

(entailment, contradiction, neutral), we applied408

Softmax Loss, a classification-based loss that409

encourages distinct clustering of semantic410

classes in the embedding space. This diverse411

loss setup enabled us to train a general-purpose412

model capable of strong performance across413

different tasks.414

We used a learning rate of 5e-5 for the warm-415

up phase and 1e-5 for fine-tuning. The warm-416

up step took approximately 26 hours, while417

fine-tuning required about three hours. All418

training was conducted on 8 NVIDIA A100-419

40GB GPUs.420

5 Evaluations421

We evaluated our models on PTEB (Persian422

Text Embedding Benchmark), which we423

created by selecting and unifying the Persian-424

language tasks available in the MTEB suite425

(Muennighoff et al., 2022) and enhancing426

key evaluation protocols to ensure fair and427

rigorous assessment. While PTEB utilizes428

the original MTEB evaluation code for most429

tasks, we implemented a critical correction430

for the MIRACLReranking task. PTEB431

includes evaluation on retrieval, classification, 432

pair-classification and reranking, offering 433

a comprehensive assessment of sentence 434

embeddings in Persian. 435

5.1 Modification to the 436

MIRACLReranking Protocol 437

For the Persian MIRACLReranking task, we 438

identified a significant issue in the original 439

MTEB benchmark’s evaluation script that 440

could lead to an inaccurate assessment of 441

model performance. The standard protocol 442

evaluates a model’s ability to rerank a list 443

of 100 candidate documents for each of the 444

632 queries. The primary evaluation metric is 445

the Normalized Discounted Cumulative Gain 446

(nDCG). However, we found that for certain 447

queries, the provided set of 100 candidates did 448

not contain any of the ground-truth positive 449

documents. This setup flaw means that even 450

a perfect model would score an nDCG of 451

0 on these samples, as it’s impossible to 452

rank documents that are not present in the 453

candidate pool. 454

To ensure a more fair and rigorous evaluation, 455

we implemented the following modifications to 456

the evaluation code for each query: 457

Injecting Positive Documents: We 458
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Model Params

Reranking Retrieval Average

MIRACL Wikipedia NeuCLIR2023 MIRACL Wikipedia
Retrieval &
Reranking Overall

nDCG@10 MAP nDCG@20 nDCG@10 nDCG@10

e5-base-v2 109M 11.38 60.94 1.89 0.26 19.42 18.78 33.05

e5-large-v2 335M 14.50 63.50 2.05 0.16 18.31 19.70 34.65

multilingual-e5-small 118M 61.57 86.80 43.63 53.34 87.87 66.64 67.46

multilingual-e5-base 270M 65.23 86.78 46.10 57.48 88.11 68.74 69.33

multilingual-e5-large 560M 67.72 89.32 46.67 59.01 90.40 70.62 71.44

LaBSE 471M 32.79 82.42 21.52 10.53 67.06 42.86 55.15

gte-multilingual-base 305M 63.11 84.38 50.94 53.89 84.94 67.45 68.28

Qwen3-Embedding-0.6B 596M 61.20 87.33 42.30 40.60 86.78 63.64 67.00

jina-embeddings-v3 572M 49.67 79.58 51.36 55.15 89.04 64.96 71.37

openai-text-embedding-ada-002 - 37.16 84.41 15.79 17.29 72.77 45.48 54.26

openai-text-embedding-3-small - 38.62 80.93 20.33 22.84 75.25 47.59 54.83

openai-text-embedding-3-large - 54.20 85.22 39.44 39.27 85.11 60.65 66.37

maux-gte-persian 305M 61.77 80.61 44.22 50.80 78.45 63.17 65.39

sentence-transformer-parsbert-fa 163M 21.84 61.47 6.61 1.95 35.65 25.50 39.41

persian-embeddings 560M 51.89 83.47 44.16 37.11 83.71 60.07 64.42

Persian_Sentence_Embedding_v3 560M 48.26 82.62 35.07 33.39 81.93 56.25 62.94

bert-zwnj-wnli-mean-tokens 118M 20.66 73.28 5.03 4.35 41.29 28.92 43.07

roberta-zwnj-wnli-mean-tokens 118M 20.49 72.11 5.27 4.34 37.34 27.91 42.02

Tooka-SBERT (Ours) 353M 40.16 80.71 36.48 21.32 79.02 51.54 62.54

Tooka-SBERT-V2-Small (Ours) 123M 61.50 85.30 47.80 50.24 85.69 66.11 69.49

Tooka-SBERT-V2-Large (Ours) 353M 60.09 86.78 47.19 44.67 87.53 65.25 70.54

Table 4: Performance on Reranking and Retrieval tasks.

augment the candidate list by adding all459

ground-truth positive documents associated460

with the query. This guarantees that all461

relevant documents are available to be ranked.462

Adding Negative Documents: To increase463

the task’s difficulty, we also incorporate464

the provided negative documents into the465

candidate list, challenging the model to466

distinguish between relevant and highly similar467

irrelevant documents.468

Deduplication: Finally, we process the469

augmented candidate list to remove any470

duplicate documents. This step, implemented471

using set operations, cleans the data and472

ensures each unique document is considered473

only once in the ranking process.474

5.2 Evaluated Models475

To establish a comprehensive comparison,476

we evaluated a wide range of state-of-the-477

art text embedding models. Our evaluation478

includes prominent open-source multilingual479

models such as the E5 series (Wang et al.,480

2022, 2024), LaBSE (Feng et al., 2022),481

GTE (Zhang et al., 2024), Qwen3-Embedding482

(Zhang et al., 2025), and Jina Embeddings483

v3 (Sturua et al., 2025). We also benchmark 484

against widely-used proprietary models from 485

OpenAI, including text-embedding-ada-002, 486

text-embedding-3-small, and text-embedding- 487

3-large (Neelakantan et al., 2022). 488

Furthermore, to establish strong language- 489

specific baselines, we assess several models 490

explicitly trained or fine-tuned for Persian. 491

These include maux-gte-persian (Mirzaei, 492

2024), models based on ParsBERT (Ahmadi, 493

2024), and other community-driven efforts like 494

persian-embeddings (Heydari, 2024), Persian 495

Sentence Embedding v3 (Sobhi, 2024), and 496

sentence transformers derived from Zwnj 497

models (Farahani, 2020). We compare 498

the performance of these established models 499

against our proposed models: Tooka-SBERT, 500

Tooka-SBERT-V2-Small, and Tooka-SBERT- 501

V2-Large. 502

6 Results 503

Table 3 presents the evaluation results on pair 504

classification and classification tasks, while 505

Table 4 reports performance on retrieval and 506

reranking tasks. The results compare Tooka- 507

SBERT against state-of-the-art embedding 508
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models. Among all models, Tooka-SBERT-509

V2-Large ranked third overall with an average510

score of 70.54%, showing strong performance511

in pair classification (80.24%) and consistent512

scores across reranking and classification tasks.513

Tooka-SBERT-V2-Small, while more compact,514

also demonstrated competitive results with an515

average of 69.49%, outperforming several larger516

models such as multilingual-e5-base (69.33%)517

and Qwen3-Embedding-0.6B (67.00%). The518

original Tooka-SBERT model achieved the519

highest pair classification score (81.52%)520

but lagged in reranking and retrieval tasks,521

suggesting improvements in V2 versions522

enhanced generalization across task types.523

Compared to the baselines, both V2 models524

consistently ranked in the top 5 across most525

tasks, confirming the effectiveness of our526

training strategy on Persian-specific data.527

7 Conclusion528

In this work, we presented Tooka-SBERT, a529

lightweight yet competitive Persian sentence530

embedding model aimed at improving semantic531

understanding in low-resource settings.532

Through a combination of pretraining on533

Persian news data and fine-tuning on synthetic534

sentence pairs, Tooka-SBERT achieves strong535

performance on the PTEB benchmark,536

surpassing widely-used multilingual baselines.537

Our models strike a balance between538

effectiveness and efficiency, making them539

practical for real-world applications on both540

GPU and CPU.541

Limitations542

While Tooka-SBERT achieves strong543

performance across various Persian tasks, it544

has several limitations. First, it is specifically545

designed for Persian and does not generalize546

to multilingual settings. Second, due to the547

scarcity of high-quality Persian datasets, we548

relied on synthetic data generation, which may549

introduce biases. Third, both the small and550

large variants have a relatively small parameter551

count and context window, which may limit552

performance on complex or long-context tasks553

compared to larger-scale models.554
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