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Abstract

In settings where ML models are used to inform the allocation of resources, agents
affected by the allocation decisions might have an incentive to strategically change
their features to secure better outcomes. While prior work has studied strategic
responses broadly, disentangling misreporting from genuine adaptation remains a
fundamental challenge. In this paper, we propose a causally-motivated approach to
identify and quantify how much an agent misreports on average by distinguishing
deceptive changes in their features from genuine adaptation. Our key insight is that,
unlike genuine adaptation, misreported features do not causally affect downstream
variables (i.e., causal descendants). We exploit this asymmetry by comparing the
causal effect of misreported features on their causal descendants as derived from
manipulated datasets against those from unmanipulated datasets to identify the
misreporting rate. We empirically validate our theoretical results using a semi-
synthetic and real Medicare dataset with misreported data, demonstrating that our
approach can be employed to identify misreporting in real-world scenarios.

1 Introduction

Machine learning models are increasingly used by decision-makers to guide decisions about the
allocation of critical resources, such as in loan applications, or determining government payouts to
private insurers [1, 33, 9]. In these contexts, organizations—referred to as agents—may have an
incentive to strategically change their features to secure better outcomes [20]. They can do so through
genuine adaptation or misreporting. Genuine adaptation refers to agents genuinely changing their
behavior, causing the actual values of their features to change. This leads to real improvements and
authentic changes. Misreporting refers to agents not changing their behavior but instead reporting
incorrect feature values to manipulate the allocation process. Genuine adaptation may be desirable as
it can lead to improvements in the target outcome [28, 12]. Misreporting, however, is never desirable
to the decision-maker as it leads to incorrect predictions and inefficient resource allocation.

In this work, we develop a causal framework for detecting and quantifying misreporting in the
presence of genuine adaptation. Our key insight is that misreporting, unlike genuine adaptation,
does not causally affect the descendants of a given feature. Consequently, misreporting leads to
biased causal effect estimates between the feature and its descendants. We exploit this asymmetry
by comparing the estimated causal effect of a feature on its descendants in both manipulated and
unmanipulated datasets to infer a misreporting rate. Our contributions are summarized as follows.
(1) We recast the problem of quantifying the misreporting rate as a causal problem, showing that
causal descendants of features can be used to distinguish changes due to genuine adaptation and
misreporting. (2) We propose a novel estimator for the misreporting rate that leverages discrepancies
in causal effect estimates from manipulated and unmanipulated data. (3) We empirically validate our
estimator, showing that it outperforms baselines on a semi-synthetic and real Medicare dataset.
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Figure 1: Causal DAGs that describe the setting. White nodes are unobserved, whereas grey nodes are
observed. Double-line arrows denote misreporting, while dashed arrows denote genuine adaptation.
DAGs (a)-(c) are manipulated data-generating processes; DAG (d) represents unmanipulated data.

2 Preliminaries

Setup. We study a setting where some agents may either genuinely adapt and/or misreport their
features. Let A denote the agent identity, X∗ the true features, X the (potentially misreported) agent-
reported features, Y a downstream variable causally influenced by X∗, and C observed features that
may act as confounders or effect modifiers for the relationship between X∗ and Y . We use uppercase
letters to denote variables and lowercase for their realizations. We assume that we have access to
two datasets: (1) A possibly manipulated dataset D = {(xi, yi, ci, ai)}Ni=1 ∼ P , where P follows
any of the DAGs in 1(a)-(c). (2) An unmanipulated dataset D∗ = {(x∗

i , yi, ci)}Mi=1 ∼ P ∗ generated
according to DAG 1(d). D∗ may be pre-deployment data used to train the decision-making model, as
agents have no incentive to manipulate their features before the model is deployed.

In Figure 1, dashed arrows indicate genuine adaptation and double-line arrows indicate misreporting.
In DAG 1(d), which represents the unmanipulated distribution, only genuine adaptation are allowed.
For clarity, we present our main analysis assuming D is sampled according to the DAG in Figure 1(a).
However, our results apply without modification to the more complicated DAGs in Figure 1(b)-(c),
which include selection bias via an unobserved variable S influencing A and X∗, or an unobserved
confounder U between A and Y . Additional allowable DAGs are included in Appendix B.

Assumptions. We assume that X∗ and X are binary whereas all other variables may be continuous.
Without loss of generality, we assume that X = 1 is associated with a higher payout than X = 0
which means that agents are not incentivized to misreport features where X∗ = 1, as formally stated
in Assumption 1. We adopt the notation of the Neyman-Rubin potential outcomes framework [25],
where X(X∗ = x∗) is defined as the counterfactual outcome that we would get if X∗ is set to x∗.
Assumption 1 (Optimal Misreporting). ∀i, xi(x

∗
i = 1) = 1

We assume that agents are incentivized to misreport only X∗ and genuinely adapt it as follows.
Assumption 2 (Useful Modifications). Agents may only misreport X∗, or genuinely adapt it by
intervening on X∗ or its ancestors.

Our goal is to determine how much an agent misreported their features, without access to X∗. Letting
Pa(V ) := P (V |A = a) for an arbitrary variable V , we define our estimand of interest as follows:
Definition 1 (Misreporting Rate). MR = Pa(X

∗ = 0|X = 1)

The MR quantifies the probability that a reported feature is false. Our approach of estimating the MR
relies on estimating the causal effect of X∗ on Y , requiring typical causal inference assumptions.
Assumption 3. The features X∗, C, and the potential outcomes Y (X∗ = 1), Y (X∗ = 0) satisfy the
following properties:

1. No unmeasured confounding: Y (0), Y (1) ⊥ X∗ | C
2. Overlap: Pa(X

∗ = x∗|C = c), Pa(X = x|C = c), P ∗(X∗ = x∗|C = c) > 0 ∀x∗, x, c

3. Consistency: Yi(x
∗) = yi if X∗

i = x∗.

Finally, to leverage D∗ to recover causal effects needed for estimating misreporting in D, we assume
that the conditional average treatment effects are invariant across Pa and P ∗ for all values of a.
Assumption 4. EPa

[Y (1)− Y (0)|C = c] = EP∗ [Y (1)− Y (0)|C = c] ∀c, a.
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3 Estimating Misreporting Rates

The core challenge of estimating the MR lies in the fact that we only observe the reported features
X , but not the true features X∗. This means that the estimand is not identifiable from D alone.
We instead estimate the misreporting rate by leveraging the distinct causal consequences that agent
interventions corresponding to genuine adaptation and misreporting have on downstream variables Y .

Our key insight is that genuine adaptation and misreporting affect the causal descendants of X∗

differently. When an agent genuinely adapts X∗, this results in a change to its causal descendant Y .
In contrast, misreporting only changes the reported feature X , which doesn’t causally affect Y . Thus,
we can use the causal effect of X on Y and that of X∗ on Y as a signature to distinguish misreporting
from genuine adaptation. To make progress, we define the “reported” group as those with X = 1,
and introduce the true and nominal average feature effects on the reported (TAFR and NAFR):

τ∗a :=

∫
C

(EPa
[Y (X∗ = 1)|C = c]− EPa

[Y (X∗ = 0)|C = c])Pa(C = c|X = 1)dc,

τa :=

∫
C

(EPa [Y |X = 1, C = c]− EPa [Y |X = 0, C = c])Pa(C = c|X = 1)dc.

These expressions are similar to the commonly studied average treatment effect on the treated.
Although observing a difference in τ∗a and τa indicates that an agent misreported, it doesn’t give us a
rate at which an agent misreports. To obtain the misreporting rate, we must compare the difference
in the NAFR and TAFR relative to the baseline causal effect of X∗ on Y for the group that is
misreported. Since only the variable X∗ influences an agent’s decision to misreport a datapoint,
conditional on the agent, the misreported group will be a random sample of the group where X∗ = 0.
Therefore, the average causal effect of X∗ on Y for the misreported will be the average causal effect
on the datapoints where X∗ = 0. We define this as the true average feature effect on the misreported
(TAFM):

δ∗a :=

∫
C

(EPa [Y (X∗ = 1)|C = c]− EPa [Y (X∗ = 0)|C = c])Pa(C = c|X∗ = 0)dc.

Next, we show that the MR can be quantified as the rate in terms of the TAFR, NAFR, and TAFM.
Lemma 1 (Estimator for the misreporting rate). Let Assumptions 1-3 hold. Then for δ∗a ̸= 0, the MR
can be expressed as:

Pa(X
∗ = 0|X = 1) =

τ∗a − τa
δ∗a

.

The proof for Lemma 1 and other statements in this section are presented in Appendix C. The lemma
states that we can quantify the MR by comparing the true and nominal causal effects of X∗ on Y and
X on Y . While instructive, Lemma 1 is not very useful as we do not have access to X∗ for agent a,
and hence we cannot directly estimate τ∗a or δ∗a from the manipulated data alone. To resolve this issue,
we leverage the unmanipulated dataset D∗ to estimate two other quantities in place of τ∗a and δ∗a:

τ ′a :=

∫
C

(EP∗ [Y (X∗ = 1)|C = c]− EP∗ [Y (X∗ = 0)|C = c])Pa(C = c|X = 1)dc,

δ′a :=

∫
C

(EP∗ [Y (X∗ = 1)|C = c]− EP∗ [Y (X∗ = 0)|C = c])Pa(C = c|X = 0)dc.

Both τ ′a and δ′a are identifiable because X∗ is observed in the unmanipulated dataset and can be used
as valid estimators of τ∗a and δ∗a to estimate the MR, as we show in Theorem 1.
Theorem 1 (Identifiability). Let Assumptions 1-4 hold. Then for δ′a ̸= 0, Pa(X

∗ = 0|X = 1) is
identifiable and can be expressed as:

Pa(X
∗ = 0|X = 1) =

τ ′a − τa
δ′a

.

The proof of Theorem 1 relies on (1) the invariance of conditional causal effects of X∗ on Y across
Pa and P ∗ and (2) our assumptions about agent behavior to show that τ ′a = τ∗a and δ′a = δ∗a. We
then show that the misreporting rate is identifiable as both δ′a and τ ′a are identifiable from D, D∗, and
standard causal effect assumptions. Guided by Theorem 1, we can now estimate the misreporting
rate by comparing causal effect estimates across D and D∗. We present a formal algorithm that can
estimate the misreporting rate for each agent, called the causal misreporting estimator (CMRE), in
Appendix F, as well as additional results for the variance of the estimator in Appendix C.
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4 Empirical Results

We evaluate the performance of our approach (CMRE) on semi-synthetic and real-world data. We
show that CMRE consistently yields reliable estimates of the MR, even when genuine adaptation
is present, and outperforms relevant baselines. We compare CMRE against the following baselines:
(1) Natural Direct Effect Estimator (NDEE): estimates the natural direct effect of the agent A on the
feature X . (2) Naive Misreporting Estimator (NMRE): is similar to our approach but doesn’t control
for confounding. Additional simulation details, experiments, and baselines are in the Appendix.

Loan fraud experiments We simulate a scenario where loan applicants may misreport their
employment status (X∗) to improve their chances of loan approval. We simulate the true employment
status (X∗), reported employment status (X), and if they default (Y ). We extract the confounders
from a real credit card dataset [31, 32], using age, sex, education, and marital status (C).
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Figure 2: Results from the loan fraud dataset. The
x-axis is the causal effect of A on X∗. The y-axis
is the estimated misreporting rate. Dashed lines
represent the true misreporting rate (MR=0.2).

We examine how changes in genuine adapta-
tion affect the MR estimates, highlighting the
need to account for genuine adaptation when
estimating the MR. The results are shown in Fig-
ure 2, which shows that our approach (CMRE)
gives unbiased, stable estimates of the MR that
are unaffected by genuine adaptation. This sig-
nals that CMRE can successfully disentangle
misreporting from genuine adaptation. By con-
trast, genuine adaptation affects the estimates
of NMRE and NDEE. NMRE gives biased es-
timates as it does not control for confounding.
NDEE also gives biased estimates as it is unable
to disentangle the direct causal effect of A on X
from the effect mediated through X∗.

Misreporting in insurance Next, we highlight the utility of our approach in a real data setting. We
aim to identify if private health care insurers misreport enrollees’ diagnoses to secure higher payouts.
Specifically, the U.S. government calculates how much to pay insurers using a public model based
on enrollee diagnoses (X∗), as measured by Hierarchical Condition Categories (HCCs) [24]. This
model is trained on an unmanipulated dataset, D∗ where there’s no incentive to misreport, whereas
data from private insurers, D, may be manipulated. We expect to find evidence of misreporting of
HCCs, consistent with existing literature [9, 29]. We gauge the quality of our MR estimates for HCCs
by comparing them to estimates of non-payment HCCs: diagnoses where we expect the true MR to
be zero, as they are not included in the model. We use mortality as the downstream outcome Y .
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Figure 3: For each plot, the y-axis represents the
estimated MR for an HCC code and the error bars
represent a 95% confidence interval.

Figure 3 shows the MR estimates for two non-
payment HCCs and two payment HCCs. Our ap-
proach (CMRE) is the only approach that passes
the sanity check: it gives MR estimates that are
not statistically significantly different from zero
for the nonpayment HCCs. This is consistent
with our expectation that private insurers have
no incentive to misreport nonpayment HCCs.
CMRE also estimates significantly high misre-
porting rates for both of the payment HCCs,
which is validated in the health policy literature
[2, 17]. In contrast, NMRE estimates a high mis-
reporting rate for all HCCs and NDEE estimates
a negative misreporting rate for all HCCs, which
does not align with what is expected.

5 Conclusion
In this work, we propose a causal approach to estimating how much strategic agents misreport
their features. We show that the misreporting rate is fully identifiable by comparing causal effect
estimates between a possibly manipulated and an unmanipulated dataset. We highlight the utility of
our approach across empirical experiments over a semi-synthetic and a real Medicare dataset.
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A Related Work

Strategic Classification and Regression. Our work is related to work on strategic classification
and regression, where agents may change their features at some cost [10, 6, 18]. However, it differs
in two key aspects. (1) The primary goal is to find a model that is robust to the distribution shifts
caused by gaming, often relying on known agents’ cost functions and iterative model retraining [23].
In contrast, we seek to estimate how much agents misreport. (2) Our method doesn’t require the
unrealistic assumptions of known agents’ cost function or the iterative model training.

Causal Strategic Classification. Recent work views strategic classification/regression through a
causal lens [20, 28, 12, 14] where agents can only genuinely adapt their features. They distinguish
between two types of genuine adaptation: improvement and gaming, which correspond to adaptations
to features that are and are not causally related to the target label, respectively[20]. Unlike us, their
focus is on creating models robust to both forms of genuine adaptation [14] and finding models
that incentivize improvement over gaming [28, 12]. Closest to our work is Chang et al. [4], who
propose an algorithm that can rank agents by their propensity to misreport their features. Unlike our
work, their approach can only partially identify how much agents misreport and they do not make a
distinction between misreporting and genuine adaptation.

Auditing Policies. Other work seeks to disincentivize agents from misreporting their features through
auditing [16, 7, 8]. They define a setting where the decision-maker deploys a transparent auditing
policy which allows them to reveal the true features of a limited number of agents selected by
the policy. If the agent’s true features differ from their reported features, they endure a penalty,
which incentivizes them to report their true features. Instead of performing costly audits, our work
estimates misreporting by relying on additional unmanipulated data from settings where agents have
no incentive to misreport, e.g., data collected before any model was deployed.

Anomaly/Fraud Detection. Our work is closely related to anomaly detection methods aimed at
identifying fraudulent instances within a dataset, such as those arising in credit card transactions or
insurance claims [13, 3]. Most relevant are one-class classification algorithms [27, 19, 26], which are
trained on an unmanipulated dataset to detect anomalies in a manipulated dataset. Unlike our work,
these methods focus on identifying specific instances that are anomalous or misreported, whereas our
method estimates a rate of misreporting in a dataset. These methods also rely on the assumption that
misreported data points differ significantly from normal data points. Our method instead relies on
causal assumptions, specifically, that misreporting does not affect the causal descendants of features.

B Additional DAGs

Figures 4(a)-4(g) represent settings in which agents may either genuinely adapt or misreport their
features. In contrast, Figure 4(h) represents a scenario involving trustworthy agents that only genuinely
adapt their features. In all cases shown in Figures 4(a)-4(g), the decision maker lacks access to X∗

but observes X , A, C, and Y . While the main focus of the paper was on the DAG in Figure 4(a), our
findings extend naturally to the more complex settings depicted in Figures 4(b)-4(g).

Specifically, the DAGs in Figures 4(b) and 4(f) represent scenarios where some unknown confounding
bias may exist between A and X∗, e.g., S. In the context of the Medicare example discussed in the
main text, this could arise if enrollees with more chronic conditions (X∗) are more likely to enroll in
a private health insurance plan (A). Notably, our approach doesn’t require controlling for S, as it’s
not a confounder between X∗ and Y .

The DAGs in Figures 4(c), 4(e), and 4(g) illustrate settings where an unobserved confounder may
influence both A and Y . For example, this could occur if enrollees who prefer private insurance
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Figure 4: Causal DAGs that describe the setting of this paper. White nodes are unobserved, whereas
grey nodes are observed. Double-line arrows represent misreporting, while dashed arrows represent
genuine adaptation. DAGs (a)-(g) represent manipulated data-generating processes, while DAG (h)
represents unmanipulated data.

plans (A) also happen to have worse health outcomes (Y ). Again, our approach does not require
controlling for U . Although U is a confounder of X∗ and Y , the backdoor path can be blocked by
conditioning on A, which means that an adjustment for U is unnecessary.

Finally, the DAGs in Figures 4(d)-4(f) capture settings where an agent may genuinely adapt their
features by intervening on a mediator M that lies between A and X∗. For example, this could occur
if private health insurers (A) are more likely to offer free gym memberships (M ), which influence the
true health status of their enrollees (X∗). As before, our approach does not require any knowledge
of the mediators an agent intervenes on in order to estimate the misreporting rate, as M is not a
confounder of X∗ and Y .

C Main Proofs

Each of the proofs within this Section assume that the dataset D ∼ Pa is generated according to any
one of the DAGs in Figures 4(a)-4(g).

C.1 Proof for Lemma 1

Lemma 1 is important to build up to Theorem 1. It shows that the MR can be estimated by comparing
the true and nominal causal effects of X∗ on Y and X on Y .

Lemma A1 (Estimator for the misreporting rate; Lemma 1 in the main text). Let Assumptions 1-3
hold. Then for δ∗a ̸= 0, the MR can be expressed as:

Pa(X
∗ = 0|X = 1) =

τ∗a − τa
δ∗a

Proof. Our proof proceeds in three main steps. First, we decompose τa into two terms: τ∗a and an
additional bias term. Second, we show that this additional term can be written as a function of our
target estimand, P (X∗ = 0|X = 1). Third and finally, we show that using simple algebra, we can
express our target estimand as a function of τ∗a , τa and δ∗a

8



Step 1: Decomposing τa into τ∗a and an additional term

τa =

∫
C

(EPa
[Y |X = 1, C = c]− EPa

[Y |X = 0, C = c])Pa(C = c|X = 1)dc

=

∫
C

EPa [Y |X = 1, C = c,X∗ = 1]Pa(X
∗ = 1|X = 1, C = c)Pa(C = c|X = 1)dc

+

∫
C

EPa
[Y |X = 1, C = c,X∗ = 0]Pa(X

∗ = 0|X = 1, C = c)Pa(C = c|X = 1)dc

−
∫
C

EPa
[Y |X = 0, C = c]Pa(C = c|X = 1)dc

=

∫
C

EPa [Y |X∗ = 1, C = c](1− Pa(X
∗ = 0|X = 1, C = c))Pa(C = c|X = 1)dc

+

∫
C

EPa
[Y |X∗ = 0, C = c]Pa(X

∗ = 0|X = 1, C = c)Pa(C = c|X = 1)dc

−
∫
C

EPa
[Y |X = 0, C = c]Pa(C = c|X = 1)dc

=

∫
C

EPa
[Y |X∗ = 1, C = c]Pa(C = c|X = 1)dc

−
∫
C

EPa
[Y |X∗ = 1, C = c]Pa(X

∗ = 0|X = 1, C = c)Pa(C = c|X = 1)dc

+

∫
C

EPa [Y |X∗ = 0, C = c]Pa(X
∗ = 0|X = 1, C = c)Pa(C = c|X = 1)dc

−
∫
C

EPa
[Y |X∗ = 0, C = c]Pa(C = c|X = 1)dc

= τ∗a −
∫
(EPa

[Y |X∗ = 1, C]− EPa
[Y |X∗ = 0, C])Pa(X

∗ = 0|X = 1, C)Pa(C|X = 1)dc.

The third equality holds as Y ⊥ X|X∗, A for the DAGs in Figure 4(a)-4(g) and the fourth equality
holds due to Assumption 1.

Step 2: Expressing the additional term as a function of P (X∗ = 0|X = 1) Next, to explicitly
show that this additional term is a direct consequence of misreporting, we can rewrite it in terms of
the misrepoting rate:

∫
C

(EPa
[Y |X∗ = 1, C]− EPa

[Y |X∗ = 0, C])Pa(X
∗ = 0|X = 1, C)Pa(C|X = 1)dc

=

∫
C

(EPa
[Y |X∗ = 1, C]− EPa

[Y |X∗ = 0, C])
Pa(X

∗ = 0, C|X = 1)

Pa(C|X = 1)
Pa(C|X = 1)dc

=

∫
C

(EPa
[Y |X∗ = 1, C]− EPa

[Y |X∗ = 0, C])Pa(X
∗ = 0|X = 1)Pa(C|X∗ = 0, X = 1)dc

= Pa(X
∗ = 0|X = 1)

∫
C

(EPa [Y |X∗ = 1, C]− EPa [Y |X∗ = 0, C])Pa(C|X∗ = 0, X = 1)dc

= Pa(X
∗ = 0|X = 1)

∫
C

EPa
[Y |X∗ = 1, C]− EPa

[Y |X∗ = 0, C]Pa(C|X∗ = 0)dc

= Pa(X
∗ = 0|X = 1)

∫
C

EPa
[Y (X∗ = 1)|C]− EPa

[Y (X∗ = 0)|C = c]Pa(C|X∗ = 0)dc

= Pa(X
∗ = 0|X = 1)δ∗a.

The fourth equality comes directly from the fact that C ⊥ X|X∗, A for the DAGs in Figures 4(a)-4(g).
The fifth equality comes from Assumption 3, as all confounders are controlled for. Notably, both M
and S are not confounders of X∗ and Y . The variable U is a confounder of X∗ and Y , however, the
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backdoor path is blocked by A, so it doesn’t need to be directly controlled for. Overall, this shows
that any difference between τa and τ∗a is directly related to the misreporting rate.

Step 3: Getting the expression for the final target estimand Finally, we can obtain a way to
estimate the misreporting rate by rearanging the terms:

τa = τ∗a − Pa(X
∗ = 0|X = 1)δ∗a =⇒ Pa(X

∗ = 0|X = 1) =
τ∗a − τa

δ∗a
,

for δ∗a ̸= 0. Therefore, by comparing the difference in causal effects, we can identify the misreporting
rate.

C.2 Proof for Theorem 1

We now build upon the result from Lemma 1 as we work toward our main theorem. Before presenting
the proof of Theorem 1, we first introduce an additional Lemma which shows that τa, τ ′a, and δ′a are
identifiable using D and D∗, along with standard causal estimation assumptions. Then, in Theorem 1,
we demonstrate that the misreporting rate is identifiable by showing that τ ′a = τ∗a and δ′a = δ∗a. This
proof follows from Assumption 4, which states that the conditional causal effect of X∗ on Y will
remain invariant across both strategic and non-strategic populations.
Lemma A2 (Identifiability of τa, τ ′a, and δ′a). Let Assumption 3 hold. Then τa, τ ′a, and δ′a are
identifiable using D and D′.

Proof. First, recall that

τa :=

∫
C

(EPa [Y |X = 1, C = c]− EPa [Y |X = 0, C = c])Pa(C = c|X = 1)dc.

We know that τa is identifiable using only D as Y , X , and C are all known in D.

Next, recall that

τ ′a :=

∫
C

(EP∗ [Y (X∗ = 1)|C = c]− EP∗ [Y (X∗ = 0)|C = c])Pa(C = c|X = 1)dc

and

δ′a :=

∫
C

(EP∗ [Y (X∗ = 1)|C = c]− EP∗ [Y (X∗ = 0)|C = c])Pa(C = c|X = 0)dc.

Again, we know that Pa(C = c|X = 1) and Pa(C = c|X = 0) are identifiable using only D.
Therefore, to show that τ ′a and δ′a are identifiable, we must show that

EP∗ [Y (X∗ = 1)|C = c]− EP∗ [Y (X∗ = 0)|C = c]

is identifiable. This follows immediately from Assumptions 3:

EP∗ [Y (X∗ = 1)|C = c]− EP∗ [Y (X∗ = 0)|C = c]

= EP∗ [Y (X∗ = 1)|X∗ = 1, C = c]− EP∗ [Y (X∗ = 0)|X∗ = 0, C = c]

= EP∗ [Y |X∗ = 1, C = c]− EP∗ [Y |X∗ = 0, C = c]

Therefore, τa, τ ′a, and δ′a are identifiable using D and D′.

Theorem A1 (Identifiability; Theorem 1 in the main text). Let Assumptions 1-4 hold. Then for
δ′a ̸= 0, Pa(X

∗ = 0|X = 1) is identifiable and can be expressed as:

Pa(X
∗ = 0|X = 1) =

τ ′a − τa
δ′a

.

Proof. We know that τa, τ ′a, and δ′a are identifiable using D and D∗ by Lemma A2. Therefore, to
complete this proof, we only need to show that τ ′a = τ∗a and δ′a = δ∗a, as implied by Lemma 1.
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First, we show that τ ′a = τ∗a . Recall that

τ ′a :=

∫
C

(EP∗ [Y (X∗ = 1)|C = c]− EP∗ [Y (X∗ = 0)|C = c])Pa(C = c|X = 1)dc

and

τ∗a :=

∫
C

(EPa
[Y (X∗ = 1)|C = c]− EPa

[Y (X∗ = 0)|C = c])Pa(C = c|X = 1)dc.

Since
EPa

[Y (1)− Y (0)|C = c] = EP∗ [Y (1)− Y (0)|C = c]

for all c by Assumption 4, it follows immediately that τ ′a = τ∗a .

Next, recall that

δ′a :=

∫
C

(EP∗ [Y (X∗ = 1)|C = c]− EP∗ [Y (X∗ = 0)|C = c])Pa(C = c|X = 0)dc

and

δ∗a :=

∫
C

(EPa [Y (X∗ = 1)|C = c]− EPa [Y (X∗ = 0)|C = c])Pa(C = c|X∗ = 0)dc.

We already know that the conditional causal effects of X∗ on Y are the same across P ∗ and Pa.
It remains to show that Pa(C = c|X∗ = 0) = Pa(C = c|X = 0) for all values of c to show that
δ′a = δ∗a. We establish this equality next.

To show this, we simply apply the law of total probability as follows:

Pa(C = c|X = 0) = Pa(C = c|X = 0, X∗ = 1)P (X∗ = 1|X = 0)

+ Pa(C = c|X = 0, X∗ = 0)P (X∗ = 0|X = 0)

= Pa(C = c|X = 0, X∗ = 0)

= Pa(C = c|X∗ = 0).

The second equality follows because Pa(X
∗ = 1|X = 0) = 0 and P (X∗ = 0|X = 0) = 1 by

Assumption 1. The third equality follows as C ⊥ X|A,X∗ for all DAGs in Figures 4(a)-4(g). Note
that this finding is intuitive: it can be traced back to the assumption that the agents pick who to
misreport at random, which is implied by the DAGs.

Thus, the MR is identifiable.

C.3 Proof for Theorem 2

Theorem A2 (Variance). Let τ̂a, τ̂ ′a, and δ̂′a be asymptotically normal estimators with an asymptotic
variance of σ2

τa , σ2
τ ′
a
, and σ2

δ′a
. Also let στaτ ′

a
, στaδ′a

, and σδ′aτ
′
a

denote the covariance between the

estimators and d−→ denote convergence in distribution. Suppose that N = M = n, then for δ′a ̸= 0

and δ̂′a ̸= 0,

√
n[
τ̂ ′a − τ̂a

δ̂′a
− τ ′a − τa

δ′a
]

d−→ N (0,
σ2
τ ′
a
+ σ2

τa − 2στ ′
aτa

δ′a
2 +2

τa − τ ′a
δ′a

3 (στ ′
aδ

′
a
−στaδ′a

)+
(τa − τ ′a)

2

δ′a
4 σ2

δ′a
)

Proof. By the definition of asymptotic normality, each estimator has the following asymptotic
distributions, where σ2

τ ′
a

is asymptotic variance of τ̂ ′a, σ2
τa is asymptotic variance of τ̂a, and σ2

δ′a
is

asymptotic variance of δ̂′a: √
n[τ̂ ′a − τ ′a]

d−→ N (0, σ2
τ ′
a
),

√
n[τ̂a − τa]

d−→ N (0, σ2
τa), and

√
n[δ̂′a − δ′a]

d−→ N (0, σ2
δ′a
).
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To proceed, we define the function g(τ̂ ′a, τ̂a, δ̂
′
a) as an estimator for the misreporting rate:

g(τ̂ ′a, τ̂a, δ̂
′
a) =

τ̂ ′a − τ̂a

δ̂′a
.

Since τ̂ ′a, τ̂a, δ̂′a are asymptotically normal, we can apply the delta method [30] to find the asymptotic
variance of g(τ̂ ′a, τ̂a, δ̂

′
a), which states that

√
n[g(τ̂ ′a, τ̂a, δ̂

′
a)− g(τ ′a, τa, δ

′
a)]

d−→ N (0,∇g(τ ′a, τa, δ
′
a)Σ∇g(τ ′a, τa, δ

′
a)

⊤),

where
∇g(τ ′a, τa, δ

′
a) =

(
1
δ′a

−1
δ′a

τa−τ ′
a

δ′a
2

)
and

Σ =

 σ2
τ ′
a

στaτ ′
a

σδ′aτ
′
a

στ ′
aτa

σ2
τa σδ′aτa

στ ′
aδ

′
a

στaδ′a
σ2
δ′a


Therefore, we can calculate the asymptotic variance as follows:

∇g(τ ′a, τa, δ
′
a)

⊤Σ∇g(τ ′a, τa, δ
′
a) =

(
1
δ′a

−1
δ′a

τa−τ ′
a

δ′a
2

) σ2
τ ′
a

στaτ ′
a

σδ′aτ
′
a

στ ′
aτa

σ2
τa σδ′aτa

στ ′
aδ

′
a

στaδ′a
σ2
δ′a




1
δ′a−1
δ′a

τa−τ ′
a

δ′a
2



=


σ2
τ ′
a

1
δ′a

− στ ′
aτa

1
δ′a

+ στ ′
aδ

′
a
(
τa−τ ′

a

δ′a
2 )

στaτ ′
a

1
δ′a

− σ2
τa

1
δ′a

+ στaδ′a
(
τa−τ ′

a

δ′a
2 )

σδ′aτ
′
a

1
δ′a

− σδ′aτa
1
δ′a

+ σ2
δ′a
(
τa−τ ′

a

δ′a
2 )




1
δ′a−1
δ′a

τa−τ ′
a

δ′a
2


= σ2

τ ′
a

1

δ′a
2 − στ ′

aτa

1

δ′2a
+ στ ′

aδ
′
a

τa − τ ′a
δ′a

3

− στaτ ′
a

1

δ′2a
+ σ2

τa

1

δ′2a
− στaδ′a

τa − τ ′a
δ′a

3

+ σδ′a,τ
′
a

τa − τ ′a
δ′3a

− σδ′aτa

τa − τ ′a
δ′3a

+ σ2
δ′a

(τa − τ ′a)
2

δ′a
4

= σ2
τ ′
a

1

δ′a
2 + σ2

τa

1

δ′2a
− 2στ ′

aτa

1

δ′2a

+ 2στ ′
aδ

′
a

τa − τ ′a
δ′a

3 − 2στaδ′a

τa − τ ′a
δ′a

3

+ σ2
δ′a

(τa − τ ′a)
2

δ′a
4

=
1

δ′a
2 (σ

2
τ ′
a
+ σ2

τa − 2στ ′
aτa

)

+ 2
τa − τ ′a
δ′a

3 (στ ′
aδ

′
a
− στaδ′a

)

+
(τa − τ ′a)

2

δ′a
4 σ2

δ′a
.

Therefore,
√
n[

τ̂ ′
a−τ̂a

δ̂′a
− τ ′

a−τa
δ′a

] asymptotically converges to the following normal distribution:

√
n[
τ̂ ′a − τ̂a

δ̂′a
− τ ′a − τa

δ′a
]

d−→ N (0,
σ2
τ ′
a
+ σ2

τa − 2στ ′
aτa

δ′a
2 +2

τa − τ ′a
δ′a

3 (στ ′
aδ

′
a
−στaδ′a

)+
(τa − τ ′a)

2

δ′a
4 σ2

δ′a
)
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D Additional Estimands

In this section, we show that if we can identify the main estimand of interest, Pa(X = 1|X∗ = 0),
we can also identify other useful estimands, which are defined below.

Definition 2 (Difference in Marginals). DIM = Pa(X = 1)− Pa(X
∗ = 1).

Definition 3 (False Positive Rate). FPR = Pa(X = 1|X∗ = 0).

The estimand in definition 3 can simply be interepreted as the false positive rate whereas the estimand
in definition 2 can be thought of as the probability that a feature was misreported.

To establish that the estimand in definition 2 is identifiable, we first establish that our estimand of
interest, Pa(X = 1)− Pa(X

∗ = 0), can be expressed as the joint distribution Pa(X = 1, X∗ = 0)
in Lemma A3. Identifiability follows from Theorem 1 and a simple application of Bayes rule as both
Pa(X

∗ = 0|X = 1) and Pa(X = 1) are identifiable.

Additionally, since Lemma A3 implies that both Pa(X = 1, X∗ = 0) and Pa(X
∗ = 0) are

identifiable, we can show that the estimand in definition 3 is also identifiable.

Lemma A3. Let Assumption 1 hold. Then Pa(X = 1)− Pa(X
∗ = 1) = Pa(X = 1, X∗ = 0)

Proof.

Pa(X = 1, X∗ = 0) = Pa(X = 1, X∗ = 0) + Pa(X
∗ = 1)− Pa(X

∗ = 1)

= Pa(X = 1, X∗ = 0) + Pa(X = 1|X∗ = 1)Pa(X
∗ = 1)− Pa(X

∗ = 1)

= Pa(X = 1, X∗ = 0) + Pa(X = 1, X∗ = 1)− Pa(X
∗ = 1)

= Pa(X = 1)− Pa(X
∗ = 1),

where the second equality follows because Pa(X = 1|X∗ = 1) = 1 by Assumption 1.

Corollary A1 (Identifiability of difference in marginals). Let Assumptions 1-4 hold. Then for δ′a ̸= 0,
Pa(X = 1)− Pa(X

∗ = 1) is identifiable and can be expressed as:

Pa(X = 1)− Pa(X
∗ = 1) =

τ ′a − τa
δ′a

× Pa(X = 1).

Proof. The proof relys on a simple application of Bayes rule, and results from Lemma A3 and
Theorem 1. Specifically, we have that:

Pa(X = 1)− Pa(X
∗ = 1) = Pa(X = 1, X∗ = 0)

= Pa(X
∗ = 0|X = 1)Pa(X = 1),

where the first equality follows by Lemma A3 and the second equality follows by Bayes rule. By
theorem 1, the first term (Pa(X

∗ = 0|X = 1)) is identifiable, and Pa(X = 1) is identifiable because
all variables required for estimation are observed.

Corollary A2 (Identifiability of false positive rate). Let Assumptions 1-4 hold. Then for δ′a ̸= 0,
Pa(X = 1|X∗ = 0) is identifiable and can be expressed as:

Pa(X = 1|X∗ = 0) =
τ ′a − τa

δ′a
× Pa(X = 1).

Proof. From Lemma A3, we can derive P (X∗ = 0) as follows:

Pa(X = 1)− Pa(X
∗ = 1) = Pa(X = 1, X∗ = 0) =⇒

Pa(X = 1)− Pa(X = 1, X∗ = 0) = Pa(X
∗ = 1) =⇒

1− {Pa(X = 1)− Pa(X = 1, X∗ = 0)} = 1− Pa(X
∗ = 1) =⇒

Pa(X = 0) + Pa(X = 1, X∗ = 0) = Pa(X
∗ = 0)
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By Bayes’ theorem, we can write the estimand as

Pa(X = 1|X∗ = 0) =
Pa(X

∗ = 0|X = 1)Pa(X = 1)

Pa(X∗ = 0)

=
Pa(X

∗ = 0|X = 1)Pa(X = 1)

Pa(X = 0) + Pa(X = 1, X∗ = 0)

Thus, since Pa(X
∗ = 0|X = 1), Pa(X = 1, X∗ = 0), Pa(X = 1), and Pa(X = 0) are identifiable,

Pa(X = 1|X∗ = 0) must be identifiable.

E Datasets

E.1 Medicare Dataset

The medicare dataset used in our experiments consists of insurance claims data from real U.S.
Medicare enrollees enrolled in either Traditional Medicare or a private medicare insurance plan. The
data was provided to the authors under a data usage agreement with the Centers for Medicare and
Medicaid Services (CMS). For our experiments, we only use enrollees that had Medicare coverage in
both 2019 (t) and 2018 (t− 1). We exclude enrollees who were dual-eligible (i.e., are eligible for
both U.S. Medicaid and Medicare), had end-stage renal disease, or were below the age of 65 for the
year t− 1. In addition, we exclude all enrollees who resided outside of the 50 U.S. states, the District
of Columbia, Puerto Rico, or the U.S. Virgin Islands.

Each of the private medicare insurers is treated as a strategic agent that may misreport enrollee
features. We used five agents in total for our experiments. Four agents correspond to the largest
private insurers based on the total number of enrollees in year t. The fifth agent is created by
aggregating the enrollees from all other smaller insurers. In contrast, Traditional Medicare was
treated as a trustworthy agent that doesn’t manipulate enrollee data, as there is no incentive to
misreport.

The goal of our analysis is to assess how much private medicare insurers misreport HCC codes, which
are binary variables that indicate if an enrollee has been diagnosed with a specific medical condition.
We use V23 HCC codes, as defined by CMS, which are derived by mapping ICD-10 diagnosis codes
reported in the claims data. There are two types of HCC codes: payment HCCs, which are used by a
risk-adjustment model to predict future healthcare costs, and nonpayment HCCs, which are not used
to determine costs. We expect the misreporting rate for each nonpayment HCC to be zero as there is
no incentive for private insurers to misreport them.

For our analysis, we partition the enrollees into two different cohorts: stayers and switchers. To
derive the stayers cohort, we sampled enrollees enrolled in Traditional Medicare for all 12 months in
year t− 1 and were not enrolled in a private insurance plan in year t. For the switchers cohort, we
used enrollees that were enrolled in Traditional Medicare for all 12 months in year t− 1 and were
enrolled in a private insurance plan for at least one month in year t. We only used a 20% random
sample of the eligible stayers cohort (868255 samples) and 100% of the eligible switchers cohort
(166539 samples). For the outcome (Y ), we use the enrollee’s death status in year t.

For the features (X), we used both payment and nonpayment HCC codes, consisting of 83 and 99
codes, respectively. As covariates, we used the enrollee’s age, race, sex, and the payment HCCs from
year t− 1 to ensure they were not misreported. To obtain low variance estimates, we restricted our
analysis to payment and nonpayment HCCs with the largest causal effects on death and where at least
1% of the switchers enrollees in year t had the HCC code.

E.2 Loan Datasets

In our loan dataset simulations, we model a setting where loan applicants may either genuinely adapt
or misreport their employment status to improve their chances of getting approved for a loan. For
each of our simulations, we simulate a single strategic agent (A = 1) and a single nonstrategic agent
(A = 0). In addition to the semi-synthetic dataset used for the experiments in Section 5, we generate
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additional datasets based on different DAGs in Figure 4. The data generation process for the other
datasets is explained in Appendix G.

All of the simulations use the covariates extracted from a real credit card dataset [31]. These include
three binary variables: marriage status (CM ), sex (CS), and education (CE), as well as another
variable representing a person’s age (CA). We use min-max normalization so that CA is between 0
and 1. The agent variable (A), the variable for employment status (X∗), and the variable indicating
if a loan applicant defaulted (Y ), are all generated using the covariates. Misreporting is done in
accordance with the following equation:

Xi ∼ X∗
i +Ai(1−X∗

i )Bernoulli(µ)

where µ is picked to target a desired MR (default = 0.2). Each experiment is repeated 100 times, with
new draws of A,X,X∗, and Y . Across all experiments, we use an 80/20 train/test split of D.

F Estimators

In this section, we present additional details about our primary method (CMRE) as well as the baseline
approaches (NMRE, NDEE, and OC-SVM). We also specify the hyperparameters and libraries used
to implement each method in our experiments.

F.1 CMRE

Recall that for a suitable function class F , a loss function ℓ, and Na – the number of data points in D
for which A = a – we define

fa(c, x) = argmin
f∈F

1

Na

∑
i:i∈D,ai=a

ℓ(f(ci, xi), yi), and θa(c) := fa(c, 1)− fa(c, 0) (1)

and

f∗(c, x∗) = argmin
f∈F

1

M

∑
i:i∈D∗

ℓ(f(ci, x
∗
i ), yi) and θ∗(c) := f∗(c, 1)− f∗(c, 0). (2)

Recall that Nax denotes the number of data points in D for which A = a and X = x. Using this, we
compute the estimates for τ ′a, τa and δ′a as follows:

τ̂ ′a =
1

Na1

∑
i:i∈D,xi=1,

ai=a

θ∗(ci), τ̂a =
1

Na1

∑
i:i∈D,xi=1,

ai=a

θ(ci), δ̂′a =
1

Na0

∑
i:i∈D,xi=0,

ai=a

θ∗(ci). (3)

To estimate θa(c) and θ∗(c), we employ an S-learner, where the models fa and f∗ are implemented
using XGBoost. We use the default hyperparameters provided by the XGBoost library in Python
to train each model [5], including a learning rate of 0.3, a maximume tree depth of 6, and L2
regularization with a coefficient of 1.

The complete algorithm for CMRE is summarized in 1. We note that for our experiments, we split D
such that the data used to train fa(c, x) in equation 1 is different than the data used to estimate the
MR in equation 3. Specifically, 80% of the data in D is used to train fa(c, x) in equation 1 and the
other 20% is used to estimate τ̂ ′a, τ̂a, and δ̂′a.

F.2 NMRE

NMRE adopts a similar strategy to CMRE for estimating the misreporting rate. Specifically, it
leverages the differences in causal effect estimates. However, the key distinction between NMRE
and CMRE is that NMRE doesn’t account for potential confounders or treatment effect modifiers
between X∗ and Y . As a result, NMRE employs a simple difference-in-means estimator to estimate
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Algorithm 1 CMRE algorithm
Input: D = {(xi, yi, ci, ai)}Ni and D∗ = {(x∗

i , yi, ci)}Mi
Output: M̂R, an estimate of the MR for each agent

for each agent a do
Estimate θa(c) using equation 1
Estimate θ∗(c) using equation 2
Estimate τ̂ ′a, τ̂a, and δ̂′a using equation 3
return τ̂ ′

a−τ̂a

δ̂′a
end for

the average effect of the feature on Y over both D∗ and D. Therefore, to estimate the MR for a given
agent a, we define

τ̂ ′ =
1

M1

∑
i:i∈D∗,x∗

i =1

yi −
1

M0

∑
i:i∈D∗,x∗

i =0

yi (4)

and

τ̂a =
1

Na1

∑
i:i∈D,xi=1,

ai=a

yi −
1

Na0

∑
i:i∈D,xi=0,

ai=a

yi, (5)

where Mx is the number of datapoints in D∗ where X∗ = x.

The misreporting rate is the estimated as:

M̂R =
τ̂ ′ − τ̂a

τ̂ ′
.

The complete algorithm for NMRE is summarized in Algorithm 2.

Algorithm 2 NMRE algorithm
Input: D = {(xi, yi, ci, ai)}Ni and D∗ = {(x∗

i , yi, ci)}Mi
Output: M̂R, an estimate of the MR for each agent

for each agent a do
Estimate τ̂ ′ using equation 4
Estimate τ̂a using equation 5
return τ̂ ′−τ̂a

τ̂ ′

end for

F.3 NDEE

The NDEE baseline estimates the misreporting rate by computing a quanitity similar to the natural
direct effect of A on X , divided by the probability Pa(X = 1). Specifically, we estimate

1

Pa(X = 1)

∫
C

(EPa
[X|C = c]− EP∗ [X|C = c])Pa(C = c)dC. (6)

Assuming that all datapoints in P ∗ are generated a single trustworthy agent a∗, the integral term,∫
C

(EPa
[X|C = c]− EP∗ [X|C = c])Pa(C = c)dC,

can be interpreted as the natural direct effect of A of X within the treated population (i.e., data points
where A = a are the treated whereas a∗ refers to the untreated), when C controls for all mediators
and confounders between A and X . We next show how to estimate the NDEE in practice, which is as
follows.
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Dataset Preparation. We modify the original dataset D∗ such that D∗ = {(x∗
i , yi, ci, ai)}Mi=1

where ai = a∗ for all ai. Next, we combine both D and D∗ to create a unified dataset:

D′ = D ∪D∗.

Causal Effect Estimation Let F denote a suitable function class and ℓ a loss function. We then
learn a function

f(c, a) := arg min
f ′∈F

1

N +M

∑
i:i∈D′

ℓ(f ′(ci, ai), xi). (7)

Next, we estimate the natural direct effect of A over the treated population as follows:

τ̂NDE :=
1

Na

∑
i:i∈D,ai=a

f(ci, a)− f(ci, a
∗). (8)

Probability Estimation The probability Pa(X = 1) can be estimated simply as

πa :=
1

Na

∑
i:i∈D,ai=a

xi (9)

The full algorithm is summarized in 3. The model f(c, a) is implemented using XGBoost, where we
use the default hyperparameters provided by the XGBoost library in Python [5] (a learning rate of
0.3, a maximume tree depth of 6, and L2 regularization with a coefficient of 1).

Algorithm 3 NDEE algorithm

Input: D = {(xi, yi, ci, ai)}Ni , D∗ = {(x∗
i , yi, ci)}Mi , and D′ = {(xi, yi, ci, ai)}N+M

i

Output: M̂R, an estimate of the MR for each agent
for each agent a do

Estimate f(c, a) using equation 7
Estimate τ̂NDE using equation 8
Estimate πa using equation 9
return 1

πa
τ̂NDE

end for

When can the NDEE accurately estimate the MR? We show that if A does not directly causally
effect X∗, it is possible to obtain an accurate estimate of the misreporting rate using the NDEE. To
show this, we can rewrite the misreporting rate as follows:

MR = Pa(X
∗ = 0|X = 1)

=
Pa(X = 1)− Pa(X

∗ = 1)

Pa(X = 1)

=
1

Pa(X = 1)
(EPa

[X]− EPa
[X∗])

=
1

Pa(X = 1)

∫
C

(EPa
[X|C = c]− EPa

[X∗|C = c])Pa(C = c)dC.

Thus, unless EPa [X
∗|C = c] = EP∗ [X∗|C = c], the NDEE will give a biased estimate of the

misreporting rate. This equality will hold if X∗ ⊥ A|C, which can only be true if A does not directly
affect X∗. Therefore, we should expect the NDEE to only work in settings where agents do not
directly genuinely adapt their features.
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F.4 OC-SVM

Under our assumptions, no data points where X = 0 are misreported. Therefore, we restrict the
OC-SVM approach to a subset of the data from D∗ and D where X = 1, which we denote as D∗

1
and D1, respectively. To train a One-Class SVM model, we use data from D∗

1 , which is assumed
to contain no misreported instances. The One-Class SVM model, denoted as g(y, c), is trained to
identify outliers/misreported instances using only the variables Y and C. The model outputs a 1 if a
datapoint is classified an outlier, and 0 otherwise.

For a given agent a, we estimate the misreporting rate using the OC-SVM as:

M̂R =
1

Na1

∑
i:i∈D1,ai=a

g(yi, ci).

We use the One-Class SVM implementation from the scikit-learn library [22]. Given our assumption
that all data points in D∗

1 are correctly reported, we used a small ν parameter (0.01). Additionally, we
use an RBF kernel with a bandwidth parameter γ = 0.1.

G Additional Experiments

G.1 Medicare Experiments

Figure 5 presents our Medicare experiments including the results from the OC-SVM estimator. The
estimated misreporting rate for the OC-SVM is consistent across all HCC codes and agents, reflecting
the results from our semi-synthetic loan dataset experiments. This suggests that the OC-SVM is
unable to distinguish misreported data points from normal data points.

Tables 1 and 2 provide information about each of the nonpayment and payment HCCs that had δ̂′a > 0
and were present in at least 1% of the switcher enrollees. For each HCC code, the tables report the
estimated MR using CMRE, the number of stayer and switcher enrollees in year t, δ̂′a, and the lower
and upper bounds for the 95% confidence interval. We exclude HCCs that were nonpayment in year
t but were used as payment HCCs for the risk adjustment model in year t+ 1, due to the potential
incentive for agents to misreport them.
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Figure 5: For each plot, the y-axis represents the estimated MR for an HCC code and the error bars
represent a 95% confidence interval. (Left) The x-axis has two nonpayment HCCs (HCC117 and
HCC50) and two payment HCCs (HCC21 and HCC8). Our approach (CMRE) has a MR estimate
close to zero for nonpayment HCCs and significantly above zero for the payment HCCs, which
aligns with what is expected in current literature. Baselines that fail to distinguish genuine adaptation
from strategic adaptation (NDEE) seem to underestimate the MR and baselines that do not control
for confounding (NMRE) seem to overestimate the MR. OC-SVM has a similar estimate for each
HCC, making it ineffective at identifying misreported data points. (Middle and Right) The x-axis
represents the baselines. The middle plot represents estimates for HCC50 and the right plot represents
MR estimates for HCC8 across different private insurers (agents). Similar to the left plot, NDEE
seems to underestimate the MR across most agents, and NMRE overestimates, and the MR estimates
for OC-SVM are consistent across all agents and HCC codes.
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Table 1: Nonpayment HCCs with δ̂′a > 0.1 and present in at least 1% of switcher enrollees.

HCC Full Name MR # Stayers # Switchers δ̂′a LCB UCB

50 Delirium and
Encephalopathy .015 32294 4535 .175 -.138 .091

117 Pleural
Effusion/Pneumothorax

.019 39037 5601 .153 -.103 .120

Table 2: Payment HCCs with δ̂′a > 0.1 and present in at least 1% of switcher enrollees.

HCC Full Name MR # Stayers # Switchers δ̂ LCB UCB

8 Metastatic Cancer and
Acute Leukemia

.130 18762 2646 .276 .037 .238

21 Protein-Calorie
Malnutrition

.217 21460 3338 .270 .109 .285

84 Cardio-Respiratory
Failure and Shock

.046 40308 6292 .247 -.030 .103

188 Artificial Openings for
Feeding or Elimination .004 10528 1684 .194 -.110 .210

2 Septicemia, Sepsis, SIRS,
and Shock

.112 28297 4309 .190 .040 .248

135 Acute Renal Failure -.004 49021 7868 .130 -.073 .116
103 Hemiplegia/Hemiparesis .241 12589 2395 .129 .066 .439

86 Acute Myocardial
Infarction

.033 20555 3230 .117 -.121 .217

G.2 Loan Dataset Experiments

We conduct additional experiments using alternative versions of the loan fraud dataset to show how
well our method and the baselines work under the DAGs defined in Figure 4. We also include
two additional baselines that were not in the main paper: NDEE (no C) and NDEE (no S). Unlike
the standard NDEE model, which controls for all covariates, NDEE (no C) doesn’t control for
confounders between X∗ and Y , and NDEE (no S) doesn’t control for common causes of A and X∗,
e.g., S. These variants are used to highlight the importance of controlling for S for NDEE.

G.2.1 Simulation 1

The first simulation replicates the setup used to generate the results in Section 5. It includes four
confounders of X∗ and Y : education (CE), sex (CS), marriage (CM ), and age (CA). Among these
variables, sex and marriage also causally effect A, reflecting a similar scenario represented by the
DAG in Figure 4(g). The simulation details are provided below:

Ai ∼ Bernoulli(0.05 + 0.3(1− CSi) + 0.3(1− CMi)),

X∗
i ∼ Bernoulli(0.05 + 0.05CEi + 0.3CSiCMi + 0.1CA

2
i + βAAi),

Yi ∼ Bernoulli(0.05 + 0.05CEi + 0.3CSiCMi + 0.1CA
2
i + βX∗X∗

i ),

Xi ∼ X∗
i +Ai(1−X∗

i )Bernoulli(µ),

In this simulation, NDEE (no S) doesn’t control for either CS or CM . Our main method, CMRE,
controls for all covariates as they are all confounders between X∗ and Y . βA = 0.3 and βX∗ = 0.4
unless specified otherwise. The results for this simulation are shown in Figure 6.

G.2.2 Simulation 2

The second simulation includes three confounders of X∗ and Y : education (CE), sex (CS), and age
(CA). Marriage (CM ) is a common cause of A and X∗ and an agent genuinely adapts eduction,
reflecting similar scenarios represented by the DAGs in Figure 4(a) and 4(b). In addition, eduction is
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Figure 6: The x-axis is the causal effect of A on X∗ (left), causal effect of X∗ on Y (middle), and
the misreporting rate (right). The y-axis is the estimated misreporting rate. Dashed lines represent
the true misreporting rate and the error bars represent the standard deviation. Our approach (CMRE)
accurately estimates the MR for all levels of genuine adaptation, the causal effect of X∗ on Y , and
misreporting rates. The variance for our estimator depends on the magnitude of the causal effect
of X∗ on Y . Baselines that do not adjust for confounding (NMRE) or do not distinguish between
genuine adaptation and misreporting (NDEE) give biased estimates in various cases. NDEE is
accurate when there is no genuine adaptation whereas NDEE (no S) is not, highlighting the need for
controlling for common causes of A and X∗. Anomaly detection methods (OC-SVM) are unable to
distinguish misreported data points from unmanipulated data points.

also a treatment effect modifier. The simulation details are provided below:

Ai ∼ Bernoulli(0.05 + 0.4(1− CMi)),

C ′
Ei ∼ CEi + (1− CEi)AiBernoulli(βM ),

X∗
i ∼ Bernoulli(0.05 + 0.25CMi + 0.1C ′

EiCSi + 0.1CA
2
i + βAAi),

Yi ∼ Bernoulli(0.05 + 0.2C ′
EiCSi + 0.1CA

2
i + (βX∗ + 0.1C ′

Ei)X
∗
i ),

Xi ∼ X∗
i +Ai(1−X∗

i )Bernoulli(µ),

In this simulation, NDEE (no S) doesn’t control for CM and NDEE (no C) only controls for CM .
Our main method, CMRE, only controls for CE , CS , and CA. βA = 0.1, βM = 0.2, and βX∗ = 0.4
unless specified otherwise. The results for this simulation are shown in Figure 7.

G.2.3 Simulation 3

The third simulation includes three confounders of X∗ and Y : education (CE), sex (CS), and age
(CA). Marriage (CM ) is a common cause of A and Y and an agent genuinely adapts education,
reflecting the scenario represented by the DAG in Figure 4(c). In addition, education is also a
treatment effect modifier. βA = 0.1, βM = 0.2, and βX∗ = 0.4 unless specified otherwise. The
simulation details are provided below:

Ai ∼ Bernoulli(0.05 + 0.4(1− CMi)),

C ′
Ei ∼ CEi + (1− CEi)AiBernoulli(βM ),

X∗
i ∼ Bernoulli(0.05 + 0.1C ′

EiCSi + 0.1CA
2
i + βAAi),

Yi ∼ Bernoulli(0.05 + 0.2CMi + 0.1C ′
EiCSi + 0.05CA

2
i + (βX∗ + 0.1C ′

Ei)X
∗
i ),

Xi ∼ X∗
i +Ai(1−X∗

i )Bernoulli(µ),

In this simulation, NDEE (no C) only controls for CM . Our main method, CMRE, only controls for
CE , CS , and CA. The results for this simulation are shown in Figure 8.

G.2.4 Simulation 4

The fourth simulation includes two confounders of X∗ and Y : sex (CS), and age (CA). Marriage
(CM ) is a common cause of A and Y and an agent genuinely adapts education, which is a mediator
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Figure 7: The x-axis is the direct causal effect of A on X∗ (left), causal effect of X∗ on Y (middle),
and the misreporting rate (right). The y-axis is the estimated misreporting rate. Dashed lines
represent the true misreporting rate and the error bars represent the standard deviation. Our approach
(CMRE) accurately estimates the MR for all levels of genuine adaptation, the causal effect of X∗ on
Y , and misreporting rates. The variance for our estimator depends on the magnitude of the causal
effect of X∗ on Y . Baselines that do not adjust for confounding (NMRE) or do not distinguish
between genuine adaptation and misreporting (NDEE) give biased estimates in various cases. NDEE
is accurate when there is no genuine adaptation whereas NDEE (no S) and NDEE (no C) are not,
as they either don’t control for common causes of A and X∗ or mediators of A and X∗. Anomaly
detection methods (OC-SVM) are unable to distinguish misreported data points from unmanipulated
data points.
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Figure 8: The x-axis is the direct causal effect of A on X∗ (left), causal effect of X∗ on Y (middle),
and the misreporting rate (right). The y-axis is the estimated misreporting rate. Dashed lines
represent the true misreporting rate and the error bars represent the standard deviation. Our approach
(CMRE) accurately estimates the MR for all levels of genuine adaptation, the causal effect of X∗ on
Y , and misreporting rates. The variance for our estimator depends on the magnitude of the causal
effect of X∗ on Y . Baselines that do not adjust for confounding (NMRE) or do not distinguish
between genuine adaptation and misreporting (NDEE) give biased estimates in various cases. NDEE
is accurate when there is no genuine adaptation whereas NDEE (no C) is not, as it doesn’t account
for the mediators of A and X∗. Anomaly detection methods (OC-SVM) are unable to distinguish
misreported data points from unmanipulated data points.

of A and X∗, reflecting the scenario represented by the DAGs in Figure 4(d) and 4(e). The simulation
details are provided below:

Ai ∼ Bernoulli(0.05 + 0.4(1− CMi)),

C ′
Ei ∼ CEi + (1− CEi)AiBernoulli(βM ),

X∗
i ∼ Bernoulli(0.05 + 0.3C ′

EiCSi + 0.1CA
2
i + βAAi),

Yi ∼ Bernoulli(0.05 + 0.2CMi + 0.1CSi + 0.05CA
2
i + βX∗X∗

i ),

Xi ∼ X∗
i +Ai(1−X∗

i )Bernoulli(µ),
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In this simulation, NDEE (no C) only controls for CM and CE . Our main method, CMRE, only
controls for CS and CA. βA = 0.1, βM = 0.2, and βX∗ = 0.4 unless specified otherwise. The
results for this simulation are shown in Figure 9.
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Figure 9: The x-axis is the direct causal effect of A on X∗ (left), causal effect of X∗ on Y (middle),
and the misreporting rate (right). The y-axis is the estimated misreporting rate. Dashed lines
represent the true misreporting rate and the error bars represent the standard deviation. Our approach
(CMRE) accurately estimates the MR for all levels of genuine adaptation, the causal effect of X∗ on
Y , and misreporting rates. The variance for our estimator depends on the magnitude of the causal
effect of X∗ on Y . Baselines that do not adjust for confounding (NMRE) or do not distinguish
between genuine adaptation and misreporting (NDEE) give biased estimates in various cases. Both
NDEE and NDEE (no C) are accurate when there is no genuine adaptation, as they control for all
common causes of A and X∗ and mediators of A and X∗. Anomaly detection methods (OC-SVM)
are unable to distinguish misreported data points from unmanipulated data points.

G.2.5 Simulation 5

The fifth simulation includes two confounders of X∗ and Y : sex (CS), and age (CA). Marriage (CM )
is a common cause of A and X∗ and an agent genuinely adapts education, which is a mediator of A
and X∗, reflecting similar scenarios represented by the DAGs in Figure 4(d) and 4(f). The simulation
details are provided below:

Ai ∼ Bernoulli(0.05 + 0.4(1− CMi)),

C ′
Ei ∼ CEi + (1− CEi)AiBernoulli(βM ),

X∗
i ∼ Bernoulli(0.05 + 0.2CMi + 0.3C ′

EiCSi + 0.1CA
2
i + βAAi),

Yi ∼ Bernoulli(0.05 + 0.3CSi + 0.05CA
2
i + βX∗X∗

i ),

Xi ∼ X∗
i +Ai(1−X∗

i )Bernoulli(µ),

In this simulation, NDEE (no C) only controls for CM and CE and NDEE (no S) doesn’t control for
CM . Our main method, CMRE, only controls for CS and CA. βA = 0.1, βM = 0.2, and βX∗ = 0.4
unless specified otherwise. The results for this simulation are shown in Figure 10.

H Software and Hardware

H.1 Software

All of the code for the experiments was written in Python 3.10.16 (PSF License). The XGBoost
models were implemented using the XGBoost 2.1.4 (Apache License 2.0) [5]. The OC-SVM baseline
was implemented by using scikit-learn 1.6.1 (BSD License) [22], which used the implementation
of the One-Class SVM. To generate the semi-synthetic datasets and for data processing tasks, both
numpy 2.0.2 (modified BSD license) [11] and pandas 2.2.3 (BSD license) [21] were employed. For
the Medicare dataset, HCCPy 0.1.9 (Apache License 2.0) was employed to extract the HCCs from
raw data. All plots were created using matplotlib 3.10.1 (PSF License) [15].

22



0.0 0.1 0.2 0.3
Causal Effect of A on X∗

0.0

0.5

E
st

im
a

te
d

M
R

CMRE (Ours) NMRE NDEE (All) NDEE (no S) NDEE (no C) OCSVM

0.2 0.4
Causal Effect of X∗ on Y

0.0

0.2

0.4

0.6

0.0 0.1 0.2
Misreporting Rate

0.0

0.2

0.4

0.6

Figure 10: The x-axis is the direct causal effect of A on X∗ (left), causal effect of X∗ on Y (middle),
and the misreporting rate (right). The y-axis is the estimated misreporting rate. Dashed lines
represent the true misreporting rate and the error bars represent the standard deviation. Our approach
(CMRE) accurately estimates the MR for all levels of genuine adaptation, the causal effect of X∗ on
Y , and misreporting rates. The variance for our estimator depends on the magnitude of the causal
effect of X∗ on Y . Baselines that do not adjust for confounding (NMRE) or do not distinguish
between genuine adaptation and misreporting (NDEE) give biased estimates in various cases. Both
NDEE and NDEE (no C) are accurate when there is no genuine adaptation, as they control for all
common causes of A and X∗ and mediators of A and X∗. In contrast, NDEE does not control for
common causes of A and X∗, which makes it biased. Anomaly detection methods (OC-SVM) are
unable to distinguish misreported data points from unmanipulated data points.

H.2 Hardware

All experiments were conducted using 16 CPU cores and 32 GB of memory on a computing
cluster with 2 x 2.5 GHz Intel Haswell (Xeon E5-2680v3) processors, which was managed using
a Slurm resource manager. The simulations for all of the five semi-synthetic loan experiments
took approximately 5 hours to complete, whereas the experiments over the Medicare dataset took
approximately 36 hours to complete.

23


	Introduction
	Preliminaries
	Estimating Misreporting Rates
	Empirical Results
	Conclusion
	Related Work
	Additional DAGs
	Main Proofs
	Proof for Lemma 1
	Proof for Theorem 1
	Proof for Theorem 2

	Additional Estimands
	Datasets
	Medicare Dataset
	Loan Datasets

	Estimators
	CMRE
	NMRE
	NDEE
	OC-SVM

	Additional Experiments
	Medicare Experiments
	Loan Dataset Experiments
	Simulation 1
	Simulation 2
	Simulation 3
	Simulation 4
	Simulation 5


	Software and Hardware
	Software
	Hardware


