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ABSTRACT

The adoption of Large Language Models (LLMs) as automated evaluators (LLM-
as-a-judge) has revealed critical inconsistencies in current evaluation frameworks.
We identify two fundamental types of inconsistencies: (1) Score-Comparison
Inconsistency, where lower-rated responses outperform higher-scored ones in pair-
wise comparisons, and (2) Pairwise Transitivity Inconsistency, manifested through
circular preference chains (A > B > C > A) and equivalence contradictions
(A = B = C ̸= A). We argue that these issues come from information loss in
discrete rating systems and ambiguous tie judgments during pairwise evaluation.
We propose TrustJudge, a probabilistic framework that addresses these limita-
tions through two key innovations: 1) distribution-sensitive scoring that computes
continuous expectations from discrete rating probabilities, preserving information
entropy for more precise scoring, and 2) likelihood-aware aggregation that resolves
transitivity violations using bidirectional preference probabilities or perplexity.
We also formalize the theoretical limitations of current LLM-as-a-judge frame-
works and demonstrate how TrustJudge’s components overcome them. When
evaluated with Llama-3.1-70B-Instruct as judge using our dataset, TrustJudge
reduces Score-Comparison inconsistency by 8.43% (from 23.32% to 14.89%) and
Pairwise Transitivity inconsistency by 10.82% (from 15.22% to 4.40%), while
maintaining higher evaluation accuracy. Our work provides the first systematic
analysis of evaluation framework inconsistencies in LLM-as-a-judge paradigms,
offering both theoretical insights and practical solutions for reliable automated
assessment. The framework demonstrates consistent improvements across various
model architectures and scales, enabling more trustworthy LLM evaluation without
requiring additional training or human annotations.

1 INTRODUCTION

The widespread adoption of LLM-as-a-judge approaches has offered a scalable and effective al-
ternative to costly human assessments Chang et al. (2024); Fu et al. (2023); Lin & Chen (2023);
Sottana et al. (2023); Huang et al. (2024); Koutcheme et al. (2024); Song et al. (2024); Zhu et al.
(2023). Beyond evaluation, this paradigm also actively contributes to model improvement, enabling
self-refinement through iterative feedback Yuan et al.; Wu et al. (2024); Wang et al. (2025c) and col-
laborative progress via mutual assessment Wang et al.; Li et al.. These LLM-as-a-judge frameworksLi
et al. (2023); Chen et al. (2024a); Li et al. (2025); Chen et al. (2024b); Tan et al. (2024); Thakur et al.
(2024); Szymanski et al. (2025); Raju et al. (2024) typically implement two evaluation protocols:
single-score assessment, where a judge LLM (either general-purpose or specifically fine-tuned for
evaluation) assigns integer numerical ratings to model outputs Zheng et al. (2023); Wang et al. (2024),
and pairwise comparison, where the judge evaluates competing responses in direct comparison (with
the order of responses swapped in two separate evaluations to eliminate position bias) to produce
preference judgments Dubois et al. (2024); Wang et al.; Li et al. (2024).

However, our research identifies two critical inconsistencies in these LLM-as-a-judge evaluation
frameworks for LLMs: (1) Score-Comparison Inconsistency between single-score and pairwise
comparison assessment, where LLMs with lower absolute scores may outperform higher-scored
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counterparts in pairwise comparisons (Rx ≻ Ry despite score(Rx) < score(Ry))1; and (2) Pairwise
Transitivity Inconsistency in pairwise comparison evaluation, where judgments show non-transitive
cycles (Rx ≻ Ry ≻ Rz ≻ Rx) and equivalence contradictions (Rx ≡ Ry ≡ Rz ̸= Rx), violating
rational preference principles. While prior work addresses pairwise inconsistencies through complex
mathematical modeling Xu et al.; Zhang et al., such continual training risks compromising model
generalizability Luo et al. (2023); Lin et al. (2024) without resolving score-comparison conflicts.
To the best of our knowledge, this is the first work to systematically expose both inconsistencies as
foundational weaknesses in LLM-as-a-judge frameworks and to provide a unified resolution.
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Figure 1: Left: Average entropy of Llama-3 Grattafiori et al. (2024) models’ single-score outputs over
six rounds on 1,200 instructions, by scoring strategy. Right: Breakdown of circular- vs. inequality-
transitivity errors in pairwise-comparison tests.

To address these inconsistencies, we introduce TrustJudge, a probabilistic evaluation framework
that preserves judgment entropy while resolving both (a) score-comparison conflicts via distribution-
sensitive scoring and (b) transitivity violations through likelihood-aware aggregation. As shown
in Figure 1, we argue that the score-comparison inconsistency primarily stems from information
loss in the integer scoring system—the coarse-grained 5-point scale compresses nuanced quality
differences into identical scores (e.g., different quality responses both receiving 4 points), resulting in
low entropy judgments that fail to discriminate actual performance gaps. We propose two effective
solutions: (1) increasing scoring granularity (5→10→100 points) to preserve more discriminative
information, and (2) probabilistic scoring that maintains the full entropy of model judgments. For
pairwise transitivity inconsistency, we find most of inconsistencies originate from tie judgments
(equivalence contradictions). We propose breaking ambiguous ties by either (1) preferring responses
whose entire sentence exhibits lower perplexity, or (2) deciding preference based on the judge’s token-
level confidence for win, tie and lose. These approaches significantly reduce inconsistency rates while
maintaining the scalability and effectiveness of LLM-as-a-judge frameworks. While recent works like
Liu et al. (2023); Wang et al. (2025b) adopt probabilistic scoring to enhance human alignment, our
motivation differs fundamentally in addressing fundamental inconsistencies of evaluation frameworks
rather than improving human-judge agreement. Our probabilistic scoring serves as an entropy-
preserving mechanism with granularity enhancement to resolve score-comparison conflicts. Our
theoretical analysis shows that discrete scoring systems suffer from information loss by showing
that distinct response distributions can yield identical scores despite different entropies, whereas
TrustJudge’s distribution-sensitive scoring preserves and distinguishes these differences, and further
demonstrates that its PPL-based confidence distribution reduces uncertainty in ambiguous cases by
leveraging perplexity to create a lower-entropy signal for decision-making.

Extensive experimental results across multiple model families (Llama-3, GPT, Qwen, Gemma) and
scales (3B to 70B parameters) demonstrate TrustJudge’s effectiveness. Our framework reduces
Score-Comparison inconsistency by 8.43% (from 23.32% to 14.89%) and Pairwise Transitivity
inconsistency by 10.82% (from 15.22% to 4.40%) when using Llama-3.1-70B-Instruct as judge.
These improvements are achieved while maintaining or improving evaluation accuracy, with exact
match rates increasing by 1.19-6.85% across different model sizes. Our ablation studies confirm that
both distribution-sensitive scoring and likelihood-aware aggregation contribute significantly to these
improvements, with the full framework achieving the best performance across all tested scenarios.

1We use Rx, Ry, Rz to represent distinct LLM responses, ≻: strictly preferred; ≺: strictly worse; ⪰:
preferred or equivalent; ⪯: worse or equivalent; ≡: equivalent; ̸=: not equivalent
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In conclusion, we present the first systematic analysis of fundamental inconsistencies in LLM-as-
a-judge evaluation frameworks, identifying two critical limitations: (1) information loss in discrete
scoring systems causing Score-Comparison Inconsistency, and (2) ambiguous tie judgments leading
to Pairwise Transitivity Inconsistency. TrustJudge addresses these through distribution-sensitive
scoring that preserves judgment entropy and likelihood-aware aggregation to break ambiguous ties.
Our experiments demonstrate significant inconsistency reductions while maintaining evaluation
accuracy across diverse models and tasks. This work provides both insights into LLM evaluation
limitations and practical solutions for more reliable automated assessment, enabling more trustworthy
deployment of LLM-as-a-judge paradigms in research and applications. In addition, we provide a
more detailed review of related work in Appendix B.

2 METHODOLOGY

Our framework addresses two fundamental inconsistencies in LLM-as-a-judge systems through
formal definitions and quantitative metrics. We first establish mathematical characterizations of these
inconsistencies, then present our TrustJudge algorithm.

2.1 INCONSISTENCY DEFINITIONS AND METRICS

Definition 2.1 (Score-Comparison Inconsistency). For responses Rx, Ry with scores Sx, Sy ∈ Z
(e.g., 1-5 scale) and pairwise comparison C = C(Rx, Ry) ∈ {−1, 0, 1} (1: Rx preferred, -1: Ry

preferred, 0: tie), inconsistency occurs when:

(Sx > Sy ∧ C ≤ 0) ∨ (Sx < Sy ∧ C ≥ 0) ∨ (Sx = Sy ∧ C ̸= 0). (1)

The Conflict Ratio CR = 1
n

∑n
i=1 I[inconsistent pair i] measures prevalence, where n is total pair

numbers in the test set and I[·] is the indicator function.
Definition 2.2 (Pairwise Transitivity Inconsistency). For a set of n responses Rn = {R1, . . . , Rn}
and its subsets Rk of size k ≥ 3, three responses Rx, Ry, Rz ∈ Rk satisfy one of the following
transitivity violations:

• Circular inconsistency: C(Rx, Ry) = 1 ∧ C(Ry, Rz) = 1 ∧ C(Rz, Rx) ̸= −1. (2)
(forming a preference cycle Rx ≻ Ry ≻ Rz ̸≺ Rx)

• Inequality inconsistency: C(Rx, Ry) = 0 ∧ C(Ry, Rz) = 0 ∧ C(Rx, Rz) ̸= 0. (3)
(violating transitivity of indifference)

The Non-Transitivity Ratio is defined as NTRk = Vk

(nk)
, where Vk denotes the number of k-size

subsets exhibiting either inconsistency type and
(
n
k

)
represents the binomial coefficient counting all

possible k-size subsets from n elements.

2.2 TRUSTJUDGE

As shown in Algorithm 1, the TrustJudge framework is a probabilistic evaluation approach that
preserves judgment entropy while resolving score-comparison conflicts and transitivity violations.
The framework operates differently for single-score evaluation and pairwise comparison tasks,
maintaining consistency between these two evaluation protocols.

For single-score evaluation, TrustJudge employs a distribution-sensitive scoring mechanism. Given a
response R to be assessed, the framework first prompts the LLM to score on a more fine-grained scale
than original (e.g., a 100-point scale when the original scale is 5-point). It then transforms the resulting
discrete probability distribution Po(s

′
j | R) over the expanded score set Θ′ = {s′min, . . . , s

′
max} into

logits ℓj for each candidate score s′j . These logits are then processed by a softmax function which
normalize the logits into a valid probability distribution P (s′j |R). Unlike other approaches such
as G-Eval Liu et al. (2023), whose generated probabilities can violate

∑
j P (s′j | R) = 1 because

non-score tokens also influence the output, our method ensures a properly normalized distribution.
The final score S is computed as the expected value, scaled back to the original range [smin, smax]:

3
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Algorithm 1 TrustJudge Evaluation Framework

Require: Responses Rx, Ry (pairwise) or R (single), expanded scores Θ′ (range [s′min, s
′
max]),

original range [smin, smax]
Ensure: Score S or comparison C(Rx, Ry)

1: if Single-Score Evaluation then
2: P (s′j |R)← Softmax(Po(s

′
j |R)) {Normalize probabilities}

3: S′ ←
∑s′max

j=s′min
s′jP (s′j |R) {Expected expanded score}

4: S ← S′ × smax−smin

s′max−s′min
{Scale to original range}

5: return S
6: else {Pairwise Comparison}
7: Option A: PPL-Based
8: PPL1 ← PPL(M, Rx, Ry) {Perplexity of Rx followed by Ry}
9: PPL2 ← PPL(M, Ry, Rx) {Perplexity of reverse ordering}

10: C(Rx, Ry)←
{
Corder1 if PPL1 < PPL2

Corder2 otherwise
{Determine by comparing PPL}

11: Option B: Likelihood-aware Aggregation
12: p1 ← Prob(M, Rx, Ry) {Probabilities for Rx vs Ry}
13: p2 ← Prob(M, Ry, Rx) {Probabilities for reverse comparison}
14: m[k]← p1[k] + p2[−k] for k ∈ {1,−1, 0} {Aggregate both directions}
15: return argmaxk m[k] {Select most probable outcome}
16: end if

S =

 s′max∑
j=s′min

s′j ·
exp(Po(s

′
j |R))∑

exp(Po(s′k|R))

× smax − smin

s′max − s′min

, (4)

where P (s′j |R) represents the original probability for score s′j . This approach preserves the full
entropy of the judge’s assessment while producing continuous scores that maintain fine-grained
distinctions between response qualities.

For pairwise comparison tasks, TrustJudge offers likelihood-aware aggregation methods to resolve
transitivity inconsistencies. The first approach (Option A) leverages perplexity-based (PPL-based)
method to break ties when the judge exhibits ambiguity. Given two responses Rx and Ry, the
framework computes the perplexity of both possible orderings (Rx followed by Ry and vice versa)
under the judge modelM. The comparison result C(Rx, Ry) is determined by selecting the ordering
with lower perplexity:

C(Rx, Ry) =

{
Corder1 , if PPL(M, Rx, Ry) < PPL(M, Ry, Rx),

Corder2 , otherwise.
(5)

The second approach (Option B) employs a bidirectional probability based method that combines
preference probabilities from both orderings to reduce position bias. For each possible outcome
k ∈ {1,−1, 0} (representing Rx preferred, Ry preferred, or tie), the framework aggregates the
probabilities from both orderings:

m[k] = porder1 [k] + porder2 [−k]. (6)

where porder1 and porder2 are the probability vectors for the two orderings. The final comparison result
is determined by selecting the outcome with maximum aggregated probability k∗ = argmaxk m[k].
This probabilistic approach significantly reduces circular and inequality transitivity violations while
maintaining the scalability of pairwise comparisons.

By producing nearly continuous score distributions, a probabilistic judge makes exact equality
between two responses much less likely than traditional discrete grading. To relax the tie criterion,
we can introduce a tolerance hyper-parameter δ ≥ 0. Whenever the discrepancy between two
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responses—absolute score difference, PPL gap, or probability margin—does not exceed δ, the pair
is declared a tie, allowing users to tune the granularity of the final ranking without retraining the
model. Although δ is set to 0 by default, we have conducted a thorough hyper-parameter sweep that
confirms TrustJudge’s reliability across a range of δ values; the results recommend a small positive δ,
because—even with δ = 0—the framework already produces a noticeable number of ties.

3 THEORETICAL ANALYSIS

In this section, we formalize the theoretical weaknesses of current LLM-as-a-judge frameworks and
prove how TrustJudge’s components address them. The detailed analysis and derivation can be found
at Appendix I. We start by proving that discrete scoring systems suffer from information loss.
Theorem 3.1 (Information Loss of Discrete Scoring and Preservation in Expectation). Let pR1

and
pR2

be two distinct probability distributions over the score set Θ representing the judge model’s
assessment of two different responses, R1 and R2 (i.e., pR1

̸= pR2
). The discrete scoring function

fDiscrete can fail to distinguish between these two assessments, whereas the distribution-sensitive
scoring function fDS provides a mechanism for their discrimination. Specifically:

1. (Information Loss): There exist pR1
̸= pR2

with different conditional entropies, H(S|R1) ̸=
H(S|R2), such that their discrete scores are identical: fDiscrete(pR1

) = fDiscrete(pR2
).

2. (Information Preservation): For the same distributions pR1
and pR2

constructed in (1),
their distribution-sensitive scores are distinct: fDS(pR1

) ̸= fDS(pR2
).

For pairwise comparisons 2, we formalize how the PPL-based method reduces the uncertainty caused
by ambiguity, the proof of which is deferred to the Appendix I.
Proposition 3.2 (Uncertainty Reduction via PPL-based Method). Let H(C|π) be the Shannon
entropy of the judge model’s outcome distribution. In an ambiguous regime, this entropy is maximized,
H(C|π) ≈ log |C|. We define a confidence distribution pconf based on the perplexity of the rationale
Jk for each outcome k:

pconf(k) ∝ exp(−γ · PPL(Jk)), for a scaling constant γ > 0. (7)

If the rationale perplexities are not all equal, then pconf is non-uniform. By the properties of Shannon
entropy, this implies its entropy is strictly less than the maximum:

H(pconf) < log |C|. (8)

Thus, the PPL-based method makes its decision using a more certain (lower-entropy) signal.

4 EXPERIMENTS

Setup Our dataset combines both the 80 questions from MT-Bench Zheng et al. (2023) and the
500 challenges from ArenaHard Li et al. (2024). MT-Bench provides broad coverage of diverse
instructions across eight categories including writing, roleplay, and reasoning, while ArenaHard
offers particularly challenging queries drawn from real-world user interactions. For each question,
we sample candidate responses from diverse LLMs. Under the single-comparison inconsistency
protocol, we construct a dataset of 10.8k instances, where each instance corresponds to a pair of
responses annotated with their single scores and the induced pairwise preference. Under the pairwise
transitivity inconsistency protocol, we collect 43.2k pairwise relations for k = 4 and 50.4k for k = 5,
each derived from the corresponding k-response sets to evaluate transitivity. For each question,
we collected responses from a diverse set of large language models with varying capabilities. All
gold-standard scores and pairwise comparison results for these responses are verified through human
review. The final dataset is carefully balanced, ensuring uniform score distributions across every
rating level for both single-score and pairwise-comparison scenarios. The detailed model information
and inference hyperparameters used in our test data creation are listed in Appendix E, and the detailed
category distribution across our datasets is provided in Appendix H. Beyond the core framework, we
also extend our approach to multi-dimensional evaluation, as detailed in Appendix G.

2Please see more analysis of the bidirectional probability based method in Appendix I.2
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We evaluate both the inconsistencies and accuracies. For inconsistencies, we use: (1) the Conflict
Ratio (CR, Definition 2.1) and (2) the Non-Transitivity Ratio (NTR, Definition 2.2). For accuracies,
we employ (1) Win Rate for single-score evaluation: the fraction of instances whose score sides
with the reference, which highlights protocol differences more sharply than MSE or MAE. (2) Exact
Match for pairwise comparison: given the ground-truth order A ≻ B, only a verbatim output of
A ≻ B counts; any reversal or tie is wrong—an all-or-nothing metric. Parameter k (Def. 2.2) governs
the subset size for pairwise transitivity checks. Larger k captures higher-order cycles at cost

(
n
k

)
;

k=3 yields too few triples to discriminate models, so we report k=4, 5.

Baselines We establish two fundamental baseline approaches for comparison with TrustJudge. For
single-score evaluation, we implement: (1) the standard raw scoring method that directly outputs
absolute scores (1-5 scale), as used in MT-Bench; and (2) G-Eval-style probability summation that
calculates the total probability mass across possible scores without applying softmax normalization.
Following previous work Wang et al., pairwise baseline mitigates position bias by evaluating each
response pair twice (reversed order) and record differing outcomes as ties. All baselines use
the identical judge model and the same detailed prompt (see Appendix D) as TrustJudge, enabling
direct comparison of inconsistency metrics (CR and NTR) and accuracy metrics (Win Rate and Exact
Match) under identical conditions.

Evaluated LLMs Our experiments comprehensively evaluate TrustJudge across a diverse set
of popular LLMs, covering both open-source and proprietary families with varying parameter
sizes. Specifically, we include: Llama-3.2-3B, Llama-3.1-8B, and Llama-3.1-70B Grattafiori
et al. (2024), three instruction-tuned models from the Llama-3 series, representing small, medium,
and large-scale open-source LLMs, respectively. We also evaluate GPT-3.5-Turbo OpenAI (2023)
and GPT-4o OpenAI (2024), two widely-used proprietary models from OpenAI, included for their
strong performance in both general and evaluation-specific benchmarks. Additionally, we assess the
Qwen2.5-7B, Qwen2.5-14B, Qwen2.5-32B Yang et al. (2024), Gemma-2-2b, Gemma-2-9B, and
Gemma-2-27B Riviere et al. (2024) to demonstrate TrustJudge’s generalization across model types
and sizes. For all evaluations, we use the instruction-tuned or SFT variants of each model, consistent
with their intended use as judge LLMs. All judge models are applied with identical evaluation
prompts and configurations to ensure fair comparison.
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Figure 2: Results for single-comparison inconsistency (left) and pairwise transitivity inconsistency
(right) across tolerance δ: Llama-3.1-70B (blue), Llama-3.1-8B (red), Llama-3.2-3B (pink), and
GPT-4o (green). Colors correspond to different judge models, while markers distinguish evaluation
methods as described in each subfigure. For single-score in the experiment on the left, δ is a tolerance
proportion on the original rating scale; For pairwise (PPL-based) in the experiment on the right, δ
is the threshold on the difference in perplexity between the two presentation orders; For pairwise
(Likelihood-aware aggregation) in the experiment on the right, δ is the threshold on the confidence
gap between the top two aggregated outcomes.

Main Results The experimental results comparing TrustJudge with baseline approaches across
multiple model families and sizes are summarized in Table 1 and Figure 2. The key findings are:

TrustJudge significantly reduces evaluation inconsistencies across all model sizes. Our experi-
ments demonstrate that TrustJudge achieves superior consistency compared to both direct scoring
baselines and G-Eval approaches. The proposed method achieves substantial reductions in Conflict

6
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Table 1: Results for two experiments: (1) Score-Comparison Inconsistency (CR) comparing raw-score
baseline, G-Eval probability-summation, and TrustJudge’s distribution-sensitive scoring; (2) Pairwise
Transitivity Inconsistency (NTRk=4,5) comparing two-pass swap-order baseline versus TrustJudge’s
likelihood-aware aggregation. Win rate quantifies scoring precision by measuring the proportion
of test instances where a method’s score is nearest the ground truth with results presented on both
5-point and 100-point scales. Exact match quantifies comparison consistency by measuring the
proportion of pairwise method outcomes that perfectly align with dataset annotations.

Model CR (%) NTRk=4 (%) NTRk=5 (%) Ours vs Baseline Ours vs G-Eval Pairwise Exact Match

Baseline G-Eval Ours Baseline Ours Baseline Ours 5-scale 100-scale 5-scale 100-scale Baseline TrustJudge

Llama-3.2-3B-Instruct 36.65 29.50 29.15 32.42 8.07 54.69 17.76 45.41 54.66 62.21 51.03 72.06 78.91
Llama-3.1-8B-Instruct 29.73 25.31 23.75 20.26 3.79 37.03 8.46 56.84 51.88 59.61 51.24 75.67 81.68
Llama-3.1-70B-Instruct 23.32 15.77 14.89 7.23 1.94 15.22 4.40 51.77 54.53 64.22 55.27 80.42 81.61
GPT-4o 27.95 23.18 22.60 11.70 2.83 24.33 6.01 50.31 55.60 65.11 53.43 78.67 81.51

Ratios, delivering absolute improvements of 4.78%–8.43% over the baseline approaches. Moreover,
Trustjudge consistently surpasses G-eval by approximately 1–2% across every experimental setting.
More importantly, TrustJudge dramatically lowers transitivity violations in pairwise comparisons,
with NTRk=5 violations reduced by 10.82%-36.93% absolute. For instance, Llama-3.2-3B shows the
most substantial improvement, decreasing NTRk=5 from 54.69% to just 17.76% with TrustJudge.
These consistency improvements are particularly notable because they are achieved without requiring
additional training or fine-tuning of the base models.

TrustJudge maintains and often improves evaluation accuracy while reducing inconsistencies.
TrustJudge demonstrates that both consistency and accuracy can be achieved simultaneously. Trust-
Judge improves exact match rates by 1.19%-6.85% across different model sizes compared to baseline
approaches, with the most significant gains observed for smaller models (6.85% improvement for
Llama-3.2-3B). In pairwise evaluations, TrustJudge achieves win rates of 45.41%-65.11% against
both baseline methods and G-Eval approaches. The method performs particularly well on fine-grained
100-point scoring and maintains strong performance on 5-point scales. This accuracy preservation is
crucial for practical applications where both reliable and precise evaluations are required.

Table 2: Ablation study where "L" refers to
LLaMA and "G" to GPT. Single Score Compo-
nents report CR and Pairwise Comparison Compo-
nents report NTRk=4.

Components L-3.1-8B L-3.1-70B G-3.5-Turbo G-4o

Single Score Components
5-scale Baseline 29.73 23.32 24.35 27.95
+ Softmax 26.10 17.08 24.03 25.50
+ 100-scale 24.54 17.94 22.10 24.01
Pairwise Comparison Components
Baseline 20.26 7.23 14.01 11.70
+ Likelihood 3.79 1.94 6.26 2.83
+ PPL-Based 6.56 2.18 4.80 4.48

TrustJudge exhibits robust tolerance-aware
gains across judge families and evaluation
protocols. A fine-tuned tolerance (δ) often
yields superior outcomes, as a smaller toler-
ance reduces ambiguity. Conversely, a larger
tolerance introduces greater uncertainty. It’s im-
portant to note that even with a tolerance of
zero, ties can still occur. The TrustJudge scoring
and aggregation method effectively mitigates in-
consistencies. Notably, its benefits are evident
across various tolerance settings, demonstrating
its robustness and effectiveness.

Ablation Study To evaluate the contribution
of different components in TrustJudge, we con-
duct an ablation study by systematically remov-
ing key elements: (1) the softmax normalization, (2) the 100-point granularity enhancement for
single-score evaluation, and (3) the pairwise comparison strategies (likelihood-aware aggregation
and PPL-based methods). We also examine performance variations across different judge LLMs to
demonstrate TrustJudge’s model-agnostic properties.

Table 2 reveals several key findings. For single score components, the 5-scale baseline shows
the highest inconsistency rates across all models (39.73% for Llama-3.1-8B, 27.5% for GPT-4o),
indicating the importance of TrustJudge’s enhancements. Adding softmax normalization reduces
inconsistency by 0.32%-6.24% absolute across models, while incorporating 100-scale granularity
yields improvements (up to 5.19% reduction from 5-scale).
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Figure 3: Effect of scoring granularity on Conflict
Ratio across judge models. We measure the Con-
flict Ratio (CR) under three scoring scales: 5-point,
10-point, and 100-point. “L” refers to LLaMA
models and “G” to GPT models; “B” denotes base-
line scoring, while “T” represents TrustJudge.

In pairwise comparison components, the base-
line shows moderate performance (20.26% in-
consistency for Llama-3.1-8B). The likelihood-
aware aggregation strategy achieves the best re-
sults overall, reducing inconsistency to as low
as 1.94% for Llama-3.1-70B and 2.83% for
GPT-4o. The PPL-based comparison shows sub-
stantial gains over baseline (16.47% absolute
improvement for Llama-3.1-8B) while offering
practical advantages in implementation, as it op-
erates directly on sequence probabilities without
requiring explicit win/tie/lose position identifi-
cation .

The consistent performance patterns across
model architectures (from 8B to 70B parame-
ters) demonstrate that TrustJudge’s benefits are
not model-specific but derive from its method-
ological innovations. Larger models gener-
ally achieve better absolute performance, with
Llama-3.1-70B and GPT-4o showing particu-
larly strong results when using TrustJudge.

Increasing Score granularity reduces incon-
sistency. As shown in Figure 3, increasing the scoring scale from 5 to 100 points consistently
reduces the Conflict Ratios. Furthermore, TrustJudge (T) achieves lower inconsistency than the
baseline (B) under all granularities, demonstrating its effectiveness in preserving scoring fidelity. The
benefit is especially pronounced for larger models such as Llama-3.1-70B and GPT-4o.

Generalization Experiment To systematically validate TrustJudge’s cross-architectural adaptabil-
ity and practical value for alignment training, we evaluate the framework across 12 model variants
spanning four major architectures (Qwen, Gemma, Llama, GPT) with various parameter sizes. The
experiments cover both single-response scoring and pairwise comparison scenarios. Note that we set
k = 4 for pairwise comparison.
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Figure 4: Performance of TrustJuduge with LLMs of different Sizes and Structures. Note that
Qwen-2.5 is denoted as Q and Gemma-2 as G.

Figure 4 demonstrates three key findings through comprehensive architectural comparisons:
Architecture-agnostic consistency improvement. The distribution-sensitive scoring achieves consistent
reductions in single-instance conflict ratios across all tested architectures. Moreover, inconsistency
varies markedly across architectures: Gemma consistently outperforms Qwen of comparable size.

Transitivity violation reversal. The proposed likelihood-aware aggregation strategy substantially
mitigates non-transitivity patterns across model variants. Remarkably, this approach enables mid-
sized models to surpass the transitivity performance of significantly larger baseline models under
controlled evaluation settings.
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Size-performance decoupling. While model capacity naturally correlates with lower inconsistency
rates, TrustJudge effectively narrows the performance disparity between small and large models. This
capability highlights the framework’s potential to enhance the practical utility of resource-efficient
models for alignment tasks. Notably, bigger is not always better: the 9B Gemma actually exhibits
lower inconsistency than its 27B sibling.

Table 3: Performance of TrustJuduge for Llama-3.1-8B and DeepSeek-R1-Distill-Llama-8B.

CR (%) NTRk=4 (%) NTRk=5 (%)

Model Baseline G -Eval Ours Baseline Likelihood PPL-Based Baseline Likelihood PPL-Based

Llama-3.1-8B 29.73 25.31 23.75 20.26 3.79 6.80 37.03 8.46 16.20
DeepSeek-R1-Distill-Llama-8B 58.75 53.63 49.28 44.61 11.43 25.16 63.98 18.50 41.78

Reasoning model results As shown in Table 3, The reasoning model’s significantly higher incon-
sistency rates suggest a potential catastrophic forgetting of judge capabilities due to reinforcement
training on mathematical data Guo et al. (2025). This finding is noteworthy as it highlights the
challenges that arise when models are trained on specialized tasks, such as mathematical reasoning,
which can inadvertently lead to the degradation of their performance in other critical areas like
judging. Despite this, TrustJudge remains effective in improving judge performance, demonstrating
its robustness and adaptability in enhancing the model’s capabilities across different domains.

Table 4: DPO results on Llama-3.1-8B and
Qwen2.5-7B. The experimental setup for DPO is
provided in Appendix F.

Data Selection Strategy LC Win Rate Win Rate

Llama-3.1-8B-SFT 11.17 7.95
Llama-3.1-8B-SFT-5-Scale-Baseline 19.13 20.93
Llama-3.1-8B-SFT-100-Scale-Softmax 20.52 24.16
Qwen2.5-7B-SFT 11.92 8.07
Qwen2.5-7B-SFT-5-Scale-Baseline 16.82 15.09
Qwen2.5-7B-SFT-100-Scale-Softmax 18.54 18.76

Using Trustjudge for Rewarding Models Ta-
ble 4 shows TrustJudge’s DPO enhancement.
We trained SFT models on sampled 6K IFT/EFT
examples (Open Assistant Köpf et al. (2023)
+ UltraFeedback Cui et al. (2024)), then per-
formed DPO on 5K questions from the same
sources. Diverse LLMs answered these ques-
tions before preference judgments. AlpacaEval2
(GPT-4o judge) shows TrustJudge’s 100-point
scoring improves win rates by 16.21% (Llama-
3-8B) and 1.94% 10.69% (Qwen2.5-7B) over
5-point baselines, measured across 805 ques-
tions with both standard and LC win rates. This
confirms TrustJudge’s dual utility for evaluation and preference optimization.

The results establish TrustJudge’s robust generalizability across: (1) different model families and
scales, maintaining consistent inconsistency reduction regardless of architecture; and (2) diverse
applications including direct evaluation and reward modeling for DPO training. This versatility stems
from TrustJudge’s architecture-agnostic probabilistic design and fine-grained scoring approach.

5 CONCLUSION

We presented TrustJudge, a novel probabilistic evaluation framework designed to address fundamental
inconsistencies in current LLM-as-a-judge paradigms. Through systematic analysis, we identified
two critical issues: Score-Comparison Inconsistency due to information loss in discrete scoring
systems, and Pairwise Transitivity Inconsistency stemming from ambiguous tie judgments. TrustJudge
introduces distribution-sensitive probabilistic scoring, preserving judgment entropy, and likelihood-
aware aggregation strategies to effectively mitigate these inconsistencies.

Empirical results demonstrate that TrustJudge significantly reduces Score-Comparison inconsistency
and Pairwise Transitivity inconsistency across various LLM architectures and scales. Crucially, these
improvements do not compromise evaluation accuracy, achieving enhancements in exact match rates
and win rates compared to established baselines. Our ablation and generalization studies confirm the
robustness and model-agnostic applicability of TrustJudge. TrustJudge offers both theoretical insights
and practical solutions for enhancing the reliability and credibility of automated LLM evaluations,
contributing towards more trustworthy and consistent use of large language models in research and
applications. Ethics Statement, Reproducibility Statement, and The Use of LLMs can be found in
Sections 6, 7, and Appendix A. We also discuss the limitations of our approach in Appendix C.
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6 ETHICS STATEMENT

This work investigates the reliability of large language models (LLMs) as automated evaluators. Our
experiments rely solely on publicly available benchmarks (e.g., MT-Bench, ArenaHard) and synthetic
evaluation data generated by LLMs, with all gold-standard labels verified through human review;
no human subjects, private, or personally identifiable information were involved. The proposed
TrustJudge framework is designed to enhance the consistency and trustworthiness of automated
evaluation, benefiting the research community by reducing biases and contradictions in LLM-based
assessment. While LLM-as-a-judge systems may inherit or amplify biases from underlying models,
our method serves as a mitigation strategy rather than a complete solution. We affirm that our research
complies with the ICLR Code of Ethics and does not pose foreseeable harm to individuals or groups.

7 REPRODUCIBILITY STATEMENT

To ensure reproducibility and transparency of our results, we have submitted all necessary code and
evaluation scripts as supplementary materials, together with detailed instructions to reproduce the
experiments reported in this paper.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs were used to support the writing process of this paper. Specifically, they assisted in grammar
correction, wording refinement, and formatting adjustments. In addition, LLM agents were leveraged
to facilitate literature search and provide coding suggestions for implementation. The use of AI tools
does not affect the originality of the work or the authors’ responsibility for its content.

B RELATED WORK

Traditional Discrete Evaluation Protocols LLM-as-a-judge frameworks have become widely
adopted for their scalability and cost-efficiency in evaluating large language models. Early works
predominantly relied on discrete evaluation protocols, including coarse single-score ratings and
pairwise preference comparisons. MT-Bench and Chatbot Arena Zheng et al. (2023) demonstrated
the feasibility of using powerful LLMs such as GPT-4 as judges, achieving high agreement with
human preferences, while also noting issues such as verbosity and position bias. ArenaHard Li et al.
(2024) proposed an automated benchmark construction pipeline and introduced Arena-Hard-Auto, a
challenging benchmark curated without human-in-the-loop, which relies on LLMs to produce and
evaluate responses.

AlpacaEval Dubois et al. (2024) highlighted persistent biases in LLM-based evaluation such as a
preference for longer outputs. Their proposed length-controlled regression analysis mitigated this
issue and improved correlation with human preferences. PandaLM Wang et al. introduced a pairwise
judgment protocol that incorporates subjective dimensions like clarity, formality, and instruction
adherence. Its judge model outperformed even GPT-4 in certain domains and was used to tune
instruction-following models.

Other works such as Trivedi et al. (2024); Saha et al. (2023); Que et al. (2024); Ye et al. (2023);
Fernandes et al. (2023); Bai et al. (2023); Wang et al. (2025a) developed various discrete evaluation
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Below is a question and a candidate response from a user . Please act as an impartial
judge and evaluate the quality of the responses provided by two AI assistants to the
user question displayed below. You should choose the assistant that follows the user's
instructions and answers the user's question better. Your evaluation should consider
factors such as the helpfulness, relevance, accuracy, depth, creativity, and level of
detail of their responses. Begin your evaluation by comparing the two responses and
provide a short explanation. Avoid any position biases and ensure that the order in
which the responses were presented does not influence your decision. Do not allow
the length of the responses to influence your evaluation. Do not favor certain names
of the assistants. Be as objective as possible. After providing your brief explanation,
you *must* output the final verdict by strictly following this format: \"[A]\" if
assistant A is better, \"[B]\" if assistant B is better, and \"[C]\" for a tie. Provide a
result exclusively in **square brackets** (e.g., Verdict: [A]).

Instruction:

Compose an engaging travel blog post about a recent trip to Hawaii, highlighting cultural
experiences and must-see attractions.

Question:

Clouds shrouded Luau nights at various hotels **(Did you know you can also find luau
options on the beach?)** are basically more turn-key opportunities to meet like-minded
travelers at the resort complexes. A quirky day I revisited that place just made my visit
almost two weeks and nine days based on prior reviews I had. Probably either searching
the night markets or actually hopping in the ocean in the afternoon somewhere that first
island had a lot of gratifying moments of vibrancy. Due to mixed reviews from prior
travelers, shrimp tempura happened last thing on the last night in one restaurant.

Answer A:

Assistant B provides a much better response to the user's question. Assistant B creates an
engaging blog post that highlights cultural experiences in Hawaii, such as respecting the
land, connecting with locals, and learning about Hawaiian heritage. The assistant also
mentions exploring iconic landmarks like waterfalls and beaches. On the other hand,
Assistant A's response is disjointed and lacks coherence, jumping between random
experiences without a clear focus on cultural aspects or must-see attractions. Overall,
Assistant B's response is more helpful, relevant, accurate, and detailed in addressing the
user's request for an engaging travel blog post about Hawaii.\n\n**Verdict: [B]**

Judgement:

{"B": 0.63743090092823145,   
"A": 0.24067150787693196, 
"C": 0.12532604394079833…}

Aloha from paradise! My recent trip to Hawaii was a whirlwind of vibrant culture,
breathtaking landscapes, and unforgettable experiences. Immersing myself in the local
way of life was truly enriching. I discovered the importance of respecting the '\u0101ina
(land) and the deep connection Hawaiians have to their heritage. Learning a few basic
Hawaiian words and phrases helped me connect with the locals and gain a deeper
appreciation for their culture. Of course, I also explored some iconic landmarks. The
natural beauty of the islands is simply awe-inspiring, from the cascading waterfalls to the
pristine beaches.

Answer B:

Figure 5: Example of a pairwise evaluation prompt.

techniques, including majority voting, scalar ratings, skill-wise decomposition, and output-based
scoring. While these methods brought interpretability and practical value, they were still constrained
by coarse-grained annotations and did not fully resolve contradictions between scoring types or
internal inconsistencies. Notably, Fernandes et al. (2023) proposed AUTOMQM for machine
translation, which incorporated structured error labeling but remained within the paradigm of fixed-
score prompting. Bai et al. (2023) proposed a language model examiner framework combining scoring
and ranking, but without entropy-aware mechanisms. Similarly, Wang et al. (2025a) employed output-
based scoring for software engineering tasks, emphasizing alignment with human evaluation but
without probabilistic modeling. Additionally, Trivedi et al. (2024) used iterative self-rationalization
for enhancing model rationales but still within a discrete scoring.

Probabilistic and Fine-Grained Evaluation Methods To overcome the limitations of discrete
judgments, recent research has explored probabilistic evaluation strategies. G-EVAL Liu et al. (2023)
introduced softmax-normalized score prediction over a fine-grained rating scale using chain-of-
thought prompting and form-filling, improving alignment with human preferences. Wang et al.
(2025b) further examined extracting fine-grained preferences by leveraging the distributional output
of judge models, demonstrating that methods incorporating distributional judgments significantly
outperform traditional greedy decoding across various evaluation scenarios.

Our work builds upon and extends this direction by proposing TrustJudge, a probabilistic evaluation
framework that preserves judgment entropy and explicitly resolves both score-comparison and
pairwise transitivity inconsistencies in LLM-as-a-judge paradigms.
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C LIMITATIONS

Despite the demonstrated efficacy of TrustJudge, our approach still has some inherent limitations.
Firstly, the performance of TrustJudge is fundamentally dependent on the instruction-following
capabilities of the employed evaluation models. Smaller-scale language models often exhibit weaker
instruction comprehension and execution capabilities, which could result in failure to yield valid
scores or comparisons. Consequently, the quality and reliability of TrustJudge evaluations are directly
tied to the underlying judge model’s competence, emphasizing the importance of model ability.

D PROMPT EXAMPLES

The following figures 5 and 6 provide examples of evaluation prompts used to assess responses.
The first figure shows a pairwise comparison prompt, where two responses are compared and one
is selected as better. The second figure illustrates a single-score evaluation prompt with the 5-point
scale, where a response is rated based on quality metrics such as helpfulness and relevance. These
examples are intended to support clarity and consistency in LLM-as-a-judge evaluation tasks.

E INFERENCE SETTINGS

Specifically, we included strong open-source models such as Llama-3-Athene-70B Frick et al. (2024),
Llama-3-70B-Instruct Grattafiori et al. (2024), and Llama-3-8B-Instruct Grattafiori et al. (2024);
strong closed-source models such as GPT-4o OpenAI (2024), GPT-4-Turbo OpenAI (2024), and
Claude 3 Sonnet Anthropic (2024); weak open-source models including WizardLM-13B-v1.2 Xu et al.
(2023); WizardLM Team (2023), Vicuna-7B Chiang et al. (2023); LMSYS (2023), and Alpaca-13B
Chavinlo (2023); and weak closed-source models such as Claude 3 Haiku Anthropic (2024) and
GPT-3.5-Turbo OpenAI (2023). We use batched inference of vLLM to accelerate the generation
and judging process, setting the temperature to 1.0, the maximum number of tokens to 2048, and
providing the top 20 log probabilities for each generated token.

F DPO TRAINING SETTINGS

In DPO training, models are trained for one epoch with a learning rate of 5.0×10−7. The temperature
parameter β is set at 0.1. A global batch size of 32 is used, with 4 samples per device across 8 GPUs.
The training process employs a cosine learning rate schedule, incorporating a warmup phase that
accounts for 10% of the total training steps. The maximum sequence length is maintained at 2048
tokens, while the maximum prompt length is limited to 512 tokens.

G EXTENSION TO MULTI-DIMENSIONAL EVALUATION

Setup. To assess whether TrustJudge can be extended to multi-dimensional evaluation, we evaluate
three sub-dimensions: factuality, coherence, and helpfulness. We randomly sample 120 questions
from Arena Hard dataset. For each question, candidate responses and judgements are generated by
models from the Llama, Qwen, Gemma, and GPT families. Each sub-dimension uses a dimension-
specific prompt, which we show in Figures 7 and 8 respectively.

For each sub-dimension, we independently compute two degrees of inconsistencies: (i)
Score–Comparison Inconsistency reported as CR and Pairwise Transitivity Inconsistency reported
as NTRk for k ∈ {3, 4}. For brevity, Table 5 present the averages of these metrics across the three
sub-dimensions, while all metrics are computed per dimension as specified above.

Results and analysis. Extending the judge to three axes—factuality, coherence, and helpful-
ness—yields a clear reduction in inconsistency. With dimension-specific prompts and per-dimension
computation, we observe drops on every model and on both of the metrics: CR decreases by roughly
5.13%–11.03%, while NTR3 and NTR4 fall more sharply, on average by 11.23%–24.99%.

The pattern is most visible with Llama-3.1-70B, where NTR4 contracts from 44.65% to 16.21%
and NTR3 from 18.29% to 5.48%, alongside a CR decline from 52.20% to 41.47%. Qwen2.5-
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Please act as an impartial judge and carefully evaluate the quality of the AI
assistant’s response to the user question provided below. Your evaluation
should consider factors such as the helpfulness, relevance, accuracy, depth,
creativity, and level of detail of the response. Provide a concise, objective
explanation summarizing your evaluation. IMPORTANT: After your
explanation, give only a single, final numeric score on a scale of 1 to 5 in
**square brackets**, strictly adhering to the following format: \"Score: [X]\",
where X is your numeric score (e.g., \"Score: [2]\").

Instruction:

Compose an engaging travel blog post about a recent trip to Hawaii, highlighting
cultural experiences and must-see attractions.

Question:

I'm glad you enjoyed your recent trip to Hawaii! In this travel blog post, I will
share with you the cultural experiences and must-see attractions that made your
journey unforgettable. Get ready to immerse yourself in the beauty and richness of
Hawaiian culture as we explore vibrant luaus, traditional hula performances, and
delicious local cuisine. Don't forget to check out iconic attractions like the
stunning beaches of Waikiki, the volcanic wonders of Hawaii Volcanoes National
Park, and the historical significance of Pearl Harbor. So grab your sunscreen, put
on your leis, and let's embark on a virtual journey to the tropical paradise of
Hawaii!

Answer:

The response is friendly and engaging, directly addressing the user‘s request for an
engaging travel blog post about a recent trip to Hawaii. It includes highlights of
cultural experiences and must-see attractions, painting a vivid picture for the reader.
The use of descriptive language and inviting tone creates an immersive experience
for the audience, making them eager to explore Hawaii through the blog post. The
response fulfills the user’s request effectively and offers a comprehensive
overview of the trip, showcasing the cultural richness and key attractions of
Hawaii.\n\n**Score: [4]**

Judgement:

{“4”: 0.3775228458971041, 
“3”: 0.6224299462058022,
“2”: 4.659003155833513e-05, 
“5”: 5.175684992981448e-07,
…}

Figure 6: Example of a single-score evaluation prompt with the 5-point scale.

Instruction for Factuality:
Please act as an impartial judge and carefully evaluate the **factuality** of the AI assistant’s response to the
user question provided below. Your evaluation should consider factors such as the correctness of the
information, the verifiability of claims, the accuracy of data and references, and the absence of factual errors or
misleading statements. Provide a concise, objective explanation summarizing your evaluation. IMPORTANT:
After your explanation, give only a single, final numeric score on a scale of 1 to 5 in **square brackets**,
strictly adhering to the following format: \"Score: [X]\", where X is your numeric score (e.g., \"Score: [2]\").

Instruction for Coherence:
Please act as an impartial judge and carefully evaluate the **coherence** of the AI assistant’s response to the
user question provided below. Your evaluation should consider factors such as logical flow, clarity of structure,
consistency of argumentation, appropriate organization of ideas, and overall readability. Provide a concise,
objective explanation summarizing your evaluation. IMPORTANT: After your explanation, give only a single,
final numeric score on a scale of 1 to 5 in **square brackets**, strictly adhering to the following format:
\"Score: [X]\", where X is your numeric score (e.g., \"Score: [2]\").

Instruction for Helpfulness:
Please act as an impartial judge and carefully evaluate the **helpfulness** of the AI assistant’s response to the
user question provided below. Your evaluation should consider factors such as relevance to the user’s needs,
depth of insight, practical utility, clarity of guidance, and effectiveness in addressing the question. Provide a
concise, objective explanation summarizing your evaluation. IMPORTANT: After your explanation, give only a
single, final numeric score on a scale of 1 to 5 in **square brackets**, strictly adhering to the following format:
\"Score: [X]\", where X is your numeric score (e.g., \"Score: [2]\").

Figure 7: Example of single-score prompts for multi-dimension evaluation.

32B and Gemma-2-27B-Instruct show the same direction of change; even where CR narrows more
modestly (e.g., Gemma 49.43%→ 44.30%), pairwise non-transitivity is still more than halved
(48.76%→ 22.41%). Taken together, the improvements persist when quality is decomposed into
orthogonal components rather than measured as a single undifferentiated score.

Mechanistically, the scalar channel benefits from distribution-sensitive scoring, which smooths
discretization artifacts and reduces clashes between numeric scores and pairwise preferences, lowering
CR. The pairwise channel benefits from likelihood-aware aggregation with calibrated tie handling,
which suppresses position bias, lowering NTR. Because these effects arise within each dimension
before averaging, the evidence indicates genuine generalization of TrustJudge to multi-dimensional
evaluation.
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Instruction for Factuality:
Below is a question and two candidate responses from AI assistants to the user question displayed below. Please
act as an impartial judge and evaluate which response is more factually accurate. Your evaluation should
consider factors such as the correctness of information, the verifiability of claims, the accuracy of data and
references, and the absence of factual errors or misleading statements. Begin your evaluation by comparing the
two responses and provide a concise explanation of which is more factually sound. Avoid any position biases and
ensure that the order of the responses, their length, or the names of the assistants do not influence your decision.
After providing your explanation, output only the final verdict by strictly following this format: \"[A]\" if
assistant A’s response is more factually accurate, \"[B]\" if assistant B’s response is more factually accurate, and
\"[C]\" for a tie, exclusively in square brackets (e.g., Verdict: [A])

Instruction for Coherence:
Below is a question and two candidate responses from AI assistants to the user question displayed below. Please
act as an impartial judge and evaluate which response is more coherent. Your evaluation should consider
factors such as logical flow, clarity of structure, consistency of argumentation, appropriate organization of ideas,
and overall readability. Begin your evaluation by comparing the two responses and provide a concise
explanation of which is more coherent. Avoid any position biases and ensure that the order of the responses,
their length, or the names of the assistants do not influence your decision. After providing your explanation,
output only the final verdict by strictly following this format: \"[A]\" if assistant A’s response is more coherent,
\"[B]\" if assistant B’s response is more coherent, and \"[C]\" for a tie, exclusively in square brackets (e.g.,
Verdict: [A]).

Instruction for Helpfulness :
Below is a question and two candidate responses from AI assistants to the user question displayed below. Please
act as an impartial judge and evaluate which response is more helpful. Your evaluation should consider factors
such as relevance to the user’s needs, depth of insight, practical utility, clarity of guidance, and effectiveness in
addressing the question. Begin your evaluation by comparing the two responses and provide a concise
explanation of which is more helpful. Avoid any position biases and ensure that the order of the responses, their
length, or the names of the assistants do not influence your decision. After providing your explanation, output
only the final verdict by strictly following this format: \"[A]\" if assistant A’s response is more helpful, \"[B]\" if
assistant B’s response is more helpful, and \"[C]\" for a tie, exclusively in square brackets (e.g., Verdict: [A]).

Figure 8: Example of pairwise prompts for multi-dimension evaluation.

Table 5: Results for multi-dimensional evaluation across three sub-dimensions—factuality, coherence,
and helpfulness. For each sub-dimension, CR and NTRk are computed independently; tables report
the mean across sub-dimensions.

CR (%) NTRk=3 (%) NTRk=4 (%)

Model Baseline Ours Baseline Ours Baseline Ours

Gemma-2-27b-it 49.43 44.30 19.60 8.20 48.76 22.41
Qwen2.5-32B-Instruct 45.73 37.87 17.38 7.89 42.55 22.36
Llama-3.1-70B-Instruct 52.20 41.47 18.29 5.48 44.65 16.21

H GENERALIZATION ACROSS DATASET CATEGORIES

Setup. To assess whether our observations generalize across task types, we used 120 prompts from
MT-Bench and Arena Hard as the main experiment; for each prompt we independently collected
ten model responses so as to obtain a quality-diverse distribution of outputs, yielding a total of
1,200 responses. The 120 prompts were assigned to eight predefined MT-Bench categories as shown
in Figure 9. Evaluation was performed with three judges — Qwen2.5-7B-Instruct, Llama-3.1-8B-
Instruct, and Gemma-2-9b-it — which each assessed all 1,200 responses using both (i) a single-score
assessment on a 5-point scale and (ii) pairwise comparisons between responses. Per category we
report the Conflict Ratio under the 5-point and the Non-Transitivity Ratio with k = 4. Results are
presented both aggregated across categories and broken down by the eight MT-Bench categories to
illustrate the variation in inconsistency patterns across task types.

Results and analysis. As shown in Table 6, across eight MT-Bench categories and three judges, the
clearest pattern is in pairwise transitivity consistency: non-transitivity ratio collapses from 18.74%
under the two-pass baseline to 4.40% with likelihood-aware aggregation method and 5.64% with the
PPL-based method (averaged over all 24 category–judge cells). That reduction is uniform—almost
every category and every judge shows single-digit NTR after applying our pairwise aggregation, with
extremes such as Llama–STEM reaching 0.00%, and large cuts in difficult regimes like Qwen–Math
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Figure 9: Category distribution across the eight dataset categories.

(32.85%→ 4.46%). In short, once responses are compared bidirectionally with likelihood-aware tie
handling, residual inconsistencies are rare regardless of task type.

Score-Comparison Conflicts show a more nuanced, category-dependent story. Averaged over all
cells, CR drops from 23.32% to 20.63% with distribution-sensitive scoring. However, looking
category-wise, our method is the best (or tied best) in three of eight groups that emphasize open-
ended generation—Coding (Ours 21.78% vs. G-Eval 22.13%), Reasoning (Ours 20.72% vs. G-Eval
21.17%), and Writing (Ours 23.93% vs. G-Eval 24.09%)—while G-Eval leads in STEM, Humanities,
Roleplay, and Extraction. Math is the lone case where the raw baseline edges out both methods by
a small margin (Baseline 19.41% vs. Ours 19.55%/ G-Eval 20.10%). These contrasts suggest that
when responses span a wider stylistic or pragmatic range, TrustJudge that preserves rating entropy
tends to reduce score-comparison inconsistency; when the signal is more templated or tightly factual,
G-Eval probability summation can be slightly better calibrated.

Table 6: Results for two category-wise inconsistencies. Left block (Score–Comparison Inconsistency):
Baseline, G-Eval probability-summation, and TrustJudge’s distribution-sensitive scoring on a 5-point
scale. Right block (Pairwise Transitivity Inconsistency): two-pass swap-order Baseline, TrustJudge’s
likelihood-aware aggregation (Option B in 1), and PPL-based method (Option A in 1). Judges are
Llama-3.1-8B-Instruct (“Llama”), Qwen2.5-7B-Instruct (“Qwen”), and gemma-2-9b-it (“Gemma”).

Category Model Score–Comparison (CR, %) Pairwise Transitivity (NTRk=4, %)

Baseline G-Eval Ours Baseline Likelihood PPL-based

Coding
Llama 31.19 27.74 27.59 22.07 3.72 7.80
Qwen 26.14 25.33 23.69 19.86 4.95 6.19

Gemma 18.52 13.33 14.07 16.76 3.81 5.91

Reasoning
Llama 31.18 25.79 25.90 22.08 5.01 6.87
Qwen 27.53 29.35 26.48 23.93 5.56 9.69

Gemma 10.23 8.37 9.77 14.13 2.52 5.71

Math
Llama 24.24 25.25 24.24 23.26 4.86 5.21
Qwen 26.63 30.65 28.54 32.85 4.46 9.64

Gemma 7.35 4.41 5.88 16.84 4.29 6.48

STEM
Llama 25.62 17.77 19.42 9.03 1.94 0.00
Qwen 29.35 26.75 26.23 23.07 3.68 5.70

Gemma 9.52 4.76 4.76 9.47 1.11 3.23

Humanities
Llama 27.08 21.67 21.67 19.14 4.29 4.00
Qwen 23.88 21.49 20.30 20.38 3.86 3.41

Gemma 12.24 2.04 6.12 7.81 2.12 1.63

Writing
Llama 38.71 30.97 30.97 23.10 2.07 14.83
Qwen 20.95 30.48 30.00 26.19 10.71 5.06

Gemma 18.92 10.81 10.81 11.43 3.62 1.90

Roleplay
Llama 35.04 29.91 27.35 12.50 5.47 1.56
Qwen 28.49 26.16 28.49 24.69 6.76 7.70

Gemma 16.07 5.36 14.29 10.71 4.76 6.43

Extraction
Llama 40.63 34.38 35.94 18.87 3.77 3.77
Qwen 30.12 30.12 32.53 28.85 4.23 7.69

Gemma 0.00 0.00 0.00 12.62 8.10 5.00
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Practically, the category study shows the generalization of TrustJudge. The likelihood-aware aggrega-
tion and PPL-based method are robust to task type, driving down inconsistencies nearly everywhere.
The distribution-sensitive scoring is competitive overall and tends to be strongest where outputs are
diverse and rubric-driven (coding, reasoning, writing).

I THEORETICAL DERIVATION

I.1 THEORETICAL ANALYSIS OF DISTRIBUTION-SENSITIVE SCORING

In the LLM-as-a-Judge paradigm, a judge model M assesses a given response R. The model’s
internal assessment can be conceptualized as a conditional probability distribution over a discrete
set of possible scores Θ = {s1, . . . , sk}. We denote this probability mass function (PMF) as
pR(s) ≜ PM (S = s|R), where S is a random variable representing the score. The uncertainty or
ambiguity in this assessment is captured by the conditional entropy:

H(S|R) = −
∑
s∈Θ

pR(s) log pR(s) (9)

Traditional discrete scoring protocols extract a single score by taking the mode of this distribution.
We define the discrete scoring function fDiscrete as:

fDiscrete : ∆
k−1 → Θ, fDiscrete(pR) = argmax

s∈Θ
pR(s)

where ∆k−1 is the (k − 1)-simplex representing all possible probability distributions over the k
scores. This function maps a probability distribution to a single point estimate. The core issue with
this approach is that the argmax operator is non-injective; it discards all information about the
distribution’s shape and uncertainty (entropy), mapping distinct belief states to the same output score.
This information loss is a primary source of score-comparison inconsistencies.

In contrast, our proposed distribution-sensitive scoring function, fDS, computes the expected value of
the score distribution:

fDS : ∆k−1 → R, fDS(pR) = ES∼pR
[S] =

∑
s∈Θ

s · pR(s)

This function maps the entire probability distribution to a continuous scalar value, preserving more
information about the underlying assessment. The following theorem formalizes the information
preservation property of fDS compared to the information loss inherent in fDiscrete.
Theorem I.1 (Information Loss of Discrete Scoring and Preservation in Expectation). Let pR1

and
pR2

be two distinct probability distributions over the score set Θ representing the judge model’s
assessment of two different responses, R1 and R2 (i.e., pR1 ̸= pR2). The discrete scoring function
fDiscrete can fail to distinguish between these two assessments, whereas the distribution-sensitive
scoring function fDS provides a mechanism for their discrimination. Specifically:

1. (Information Loss): There exist pR1
̸= pR2

with different conditional entropies, H(S|R1) ̸=
H(S|R2), such that their discrete scores are identical: fDiscrete(pR1

) = fDiscrete(pR2
).

2. (Information Preservation): For the same distributions pR1
and pR2

constructed in (1),
their distribution-sensitive scores are distinct: fDS(pR1

) ̸= fDS(pR2
).

Proof. We will prove the theorem by formal symbolic construction.

Let the score set be Θ. Let us choose two distinct scores sm, sa ∈ Θ such that sm ̸= sa. Let sm
be the intended mode of our distributions. Further, let us choose two distinct real numbers ϵ1 and
ϵ2 such that 0 < ϵ1, ϵ2 < 0.5 and ϵ1 ̸= ϵ2. The condition ϵ < 0.5 ensures that 1 − ϵ > ϵ, which
will be necessary to establish sm as the unique mode. The condition ϵ1 ̸= ϵ2 ensures the resulting
distributions are distinct.

Consider two responses, R1 and R2, which elicit two different internal belief distributions from the
judge model, defined as follows:
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1. Let pR1
be a probability mass function (PMF) where the probability mass is concentrated

on sm and sa:

pR1(s) =


1− ϵ1 if s = sm
ϵ1 if s = sa
0 otherwise

2. Let pR2
be a second, distinct PMF, also concentrated on sm and sa but with a different

balance:

pR2(s) =


1− ϵ2 if s = sm
ϵ2 if s = sa
0 otherwise

Since ϵ1 ̸= ϵ2, we have pR1
̸= pR2

.

PART 1: PROVING INFORMATION LOSS IN fDISCRETE

We apply the discrete scoring function fDiscrete to both distributions. By our choice of ϵ1, ϵ2 ∈ (0, 0.5),
we have 1− ϵ1 > ϵ1 and 1− ϵ2 > ϵ2. Therefore, the mode for both distributions is uniquely sm:

fDiscrete(pR1) = argmax
s∈Θ

pR1(s) = sm

fDiscrete(pR2
) = argmax

s∈Θ
pR2

(s) = sm

Thus, we have shown that for two distinct distributions pR1
and pR2

, it is possible that fDiscrete(pR1
) =

fDiscrete(pR2
).

Now, we consider their conditional entropies. The entropy of these distributions is a function of ϵ:

H(S|R1) = −((1− ϵ1) log(1− ϵ1) + ϵ1 log ϵ1)

H(S|R2) = −((1− ϵ2) log(1− ϵ2) + ϵ2 log ϵ2)

The binary entropy function H(p) = −p log p − (1 − p) log(1 − p) is strictly increasing on the
interval (0, 0.5). Since we chose ϵ1 ̸= ϵ2 within this interval, it follows that H(S|R1) ̸= H(S|R2).
This confirms that fDiscrete maps distributions with different levels of uncertainty to the same output,
thereby losing information. This proves the first part of the theorem.

PART 2: PROVING INFORMATION PRESERVATION IN fDS

Next, we apply the distribution-sensitive scoring function fDS to the same distributions pR1
and pR2

:

fDS(pR1) = E[S|R1] =
∑
s∈Θ

s · pR1(s) = sm(1− ϵ1) + sa(ϵ1)

fDS(pR2
) = E[S|R2] =

∑
s∈Θ

s · pR2
(s) = sm(1− ϵ2) + sa(ϵ2)

To demonstrate that their scores are distinct, let us assume for contradiction that they are equal:

fDS(pR1) = fDS(pR2)

sm(1− ϵ1) + sa(ϵ1) = sm(1− ϵ2) + sa(ϵ2)

sm − smϵ1 + saϵ1 = sm − smϵ2 + saϵ2

ϵ1(sa − sm) = ϵ2(sa − sm)

(ϵ1 − ϵ2)(sa − sm) = 0

This equality can only hold if ϵ1 − ϵ2 = 0 or sa − sm = 0. However, by our initial construction, we
chose ϵ1 ̸= ϵ2 (so ϵ1 − ϵ2 ̸= 0) and sa ̸= sm (so sa − sm ̸= 0). This leads to a contradiction.

Therefore, our assumption must be false, and it must be that fDS(pR1) ̸= fDS(pR2). The distribution-
sensitive scoring function successfully distinguishes between these two belief states, preserving the
discriminative information lost by fDiscrete. This proves the second part of the theorem.
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I.2 THEORETICAL ANALYSIS OF LIKELIHOOD-AWARE AGGREGATION

The PPL-based estimator is designed to resolve ambiguity. From an information-theoretic perspective,
ambiguity in a discrete choice problem corresponds to a high-entropy probability distribution over the
possible outcomes. The PPL-based method leverages an alternative signal—the generative likelihood
of the rationale—to induce a more confident (lower-entropy) posterior belief for decision-making.
The following proposition formalizes this concept.
Proposition I.2 (Uncertainty Reduction via PPL-based Method). Let C = {1,−1, 0} be the set
of outcomes. Let p(C|π) be the original outcome distribution from the judge model, and H(C|π)
its Shannon entropy. In an ambiguous regime, this distribution approaches uniformity, causing
H(C|π)→ log |C|.
Let a new "confidence" distribution pconf be derived from the rationales Jk for each outcome k ∈ C:

pconf(k) =
exp(−γ · PPL(Jk))∑
i∈C exp(−γ · PPL(Ji))

where γ > 0 is a scaling constant. If there exists at least one outcome k whose rationale has a strictly
lower perplexity than another (i.e., ∃k1, k2 s.t. PPL(Jk1) < PPL(Jk2)), then there exists a γ such
that the entropy of the confidence distribution is strictly lower than the maximum possible entropy:

H(pconf) < log |C|

This demonstrates that ĈPPL makes a decision based on a more certain signal, reducing the judgment
uncertainty present in the original ambiguous distribution.

Proof. The Shannon entropy function, H(p) = −
∑

i pi log pi, is a strictly concave function over
the probability simplex. Its unique maximum is achieved when the distribution p is uniform, i.e.,
pi = 1/|C| for all i. In this case, H(p) = log |C|.
In an ambiguous regime, the original outcome distribution p(C|π) is, by definition, near-uniform.
Consequently, its entropy H(C|π) is close to its maximum possible value, log |C|.
Now, consider the confidence distribution pconf. The condition ∃k1, k2 s.t. PPL(Jk1) < PPL(Jk2)
implies that the values exp(−γ · PPL(Jk)) are not all equal. As a result, after normalization, the
distribution pconf is not uniform.

Because the Shannon entropy function’s maximum is uniquely attained by the uniform distribution,
any non-uniform distribution must have a strictly lower entropy. Therefore,

H(pconf) < max
p

H(p) = log |C|

Since H(C|π) ≈ log |C|, it follows that H(pconf) < H(C|π).
The parameter γ controls the "peakedness" of pconf. As γ →∞, pconf approaches a Kronecker delta
function centered at the outcome with the minimum PPL, and its entropy approaches zero. Thus, for
any non-trivial difference in PPLs, we can always choose a γ to make the decision signal arbitrarily
certain.

This proves that the PPL-based method transforms a high-entropy (ambiguous) belief state into a
lower-entropy (more certain) one, thereby providing a more discriminative signal for making a final
judgment.

A desirable property of any comparison function f(Rx, Ry) is symmetry, meaning that swapping
the inputs should simply invert the outcome, i.e., f(Ry, Rx) = −f(Rx, Ry). Single-pass estima-
tors often violate this property due to positional bias. The following proposition proves that our
bidirectional estimator is inherently stable and symmetric by construction.
Proposition I.3 (Symmetry and Stability of the Bidirectional Estimator). Let the single-pass greedy
estimator be ĈSP (Rx, Ry) = argmaxk p(k|(Rx, Ry),M). Due to positional bias, this estima-
tor is not generally symmetric, meaning there exist pairs (Rx, Ry) for which ĈSP (Rx, Ry) ̸=
−ĈSP (Ry, Rx).
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In contrast, the bidirectional estimator ĈB is perfectly symmetric for all inputs:

ĈB(Rx, Ry) = −ĈB(Ry, Rx)

This property makes ĈB a stable estimator with respect to the input ordering.

Proof. Let’s define the aggregated score function for ĈB(Rx, Ry) as m(k;Rx, Ry) =
p(k|(Rx, Ry)) + p(−k|(Ry, Rx)). The decision is argmaxk m(k;Rx, Ry).

Now consider the estimator for the swapped input, ĈB(Ry, Rx). Its score function is m(k;Ry, Rx) =
p(k|(Ry, Rx)) + p(−k|(Rx, Ry)).

Let’s compare the score for outcome k = 1 in the first case with the score for outcome k = −1 in the
second case:

m(1;Rx, Ry) = p(1|(Rx, Ry)) + p(−1|(Ry, Rx))

m(−1;Ry, Rx) = p(−1|(Ry, Rx)) + p(−(−1)|(Rx, Ry)) = p(−1|(Ry, Rx)) + p(1|(Rx, Ry))

We see that m(1;Rx, Ry) = m(−1;Ry, Rx). By the same logic, m(−1;Rx, Ry) = m(1;Ry, Rx)
and m(0;Rx, Ry) = m(0;Ry, Rx).

This means that the score assigned to preference "Rx ≻ Ry" in the first ordering is identical to the
score assigned to preference "Rx ≻ Ry" (which is outcome −1) in the second ordering. Therefore, if
the maximum score in the first case is for outcome k∗, the maximum score in the second case must
be for outcome −k∗. This proves ĈB(Rx, Ry) = −ĈB(Ry, Rx).
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