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Abstract

Compositional optimization (CO) has recently gained popularity due to its applications
in many machine learning applications. The large-scale and distributed nature of data
necessitates efficient federated learning (FL) algorithms for CO, but the compositional
structure of the objective poses significant challenges. Current methods either rely on
large batch gradients (which are impractical), require expensive computations, or suffer
from suboptimal guarantees. To address these challenges, we propose efficient Fed Avg-type
algorithms for solving non-convex CO in the FL setting. We first theoretically establish
that standard FedAvg fails in solving the federated CO problems due to data heterogeneity,
which amplifies bias in local gradient estimates. Our analysis shows that controlling this bias
necessarily requires either additional communication or additional structural assumptions.
To this end, we develop two algorithms for solving the federated CO problem. First, we
propose FedDRO that utilizes the compositional problem structure to design a communication
strategy that allows FedAvg to converge. FedDRO achieves a sample complexity of O(e2)
and communication complexity of O(e=3/2). Then we propose DS-FedDRO, a two-sided
learning rate algorithm, that leverages an additional assumption to improve upon the
communication complexity of FedDRO. DS-FedDRO achieves the optimal O(e~2) sample and
O(e~!) communication complexity. We corroborate our theoretical findings with empirical
studies on large-scale CO problems.

1 Introduction

Compositional optimization (CO) problems deal with the minimization of the composition of functions. A
standard CO problem takes the form

mingera f(g(x)) where g(z) := Ecp, [9(z; ()], (1)

where z € R? is the optimization variable, f : R% — R and g : R? — R% are smooth functions, and ¢ ~ D,
represents a stochastic sample of g(-) from distribution D,. CO finds applications in a broad range of machine
learning applications, including but not limited to distributionally robust optimization (DRO) |Qi et al.| (2022),
meta-learning [Finn et al.| (2017, phase retrieval Duchi & Ruan/ (2019), portfolio optimization |Shapiro et al.
(2021)), and reinforcement learning \Wang et al.| (2017)). In this work, we focus on a more challenging version
of the CO problem that often arises in the DRO formulation [Haddadpour et al.| (2022)). Specifically,
the problems that jointly minimize the summation of a compositional and a non-compositional objective.
DRO has recently garnered significant attention from the research community because of its capability of
handling noisy labels (Chen et al.| (2022), training fair machine learning models |Qi et al.| (2022)), imbalanced
Qi et al.|(2020a) and adversarial data |[Chen & Paschalidis| (2018). A standard approach to solve DRO is to
utilize primal-dual algorithms |Nemirovski et al.| (2009)) that are inherently slow because of a large number
of stochastic constraints. The CO formulation enables the development of faster (dual-free) primal-only
DRO algorithms [Haddadpour et al.| (2022). The majority of existing works to solve CO problems consider a
centralized setting wherein all the data samples are available on a single server. However, modern large-scale
machine-learning applications are characterized by the distributed collection of data by multiple clients
Kairouz et al.| (2021). This necessitates the development of distributed algorithms to solve the DRO problem.
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Federated learning (FL) is a distributed learning paradigm that allows clients to solve a joint problem in
collaboration with a server while keeping the data of each client private [McMahan et al.| (2017). The clients
act as computing units where, within each communication round, the clients perform multiple updates while
the server orchestrates the parameter sharing among clients. Numerous FL algorithms exist in the literature
to tackle standard (non-compositional) optimization problems |Li et al.| (2019; 2020)); [Karimireddy et al.
(2019); |Sharma et al.| (2019)); |Zhang et al.| (2021); Khanduri et al.| (2021)); [Karimireddy et al.| (2020). However,
there is a lack of efficient distributed implementations when it comes to CO problems. The major challenges
in developing FL algorithms for solving the CO problem are:

[C1]. The compositional structure of the problem leads to biased stochastic gradient estimates, and this bias
is amplified during local updates, which makes the analysis intractable |(Chen et al.| (2021)).

[C2]. Typically, data distribution at each client is different, resulting in client drift during local updates,
which leads to divergence of federated CO algorithms. This is in sharp contrast to the standard FedAvg for
non-CO problems, where client drift can be controlled |Karimireddy et al.| (2019).

[C3]. Majority of algorithms for solving CO rely on accuracy-dependent large batch gradients [Huang et al.
(2021); Haddadpour et al.[ (2022); |Guo et al.| (2022)); Wu et al.| (2024]).

[C4]. The developed algorithms rely on the computation of expensive matrix (or vector) projections|Gao
(2024); Huang et al.|(2023) or complex multi-loop structure [Tarzanagh et al.|(2022); Haddadpour et al.| (2022);
Huang et al.| (2023).

These challenges naturally lead to the following question:

Can we develop FL algorithms that tackle [C1] — [C4] to solve CO in a federated setting?

In this work, we address the above question and develop novel FL algorithms to solve CO problems. Although
our development focuses on the DRO problem, the algorithms developed in our work have wider applicability
to other general CO problems. The major contributions of our work are:

e We for the first time present a negative result that establishes that the vanilla FedAvg (customized to CO)
is incapable of solving the CO problems as it leads to bias amplification during the local updates. This
shows that either additional communication/processing or additional assumptions are required by Fed Avg to
mitigate the bias in the local gradient estimation.

e We develop two novel FL algorithms FedDRO and DS-FedDRO, for solving problems with both composi-
tional and non-compositional non-convex objectives. To our knowledge, such algorithms have been
absent from the open literature so far. Importantly, FedDRO and DS-FedDRO address the above-mentioned
challenges by developing several key innovations in the algorithm design.

e FedDRO addresses [C1] — [C4] by adopting a communication strategy and gradient estimators
that utilize the specific CO problem structure and allow us to control the gradient bias at the cost of
additional low-dimensional communication. In contrast, DS-FedDRO addresses these challenges by leveraging
an additional structural assumption and introducing a double-sided learning-rate CO algorithm for FL,
wherein the server-side aggregation mirrors the update dynamics of local clients.

o We establish the convergence of FedDRO and DS-FedDRO and show that to achieve an e-stationary
point both algorithms require O(e~2) samples while achieving linear speed-up with the number of clients,
i.e., requiring O(K ~te~2) samples per client. Moreover, FedDRO achieves a communication complexity of
O(e73/2) while DS-FedDRO achieves an improved complexity of O(e1).

2 Problem setting

We focus on a general version of the CO problem defined in . We consider the following problem that
often arises in DRO (see Section in a FL setting with K clients

infeqe {9(2) = hia) + F(o(@)} with h(x) = = > he(e) and ga) = =D gule), ()
k=1 k=1

where each client k € [K] has access to the local functions hy : R — R and g;. : R? — R while f(-) is
same as (|1). The local functions hy(-) and gi(-) at each client k € [K] are: hy(z)= E¢,~p, [hi(z;€&x)] and

9k(z) = E¢,op,, [gk(7; (k)] and where & ~ Dy, (vesp. (x ~ Dy, ) represents a sample of hy(-) (vesp. gx(-))
from distribution Dy, (resp. Dy, ).
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In comparison to the basic CO , is significantly challenging, first, because of the presence of both
compositional and non-compositional objectives, and second, because of the distributed nature of the
compositional function g(-). We would also like to point out that the algorithms and the analysis presented
in this work can be easily extended to the problems where f(-) :=1/K 22{:1 fx(+) is also distributed.

Remark 2.1 (Comparison to |Gao et al.| (2022) and Huang et al. (2021)). Formulation is significantly
different than the setting considered in Huang et al.| (2021)); |Gao et al.| (2022)). Specifically, our formulation
considers a setting where the compositional functions are distributed across agents, i.e., the function is
g=1/K Zszlgk(x). In contrast, [Huang et al.| (2021); [Gao et al.|(2022)) consider a setting with objective
1/K Z,If:l fx(gk(+)), note here that the compositional function is local to each agent. This implies that
algorithms developed in Huang et al.| (2021)); |Gao et al.| (2022)) cannot solve problem . Importantly, problem
models a realistic FL setting while being more challenging compared to [Huang et al.[ (2021); |Gao et al.
(2022) since in the data heterogeneity of the inner problem also plays a role in the convergence of the FL
algorithm. Please see the discussion in Appendix [A] for more details.

2.1 Examples: CO reformulation of DRO problems

Here, we discuss different DRO formulations that can be efﬁciently solved using CO [Haddadpour et al.| (2022).
DRO problem with m training samples denoted as {(;}1,

min, egs MaXpep,, Y-y Pil(@; ) — ADx(p, 1/m) (3)

where z € R? is the model parameter, P, == {p € R™ : St pi = 1,p; > 0} is m-dimensional simplex,
D.(p,1/m) is a divergence metric that measures distance between p and uniform probability 1/m € R™,
and £(z, (;) denotes the loss on sample (;, p is a constraint parameter, and X is a hyperparameter. Next, we
discuss two popular reformulations of in the form of CO problems.

DRO with KL-Divergence. Problem is referred to as a KL-regularized DRO when the distance
metric D, (p,1/m) is the KL-Divergence, i.e., we have D, (p,1/m) = Dkr(p,1/m) with Dk (p,1/m) =
> pilog(psm). For this case, an equivalent reformulation of is

min, e log (:n iexp (f(“‘}@))), (4)

i=1

which is a CO with g(z) = 1/m Y i~ exp(l(z; G)/N), f(g(x)) =1log(g(z)) and h(z) =0

DRO with y%- Divergence. Similar to KL-regularized DRO, is referred to as a y2-regularized DRO
when D, (p,1/m) is the x*-Divergence, i.e., we have D.(p,1/m) = D,2(p,1/m) with D,2(p,1/m) =
m/23°1" (pi — 1/m)?. For this case, an equivalent reformulation of (3) is

" m(( ) 2A(;§: :ccz)Q o)

=1 i=1

ming, cga

with g(z) = 1/mE 036, flg(@) = g(x)?/2) and h(z) = — 4= ST (U56))”.
Both ({4)) and (5]) can be restated in the FL setting of (2).

Related work. Please see Table[I|for a comparison of current approaches to solve CO problems in distributed
settings. For a detailed review of centralized and federated non-convex CO and DRO problems, please see
Appendix[A] Here, we point out some drawbacks of the current approaches to solving federated CO problems:
e Do not guarantee linear speedup with the number of clients [Huang et al.| (2021)); Haddadpour et al.| (2022);
Tarzanagh et al.| (2022)); |Gao et al.| (2022)); [Wu et al.| (2024]).

e Utilize complicated multi-loop algorithms with momentum or VR-based updates [Tarzanagh et al.| (2022)
that sometime require computation of large batch size gradients [Haddadpour et al| (2022)) to guarantee
convergence.

e Rely on expensive matrix (or vector) projections, restrictive assumptions, and sharing of additional sequences
Gaol (2024); [Yang et al| (2024).
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Table 1: Comparison with the existing works. CO-ND refers to CO with a non-distributed compositional part (see
Remark. CO + Non-CO refers to problems with both CO and Non-CO objectives. Multi-CO refers to a multi-level
CO problem. VR refers to variance reduction. (I) and (O) refers to the inner and outer loop, respectively. ! These
focus on conditional CO problems (see [Wu et al.| (2024))), ¥ Algorithm Fed-DR-SCGD relies on matrix projections,
which are expensive to compute. *Theoretical guarantees for GCIVR exist only for the finite sample setting with m
total network-wide samples.

| ALGORITHM | SETTING | UPDATE | BATCH | COMP. | COMM. |
ComFedL [Huang et al.[(2021) CO-ND SGD O(e?) G O(e™?)
Local-SCGDM |Gao et al.[(2022) CO-ND Momentum SGD 0(1) O(e~?) O(e 1'%
FCSGT [Wu et al.|(2024) CO-ND SGD o(e 1) O(K e 3) O(e~15)
Acc-FCSG-MT [Wu et al.|(2024) CO-ND VR O(e™ 1) O(K~ e 27) O™ 1)
FedNest [Tarzanagh et al.|(2022) Bilevel VR O(1) O(e™?) O(e™?)
FedBiOAcc |Li et al.|(2024) Bilevel VR O(1) O(K T 15) O™
FedMBO |Huang et al.|(2023) Bilevel SGD O(In(e~ 1)) O(K 17 ?) O(e?)
SimFBO |Yang et al.[(2024) Bilevel SGD 0(1) O(K Te ?) O(e 1)
Fed-DR-SCGD? |Gao|(2024) Multi-CO VR 0(1) O(K~Te 17 O(e 1)
GCIVR* [Haddadpour et al.[(2022) | CO + Non-CO VR vm (I),m (O) | O(/me T Ae 15) O(e™h
FedDRO (Ours) CO + Non-CO SGD O(1) O(K e ?) O(e 1?)
DS-FedDRO (Ours) CO + Non-CO SGD O(1) O(K e ?) O(e b

e Recently developed bilevel algorithms although in theory can be used to solve CO problems |Tarzanagh et al.
(2022); |ILi et al.| (2024); Huang et al|(2023)); [Yang et al.| (2024)), however, since the algorithms are designed for
bilevel problems they often have complicated structure, suffer from worse performance, and require sharing of
additional parameters.

e Consider a restricted setting where the compositional objective is not distributed among nodes [Huang et al.
(2021); |Gao et al.| (2022); Wu et al.| (2024).

Our work addresses all these issues and develops, FedDRO and DS-FedDRO, the first simple SGD-based FL
algorithms to tackle CO problems with the distributed compositional objective.

3 Preliminaries

This section introduces the assumptions, definitions, and preliminary lemmas.

Definition 3.1 (Lipschitzness). For all 21, x5 € R?, a differentiable function ® : R? — R is: Lipschitz smooth
if |[V®(z1) — V®(x2)|| < Lol||z1 — 22| for some Ly > 0; Lipschitz if ||®(z1) — ®(z2)| < Bal||z1 — x2]| for
some Bg > 0 and; Mean-Squared Lipschitz if E¢||®(z1;€) — ®(z2;¢)||? < B3 ||lz1 — 22||? for some Bg > 0.
We make the following assumptions on the local and global functions in the problem .

Assumption 3.2 (Lipschitzness). The following holds

1. The functions f(-), hg(+), gr(-) for all k € [K] are differentiable and Lipschitz-smooth with constants
L¢, Ly, Ly > 0, respectively.

2. The function f(-) and hy(-) are Lipschitz with constants By > 0 and By, > 0, respectively, and gi(-) is
mean-squared Lipschitz for all k € [K] with constant By > 0.

Assumption 3.3 (Unbiased Gradient and Bounded Variance). The stochastic gradients and function
evaluations of the local functions satisfy

Ee, [Vhy(z;&)] = Vhi(2), E¢, [Var (2 G)] = Vgr(2),

B¢ [gn(w; Gr)] = g (), E¢, [V (5 G) V()] = Vg () V f (),

Ee, | Vhi(; &) — V()1 < 0, e Vi (3 G) — Var(@)]1? < 02, B¢, llge(#: Ge) — ge(2)|1? < 02,
for some oy, 0, > 0 and for all z € R? and k € [K].

Assumption 3.4 (Bounded Heterogeneity). The heterogeneity of hg(-) and gi(+) is characterized as
sup, ega || Vi (z) — Vh(2)[* < Af and sup,cga [[Vgr(z) — Vg(a)|? < A7,

for some Ay, Ay > 0 for all k € [K].
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The above assumptions are standard for non-convex CO problems. Specifically, Assumption [3.2]is required
to establish Lipschitz smoothness of the ®(-) (see Lemma [3.5) and is standard in the analyses of CO
problems Wang et al.| (2017)); |Chen et al.| (2021)). Assumption captures the effect of stochasticity in the
gradient/function evaluations while Assumption characterizes the data heterogeneity among clients. We
note that these assumptions are standard and have been utilized in the past to establish the convergence of
many FL non-CO algorithms [Yu et al|(2019a)); |[Karimireddy et al.| (2019); |Zhang et al.| (2021)); Woodworth
et al.| (2020)).

Lemma 3.5 (Lipschitzness of ®). Under Assumption the compositional function, ®(-), defined in (@ is
Lipschitz smooth with constant: Ly = Ly + ByLg + BgLf > 0.

Lemma [3.5] establishes Lipschitz smoothness of the compositional function ®(-). In general, ®(-) is a non-
convex, and therefore, we cannot expect to globally solve . We instead rely on finding approximate
stationary points of ®(-).

Definition 3.6 (e-stationary point). A point x generated by an algorithm is an e-stationary point of ®(-) if
E||V®(z)||? < ¢, where the expectation is taken w.r.t. the stochasticity of the algorithm.

Definition 3.7 (Sample and Communication Complexity). The sample complexity is the total (stochastic)
gradient and function evaluations required to achieve an e-stationary solution. Similarly, communication
complexity is the total communication rounds between the clients and the server required to achieve an
e-stationary solution.

4 Federated non-convex CO algorithms

In this section, we for the first time establish the incapability of vanilla FedAvg to solve the distributed CO.

4.1 FedAvg fails to solve the federated CO problem

We show that vanilla FedAvg is not suitable for solving federated CO problems of form . To establish this,
we consider a simple deterministic setting with h(z) = 0. For this setting, the local gradients of ®(-) are
estimated using

VO (z) = Var(zr)V f(yr) (6)

where sequence yj, represents the local estimate of the inner function g(z). To solve the above problem in
a federated setup, we consider two candidate versions of FedAvg described in Case I and II of Algorithm

Algorithm 1 Vanilla FedAvg for non-convex CO

1: Input: Parameters: {nt}fgol, I
2: Initialize: 29 = z°, ¢y = °
3: fort=0toT —1do

4: for k=1 to K do
Compute V& (z%) using (6)
Update: { Local update: zit" = ot — n!'Vdy(2t)

o

Z—i—l — $t+1)

Local composite function estimation: y gk (),

6: if t+1 mod I =0 then
[Case 1] Share: {Global update: i = zt+!

Global update: 24! = zt+1

T
[Case 2] Share: { Local composite function estimation: y?‘l =gr(zth)
Global composite function estimation: y,tjl =gttl
8: end if
9: end for
10: end for
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Similar to vanilla FedAvg, each agent performs multiple local updates within each communication round
(Step 5 of Algorithm . Since g(z) = 1/k ZZ:1 gr(z) with each agent k € [K] having access to only the
local copy gx(-), estimating g(-) locally within each communication round is not feasible. Therefore, each
agent utilizes yr = gx(x) as the local estimate of the inner function g(-). For communication, we consider
two protocols. In the first setting, after I local updates, in each communication round the agents share the
locally updated parameters with the server and receive the aggregated parameter from the server (Case I in
Step 7). In the second setting, in addition to the locally updated parameters the agents also share their local
function evaluations y! = gx(z}) with the server and receive the aggregated embedding §' from the server.
This step is utilized to improve the local estimates of g(-) (Case II in Step 7). The algorithm executes for
|T/I] communication rounds.

In the following, we show that Algorithm [I] for both Cases I and II cannot solve the federated CO problem
presented in even in the simple deterministic setting with h(z) = 0.

Theorem 4.1 (Vanilla FedAvg: Non-Convergence for CO). There exist functions f(-) and gi(-) for k € [K]
satisfying Assumptions and[37), and an initialization strategy such that for a fized number of local
updates I > 1, and for any 0 < n* < C, fort € {0,1,...,T — 1} where C,, > 0 is a constant, the iterates

generated by Algorithm under both Cases I and II do not converge to the stationary point of ®(-), where
®(-) is defined in (9) with h(z) = 0.

Theorem establishes that vanilla FedAvg is not suitable for solving federated CO problems. An important
consequence of the above result is that under the set of Assumptions [3.2}f3.4] the algorithms proposed in
Huang et al.| (2023); (Gao| (2024)); Yang et al.| (2024)); Li et al.| (2024) for solving federated CO (or bilevel)
problems would fail to converge. This naturally leads to the question of how can we modify FedAvg such
that it can efficiently solve CO problems of the form . Clearly, Theorem suggests that sharing y;’s in
each iteration is required to ensure convergence of FedAvg since sharing the iterates yj’s only intermittently
leads to non-convergence of FedAvg. To this end, we propose to modify the FedAvg algorithm as presented in
Algorithm (1| by sharing y, in each iteration ¢ € {0,1,...,7 — 1}. The next result shows that the modified
FedAvg resolves the non-convergence issue.

Theorem 4.2 (Modified FedAvg: Convergence for CO). Suppose we modify Algorithm such that yi = y*
is updated at each iteration t € {0,1,...,T — 1} instead of [t + 1 mod I] dterations as in current version of
Algorithm [1l Then if functions f(-) and gi(z) for k € [K] satisfy Assumptions[3.2, and[3.4) such that for
a fized number of local updates 1 < I < O(T'/*), there exists a choice of nt > 0 for t € {0,1,...,T — 1} such
that the iterates generated by (modified) Algorithm [1] converge to the stationary point of ®(-), where ®(-) is
defined in (3) with h(z) = 0.

4.2 A baseline federated non-convex CO algorithm: FedDRO

In this section, we propose a novel distributed non-convex CO algorithm, FedDRO, for solving . As
demonstrated in Section [£.1] this problem is particularly challenging because of the compositional structure
and heterogeneity of the local objectives. Motivated by Theorem above, in this work we develop a novel
approach where we utilize the structure of the CO problem to develop efficient FL algorithms for solving .
Specifically, as also demonstrated in Section [2.1| we utilize the fact that the embedding g(-) is low-dimensional
(e.g., dg = 1), especially for DRO problems. This implies that sharing of g(-) will be relatively cheap in
contrast to the high-dimensional model parameters of size d which can be very large and take values in
millions or even in billions for modern overparameterized neural networks |Allen-Zhu et al.| (2019). Therefore,
like FedAvg, we share the model parameters intermittently after multiple local updates while sharing the
low-dimensional embedding of g(-) frequently to handle the compositional objective. Please see Section [5| for
an algorithm that avoids communicating this embedding, at the cost of an additional assumption and the use
of a two-sided learning-rate scheme.

Moreover, to solve the CO problems for DRO the developed algorithms generally utilize batch sizes (for
gradient/function evaluation) that are dependent on the solution accuracy [Huang et al. (2021); Haddadpour
et al.| (2022)). However, this is not feasible in most practical settings. In addition, to control the bias and to
circumvent the need to compute large batch gradients, we utilize a momentum-based estimator to learn the
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inner function (see ) Chen et al.| (2021). This construction allows us to develop Fed Avg-type algorithms
for solving non-convex CO problems wherein the local updates resemble the standard SGD updates.

The detailed steps of FedDRO are listed in Algorithm [2| During the local updates each client k € [K] updates
its local model z% Vt € [T] using the local estimate of the stochastic gradients in Step 6. The stochastic
gradient estimates for each client k € [K| are denoted by V®(z%; &) and are evaluated using the chain rule
of differentiation as

V& (2); &) = Vhe(2h; &) + Ve (2 GV F(T) (7)

where & = {&!, (!} represents the stochasticity of the gradient estimate. The variable gy is designed to
estimate the inner function 1/K Zszl gr(x) in . A standard approach to estimate gy (z) locally for each
k € [K] is to utilize a large batch such that the gradient bias from the inner function estimate can be controlled
Guo et al.| (2022); [Huang et al.| (2021)); Haddadpour et al. (2022). In contrast, we adopt a momentum-based
estimate of gi(-) at each client k& € [K] that leads to a small bias asymptotically |(Chen et al.| (2021). We
note that the estimator utilizes a hybrid estimator that combines a SARAH Nguyen et al| (2017) and SGD
Ghadimi & Lan| (2013) estimate for the function values rather than the gradients|Cutkosky & Orabonal (2019).
Specifically, individual y!’s are estimated in Step 6 as

vh = (=B (47! — (@l ¢H)) + gu(ati G- (8)

for all k € [K] and where 8¢ € (0,1) is the momentum parameter. Motivated by the discussion in Section
the low-dimensional parameters y! € R% are shared with the server after the yt update. The model
parameters are then updated using the SG evaluated using . Finally, after I local updates, the model
parameters are aggregated on the server and shared with the clients after aggregation in Step 8. Next, we
state the convergence guarantees.

Convergence of FedDRO. In the next theorem, we state the convergence of FedDRO.

Theorem 4.3 (Convergence of FedDRO). For Algorithm @ choosing the step-size n* = n = O(/K/T),
the momentum parameter § = 4B§Lfcn forallt € {0,1,...,T — 1}, and I = O(TY*/K3/*). For T > Ty,
where Ty, is defined in Appendi:c@ then under Assumptions andfor z%T) chosen According to
Algorithm[3, we have

—a C nc C T,
BvaE )| < o ) +o (£%).

Algorithm 2 FedDRO

. Input: Parameters: {8} 1, {n*} it I
: Initialize: x,;l T

1

2 = x% =z, y,(g =y
3: fort=0toT —1do

4 for k=1 to K do

5 Local Update and Sharing:

Compute V& (z}; &) using (7)

Local update: 2t = 2t — ' V®y(2k; &)

6: Update: . ) . ) 1 .
Local composite function estimation: Compute 3, using ; share with server
Global composite function estimation: Receive §**! from server; update yit! = yt+!

7 if t+1 mod I =0 then

8: Aggregate : {Global update: zit!t = zt+!

9: end if

10: end for

11: end for

12: Return: 297 where a(T) ~ U{1,...,T}.
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where constant Cgyn. depends on initialization and Cpry depends on the stochastic variance and data
heterogeneity (See Appendiz [E)

We note that the condition on T > T}y, is required only for theoretical purposes. Specifically, it ensures
that the step-size n = O(y/K/T) is upper-bounded. A similar requirement has also been posed in [Yu et al.
(2019a3b); [Khanduri et al.| (2021) in the past. Theorem captures the effect of heterogeneity, stochastic
variance, and the initialization on the performance of FedDRO. Theorem also states that there exists a
choice of the number of local updates that guarantee that FedDRO achieves the same convergence performance
as a standard FedAvg Karimireddy et al.| (2019); Woodworth et al.| (2020)); [Yu et al.| (2019a)); Khanduri et al.
(2021) for solving the non-CO problems. Next, we characterize the sample and communication complexities
of FedDRO.

Corollary 4.4 (Computation and communication). Under the setting of Theorem the following holds for
FedDRO

(i) The sample complexity is O(c~2). This implies that each client requires O(K ~'e=2) samples to reach
an e-stationary point achieving linear speed-up.
(ii) The communication complexity of is O(e~3/?).

The sample and communication complexities guaranteed by Corollary match that of the standard FedAvg
Yu et al.| (2019b)) for solving stochastic non-convex non-CO problems. We note that in addition to the
O(e=3/?) communication complexity that measures the sharing of high-dimensional parameters, FedDRO also
shares O(K ~1e~2) low-dimensional embeddings (usually scalar values as illustrated in Section . Therefore,
the total real values shared by each client during the execution of FedDRO is O(e~3/2d + K ~Te~2). Notice
that for high-dimensional models like training (large) neural networks, we will usually have dK > O(e=%?)
meaning the total communication will be O(e~3/2) which is better than any Federated CO algorithm proposed
in the literature Huang et al.| (2021); |Gao et al| (2022)); |Guo et al|(2022)). However, to make FedDRO fully
federated it is desirable to develop an algorithm that can circumvent the need to communicate the sequences
yi at each time instant. Next, we tackle this challenge and develop a novel two-sided learning rate algorithm
DS-FedDRO.

5 Federated non-convex CO with two-Sided learning rate: DS-FedDRO

In this section, we propose a novel algorithm called DS-FedDRO (FedDRO with double-sided learning rates)
that relies on the two-sided learning rate utilized in classical FL algorithms to improve both the experimental

Algorithm 3 DS-FedDRO
1: Input: Parameters: {8}, {n' gt T, Ya, vy
2: Initialize: z; ' =29 =27, y) = y” with 7 =0, Vk € [K]
3: fort=0to T —1do
4: for k=1 to K do

Compute V& (z}; &) using (7)

5: Update:{ Local update: zit! = xf — 'V @y (24;&h)
Local composite function estimation: yit! = (1 — %)yt +Btgr (zit; i)

6: if t+1 mod I =0 then
T T - K T
Global update: 271 = 27 — J= 3% (a7 —2ft!)
gt = 2™+ Yk € [K]

T Share: . . . . 1 Y K 7 t+1
Global composite function estimation: y =y" — E> W —y)
yltc+1 _ yT+1, Vk € [K]

8: T=17+1

9: end if

10: end for

11: end for

12: Return: 297 where a(T) ~ U{1, ..., T}.
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and the theoretical performance [Yang et al.| (2021)); Reddi et al.| (2020). Importantly, we show that, under the
additional Assumption DS-FedDRO completely avoids the communication of sequence yffl as required by
FedDRO while at the same time achieving improved communication complexity. The steps of DS-FedDRO are
listed in Algorithm [3] Let us point out a few key differences compared to FedDRO. First, note in Step 7 that
instead of performing simple aggregation, the algorithm relies on a two-sided learning rate update rule for
both the x- and the y-update. Second, note that the two-sided learning update rule also allows us to update
the sequence y utilizing only a single stochastic gradient computation in Step 5. In contrast, FedDRO required
two stochastic gradient computations to update y. In effect, DS-FedDRO, not only reduces the communication
complexity but also improves the per iteration computation complexity over FedDRO. In the following, we
present the convergence guarantees of DS-FedDRO and contrast them to that achieved by FedDRO.

5.1 Main results: Convergence of DS-FedDRO

For the theoretical results of this section, we utilize a different notion of heterogeneity compared to Assumption
B4

Assumption 5.1 (Bounded Heterogeneity). The heterogeneity of gi(-) is characterized as sup,cga ||gr(x) —
g(z)|]> < A2, for some A, > 0 and for all k € [K].

Assumption above is a weaker version of (Gaol 2024, Assumption 3.3) where the assumption is made
on the stochastic objectives and is similar to (Huang et al., 2023 Assumption 5) and (Yang et al., |2024}
Assumption 4) for solving bilevel optimization problems with quadratic lower level objective. Although
strong this assumption is commonplace in optimization literature and is motivated by the bounded gradient
heterogeneity assumptions often made in FL literature (Yu et al.,|2019b; |Karimireddy et al., [2019; |Zhang
et al.l |2021)). Next, we state the main result.

Theorem 5.2. For Algorithm @ choosing the local step-sizes nt = n = O(y\/1/TI) and the momentum
parameter ' = = cgn for all t € {0,1,...,T — 1}. Choosing the server step-sizes v, = O(\/K/T),

Yy = Cy,Va, and I = O(\/T/K). Then under Assumptions andfor z9T) chosen according

to Algorithm[3, we have
C Cpri
Elve(z9™)H||1? < ZSync ZDrift
[Ve@@)||" <o/ w7 ) TOl 7

for some constants cg, cy,, Csync and Cpyift.
Next, we characterize the sample and communication complexity of DS-FedDRO.

Corollary 5.3 (Computation and Communication). Under the setting of Theorem the following holds
for DS-FedDRO

(i) The sample complexity is O(e=2). This implies that each client requires O(K ~te~2) samples to reach
an e-stationary point achieving linear speed-up.
(ii) The communication complexity is O(e™1).

First, note that DS-FedDRO in addition to achieving linear speed-up also improves the communication
performance compared to FedDRO. Moreover, it is important to note that the communication complexity of
O(e~1) matches the best-known communication complexity even for standard FL problems Zhang et al.| (2021);
Acar et al(2020). Moreover, compared to federated CO algorithms |Gaol (2024)); [ Haddadpour et al.| (2022])
and bilevel optimization algorithms Tarzanagh et al|(2022); [Yang et al.| (2024); [Li et al.| (2024); [Huang et al.
(2023) the update rules employed by DS-FedDRO (and FedDRO) are much simpler, computation efficient (does
not require any projection) and require the sharing of fewer sequences, thereby, making DS-FedDRO efficient
compared to such algorithms.

Remark 5.4 (Comparison of DS-FedDRO to FedDRO). Although DS-FedDRO performs significantly better
compared to FedDRO in terms of communication performance, there are some drawbacks of DS-FedDRO that
we highlight here. (i) Additional tuning parameters. From a practical perspective, because of the addition
of server-side learning rates for both z- and y- updates, DS-FedDRO requires more parameters to tune
compared to FedDRO. (i) Additional assumption. From a theoretical perspective, the improved performance
of DS-FedDRO is made possible with additional Assumption [5.1] compared to FedDRO which did not require
Assumption [5.1]
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Figure 2: Comparison of FedDRO, DS-FedDRO, GCIVR, and the unconstrained baseline (left two figures), along with
the performance of FedDRO and DS-FedDRO across different I values (right two figures).

6 Experiments

In this section, we evaluate the performance of FedDRO and DS-FedDRO with both centralized and distributed
baselines. Our goal is to 1) establish the superior performance of FedDRO and DS-FedDRO compared to
popular federated DRO baselines, and 2) evaluate the performance of FedDRO and DS-FedDRO with different
numbers of local updates to capture the effect of data heterogeneity. To evaluate the performance of
FedDRO and DS-FedDRO, we focus on two tasks: classification with an imbalanced dataset and learning
with fairness constraints. For the first task, we use CIFAR10-ST and CIFAIR-100-ST datasets
(2020b) (unbalanced versions of CIFAR10 and CIFAR100 Krizhevsky et al. (2009)) for image classification,
and the performance is measured by training and testing accuracy achieved by different algorithms. For the
second task, we use the Adult dataset |Dua & Graff (2017) for enforcing equality of opportunity (on protected
classes) on tabular data classification [Hardt et al.| (2016). For this setting, the performance is evaluated by
training/testing accuracy, and the constraint violations, which are measured by the gap between the true
positive rate of the overall data and the protected groups Haddadpour et al| (2022). Please see Appendix
for further details and additional experiments.

Baseline methods. For the CIFAR10-ST and CIFAR100-ST datasets we compare FedDRO and DS-
FedDRO with popular centralized baselines for classification with imbalanced data. The baselines adopted for
comparison are a popular DRO method, FastDRO |Levy et al.| (2020), a primal-dual SGD approach to solve
constrained problems with many constraints, PDSGD , and a popular baseline minibatch SGD,
MBSGD, customized for CO |Ghadimi & Lan| (2013). For the adult dataset, we use GCIVR Haddadpour et al.|
as the baseline distributed model to compare with FedDRO and DS-FedDRO, since like these, it is the
only algorithm that can deal with CO and non-CO objectives simultaneously. We also implement a parallel
SGD as a baseline that ignores the fairness constraints, referred to as unconstrained in the experiments.

Implementation details. We use 8 clients to model the distributed setting and split the (unbalanced)
dataset equally for each client. We use ResNet20 for classification tasks on CIFAR10-ST and CIFAR100-ST
datasets. For a fair comparison with centralized baselines, we choose I = 1 for FedDRO and implement
a parallel version of the centralized algorithms where the overall gradient computation is K times larger
for each algorithm. This is to make sure that the overall gradient computations in each step are uniform
across all algorithms. Performance with different values of I is evaluated separately. For each algorithm, we
used a batch size of 16 per client, and the learning rates were tuned from the set {0.001,0.01,0.05,0.1}, the
learning rate was dropped to 1/10'" after 90 communication rounds. As for the two-sided learning rates
for DS-FedDRO we select 1.3 and 1.4 for the respective tasks. For fairness-constrained classification on the
Adult dataset, we use a logistic regression model. For this experiment, we adopt the settings suggested in

10
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Figure 3: FedDRO and DS-FedDRO on the CIFAR10-ST (100-ST) for different I.

Haddadpour et al.| (2022), for FedDRO and DS-FedDRO we keep the same setting as in the earlier task. All
results are averaged over 5 independent runs.

Discussion. In Figure [I] we evaluate the performance of FedDRO and DS-FedDRO against the parallel
implementations of the centralized baselines on unbalanced CIFAR datasets. Note that FedDRO and
DS-FedDRO provide superior training and comparable test accuracy to the state-of-the-art methods, while
DS-FedDRO performs even better than FedDRO . In Figure[2] we evaluate the test performance of FedDRO and
DS-FedDRO for a different number of local updates, I. Note that as I increases the performance improves,
however, beyond a certain, I, the performance doesn’t improve capturing the effect of client drift because of
data heterogeneity. Finally, in Figure 2| we assess the test performance of FedDRO and DS-FedDRO against the
distributed baseline GCIVR on the Adult dataset. We observe that both FedDRO and DS-FedDRO outperform
both GCIVR and unconstrained formulation in terms of accuracy and match the constraint violation
performance of GCIVR as communication rounds increase. Finally, for the right two images we evaluate the
performance of FedDRO and DS-FedDRO with different values of I, we notice that increasing the value of
I leads to improved performance, however, beyond a certain threshold (approx. over 32), the performance
saturates as a consequence of client drift.

7 Conclusion

This work establishes, for the first time, that vanilla FedAvg fails to solve CO problems in federated learning
under standard assumptions. To overcome this limitation, we show that convergence of SGD-based FL
algorithms for CO problems of the form requires sharing additional low-dimensional embeddings of the
stochastic compositional objective. Building on this insight, we propose FedDRO, a federated CO algorithm
that achieves linear speedup in the number of clients without large batch sizes. We further develop DS-
FedDRO, which, under an additional assumption and a double-sided learning rate, eliminates the need for
extra communication while attaining improved communication complexity.
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Appendix

Notations. The expected value of a random variable (r.v) X is denoted by E[X]. Conditioned on an event
F the expectation of a r.v X is denoted by E[X|F]. We denote by R (resp. R?) the real line (resp. the d
dimensional Euclidean space). We denote by [K] := {1,... K}. The notation || - || defines a standard f2-norm.
For a set B, |B| denotes the cardinality of B. We use { ~ Dy, and ¢ ~ D, to denote the stochastic samples
of functions h(-) and ¢(-) from distributions Dj, and D,, respectively. A batch of samples from h(-) (resp.
g(+)) is denoted by by, (resp. b,). Moreover, joint samples of /(-) and g(-) are denoted by & = {by, b, }. We
represent by x the empirical average of a sequence of vectors {xk}le.

A Related work

Centralized CO. The first non-asymptotic analysis of stochastic CO problems was performed in [Wang
et al.| (2017)) where the authors proposed SCGD a two-timescale algorithm for solving the problem . The
convergence of SCGD was improved in [Wang et al.| (2016|) where the authors proposed an accelerated variant
of SCGD. Both SCGD and its accelerated variant achieved convergence rates that were strictly worse than
those of SGD for solving non-CO problems. Recently, (Ghadimi et al.| (2020]) and [Chen et al.| (2021) developed
a single time-scale algorithm for solving the CO problem that achieves the same convergence as SGD for
solving non-CO problems. Variance-reduced algorithms for solving the CO problems have also been considered
in the literature, however, a major drawback of such approaches is the reliance of batch size on the desired
solution accuracy [Lian et al.| (2017)); Zhang & Xiaol| (2019)); Hu et al.| (2019).

Distributed CO. There have been only a few attempts to solve non-convex CO problems in the FL setting,
partially, because of the challenges discussed in Section[I} The first FL algorithm to solve the non-convex CO
problem, Compositional Federated Learning (ComFedL), was developed in |[Huang et al.| (2021). ComFedL
required accuracy-dependent batch sizes that resulted in O(e~*) convergence which is significantly worse
compared to FedAvg to solve standard non-compositional problems |Yu et al.| (2019b). In|Gao et al.| (2022,
Local Stochastic Compositional Gradient Descent with Momentum (Local-SCGDM) was proposed which
removed the requirement of large batch sizes and achieved an O(e~2) convergence. However, Local-SCGDM
utilized a non-standard momentum-based update from |Ghadimi et al.| (2020) that does not resemble a
simple SGD-based update. Importantly, the CO problem solved by ComFedL [Huang et al.| (2021) and
Local-SCGDM |Gao et al.| (2022) is non-standard as the problem is not distributed in the compositional
objective (see Remark . In contrast, we consider a general setting where the compositional objective is
also distributed among multiple nodes. Recently, [Tarzanagh et al.| (2022)) proposed a nested optimization
framework, FedNest, to solve bilevel problems in the FL setting. The proposed algorithm achieved SGD rates
of O(¢7?) |Ghadimi & Lan/ (2013). Different from the simple SGD-based update rule, FedNest adopted a
multi-loop variance reduction-based update. In[Haddadpour et al.| (2022)), the authors proposed a Generalized
Composite Incremental Variance Reduction (GCIVR) framework for solving problems of the form in a
distributed setting. GICVR achieved a better convergence rate of O(¢~1-?), however, it relied on a double-loop
structure and accuracy-dependent large batch sizes to achieve variance reduction. Importantly, none of the
above works guarantee linear speedup with the number of clients. Moreover, the current algorithms utilize
complicated momentum or VR-based update rules that require computation of accuracy-dependent batch
sizes Haddadpour et al.| (2022), and/or consider a simple setting where the compositional objective is not
distributed among nodes [Huang et al.| (2021)); |Gao et al.| (2022)); [Wu et al.| (2024). Recently, |Gao| (2024)
developed a multi-level federated CO algorithm that relies on computationally expensive matrix projections
and the sharing of multiple sequences to achieve convergence. Similarly, many authors have developed
federated bilevel algorithms |Li et al.| (2024)); [Huang et al.| (2023); [Yang et al.| (2024) which in theory can be
used to solve CO problems. However, such algorithms usually take a complicated multi-loop structure [Huang
et al.| (2023), may require projections [Yang et al.| (2024]), and require sharing of multiple sequences during the
execution of the algorithm |Li et al.| (2024); Huang et al. (2023)); Yang et al.| (2024).

In contrast to all the above works, our work considers a general setting , where the goal is to jointly
minimize a compositional and a non-compositional objective in the FL setting. To solve , we develop
FedDRO and DS-FedDRO FedAvg algorithms for CO problems that achieve (i). the same guarantees as Fed Avg
for minimizing non-CO problems, (ii) simple single-loop SGD-based updates without the need to perform
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projections, (iii). linear speed-up with the number of clients, (iv). improved communication complexity, (v).
performance guarantees where the batch sizes required are independent of the desired solution accuracy, and
(vi). characterizes the performance as a function of local updates at each client and the data heterogeneity in
the inner and outer non-compositional objectives.

DRO. DRO has been extensively studied in optimization, machine learning, and statistics literature Ben-Tal
let al.| (2013); Bertsimas et al.| (2018); [Duchi et al.| (2021); Namkoong & Duchi| (2017); [Staib & Jegelkal (2019)
Broadly, DRO problem formulation can be divided into two classes, one is a constrained formulation and the
other is the regularized formulation (see (3)) Levy et al] (2020); Duchi et al] (2021). A popular approach to
solve the constrained DRO formulation is via primal-dual formulation where algorithms developed for min-max
problems can directly be applied to solve constrained DRO |Yan et al.[(2019); Namkoong & Duchi| (2017); |Song|
let al.| (2021); |Alacaoglu et al.| (2022); |Tran Dinh et al. (2020)). Many algorithms under different settings, e.g.,
convex, non-convex losses, and stochastic settings have been considered in the past to address such problems.
However, primal-dual algorithms suffer from computational bottlenecks, since they require maintaining and
updating the set of dual variables equal to the size of the dataset which can become particularly challenging,
especially for large-scale machine learning tasks. Recently, Levy et al.| (2020) |Qi et al.| (2022)) Haddadpour|
have developed algorithms that are applicable to large-scale stochastic settings. Works |[Levy et al.|
(2020) and |Qi et al.| (2022)) consider specific formulations of the DRO problem while [Haddadpour et al.| (2022)
considers a general formulation, however, as pointed out earlier the algorithms developed in [Haddadpour
et al. are double loop and require accuracy-dependent batch sizes to guarantee convergence (see Table
1). In contrast, in this work, we develop algorithms that solve general instants of CO problems that often
arise in DRO formulation. Importantly, the developed algorithms are amenable to large-scale distributed
implementation with algorithmic guarantees independent of accuracy-dependent batch sizes.

A.1 Detailed Comparison with [Huang et al.| (2021); |Gao et al.| (2022); [Tarzanagh et al.| (2022)

Comparison with [Huang et al.| (2021); |Gao et al.| (2022). We note that the problem setting in [Huang|
let al] (2021)) and [Gao et al.| (2022) is significantly different from the one considered in our work. We also
would like to point out that the problem formulation considered in our work is more challenging than Huang]
et al. (2021)); |Gao et al] (2022) and the algorithms developed for solving the problem in [Huang et al.| (2021));
Gao et al.| (2022) cannot solve the problem considered in our work. In the following, we elaborate on the
differences between our work and that of [Huang et al| (2021)); |Gao et al.| (2022).

In [Huang et al. (2021); Gao et al.| (2022), the authors consider the objective function

Wk

1
K fi(gr (). (9)
k=1
Please observe that in this setting the local nodes have access to local composite functions fi(gr(-)). In
contrast, we consider a setting with objective function defined in where the local nodes have access to only
hi(+) and gk(-ﬂ Note that the major difference in the two settings in (9) and comes from the fact that in
the inner function g/(+) is fully available at each node, whereas in 1' the inner function 1/K Zszl 9k (*)
is not available (since each node can only access gx(-)) at the local nodes. Below, we discuss two major
consequences of this:

o Practicality: We point out that the setting in is more practical as can be seen from the examples
presented in Section wherein the DRO problems take the form of rather than @D in a distributed
setting. For illustration, let us consider a simple setting where we have a total of m samples with each
node having access to my = m/K samples. Then the DRO problem with KL-Divergence problem becomes

min f (Il{ égk(-)) = log (; é exp (m;)»

"We would also like to note that the setting considered in the paper can be easily extended to the case where f(-) =
1/K Eszl fx () without changing the current results.
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where f(-) =log(), gr(z) = 1/my > ;"% exp (¢;(2)/A), and g(-) = 1/K Zszl gx(+). Note that the above
formulation is same as and cannot be formulated using @D To demonstrate this fact we have used the
notation in Table [[]as CO-ND for formulation of (9] where the inner function gx(-) can be fully locally
accessed by each node whereas our setting is more general with each node having only partial access to
the inner-function g(-). Next, we show why the algorithms developed for Huang et al.| (2021); |Gao et al.
(2022) cannot be utilized to solve the problem considered in our work.

¢ Challenges in solving : A major contribution of our work is in establishing the fact that the
algorithms that are developed for solving [2), i.e., the algorithms developed in [Huang et al.| (2021); |Gao
et al.| (2022)), cannot be utilized to solve the problem considered in our work.

To demonstrate this consider the simple deterministic setting with fi = f, then the local gradient computed
for the objective function in will be Vgi,(2)V f(gr(z)) (please see (6]) in the manuscript). Note that
this is an unbiased local gradient for objective in @ which further implies that simple Fed AVG-based
implementations can be developed for solving this problem as done in [Huang et al.| (2021); Gao et al.
(2022). In contrast, note that the local gradient Vg (z)V f(gr(z)) will be a biased local gradient for
our problem in and will lead to divergence of FedAvg-based algorithms Huang et al.| (2021); |Gao
et al.| (2022) as shown in Section Moreover, note that we establish that even if we share the local
functions gi(+) intermitteltly among nodes we may not be able to mitigate the bias of local gradient and
the developed algorithms will again diverge to incorrect solutions. Please see Section for more details.

Comparison with Tarzanagh et al.| (2022). Next, we note that the algorithm developed in |Tarzanagh
et al.| (2022) is a bilevel algorithm with a multi-loop structure with many tunable (hyper) parameters. Such
algorithms are not preferred in practical implementations. In contrast, our algorithm is a single-loop algorithm
with simple FedAvg-type SGD updates. In addition to being practical, our work also significantly improves
upon the theoretical guarantees achieved in Tarzanagh et al.| (2022)) by achieving linear speed-up with the
number of clients as well as improved communication complexity which any of the works including [Huang
et al.| (2021)); |Gao et al. (2022); |Tarzanagh et al| (2022) are unable to achieve.

B Detailed experiment setup and additional experiments

Experiment setup. The models are trained on an NVIDIA GeForce RTX 3090 GPU with 24 GB of memory.
All experiments are conducted using the PyTorch framework, specifically Python 3.9.16 and PyTorch 1.8

Datasets. To evaluate the performance of FedDRO and DS-FedDRO, the first section of the experiments
is conducted on CIFAR10-ST and CIFAR-100-ST datasets for image classification. The second section of
the experiments focuses on the Adult dataset, utilizing tabular data classification and emphasizing DRO
for fairness constraints. The CIFAR10-ST and CIFAR-100-ST datasets are modified versions of the original
CIFAR10 and CIFAR-100 datasets. The modification involves intentionally creating imbalanced training
data. Specifically, only the last 100 images are retained for each class in the first half of the classes, while
the other classes and the test data remain unchanged. This creates an imbalanced distribution, posing a
challenge for machine learning models to effectively handle imbalanced class scenarios. In the Adult dataset,
we consider the race groups “white," “black," and “other" as protected groups. We assign the value of € as
0.05 and set the noise level to 0.3 during training across all the algorithms.

Evaluation metrics. We present the Top-1 accuracies for the training and testing segments of the
CIFAR10-ST and CIFAR-100-ST datasets (please see Figures [I| and [2| in Section |§| and Figure M| in Section
. Furthermore, in addition to training and testing performance, we also include the maximum violation
values for both the training and testing sections of the Adult dataset. Specifically, the maximum group
violation is evaluated following [Haddadpour et al.| (2022)). To ensure equal opportunities among different
groups, even when group membership is uncertain and fluctuating during training, the objective is to develop
a solution that is robust across various protected groups in the problem. We assume that we have access to
the probability distribution of the actual group memberships (P(gi = j|g* = k) where g* represents the true
group membership and g represents the noisy group membership). With this information, we aim to enforce
fairness constraints by considering all potential proxy groups based on this probability distribution, which
can significantly increase the number of constraints. In the case of equal opportunity, our goal is to ensure
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Figure 4: Overall training performance comparison of FedDRO, DS-FedDRO, GCIVR, and the unconstrained baseline
(left two figures), along with the performance of FedDRO and DS-FedDRO across different I values (right two figures).
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Figure 5: Training and testing performance of FedDRO with the number of clients (denoted as C' = 1,2,3 and 4 in
the figure) and number of local updates, I = 1 and 4.

that the true positive rate (T PR) for each group closely aligns with the TPR of the overall dataset, within a

certain threshold e. In other words, we want to achieve tpr(g = j) > tpr(ALL) — ¢ for every proxy group we
define.

Discussion. In Figure [3] we assess the performance of FedDRO and DS-FedDRO on the training dataset
under the same conditions described in Section [6] but with varying numbers of local updates, I. It is observed
that as I increases, performance improves; however, beyond a certain point, further increases in I do not lead
to improvement, highlighting the impact of client drift due to data heterogeneity. In Figure[d] we evaluate the
training performance on the adult dataset under the same conditions as mentioned earlier for testing in Section
[l Similar to the previous findings, in the leftmost image, we observe that FedDRO andDS-FedDRO outperform
both the constrained version of GCIVR and unconstrained baseline formulation while FedDRO outperforming
DS-FedDRO easily. Evaluating the maximum group violation, we see that the unconstrained optimization
demonstrates the poorest performance, while our techniques perform comparably to GCIVR and improve
performance as the communication rounds increase. The right two plots, confirm that increasing the local
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updates, i.e., I results in improved performance, aligning with the theoretical guarantees presented in the
paper.

In Figure [5] we evaluate the performance of FedDROwith the number of clients. Specifically, the accuracy
demonstrates an upward trend as the value of C' (representing the number of clients) increases in the
experiments conducted on the adult dataset. The top two plots depict the training and testing performance
for I = 1, while the bottom two demonstrate the training and testing performance with I = 4.

C Useful lemmas
Lemma C.1. For vectors a1, as,...,an, € R?, we have
lar +az + .., +au|* < nflla]® + llazl® + ..., +anl*]-

d o~ 1K
Lemma C.2. For a sequence of vectors ay,as,...,ax € R, defining a = >, ax, we then have

K K
D llax —al® < llax]*.
k=1 k=1

D Proof of Theorem [4.1]

We restate Theorem [.1] for convenience.

Theorem D.1 (Vanilla FedAvg: Non-Convergence for CO). There exist functions f(-) and gi(-) for k € [K]
satisfying Assumptions and[37), and an initialization strategy such that for a fized number of local
updates I > 1, and for any 0 < n* < C,, fort € {0,1,...,T — 1} where C,, > 0 is a constant, the iterates
generated by Algorz'thm under both Cases I and II do not converge to the stationary point of ®(-), where
®(-) is defined in (3) with h(z) = 0.

Proof. We consider a setting where we have K = 2 nodes in the network. Also, let us consider a single-
dimensional setting where the local functions g : R — R for £ = {1,2} at each node are

g1(z) =4x—4 and go(x) = —2x +4.

Moreover, assume f : R — R as f(y) := \/y? + 4. Therefore, the CO problem becomes

2

Igflei]g{q’(fﬂ)5=f(;(91($)+92($))> = E(gmw)mm) +4=¢w2+4}. (10)

First, we establish that the functions f(-) and gx(-) for k € [K] satisfy Assumptions and
Claim: Functions f, ¢g; and g satisfy Assumptions [3.2] and [3.4]

The above claim is straightforward to verify. Specifically, we have

The functions f, g1 and g are differentiable and Lipschitz smooth.

— The function f(-) is Lipschitz. Moreover, gi(-)’s are deterministic functions implying mean-squared
Lipschitzness.

— Assumption is automatically satisfied since gx(-)’s are deterministic functions.

— Bounded heterogeneity of gx(-)’s is satisfied.
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Note that it is clear from that the minimizer of ®(-) is * = 0. In the following, we will show that
Algorithm [1] is not suitable to solve such problems by establishing that there exists an initialization strategy
and choice of step-sizes in the range 0 < n < ), where C,, > 0 is a constant, the iterates generated by
Algorithm [T] under both Cases I and II fail to converge to z*. Next, we prove the statement of the theorem in
two parts. In the first part, we tackle Case I of Algorithm [T] while in the second part, we prove Case II of
Algorithm [T} Next, we consider Case I.

Case I: Let us first compute the local gradients at each agent. We have

VO, (z) = Vg (2)V (1) = 4#

Y2

Vs +4

To prove the results, we consider a simple setting with I = 2, i.e., each node conducts 2 local updates and
shares the model parameters with the server. Moreover, we initialize the local iterates to be 29 = z° = 0.5
for k = {1,2} at both nodes. For this setting, let us write the update rule for Algorithm 1 in Case I.

V&, (z) = Vga(2)V f(y2) = —2

1. Note that for every ¢ such that t mod 2 = 0, the local update at each node will be:
xi‘Fl — .’Et _ 4,]7 4‘,1?)5 B 4‘
(4zt —4)2 4+ 4
-2t +4
(—2zt +4)2 +4

aht =zt + 21

2. Moreover, the next immediate update at each node will be

t+1
xi+2 =2t 4y 4o —4
4zttt —4)2 14
—2:55“ +4

z5t? = 2t 4 2p ,
V(225 4 4)2 44

3. This process keeps repeating for T iterations.

Let us focus on the local functions f(g1(z)) and f(g2(x)). Note from the definition of ¢;(+), g2(+) and f(-) that
the local optimum of these functions will be 7 = 1 and z5 = 2, respectively. Consequently, for appropriately
chosen step-size 7 in each iteration x’i“ and m§+2 at node 1 will converge towards x7 = 1 and similarly, :c?'l
and xé” at node 2 will converge towards z} = 2. This implies that we can expect the sequence z* for each
t € [T] to not converge to 2* = 0, the minimizer of the CO problem defined in (I0). Let us present this

argument formally.

Claim: For C, = 1/8 such that we have 0 < n < C,,, and utilizing the initialization z° = 0.5, we have
zt > 0.5 for every t > 0 with ¢ mod 2 = 0.

This above Claim directly proves the statement of Theorem for Case I. Let us now prove the claim
formally. We utilize induction to prove the claim.

Proof of claim: First, note that the claim is automatically satisfied for ¢ = 0 as a consequence of the
initialization strategy. Assuming the claim holds for some ¢ € [T] with ¢ mod 2 = 0, i.e., we have &; > 0.5 for
some t € [T] with ¢ mod 2 = 0, we need to show that Z;ys > 0.5.

In the following, we consider the following three cases: (1) 0.5 < Z; <1, (2) 1 < Z; < 2, and (3) Z; > 2. Here,

we present the proof for case (1), the rest of the cases follow in a similar manner.

» Note from Step 1 above that since 0.5 < z* < 1, we have 42" — 4 < 0 and —2z¢ + 4 > 0, which further
implies that the locally updated iterates xﬁ“'l >zt > 0.5 and .Z‘t2+1 > 7zt > 0.5. Next, let us analyze the
iterates at t + 2.
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o At node 1, we further consider two cases, when ™' < 1 and the other when z{*" > 1.

— First, note that if zi‘H < 1 we will have 4xt1+1 —4 < 0 in Step 2 above implying z!72 > xﬁ“ >zt > 0.5.

1
t+1 t+1
1

— Otherwise, if 217" > 1, we have 42 — 4 > 0 however in this case we have

4zttt — 4

(4™ —4)2 + 4

<1/2 for n <

)

| =

again implying from the update rule in Step 2 that
1
7z et -5 205

where the last step follows from the fact that xﬁ“ > 1. Therefore, we have established that xﬁ” > 0.5.

e At node 2, it is easy to establish that for case (1) with 0.5 < z; < 1, we will have 0.5 < :cé“ < 1.5. Note
from the update rule in Step 2 that for this xtzﬂ, we have —2xt2+1 4+ 4 > 0 which further implies that
w§+2 > xé“ > 0.5.

o Finally, we have established that both xt1+2 > 0.5 and x§+2 > 0.5, implying 442 > 0.5. This completes the
proof of Case (1). Note that the proof for the other cases follows in a very similar straightforward manner.

Therefore, we have the proof of Case I in Algorithm [T} Next, we consider Case II where in addition to the
model parameters, the local embeddings g (-) for k& € [K] are also shared intermittently among nodes. Please
see Case II in Algorithm

Case II: Let us consider the same setting as in Case 1. Specifically, we consider a simple setting with I = 2,
i.e., each node conducts 2 local updates and shares the model parameters with the server. Moreover, we
initialize the model parameters ) = z° = 0.5 for k = {1,2} at both nodes. Note that this implies from the

definition of g;(-) and ga(-) that y) = §° = 0.5 for k = {1, 2}. For this setting, let us write the update rule
for Algorithm 1.

1. Note that for every ¢ such that t mod 2 = 0, the local update at each node will be:
xfi"'l =zt — 4n7jt
(') + 4

i,t

2. Moreover, the next immediate update at each node will be

.’I;é+1 — jt + 2,',]

t+1
22 = gt gy dry —4
(4ot —4)2 14
t+1
ot = gt 4oy —2xy +4

Y
\/(—2x§+1 +4)2+4
3. This process keeps repeating for T iterations.

We point out that this setting is considerably challenging compared to Case I since a cursory look at the
algorithm may suggest that sharing the embeddings gi(-) for k € [K] intermittently may help mitigate the
bias in the gradient estimates. However, this is not the case as we show next.

Claim: For C;, = 1/22 such that we have 0 < 1 < C,,, and utilizing the initialization 29 = 0.5, we have
zt > 0.5 for every t > 0 with ¢ mod 2 = 0.
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We note that for this case the intuition is not as straightforward as in the previous case. We again prove the
claim by induction.

Proof of claim: First, note that the claim is automatically satisfied for ¢ = 0 as a consequence of the
initialization strategy. Assuming the claim holds for some ¢ € [T] with ¢ mod 2 = 0, i.e., we have &; > 0.5 for
some t € [T] with ¢ mod 2 = 0, we need to show that Z;2 > 0.5.

Let us first construct 2172 and x5*2 as a function of Z*. To this end, we have from the update rule in Steps 1

and 2 that
4zt (1—¢t) — 4
(1 - ) — 42 +4
-2z (1+¢5) +4
\/(—Q;Et(1+e§) a2 4a

e =zt (1 et) —dy

a5 =z (1+ ) +2n

where we have defined ¢} == ——2L_— and ¢} =

= 2 , therefore, we have e} = 2¢5. Using the above we
(@')214 1

n
(ft)?_;'_
can evaluate z'12 as

T2 = %(zﬁ“ +24t?)
(26t1+6t2>ft+2n 4—4zt(1—€) o 4-23t(1+€)
2 Jur(—ed) -2 +4 (20 (1 +e) +4)2 +4

:(1—65>xt+2n 4—4zt(1—€t) o 4— 27" (1+ )
2 \/(45;t(1 — ) —4)2 44 \/(—%t(l b)) +4)2+4

9

where in the first term of the last equality, we have used the fact that e} = 2¢5. Recall from the induction
hypothesis that we have ' > 0.5, and we need to show that #'*2 > 0.5. Note from above that to establish
ZtT2 > 0.5, it suffices to show that

4 —4z'(1 —€f) N 4 — 27" (1+ ) :

7 — 0.5+ 2 > 2t (11)
\/(43§t(1 —et) —4)2 44 \/(—th(1 ) +4)2 44 2

From the definition of € = ﬁ, we note that the r.h.s. term can be further upper bounded as
20

l\')‘[g\w
5]
~+~
Il
3
K1

Nzt
Therefore, to establish to establish T2 > 0.5, it suffices to show that

4 — 47" (1 — 2¢h) N 4—27"(1+ )
\/(4a:~t(1 —2€h) —4)2 +4 \/(—2:Et(1 +eb) +4)2+4

- 05+2n >, (12)

where we have replaced €} = 2¢5. Similar to the previous proof here we again consider three cases as listed
below

. . 4—47" (1—2¢€b) 4—23" (1+€b)
Case (1): Va2 4 0 and V(2 (1ch)+4)2 +4

. . 4—47" (1—2€b) 4—23" (1+€b)
Case (2): Va2 4 0 and V(22" (1+€,)+4)2 14
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. ) 4—47" (1—2€h) 4-2z" (1+€})
Case (3) \/(4it(1—2eé)—4)2+4 2 0 and \/(—Qit(1+€§)+4)2+4 -

4—47" (1—-2¢€h)

. . . 7t .
We first consider Case (1). Note that Case (1) implies that ¥ > 1, and using the fact that T s

_ 4—2z"(1+¢€h) > _
1 and e )0 2 1, we get
4 — 4zt (1 — 26} 4 — 23" (1 + €
#0542 (1-2d) (1+4) > 0.5 3

U
\/(4it(1 —2€h) —4)2 +4 \/(72:?(1 +eb) +4)2 +4

Note that by choosing 1 < 1/8, the sufficient condition in is satisfied, which further implies that under
Case (1), we have 2 > 0.5. Next, we consider Case (2).

4—47"(1—2¢€h) _
(47t (1—2¢L)—4)2+4 = —1 and

Note that for Case (2) we have 2/(1 + €5) > z* > 1, next using the fact that

427" (14€h)
V2 ()7 >0, we get

4 — 43" (1 — 2¢€h) N 4—2z" (14 €b)

' —0.5+2n
\/(4:Et(1 —2€h) —4)2 +4 \/(f%t(l +eb) +4)2 +4

>0.5—2n

Again choosing n < 1/8, the sufficient condition in is satisfied, which further implies that under Case (2),
we have z!t2 > 0.5.

Finally, we consider the most challenging Case (3). Note that in Case (3) we have 0.5 < 7' < 1/(1 — 2¢€}).
For this case, we revisit the sufficient condition in and make it tight. Recall that we had from that

4 — 4z (1 — 2€%) 4 — 27" (1+ ) Ty
2 N—=
\/(433t(1 —2eb) —4)2 4+ 4 \/(—za—:t(1+eg) v42 14 V(@)?2+4

z'—0.5+2n

now using the fact that for Case (3), we have 0.5 < ¥ < 1/(1 — 2¢b), we can restate the sufficient condition as
4 — 47t (1 — 2¢h) N 4— 27" (14 €b)
\/(4ft(1 —2€h) —4)2 +4 \/(f2jt(1+e§) +4)2+4

' —0.5+2n > 1 (13)

N3

Tt
v (Z¢)2+4 -
g for 0.5 < z* < 1.1. Moreover, n < 1/22 ensures that 1 + €t2 < 23/22. Next, using the fact that
a—4z* (1-2¢})

\/(4gzt (1-2¢5)—4)244

where we have used the fact that 0.5 < ¢ < 1.1 for n < 1/22 and the fact that the term 7

> 0 and

4—25"(1+ ) - 4 —21"(23/22) _ 6
JE )+ a4 VMG 4P 4 10°
Substituting in the Lh.s. of the sufficient condition stated in , we get
4 — 4z (1 — 2€%) N 4 — 27" (1 + ) S 6
\/(4gzt(1 —2e) —)24+4 (-2t (1) +42+a 1O

[=2]

' — 0.5+ 2n

where we used that fact that ' > 0.5. Note that %7 > 2, therefore, the sufficient condition stated in is
satisfied. This further implies that the T2 > 0.5 during the execution of the algorithm.

Recall that the optimal solution for solving the CO problem is z* = 0. This means Algorithm [I] under both
Case I and 1II fails to converge to the stationary solution.

Hence, the theorem is proved. O
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Figure 6: The evolution of parameter Z! at each communication round for different choices of step-sizes 1.

Finally, we corroborate the result presented in Theorem via numerical experiment for solving using
Case II of Algorithm |1} In Figure EI, we plot the evolution of Z! in each communication round. We note that
zt is lower bounded by 0.5 as established in the proof of Theorem above. In fact, note that for all the
settings as the communication rounds increase, T eventually converges to a quantity that is greater than 1.
However, as discussed for the example considered to establish the proof of Theorem [£.I} we know that the
true optimizer of the CO problem isx* =0.

E Proof of Theorem

Theorem E.1 (Modified FedAvg: Convergence for CO). Suppose we modify Algom'thm such that yi, = 7'
is updated at each iteration t € {0,1,...,T — 1} instead of [t + 1 mod I] iterations as in current version of

Algorithm [1} Then if functions f(-) and gi(z) for k € [K] satisfy Assumptions[3.2, and[3.4) such that for
a fized number of local updates 1 < I < O(T*), there exists a choice of n* > 0 for t € {0,1,...,T — 1} such
that the iterates generated by (modified) Algorithm converge to the stationary point of ®(-), where ®(-) is
defined in (3) with h(z) = 0.

Proof. Theorem is a direct consequence of Theorem [.3] Therefore, we next prove the main result of the
paper in Theorem [£.3] O

F Proof of Theorem

For the purpose of this proof, we define the filtration F! as the sigma-algebra generated by the iterates
1.1 t
Ty Ty - -+ Ly, AS

Fli=o(xp,x), ..., ak, forall k € [K]).

Moreover, we define the following. Assuming the total training rounds, T' — 1, to be a multiple of I, i.e.,
T —1=S8x1I for some S € N, we define ts := s x I with s € {0,1,...,5} as the training rounds where the
potentially high-dimensional model parameters, z%, are shared among the clients. Next, we state Theorem
[4.3] again and present the detailed proof of the result.

Theorem F.1. Under Assumptions and and with the choice of step-size nt =n = 4/ % for all

t €{0,1,...,T —1}. Moreover, choosing the momentum parameter 3* = 3 = cgn where cg = 4B§Lfc. Then
for
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T 4(Lg|b|K +8B2)? By(96L; +96B7L;)?
=t b K " B[K (L7 + 2B3L2 + 4AB3L%)?’

(216L7, + 2163;L§)12|b[(}

The iterates generated by Algorithm[3 satisfy
B[V )| < 2[9(2°) - <I>(:\c/*|)b+7|l%/° —9(2)]’] N K(IT— 1)? (oL 0% + 283707
+ \/|bl|W {(4L¢ +8B7)oj + (4Le B} + 4ch + 83?3_3)03]
MLl (617,988 +6B3L1,A2] + S [96B§ A} +96B3B? Ag] .

T KT

Corollary F.2. Under the same setting as Theorem for the choice of local updates I = T'*/(|b|K)3/4,
the iterates generated by Algorithm [J satisfy

oy < 22E) —2@) 4 [0 —9@)] | Co », Co
El[ve@ I < VIIET VIIET ht VIOIKT ¢

Ca,
TAZ. (14)

CAh 2
+ AL+
VIIET " " /K
where the constants Cy,, , Cs,, Ca,, and Ca, are constants dependent on Ly, Ly, Ly, By, and By.

We prove the Theorem in multiple steps with the help of several intermediate Lemmas.
Lemma F.3 (Descent in Function Value). Under Assumptions the iterates generated by Algorithm

13 satisfy
K 2

E[®(z't) — @(z")] < —%EHV@(?)HQ - (77; - (nt)ZLé)EH;( > E[VEk(z}; &) F]

k=1
1 K 1 K 2
+n'(L} +2B3L2 + 4BALY) % > E|aj - 2'|* + 4B Lin' E‘ gt — e > gelah)
k=1 k=1

2(77t)2L<I>02 2(77t)2L‘I’BJQ‘ 2
Kby " Klbg| 7

+

forallt € {0,1,...,T —1}.

Proof. Using the fact that the loss function ®(z) is Le-Lipschitz smooth, we get

E[®(z') — &(z")]
<E[(va(), 7+ — 3 + S22

(a) 1 & _ t\27,
< E{—nt<v<b(£t),KZV%(J:Z;&)> + U )2 s
k=1

]

1 < .
7 2 V(1 €)
k=1

1 & _
2 O V(i &)
k=1

. » 1 K - . (nt)QL
E[—n<V<I>(x ),K;E[v@k(xkvgk)|f}>+ 9 :

—~
=
=

]

IN
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Term 1

+ (nt)chpEHva i &) — ZE Vo (zf; )| F']

Term II

where (a) follows from the update step in Algorithm |2} (b) results from moving the conditional expectation
w.r.t. the filtration F* inside the inner-product; finally, (c) uses the equality 2(a,b) = ||a|?> + ||b]|> — ||a — b||?
for a,b € R% and Lemma to split the last term.

Next, we consider Terms I and IT separately. First, note that from the definition of V®j(x%;£!) for all
k € [K], we have
(a)

= Vhi(}) + V(@) V(@) (16)
where (a) follows from Assumption Moreover, from the definition of ®(z!), we have

BV (ki) ) =B 5 Vhilehich + i B 2 Volaks ) V|7

| hk ebt Jebl,

KZ[W )+ Vau(#)V (@) (17)

where g(z') = % Z,I::l gk (7?). Next, utilizing the expressions obtained in and we bound Term I as

K 2
Term T := EHV@(:H) - % > E[VO(ah; &) F]

k=1
— 5| o 3 [The(e) + Vaula) 900 - (Vhaleh) + (e V(5]
k=1

K
< 25 [EIVh) — V@) + Vo) V) — Vo)V F (@) ]

k=1
® %L S ¢ gz, 4 . t it Tt 2
S 72 |z — 2"[|° + EZEHVQk(xk)[Vf(y )= VIg@)]||

K

Z [Var(at) — Var(@)]V f(g(@"))II?

(e) 2L2 K 4B K
= & 2 Elak -+ 2 S CE|VSG) - V@)
k=1 k=1

B2 K
f 2
Tt D EIVox(e}) = Vo (o)

@ (o2 4B212\ X ~ _ 2
< (Kh + 7;( g ZEHx}; — 7% + 4B§L?p IEHyt - g(:ﬂt)H .

Term IIT
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Next, let us consider Term III above.

Term III == EHZUt - g(jt)HQ

(a) B 1 K B 2

< QE‘yt ?ng(fﬂi) +2EHKng(x};) —g(x)
k=1 =1

® 1., 1& 2 2

< 21E‘ 7 = e Do)+ ZEHgk(wi) — gi(@")]
k=1 k::

(e) 1 K 2 2 K

<o~ > )| + T DBl a1
k=1 =1

where (a) follows from the application of Lemma (b) results from the definition of g(z) = & ZkK 1 9x6(2)
and the use of Lemma finally (c¢) results from the Lipschitz-ness of g (-) for all k € [K].

Next, we consider Term II below

K 2
Term IT := EH % ZV(I)k whi &) — kz:: [V (x); &) F']

o 1 3 3
Y S BV (ads &) — E[Veu(e: |
k=1

IS

Z th xk,fkl ‘b Z v.gk irka(k])vf( )

iebt ebf
h

— [Vhu(a) + Vo)V )]

2

—~
3}

K

y 2 1

= KZZEHbt Y Ihk(akih) - Vhe(a)
k=1 hil

=

2 & 1 2
+ 7 E| gy X Vauleks ) V) - Ve V)
k=1

k! sept
JEbgk

2 R2
(%) 20'}21 QO.QBf7
K‘bh| K|bg|

where (a) follows from the application of Lemma (b) follows from the definition of the stochastic gradient
in (7) and its expectation in (L6)); (c) again uses Lemma Finally, (d) uses Cauchy-Schwartz inequality,
Lipschitzness of f(g*) and Assumption and using |bp, | = |by| and |by, | = |bg| for all k € [K].

Next, substituting the upper bounds obtained for Terms I, II, and III into , we get

2

¢ t K B
E[2@"*) - o] < - TE|ve)|* - @ (Ut)2L¢>>EH[1( ZE[V@k(Ig;gg)m]

2
+n'(L} +2B}L2 +4B)LY) ZEka — &'||* +4B, L}’ IE’ T ng (%)
k: 1 k 1
Term IV Term V
2(77t)2L<I> 2 2(n )2L‘I>Bf 2
+ o o. 18
Kby " Kb, 9 (18)

Therefore, we have the proof of the Lemma.
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Next, we bound Terms IV and V in in the next Lemmas. Let us first consider Term IV.
Lemma F.4 (Client Drift). Under Assumptions the iterates generated by Algorithm[d satisfy

K K
1 . ")? o2
=Y Bz} -] < (1—1)(24Li+24B;L§) Z = ZEH — |
k=1 =t
4 AB2 t—1 t—1
+ (I - )(|bt o |btJ|’ 2) S+ (1 -1 (1223 + 12B342) ()2,
o=t (=t
Proof. Recall from the definition of t; that we have x',; = ' for all s € {0,1,...,S}. Next, we have from
the update rule in Algorithm [2f that for all ¢ € [ts + 1,541 — 1]
" t—1
vh= a0 TV S = Y0 V(e &), (19)
o=t
where (a) results from unrolling the updates from Algorithm [2| Similarly, we have
K t—1
="' 1szq)k a € —*ZZH Yy, () €1) (20)
k=1 k=1 t=t,
Bounding Term IV, we have
| X
Term IV == e ZEH@”Z — 7|2
K t—1
@ Z Z Ve (x; &) — Z D VO mk,m
Kz =t KDz ts
t—1 ()2 K 2
03 O S m|veelid) - zwk (ahi€h)
o=t
Term VI

where (a) follows from and and (b) follows from the application of Lemma
Next, we bound Term VT in the above expression.

2

Term VI := HVcbk(:c,c,gk Zwm (zf:€0)
(@) 1
= EH |b£ Z th: xlwsz | | Z v.gk xka(k ])Vf( )
hk Eb[ jeb[
K 2
Z [ Z Vhi () €i) + b Z V(@5 G )V I (5 )]
hk‘ i€bf, 16,1 ¢l jevs,
(®) 1 ) X 0. ¢l ’
< 2EH15 Z th($k§sz - Z bg | Z Vhi(2y; €0
hi i€bf, k: hu ebﬁk
1 N
”EHM > V(@i )V Z| > V(i ¢V

9k JEbZV gk jebz
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(e) 2

K
1 1 1
E o Z Vhi (w1 €7) — gZW Z Vhi(y; &)
k=1 ""hk

H ‘ hk eb[

o =1 iebﬁk
Term VII
K 2
. L
JrQBf H| 7 E Vi IkaCk] - } E Var(xy; Cej)||
eb” k=1
Term VIII

where (a) results from the definition of the stochastic gradient evaluated in (7); (b) uses Lemma and (c)
utilizes the Cauchy-Schwartz inequality combined with the Lipschitzness of f(-). Next, in order to upper
bound Term VI, we bound Terms VII and VIII separately. First, let us consider Term VII above

2
1
Term VII := IE)Hbe > Vhi(zgs &) — Z oA Z Vhi(zh; € )
| hk‘ i€bl, =
@) ¢ L~ 1 e, ot Al
< 2E > Vi €i) = Vhe(e)| = 2 D |5 Do Vhe(ahi &) = Vhn(at)
[0, hk| icb, it Lo iebt
k
| K 2
+ 2EHth(zk) - % ]; Vhy(zh)
1 2 1 X 2
EHZ > Vhi(ai; &) = Vil + 2EHm<x€;) =5 2 Vhi(zy)
| hil jept k=1
hy,
(©) 2Jh
< o8 +2IElHth - —thk ()]
Term IX
where (a) utilizes Lemma[C.1} (b) results from the application of Lemma[C.2} and (c) results from Assumption
B3l
Next, we bound Term IX below
K 2
Term IX = ]E”th ajk Z
K=
(@) K 2
< 3E||Vhy(zf) — Vie(@)|* + SEH > [th — Vhi(zy)

k=1

K
+3EHth(x€)— S SAED
S 0 =02 3Li - 0 =02 —0 —0
< BLAE||«f — 2"+ 2 Y Bk — 2| + 3E[|Vhi(2) — VA
k=1

: 2 K
< 3138t - 2| + 228 S Bl - 2| + 303,
k=1

where (a) results from the application of Lemma (b) utilizes Lipschitz smoothness of h(-) and the
definition of h(z) = % Zszl hi(z); finally, (¢) results from the bounded heterogeneity assumption Assumption
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Substituting the bound on Term IX in the bound of Term VII, we get

#I1? 6Lh ~0||2 2
Term VII < |bt | h 6L 2E||=f, — 2| + ZJEH —z||” + 6A7.
Similarly, we bound Term VIII as
K 2
Term VIIT := H| — Y Var(zii ) - EZT Vr (1 i ;)
JGbe 9w -gk
() ‘ 1 K ' 2
| Z Vi xk’Ck i) = Var(zy) | — EZ | Z Vg J%Ck i) — V()
Ebl/ k=1 Ik iebf]k
| K 2
+ 2]EHv9k(xk) % Z V()
k=1
2 K 2
1
EHH > V(i Gia) — Var(ap)|| + QJEHVQk(ﬁi) K > Vok(at)
9k iebf}k k=1
(© 202 2
< W+2E Vi (zh) — KZng x|

Term X

where (a) utilizes Lemma (b) results from the application of Lemma and (c) results from Assumption
Next, we bound Term X below

K 2
Term X = EHng mk Z
k;:
(a) 2 1 - ) Ntk
2 3E|Vgu(el) — Vor(@)| +3EHKZ[ng<x)—ng<xk)}

S Tt LEK 217 = =032
< 9Ll — | T Sl 5 4 9B V(s - Vot

© _ _
< 3L2E||«}, — f[\ﬁﬁ;ﬁ”xﬁ— A + 342,

where (a) results from the application of Lemma[C.1} (b) utilizes Lipschitz smoothness of g(-) and the definition

of g(z) = & Zf_l gk (z); finally, (c) results from the bounded heterogeneity assumption Assumption
Substituting the bound on Term X in the bound of Term VIII, we get

20 2 0 =02 6L; < 0 =02 2
Term VIII < W +6L2E ||z}, — 2" + ﬁZEka —z'||" + 647
k=1
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Next, we substitute the upper bounds on Terms VII and VIII in the expression of Term VI, we get

Term VI < ——o? + 12L2E||f. — 7| + 1215 EK:EW — & + 1242
b | h k K Pt k h
B? , 12B312 &

4 ,
+Wa o T 12BFLIE o, — 2"+ —2 g;Eka—xén + 12B3A2

1215 +12B}L;
= (1213 + 12B3L2)E|of - 3|* + (+)

ZEka -zt

2
4 4B% 272,
Ib | 165, | J
Therefore, we finally have the bound on Term IV as
_ .
Term IV < (I - 1)(24L} + 24B3L2) Z Z]EH — |
=t
4 4Bf o2 S 2 202 S £\2
+ (- 1)<|b2| oy > S o 1)(12Ah+1QBng) S ).
O=tg l=ts
where we have chosen [bf, | = [b},| and |b], | =[] for all k € [K] and £ € {0,...,T —1}.
Therefore, we have proof of the Lemma. O

Next, we bound Term V from , we have

Lemma F.5 (Descent in the estimate of g(z)). Under Assumptions the iterates generated by
Algorithm [J satisfy:

1 K
E\ P> alad)
k=1

1K 2 g(nt)2(1 — gt 2B2 - 2
<075t e Yt A HKZIE[%@@;&)W]
()2 (1 mvwwwﬁw%mPEZM o M08
by K2 bul K
A5 + A1 FPBIEE | 451 6B g, OB
[bg K i [bg K by [ K

where we have chosen |bj| = |bp| and |0}, | = |by| for all k € [K] and t € [T].

Proof. From the definition of Term V, we have

1 K 2

Term V = E‘ gt — K Z gk(x}‘jl)

K
(a) 1
e e 3 i - antet )]

K
2%;z<ﬁmm Y el G - s Y aelaka¢iih)

k=1 |gk | Gb;gl |9k | thgtrl
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g t+1 st+1 t+1
+ |bt+1 Z gr(@y ki ) — gr(zy, )]
byt
K 2
@<ﬂm>H;;pr%%ﬂ
1 K 1
+%K2khﬂﬂmﬂ >%%ﬂ>|%|23mﬁ&w—m?ﬁm
k=1 cvrt

1
1
+ ﬁt+ (|bt+1

iebti!
(d) 1 K 2(6t+1)2
< 1 _ t+1\2 E t = ) t o\ )
(1-B")"E|y K;%( Il + K o)
21— )2~ 1 o1 : b1 1
+ K2 Z |b |2 Z EH(gk(x?ltc) g( kJr )) - (gk(xi,'?Ck:t ) gk(%j ) k;
k=1"9 eb;:l
(©) 1 & 2 g(ptt1)2
< (1 t+12 ot _ t 2
—( ﬂ ) Yy K};gk<mk) + |bg|K Gy
2(1 7ﬂt+1)2 K 1 9
e o Ele@hi 5 - ot G|
k:1| g‘ iepttl
9k
K t+1 2np2 K
1 2(pt1)?2 21-p B
201 12 pllgt — 2 g Ellz+! —
@ el - g | + 2o+ T > el
(9) 1 E 2(8H+1)2
< (1 t+1 QE =t _ 2
< (1-8"Y%E|ly K;gk(mk) STRTa
2(n')%(1 - B'*1)?B2 & 2
+ e Z [V (i |
| —

k= Term XI

where (a) follows from the definition of §**1; (b) uses the update rule (8) for yi™'; (¢) results from adding
and subtracting (1 — 3*™1)gy(2}) and utilizing the fact that the second term in the expression has zero-mean

> G — el )|

t+1)):|

2

)II*

t

which follows from Assumption (d) uses Young’s inequality, Assumption and by choosing |0} | =

and [bf, | = |b,| for all k € [K] and t € [T]; (e) results from the fact that for a random variable X, we have
E||X — IE[ 117 < E||X|% (f) uses the mean-squared Lipschitzness of gx(-) in Assumption finally (g)

results from the update rule of Algorithm [2}
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Next, we bound Term XI below

Term XI := E|‘V@k($§c§gii)||2
(a) = e ¢
< 2F|| VO (2} €) — B[V, (v €))7 +2]EHE v (al; 01|

®) 202 20.Bj}
- O KZE v (e} )]
g9

2

Term XII
2

K
1 t. ¢t t
48] e S BT e )1

where (a) results from the application of Young’s inequality and (b) results from Assumptions and
along with the application of Young’s inequality.

Next, we bound Term XII in the above expression.

2

K
_ 1 _
Term XII := E"E[V@k(xz; EOF - e ZE[V%(m;; EONFY
k=1
( ) 1 K 2
2 E|[Vhu(ef) + Ve V) - | o X (Thaled) + Vanleh) V1)
k=1
(b) . 1 K . 2 2
< 28| Vi (af) - T 3 Vhiel) + 28] Vo () V10 ?Zm 91
(c) 1 K 2 K 2
< QEHth(J:Z) ~ % Zth(x};) +2Bf Hng xh) Zng zh }
k=1 k
Term IX Term X
(d) 617 + 632L2 K
< (613 + 6B3L2)E||a}, — ') + —— ¢ ZEH —#'|* + 6A7 + 6B3A2

where (a) above uses the definition of V& (z}; 5 k in @ and Assumptlon - (b) results from the application
of Young’s inequality; (c¢) utilized Assumtion [3.2} finally, (d) results from the application of Assumptions -

and 3.4
Replacing in the upper bound for Term XI, we get

2
+ (24L3 + 24B3L2)E |2}, — ||

K
1 —
Term XI < 4IEHK ZE[@k(xz;g,i)W}

24L2+2432L2 K 252 202B2
S ~h T g zt “Ch 9 f 2 2 A2
§ :IEHask I” + ol T T + 24A7, 4+ 24B7A2.
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Substituting the bound on Term XI in the bound of Term V, we get

2

7t 1 t+1
* E gk

8(77t)2(1 _ ﬂt+1 2B2 2

t+1 - ]E Dy ( t

<1-p E|y" ng ) b | K HK Z k xkafk”]:]
. (nt) ( ﬂt+1) B2(96L2 + 9GBfL2 ZEH:E B 7t|| ]_ — 5t+1)2B202
|bg| K2 ; |bn| K "

2 + AP0 = BB, 1801 - g2 a4 OB
|bg| K J |bg| K |bg| K
Therefore, we have proof of Lemma. O

Next, we show descent in the potential function specially designed to show convergence of Algorithm [2| For
this purpose, we define the potential function as

K

L1
7' = 2 > onlah)

k=1

2
Vit =E[®(z")] + IE‘

Next, we derive the descent in the potential function.

Lemma F.6 (Descent in Potential Function). Under Assumptions with the choice of momentum-
parameter BT = cgnt with cg = 4B;1L? where step-size ' is chosen such that

< { by K |bg| K (LZ + 2BJ%L§ + 4B§L}) }
= | 2(La|by| K + 8B2) BZ(96L} + 96B3L2)

the iterates generated by Algorithm [J satisfy

K
1 _
Vi —yi< - IEHV(P )||* + 0t (213 +4B2L2 + 8B,L%) 2 > _Elak — 7'

=1

n 2(n')*Le o2 & 4(77t)2B202 2(n')*Le B o2 (n')*(2¢5 +4B§BJ2”)02

Kbl "7 JoalK [bg| K= 7 [bg| K !

48(n")*B2 , 48(n )2132133A2

2 :

[bg| K [bg| K
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Proof. From the definition of V? in and using Lemmas and we get

K 2 K 2
_ _ _ 1 L1
VI -V = [0 (2t - 0(ah)] +E] gt =2 D e - u«:] G
k=1 k=1
t t 8( t)2BQ 1 K ~ 2
n —t\[[2 n 2 n )
< 75E||V(I)(xt)“ - <2 - (Ut) L<D - W)EHKZE[V@]C(I‘Z,&Z)LFﬂ
k=1
(n")2B2(96L? + 96 B2L2)\ 1 &
t(12 2712 472 g -9 t —t2
+ (n (L +2B7L} + 4B, L%) + |b I )K;Eﬂxk — 2
. 2(nt)2Lq> 4(n")*B;
4B4L2 t tJrl t 2 g 2
B Kng Ko 7 Tl
G L B Gl U R D Y WU
lbg|l K& 7 |bg| K 7 bgl K& " |bg| K J
(a) 1 K
L R|a@)|* + o' (217 + 4B +8BILE) 1= > Bl — 7|
k:
L A0Le o A0PBE 20 LeB ()20 4 4B3B)
Kby " balK " lbg|l K& 7 |bg| K 7
S0V o | OB
|bg| K |bg| K

where (a) results from the choice of 3* and 7, given in the statement of the Lemma.

Therefore, we have the proof. O

Theorem F.7 (Potential Function). Under Assumptions and the choice of step-size n* = n such
that we have

1
1/2
3I(24L3 + 24B2L?)

<

the iterates generated by Algorithm[g satisfy

YTy < ZEHV‘I’ W+ (T - 17 , (10L3 +20B2L2 + 40BLL3)

g
|n | "
2n2L 4n*B2 10B2L3 +20B4L? 4 40B3B*L?
+7[Z|bTU§ ‘Z o o T+n*(I - 1)2( S |fb|q L F)ag
h g
21* Lo B? n?(2¢% + 4B3B?
b, |Kfa§T+ i ﬁb ‘Kf )a T +n°(I —1)*(30L} + 60B7L? + 120By L7 ) A} T
g9
48n? Bg 48172B2B2
A2 T I —1)%(30B2L? + 60B4L2 + 120B3BAL%)A2 T 7%2

b, [ K +1( )( hn + sy =+ g F) g bt by | K
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T — 1}, we get
T-1 ) T-1 K
INTE||[Ve@)|® + (223 +4B3L2 +8BLLE) Y = > El}

vi-vi<—J (@")]]
t=0 t=0 k=1
Term XIII

n*(2¢3 +4B;B?)
99

Proof. Telescoping the sum of Lemma fort ={0,1,...
j;t||2

2n? Lo 2 B2 2°LeB}
T+ T
Kon] 7t T ek T T Tt byl K
48n2 B2 48n% B2 B2
il ——IANT 777 9A2 (22)
|bg| K |bg| K

We bound Term XIIT in using Lemma ([F.4). Note that we have from Lemma

ZEHOS _F|P< (1 - )(24L +24B?L§)Z ZEH ¢ _e||2
l=ts
4B =1 t—1
+ (I - )<|b4| ‘btj[ 2) Z(né)%r(]_1)(12Ai+123}%A3) S (h)?
=t,

— 1, we get

L=t

Summing the above from ¢ = t5 to t541
tsp1—1 1 K (a) tsp1—1 t—1 1 K )
> & LBl — P <P - 1) (240 + 1BIL;) 3D Y 5 D Ellaf 2|
t=t, k=1 t=t, (=t k=1
4 432
+n2(11)21<|b y ol 4 —1 |bt\ >+n (I- )21(12A +12B AQ)
tsp1—1tsqp1—1 1 K

(243 +24B312) > Z ?;EH:E;;—:#HQ’

=ts

®
<n(I-1)
t=ts  l=t,
4 432
+n2(11)21<|bt| ol 4 —1 |bt\ )+n (I- )21(12Ai+123§A3)
© taa 71 )
2 2712 ~t
< (1 = D)I(2AL} +24B3L2) Z ZEH — ||
4 432
+772(I—1)2I<|bt|0h+ M‘ )+n2(1—1)21(12Ai+12B§A3)

where in (a) we have used the fact that n° =7 for all t € [T] and (t — 1) —t, < T —1for t € [ts,ts41 — 1]; (b)
results from the fact that ¢ < t,11; finally, (c¢) again uses the fact that (t —1) —t, < I —1for ¢ € [ts, ts41 — 1].
Summing the above from s = {0,1,...,S5} and using the fact that S x I =T — 1, we get

Ti % EK:]EM ~ 2 < 212 (24L,% + 24BJ%L§> Z ZIEka _
t=0 k=1 t=0
+ (I - 1) <b4|0h+ 451‘ 2) T+ (I — )2(12A§+123;A3) T
Rearranging the terms, we get
(1 w212 (4L} + 24B3L2)) il % kZl]Eka — 2|2 <RI - 1) (é' ol + 451” 2) T
—12(1247 + 12B3A2) T
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Finally, choosing n < L 173, such that we have 1 — n?I? (24L%L + 24B]20L3) > 8/9, utilizing this
31(24L2 +24B212)
we get

Term XIII := Z ZEHx — 72
t=0

5 5B}
< (I — 1)2<b |ah—|— |bt| ) T+n2(I — )2(15Ai+15B§A3) T

Finally, substituting the bound on Term XIII in , we get

(10L}, 4+ 20B3 L% + 40B, L%,)

T-1
VI —v0 < “INTR|ve@Eh)| + i - 1)? o2
< -5 2_E[Ve@)|f +# - 1) - ;
2P°Lo 4n2B2 2 7 4 (1) (10B}Lj, +20B}L? +40B7 B, L%) ey
Kol " oK 7 b !
2n? Lo B2 2¢% + 4B%B?
e i + 2 w2 ! g)ag T +n*(I —1)*(30L} + 60B}L, + 120B, L) A} T
|bg| K |bg| K
48 B 48 2B2B2
T Z9A2 T4 P (1 - 1)2(30B3LE + 60BL2 + 120B2B1 L) A2 T+MA2
|bg| K |bg| K
Therefore, we have the proof. O

Now, we are finally ready to prove Theorem

Proof. Assuming |by| = |b,| = |b|] and defining Ly, = 10L? + B}L? +40BjL3. Rearranging the terms in the
expression of Theorem |F.7] - and multiplying both sides by 2 / nT We get

T—1 _ _ 97
1 g < 22E) — @) + ][5~ 9@ 2L, 2B2L;,
— EllV®(zt < 2(7 —1)2 9 2 =59 2
- _ 4Ly + 8B2 4Ly B} +4c} + 8B} B;
+n2(11)2[6Lf,gAz+ﬁB§Lf,gA§]+n{ TR 952 4 ! Ibllﬁ( 903}
96 B2 9632 B2
QAQ QAQ
*”[MK AT

where the first term on the right follows from the fact that ®(z7) > ®(z*) and ||g7 — 1/K Y1 gr(«T)||2 > 0.

Next, choosing n = % then for T > (216Lj, + 216B7L2) I?[b|K such that 7 < L 7z in
‘ 31(24L2 +24B212)

Theorem [F.7] is satisfied, we get the following

T_ —
1 g 2[R@E0) — @) + ||7° — g(@ H] 7 2. op2f. 2
= S E|veE)|’ < 7 U oL o + 2B3L5 402
K -1y, - = 1
+ M {GLf,gAi + 6B?Lf,gﬁﬂ T ET [(4L<I> +8B;)0}, + (4La B +4ch + 83?33)03]
+ |b1KT {9633 Aj 4+ 96B7B; Ai] ,
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Explicitly choosing I = T/*/(|b|K)3/*, we get

_2[8@) — ®@) + [ —9@)|] | C, _Co,

VIb|KT - \/|b|KT \/|b|KT %

Ca h 2 CA

\/\b|KT «/|b|KT

E||va(z ™))

where the constants Cy,,, Cag, CAf, and CAQ are defined as:

Co, =2Lf g +4Le + 8B,

Co, = 2B}Ly 4+ 4Le B} + 4c} + 8B} B;
Ca, = 6Ly 4+ 968

Ca, =6BjLs4 + 96B;B;.

The constant cg is defined in the statement of Lemma
Hence, Theorem [.3]is proved. O

G Proof of Theorem 5.2

Let us restate Theorem for convenience.

Theorem G.1. For Algorithm @ choosing the local step-sizes n* = n = O(\/1/TI) and the momentum
parameter 8 = cgn for allt € {0,1,...,T—1}. Choosing the server step-sizes v, = O(\/K/T) and vy = ¢y, Yz
Then under Assumptions andfor z9T) chosen According to Algorithm @, we have

Equ)(fu‘(T>)||2 S CSyncO<U [(lT> +CD7‘1th< >

Jor some constants cg, cy,, Csync and Cpyri-

We note that the proof of Theorem [G.1] although different will follow the structure of the proof of FedDRO and
the steps of the proof of (Yang et al.l 2024)), therefore, we omit the detailed proofs.

Let us first state the main lemmas utilized in the proof of the theorem.
Lemma G.2 (Descent in Function Value). Under Assumptions the iterates generated by Algorithm
[3 satisfy

71”1

E[@(z7") — ®(27)] < ——=E[ V()|

(r+1)I-1

. T L 2 2[2
—[”’2” - } HKZ > E[VOi(af:€hIg

t=1I

| BPILE [0F + Bjog
2 KI
(7'+1)I 1
+7enI [L} +2B3L2 + 16B2L3 ] — Z > Efzjptt —am|?
t=11

K (T+1)I 1

+7enl [12B] L}] = Z Y Elyi—yI?
t=711

- vzn1[12B§Lfc]El|y —g(=")|>.
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Lemma G.3 (Drift in y-Updates). Under Assumptions the iterates generated by Algorithm[3
satisfy

(r+1)I-1

KZ > Elyk -y < wgl[§+4A§+4n21330§<+4EIIyT—g(xT)IIZ],

t=1I

where 0% is defined as 0% = 30}, + 3B}0; + 6B} + 6B} B3.

Lemma G.4 (Drift in z-Updates). Under Assumptions the iterates generated by Algorithm [3
satisfy

K (t+DI

1 &1 :
LD z Bllat — a7l < 7ok,
k=1 t=r
Similarly, we bound the term
El2™ —a7|* < 2nlok

Lemma G.5 (Descent in the estimate of y). Under Assumptions the iterates generated by
Algorithm[3 satisfy

Elly™" — gz H|I> = Elly” — g(z")|I> < [6 + 61%7; 8% — v, BI|E[ly" — g(z7)||

6723212 (T+1)I 1 , , - ,
I Z > Ely 7P+ BB a7
t=1I

4B% |,
+ BZE[2™t —27|? + {51" + 2“7} oxven’l,

1L,

where § == 01 + n % O'X and 61 > 0 is a parameter to be chosen later.

Next, we design the potential function as
Ve = E[®(27) + [ly™ — g(=T)|],
and our goal is to analyze the descent in the potential function. We analyze the term
Vet = Ve = E[@(z7F) = 2(@T)] + E[lly™" = g(a™H)I* — Iy — 9=")?] (23)
Choosing the learning rates such that, we have

81 = B2L3venl, 3 L 232L2
1= YL, vy B < ,5,64vy7ﬂ,m,n%, Lo

2b§l?’yxn 1

2 2 272
§ < 2BZL3v.nl, v, 5 < Vi s YylB < 28B Lvan, Yan < FER]
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This choice of parameters implies that we will have

Vipr = Ve =E[@(™) — (@) + E[lly™ — g(a™ )P — [y — g(=7)|1?)
')/177[

< ———E|Ve@n)|?
PP [0+ B
2 KI

+venl [Lj, + 2B7L2 + 16B,L}]| x n°Iok
+ I [12B2L3] x 26°1 |02 + 402 + 4 [ B2 |

y /82 2
+ [yK + 871,[31} 26°1 |02 + 402 + 4P B2o% |

6 2 2
+[ el +87y5[} B2Io%

4B? L,
+B§’y§n210§( + [(ﬁg + 5 ]JX% 21,

Finally, rearranging the terms and multiplying both sides by %ﬁ,, telescoping the sum, and choosing the
step-sizes such that we have

This yields the statement of the theorem. O
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