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Abstract

Spurred by advancements in scale, large lan-001
guage models (LLMs) have demonstrated002
strong few-shot learning ability via in-context003
learning (ICL). However, the performance of004
ICL has been shown to be highly sensitive to005
the selection of few-shot demonstrations. Se-006
lecting the most suitable examples as context007
remains an ongoing challenge and an open008
problem. Existing literature has highlighted the009
importance of selecting examples that are di-010
verse or semantically similar to the test sample011
while ignoring the fact that the optimal selec-012
tion dimension, i.e., diversity or similarity, is013
task-specific. Leveraging the merits of both014
dimensions, we propose Iterative Demonstra-015
tion Selection (IDS). Using zero-shot chain-of-016
thought reasoning (Zero-shot-CoT), IDS iter-017
atively selects examples that are diverse but018
still strongly correlated with the test sample as019
ICL demonstrations. Specifically, IDS applies020
Zero-shot-CoT to the test sample before demon-021
stration selection. The output reasoning path022
is then used to choose demonstrations that are023
prepended to the test sample for inference. The024
generated answer is followed by its correspond-025
ing reasoning path for extracting a new set of026
demonstrations in the next iteration. After sev-027
eral iterations, IDS adopts majority voting to028
obtain the final result. Through extensive exper-029
iments on tasks including reasoning, question030
answering, topic classification, and sentiment031
analysis, we demonstrate that IDS can consis-032
tently outperform existing ICL demonstration033
selection methods.034

1 Introduction035

With the recent advancements in scaling up model036

parameters, large language models (LLMs) show-037

case promising results on a variety of few-shot038

tasks through in-context learning (ICL), where the039

model is expected to directly generate the output of040

the test sample without updating parameters. This041

is achieved by conditioning on a manually designed042

Review: Good movie!         Sentiment: Positive

Review: It is terrible.         Sentiment: Negative

Review: The movie is great!       Sentiment: Positive

Review: I like this movie.         Sentiment:

Input

Frozen LLM

Output Positive

Figure 1: Illustration of in-context learning (ICL) on
sentiment analysis. A frozen large language model di-
rectly generates the sentiment ‘Positive’ for the test
sample ‘I like this movie.’ by taking the demonstrations
and the test sample as input.

prompt consisting of an optional task description 043

and a few demonstration examples (Brown et al., 044

2020). Fig. 1 shows an example describing how 045

LLMs perform ICL on the sentiment analysis task. 046

Given a few review-sentiment pairs as demonstra- 047

tions, ICL combines them with the test sample as 048

input, to the LLM for inference. The output, i.e., 049

‘Positive’, is generated by the model autoregres- 050

sively without any parameter updates. 051

Despite the effectiveness, the performance of 052

ICL has been shown to be highly sensitive to the 053

selection of demonstration examples (Zhao et al., 054

2021). Different sets of demonstrations can yield 055

performance ranging from nearly random to com- 056

parable with state-of-the-art models (Gao et al., 057

2021; Lu et al., 2022). To alleviate the above is- 058

sue, researchers in ICL have proposed a number 059

of methods to select a set of examples as few-shot 060

demonstrations (Rubin et al., 2022; Liu et al., 2022; 061

Li and Qiu, 2023; Wang et al., 2023b; Li et al., 062

2023a; Ma et al., 2023; An et al., 2023b). Neverthe- 063
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less, most of the existing approaches are only ap-064

plicable to small language models as they typically065

require accessing model parameters or detailed out-066

put distributions which are usually not available067

for LLMs (Sun et al., 2022). Therefore, it is still068

a common practice to randomly select examples069

or select examples that are semantically similar to070

the test sample as demonstrations for LLMs, i.e.,071

considering diversity or similarity. While several072

approaches investigate the combination of similar-073

ity and diversity when prompting with explanations074

or exploring compositional generalization (Ye et al.,075

2022; An et al., 2023a), it remains unclear to us076

how to determine and leverage the optimal dimen-077

sion for different tasks in ICL.078

Actually, the optimal dimension for selecting079

demonstration examples is task-specific. As we080

will show in §4, the diversity dimension is superior081

to the similarity dimension on CommonsenseQA082

and SST2 while the similarity dimension outper-083

forms the diversity dimension on AGNews and084

BoolQ. Thus, it is unreasonable to claim that one di-085

mension is consistently better than the other across086

different tasks.087

To fully leverage the merits of both dimen-088

sions, we propose Iterative Demonstration Selec-089

tion (IDS) for ICL (Fig. 2). IDS can iteratively090

select demonstration examples that are diverse but091

still have a strong correlation with the test sam-092

ple through zero-shot chain-of-thought reasoning093

(Zero-shot-CoT) (Kojima et al., 2022). Specifically,094

Zero-shot-CoT, e.g., “Let’s think step by step.”,095

is first applied to the test sample before selecting096

demonstrations to obtain a reasoning path. The097

training examples that are most semantically simi-098

lar to the generated reasoning path are then selected099

as demonstrations. They are prepended to the test100

sample for inference. Note that IDS ensures that101

the generated answer is accompanied by the rea-102

soning path through designed prompts. The new103

reasoning path is then used for extracting another104

set of demonstration examples by semantic simi-105

larity in the next iteration. After a few iterations,106

IDS adopts majority voting to obtain the final re-107

sult. Empirical results on tasks spanning reason-108

ing, question answering, topic classification, and109

sentiment analysis show that IDS can consistently110

outperform previous ICL demonstration selection111

baselines. In summary, our main contributions are:112

• We consider both the diversity and similarity113

dimensions of ICL demonstration selection for114

LLMs. We identify that the optimal dimension 115

for selecting demonstrations is task-specific and 116

propose Iterative Demonstration Selection (IDS) 117

to fully leverage the merits of both dimensions. 118

• With extensive experiments and analysis, we 119

demonstrate the effectiveness of IDS on a va- 120

riety of tasks. Our code base is available at 121

<redacted>. 122

2 Related Work 123

This work mainly explores how to select few-shot 124

in-context learning demonstrations for LLMs by 125

leveraging Zero-shot-CoT. In light of this, we re- 126

view four lines of research that form the basis of 127

this work: few-shot learning, in-context learning 128

basics, demonstration selection for in-context learn- 129

ing, and chain-of-thought reasoning. 130

2.1 Few-shot Learning 131

Few-shot learning aims to learn tasks with only a 132

few labeled samples, which results in a big chal- 133

lenge, i.e., over-fitting, for models as they typically 134

require large amounts of data for training. Prior 135

methods to address over-fitting mainly focused on 136

augmenting the few-shot data (Gao et al., 2020; 137

Qin and Joty, 2022), reducing the hypothesis space 138

(Triantafillou et al., 2017; Hu et al., 2018), or opti- 139

mizing the strategy for searching the best hypothe- 140

sis (Ravi and Larochelle, 2017; Finn et al., 2017). 141

More recently, LLMs have demonstrated strong 142

few-shot learning ability through in-context learn- 143

ing without any parameter updates (Brown et al., 144

2020). 145

2.2 In-context Learning 146

Brown et al. (2020) first showed that a frozen GPT- 147

3 model can achieve impressive results on a vari- 148

ety of few-shot NLP tasks through conditioning 149

on manually designed prompts consisting of task 150

descriptions and several demonstration examples. 151

Since then many efforts have been made on in- 152

context learning (ICL). Chen et al. (2022); Min 153

et al. (2022a); Wei et al. (2023a) demonstrated 154

that the ICL ability of language models can be 155

further improved through self-supervised or super- 156

vised training. Some analytical studies attempted 157

to understand what factors affect ICL performance 158

(Zhao et al., 2021; Shin et al., 2022; Wei et al., 159

2022a; Min et al., 2022b; Yoo et al., 2022; Wei 160

et al., 2023b) and why ICL works (Xie et al., 2022; 161

Olsson et al., 2022; Li et al., 2023b; Pan, 2023; 162
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Dai et al., 2023). Other ongoing research on ICL163

has also explored (i) demonstration designing, in-164

cluding demonstration selection (Liu et al., 2022;165

Rubin et al., 2022; Wang et al., 2023b), demonstra-166

tion ordering (Lu et al., 2022), and demonstration167

formatting (Wei et al., 2022b; Wang et al., 2022c;168

Zhou et al., 2023; Zhang et al., 2023a), (ii) appli-169

cations of ICL (Ding et al., 2022; Meade et al.,170

2023; Zheng et al., 2023), and (iii) ICL beyond text171

(Wang et al., 2023c; Huang et al., 2023; Zhu et al.,172

2023; Wang et al., 2023a).173

2.3 Demonstration Selection for In-context174

Learning175

The performance of ICL has been shown to be176

highly sensitive to the selection of demonstration177

examples (Zhao et al., 2021). Existing methods to178

solve this problem can be mainly divided into two179

categories. First, unsupervised methods rely on pre-180

defined metrics. Liu et al. (2022) proposed to select181

the closest neighbors as demonstrations. In con-182

trast, Levy et al. (2022) selected diverse demonstra-183

tions to improve in-context compositional general-184

ization. More recent studies have explored lever-185

aging the output distributions of language mod-186

els to select few-shot demonstrations (Wu et al.,187

2022; Nguyen and Wong, 2023; Li and Qiu, 2023).188

Second, supervised methods involve model train-189

ing. Rubin et al. (2022); Ye et al. (2023); Li et al.190

(2023a); Luo et al. (2023) proposed to learn to re-191

trieve demonstration examples. Wang et al. (2023b)192

posited LMs as implicit topic models to facilitate193

demonstration selection. In addition, some stud-194

ies (Zhang et al., 2022; Scarlatos and Lan, 2023)195

attempted to select demonstrations based on rein-196

forcement learning. However, most of the existing197

methods are not applicable to LLMs as model pa-198

rameters or output distributions are typically not199

available for LLMs (Sun et al., 2022), which mo-200

tivates us to propose our simple but effective ap-201

proach (IDS).202

2.4 Chain-of-Thought Reasoning203

Chain-of-thought (CoT) reasoning induces LLMs204

to produce intermediate reasoning steps before gen-205

erating the final answer (Wei et al., 2022b). De-206

pending on whether there are manually designed207

demonstrations, current CoT reasoning methods208

mainly include Manual-CoT and Zero-shot-CoT.209

In Manual-CoT, human-labeled reasoning paths210

are used to perform CoT reasoning (Wei et al.,211

2022b; Zhou et al., 2022; Wang et al., 2022b;212

CommonsenseQA BoolQ AGNews SST2

Similar-ICL-Consistency (Similarity) 76.0 85.0 90.0 94.0
Random-ICL-Voting (Diversity) 79.0 84.0 88.0 95.0

Table 1: Results of different methods on Common-
senseQA, BoolQ, AGNews and SST2. The optimal
dimension for selecting ICL demonstrations is task-
specific.

Li et al., 2022; Wang et al., 2022a). In contrast, 213

LLMs leverage self-generated rationales for rea- 214

soning in Zero-shot-CoT (Kojima et al., 2022; Ze- 215

likman et al., 2022; Zhang et al., 2023a; Diao et al., 216

2023). The ongoing research on CoT reasoning 217

has also explored (i) multimodal reasoning (Zhang 218

et al., 2023b; Wu et al., 2023), (ii) distilling knowl- 219

edge from LLMs (Ho et al., 2022; Fu et al., 2023), 220

and (iii) iterative optimization (Shinn et al., 2023; 221

Madaan et al., 2023; Paul et al., 2023). 222

3 Problem Formulation 223

Given the test set Dtest and the training set Dtrain, 224

the goal of ICL demonstration selection is to find 225

an optimal subset S = {(x1, y1), ..., (xk, yk)} (k- 226

shot) of Dtrain as demonstration examples for each 227

test sample (x̂i, ŷi) to maximize the overall task 228

performance on Dtest. More formally, the optimal 229

selection method h̃ is defined as: 230

h̃ = argmax
h∈H

∣Dtest∣
∑
i=1

δLLM([h(Dtrain,x̂i,ŷi),x̂i]),ŷi (1) 231

where H is the hypothesis space for searching 232

demonstration examples, h(Dtrain, x̂i, ŷi) refers to 233

demonstrations selected for (x̂i, ŷi) using h, [, ] 234

stands for concatenation, and δa,b is the Kronecker 235

delta function: δa,b = 1 if a equals b, otherwise 236

δa,b = 0. In this work, we aim to find the optimal 237

method h̃ by leveraging Zero-shot-CoT. 238

4 What Makes Good In-Context 239

Demonstrations? 240

As demonstrated in previous work (Zhao et al., 241

2021), the overall task performance is highly sen- 242

sitive to the selection method h. Different sets 243

of demonstration examples can yield significantly 244

different performance. For example, Zhang et al. 245

(2022) shows that the minimum and maximum ICL 246

performance due to random sampling differs by 247

> 30% on 4 classification tasks, which emphasizes 248

the importance of selecting good demonstrations 249

for LLMs. 250
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Similar-ICL-Consistency Random-ICL-Voting

Which choice is the correct answer to the question? Which choice is the correct answer to the question?

Examples:
Question: If you have cleaned off dust here it may be dif-
ficult to do your homework where? Answer Choices: (A)
desktop (B) closet (C) most buildings (D) surface of earth
(E) stove
Answer: A
Question: Where is dust likely to be under? Answer Choices:
(A) closet (B) ground (C) windowsill (D) attic (E) carpet
Answer: E
Question: Where would you find a dustbin that is being
used? Answer Choices: (A) utility closet (B) ground (C)
cupboard (D) broom closet (E) kitchen
Answer: E
Question: Dust accumulates where? Answer Choices: (A)
ceiling (B) library (C) surface of earth (D) most buildings
(E) desktop
Answer: D

Examples:
Question: She had a busy schedule, she had to run errands
and pick up the kids the second she did what? Answer
Choices: (A) make time for (B) take money (C) go outdoors
(D) leave work (E) field
Answer: D
Question: What is the worst outcome of an injury? Answer
Choices: (A) cause death (B) cause bleeding (C) falling
down (D) become infected (E) claim insurance
Answer: A
Question: Mom said that Sarah should stay in bed until she
was able to go to school again.. What did mom say to Sarah
when she tried to get up? Answer Choices: (A) you’re sick
(B) were sick (C) more rest (D) rest more (E) get back under
the covers
Answer: A
Question: John got a raise, but he lost rank. Overall, it was a
good what? Answer Choices: (A) demotion (B) push down
(C) go off strike (D) lower (E) go off strike
Answer: A

The response should follow the format: Answer: {A, B, C,
D or E}

The response should follow the format: Answer: {A, B, C,
D or E}

Here is the test data. Here is the test data.
Question: John wanted to clean all of the dust out of his
place before settling down to watch his favorite shows. What
might he hardest do dust? Answer Choices: (A) closet (B)
under the bed (C) television (D) attic (E) most buildings

Question: John wanted to clean all of the dust out of his
place before settling down to watch his favorite shows. What
might he hardest do dust? Answer Choices: (A) closet (B)
under the bed (C) television (D) attic (E) most buildings

Answer: E ✗ Answer: D ✓

Table 2: Examples of Similar-ICL-Consistency (first decoding path) and Random-ICL-Voting (first run) for
constructing demonstration examples. The upper part is the input to LLMs, including few-shot demonstrations, and
the lower part is the predicted answer. Similar-ICL-Consistency gives the wrong answer ‘most buildings’ which is
actually the output of the final demonstration example, indicating that the decision process of the model is misled by
this similar sample.

A natural question is: what makes good in-251

context demonstrations? For LLMs, it is still a252

common practice to select a subset S consisting of253

examples that are diverse or semantically similar254

to the test sample as demonstrations, i.e., consid-255

ering the diversity or similarity of S. To investi-256

gate whether one dimension is consistently better257

than the other one across different tasks, we con-258

duct some pilot experiments on CommonsenseQA259

(Talmor et al., 2019), BoolQ (Clark et al., 2019),260

AGNews (Zhang et al., 2015) and SST2 (Socher261

et al., 2013). Specifically, we randomly sample262

100 examples from the original test set for experi-263

ments and conduct 4-shot learning using GPT-3.5264

(gpt-3.5-turbo).265

Following Zhang et al. (2023a), we use Sentence-266

BERT (Reimers and Gurevych, 2019) to encode267

all samples. For each test sample, the Similar-268

ICL method selects the top-4 similar training data269

based on cosine similarity while the Random-ICL270

method randomly samples 4 training examples as271

few-shot demonstrations. Inspired by Wang et al. 272

(2022b), we apply self-consistency with 3 decod- 273

ing paths (temperature 0.7) to Similar-ICL (named 274

Similar-ICL-Consistency) and run Random-ICL 275

3 times before majority voting (named Random- 276

ICL-Voting) to improve the robustness. 277

The results of different methods on four datasets 278

are reported in Table 1. We can observe that the 279

diversity dimension outperforms the similarity di- 280

mension on CommonsenseQA and SST2 while the 281

similarity dimension is superior to the diversity di- 282

mension on BoolQ and AGNews. Therefore, the 283

optimal dimension for selecting demonstration ex- 284

amples is task-specific. Thus, it is unreasonable to 285

claim that one dimension is consistently better than 286

the other one in ICL demonstration selection. 287

Intuitively, semantically similar examples can 288

help the model correctly answer the test query 289

as they might share similar input-output patterns 290

with the test sample which could unleash GPT- 291

3.5’s power of text generation. To further under- 292

4



stand why the similarity dimension underperforms293

the diversity dimension on CommonsenseQA, we294

present a case study in Table 2. We can see that295

the answer of the final demonstration example296

extracted by Similar-ICL-Consistency, i.e., ‘most297

buildings’ is also in the options list of the test sam-298

ple, which misleads the decision process of the299

model, leading to a wrong answer. In addition, the300

selected demonstrations might not include enough301

important information as high similarity also re-302

sults in redundancy.303

Considering the strengths and weaknesses of304

both dimensions, we aim to design a method that305

can select demonstration examples that are di-306

verse (minimizing misleading information) but still307

strongly correlated with the test sample, which is308

introduced in the next section.309

5 Iterative Demonstration Selection310

Based on the observations and considerations in311

§4, we introduce Iterative Demonstration Selec-312

tion (IDS) for ICL demonstration selection (see313

Fig. 2 for an illustration), which can fully leverage314

the merits of both dimensions, i.e., diversity and315

similarity. Intuitively, the demonstrations that are316

similar to the reason for answering a sample are317

strongly correlated with this sample. Therefore, we318

propose to incorporate zero-shot chain-of-thought319

reasoning (Zero-shot-CoT) into IDS to iteratively320

select demonstration examples that are diverse but321

still have a strong correlation with the test sample.322

Specifically, for each test sample (x̂i, ŷi), IDS323

mainly consists of four steps:324

1. We apply Zero-shot-CoT, i.e., “Let’s think step325

by step.” to the test sample (x̂i, ŷi) before select-326

ing demonstrations to obtain a reasoning path327

R.328

2. The reasoning path R is then used to329

select top-k (k is the number of shot)330

most semantically similar training examples331

{(x1, y1), ..., (xk, yk)} as few-shot demonstra-332

tions. We use Sentence-BERT (Reimers and333

Gurevych, 2019) to encode the reasoning path334

R and training examples to obtain the contex-335

tual representations and use cosine similarity to336

measure the similarity between representations.337

3. The selected k training examples338

{(x1, y1), ..., (xk, yk)} are then prepended to339

the test sample (x̂i, ŷi) for ICL. During infer-340

ence, we ensure that the generated answer Â341

Algorithm 1 Selection process of IDS

Require: Training set Dtrain, test set Dtest, LLMθ , number of
demonstrations k, number of iterations q and answer set
Âall = ∅

1: ENCODE all samples in Dtrain using Sentence-BERT ▷
Encode training set

2: for (x̂i, ŷi) in Dtest do
3: APPLY Zero-shot-CoT to (x̂i, ŷi) to obtain the rea-

soning path R ▷
Zero-shot-CoT

4: for j = 1, . . . , q do
5: ENCODE R using Sentence-BERT ▷ Encode

reasoning path
6: USE R to select top-k most similar examples S =

{(x1, y1), ..., (xk, yk)} from Dtrain as demonstrations ▷
KNN selection

7: (Â, R̂) = LLMθ(S, x̂i) ▷ ICL
8: R = R̂, Âall = Âall ∪ {Â} ▷ Update reasoning

path and answer set
9: end for

10: ADOPT majority voting for Âall to obtain the final
result Âfinal for the test sample (x̂i, ŷi) ▷ Majority
voting

11: end for

is accompanied by its corresponding reasoning 342

path R̂ through designed prompts, e.g., “The 343

response should follow the format: Sentiment: 344

{positive or negative}\nReason: {reason}”. 345

Note that Zero-shot-CoT is also applied in 346

this step to improve the quality of generated 347

reasoning paths. After ICL, we go back to Step 348

2 for iterations using the new reasoning path R̂. 349

4. After q rounds of iterations between Step 2 and 350

3, we adopt majority voting on all Â to obtain 351

the final result Âfinal. 352

Obviously, the selected demonstration examples 353

are strongly correlated with the original test sam- 354

ple, i.e., achieving similarity, as they are selected 355

by the generated reasoning paths. And they can 356

be different during iterations to achieve diversity 357

because the reasoning paths vary in different it- 358

erations. Note that there is no reasoning path in 359

few-shot demonstrations (as shown in the green 360

part in Fig. 2). The reasoning path only exists in 361

the output of LLMs. 362

In addition, we illustrate the whole selection 363

process in Alg. 1 and show the instructions and 364

input formats of different types of tasks for ICL in 365

Appendix A.1. 366

6 Experiments 367

In this section, we first describe the tasks and 368

datasets, and then introduce methods compared 369
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What is the sentiment of the review? Positive or 
negative?
The response should follow the format: Sentiment: 
{positive or negative}\nReason: {reason}
Review: I like this movie.
Let's think step by step.

Task description

Frozen 
LLM

Sentiment: positive
Reason: The verb 'like' expresses a positive 
emotion...Therefore, the sentiment of the given 
review is positive.

KNN 
selection

What is the sentiment of the review? Positive or 
negative?
Examples:
Review: I love the theme song of this movie! 
Sentiment: Positive

...
Review: So great, I want to watch it again!
Sentiment: Positive
The response should follow the format: Sentiment: 
{positive or negative}\nReason: {reason}
Here is the test data.
Review: I like this movie.
Let's think step by step.

Training 
examples

Sentiment: positive
Reason: 'like' expresses similar emotions to 
'love'...The correct sentiment is positive.

Update reasoning path for next iteration

1

2

3

Majority 
voting

4

Output format instruction
Test sample

Zero-shot-CoT trigger
Few-shot demonstrations

Reasoning path

Figure 2: Illustration of our proposed Iterative Demonstration Selection (IDS). IDS first applies Zero-shot-CoT
to the test sample to obtain a reasoning path, which is then used to select few-shot demonstrations from training
examples through KNN. The selected demonstration examples are prepended to the test sample for ICL. To obtain
the new reasoning path for extracting another set of demonstrations in the next iteration, an instruction for output
format is inserted before the test sample. After several iterations, IDS uses majority voting to obtain the final result.

in our work. Finally, we present the experimental370

results.371

6.1 Experimental Setup372

Tasks and Datasets We mainly investigate 6 dif-373

ferent datasets covering 4 representative task cate-374

gories: reasoning (commonsense reasoning (Com-375

monsenseQA (Talmor et al., 2019)), mathematical376

reasoning (GSM8K (Cobbe et al., 2021)) and logi-377

cal reasoning (LogiQA (Liu et al., 2020))), question378

answering (BoolQ (Clark et al., 2019)), topic clas-379

sification (AGNews (Zhang et al., 2015)) and sen-380

timent analysis (SST2 (Socher et al., 2013)). For381

each dataset, we randomly sample at most 10000382

examples from the original training set as Dtrain and383

at most 2000 test examples as Dtest for evaluating384

the performance of selected demonstrations. The385

detailed information of different datasets is shown386

in Appendix A.2. To reduce the randomness, we387

run every experiment five times with different ran-388

dom seeds (resulting in different training and test389

samples if not using the whole set) and report the 390

average results. Without specification, we use k = 391

4 number of demonstrations following Wang et al. 392

(2023b) and set the number of iterations q to 3. 393

Methods Compared We mainly use GPT-3.5 394

(gpt-3.5-turbo) as the LLM and compare our IDS 395

with the following methods in the experiments for 396

selecting ICL demonstrations: 397

• Top-k-Consistency (Liu et al., 2022) selects the 398

top-k semantically similar examples from the 399

training set Dtrain as demonstrations for each test 400

sample and applies self-consistency (Wang et al., 401

2022b) with q decoding paths (temperature 0.7) 402

to match the number of iterations. Following 403

Zhang et al. (2023a), all samples are encoded by 404

Sentence-BERT (Reimers and Gurevych, 2019) 405

to obtain contextual representations for calculat- 406

ing the cosine similarity. 407

• Random-Voting randomly selects k examples 408

from Dtrain as few-shot demonstrations for every 409
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Method BoolQ CommonsenseQA GSM8K LogiQA AGNews SST2 Average

G-fair-Prompting 84.8±0.7 75.5±0.3 76.9±0.6 43.8±0.4 88.9±1.0 94.6±0.3 77.4±0.2
Skill-KNN 85.9±0.5 75.2±0.2 76.5±0.3 44.6±0.2 88.7±0.9 94.9±0.2 77.6±0.1
Top-k-Consistency 87.1±0.2 74.5±0.2 76.1±0.5 45.7±0.4 89.3±0.8 95.2±0.4 78.0±0.1
Random-Voting 87.3±0.6 77.0±0.2 75.6±0.4 45.1±0.3 87.0±1.6 95.6±0.1 77.9±0.2
Cluster-Voting 86.4±0.7 76.5±0.3 76.8±0.3 44.1±0.3 86.8±1.2 95.2±0.4 77.6±0.2
IDS 87.8±0.8 78.1±0.1 78.5±0.4 46.9±0.2 89.8±0.8 95.8±0.2 79.5±0.1

Table 3: Accuracy (%) of different methods on 6 datasets. Bold indicates the best result. IDS is consistently better
than all previous baselines.

2 4 6 8

Top-k-Consistency 77.9 78.2 78.4 78.4
IDS 79.1 79.6 79.4 79.3

Table 4: Accuracy (%) of Top-k-Consistency and IDS
with different numbers of demonstrations k.

test sample and runs experiments q times before410

majority voting.411

• Cluster-Voting partitions Dtrain into k clusters412

and selects a representative example from each413

cluster to form demonstrations. Following Zhang414

et al. (2023a), we choose the sample closest to415

the centroid in each cluster as the representative416

example. Same as Random-Voting, after run-417

ning experiments q times, Cluster-Voting adopts418

majority voting to obtain the final result.419

Besides, we also compare IDS with two latest420

ICL demonstration selection approaches: G-fair-421

Prompting (Ma et al., 2023) and Skill-KNN (An422

et al., 2023b). Note that we find that simultane-423

ously generating answers and reasoning paths can424

improve the ICL performance in general even if425

the target task is not a reasoning task in the conven-426

tional sense, e.g., sentiment analysis. Therefore, we427

apply the same prompt, e.g., “The response should428

follow the format: Sentiment: {positive or nega-429

tive}\nReason: {reason}”, and Zero-shot-CoT to430

baseline methods.431

6.2 Main Results432

Table 3 shows the average performance scores433

of different methods on all investigated datasets.434

From the results, we can observe that435

• Our proposed IDS consistently outperforms pre-436

vious baselines on all datasets with a negligible437

increase in API request cost (Zero-shot-CoT in the438

first step), which demonstrates that our method can439

indeed effectively and efficiently select better ICL440

1 3 5 7 Average75

76

77

78

79

80

81

82

A
cc

ur
ac

y 
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)

Top-k-Consistency IDS

Figure 3: Accuracy (%) of Top-k-Consistency and IDS
with different numbers of reasoning paths or iterations.

demonstration examples. On average, IDS yields 441

about 1.5% performance boost compared to the 442

best baseline as it can fully leverage the merits of 443

both selection dimensions (diversity and similarity). 444

In particular, IDS outperforms Top-k-Consistency 445

by 3.6% on CommonsenseQA and Random-Voting 446

by 2.9% on GSM8K. 447

• Cluster-Voting underperforms Random-Voting 448

and Top-k-Consistency on most datasets, which 449

is inconsistent with the conclusion in AutoCoT 450

(Zhang et al., 2023a). As shown in Zhang et al. 451

(2023a), selecting a representative sample from 452

each cluster and generating the corresponding rea- 453

soning chain using Zero-shot-CoT to construct 454

chain-of-thought demonstrations can achieve better 455

performance than selection by similarity or random 456

selection. We speculate that this is because there is 457

no rationale in ICL demonstration examples except 458

GSM8K, which eliminates the advantage of cluster- 459

based methods in mitigating misleading caused by 460

rationale errors. In addition, Cluster-Voting selects 461

demonstrations at the dataset level, i.e., all test sam- 462

ples use the same demonstration examples, which 463

is not as flexible as other instance-level methods. 464

6.3 Analysis 465

Different Numbers of Demonstrations While 466

we use k = 4 demonstration examples for all ex- 467
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gpt-3.5-turbo gpt-4

Top-k-Consistency 78.2 80.8
IDS 79.6 82.1

Table 5: Accuracy (%) of Top-k-Consistency and IDS
with different LLMs (gpt-3.5-turbo and gpt-4). For gpt-
4, we randomly sample 200 test examples per dataset
due to the high cost.

BoolQ GSM8K

Top-k-Consistency 84.2 49.6
IDS 85.4 51.4

Table 6: Accuracy (%) of different methods with Llama-
2-70b-chat.

periments, we also evaluate the effectiveness of468

IDS with different k. We randomly choose one469

seed for experiments and report the average results470

of the 6 datasets in Table 4. We can see that IDS471

consistently outperforms the best baseline Top-k-472

Consistency with different numbers of demonstra-473

tions. In addition, more demonstrations do not474

guarantee better ICL performance, which is consis-475

tent with the observation in Wang et al. (2023b).476

Different Numbers of Iterations Our experi-477

ments and analysis so far use q = 3 iterations. To478

verify whether the performance gain of IDS is con-479

sistent across different numbers of iterations, we480

conduct controlled experiments with q = {1, 5, 7}.481

The average results of the 6 datasets with a ran-482

domly selected seed are reported in Fig. 3. IDS483

consistently outperforms Top-k-Consistency with484

different q. Interestingly, the performance of ICL485

does not always improve with the number of itera-486

tions, which might be because increased iterations487

can also lead to unnecessary noise.488

Robustness to Model Types To demonstrate the489

robustness of IDS to model types, we conduct con-490

trolled experiments with GPT-4 (gpt-4). Specifi-491

cally, we randomly select one seed and sample 200492

test examples per dataset for experiments due to the493

expensive cost. From the average results reported494

in Table 5, we can observe that IDS still achieves495

better performance than Top-k-Consistency when496

using GPT-4 as the LLM, showing its robustness497

to different LLMs.498

Generalization to Open-source LLMs To bet-499

ter verify the generalization ability of IDS, we use500

Iterative Demonstration Selection Top-k-Consistency
Question: The homeowner frowned at the price 
of gas, what did he have to do later? Answer 
Choices: (A) own home (B) mail property tax 
payments (C) board windows (D) cut grass (E) 
receive mail
Iteration 1: Answer: B\nReason: ...
Iteration 2: Answer: D\nReason: ...
Iteration 3: Answer: D\nReason: ...

Question: The homeowner frowned at the price 
of gas, what did he have to do later? Answer 
Choices: (A) own home (B) mail property tax 
payments (C) board windows (D) cut grass (E) 
receive mail
Response: Answer: B\nReason: ...; Answer: 
B\nReason: ...; Answer: B\nReason: ...

Label: D Label: D

Iterative Demonstration Selection Random-Voting
Input: Texas entrepreneur wants to kick computer 
gaming up to the next level by offering players a 
chance at some real-live killing via mouse and 
modem.

Input: Texas entrepreneur wants to kick computer 
gaming up to the next level by offering players a 
chance at some real-live killing via mouse and 
modem.

Label: Technology Label: Technology

Iteration 1
Examples: 
Input: Six days a week, teens crowd the Blue 
Screen Gaming cybercafe to hunt each other 
down with assault rifles inside virtual computer 
worlds...
Topic: Technology

...
Response: Topic: Technology\nReason: ...

Iteration 2: ... Response: Topic: Technology ...
Iteration 3: ... Response: Topic: Technology ...

Iteration 1
Examples: 
Input: The Boston Celtics added a healthy Tom 
Gugliotta and deleted injured Delonte West. Tom, 
34, was activated Wednesday from the injured list 
after missing seven games ...
Topic: Sports

...
Response: Topic: Sports\nReason: ...

Iteration 2: ... Response: Topic: Business ...
Iteration 3: ... Response: Topic: Sports ...

Figure 4: Several case studies of model responses. We
color correct outputs in green, and wrong outputs in red.

vLLM (Kwon et al., 2023) to serve a Llama-2-70b- 501

chat model (Touvron et al., 2023) for experiments 502

and compare IDS with the best baseline Top-k- 503

Consistency on two datasets: BoolQ and GSM8K. 504

We randomly sample 500 test examples for exper- 505

iments and report the results in Table 6, which 506

demonstrates that IDS can successfully generalize 507

to open-source LLMs. 508

Case Study To further understand the advantage 509

of IDS, we show several cases in Fig. 4. As shown 510

in the upper part of the figure, IDS can iteratively 511

select more diverse demonstration examples than 512

Top-k-Consistency which may be able to correct 513

errors from previous iterations. Compared with 514

Random-Voting, IDS can find examples that share 515

more similar input-output patterns with the test 516

sample to induce the LLM to generate correct an- 517

swers (the lower part of the figure). 518

In addition, we show the robustness of IDS to 519

different embedding models and the analysis of 520

average similarity scores in Appendix A.3 ∼ A.4, 521

respectively. 522

7 Conclusion 523

In this work, we have introduced Iterative Demon- 524

stration Selection (IDS) that can iteratively select 525

examples that are diverse but still strongly correlate 526

with the test sample as demonstrations by leverag- 527

ing Zero-shot-CoT to improve the performance of 528

in-context learning (ICL). Extensive experimental 529

results and analysis show that IDS can consistently 530

outperform previous ICL demonstration selection 531

baselines. 532
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Limitations533

This work has several limitations. First, due to the534

inference cost of ChatGPT1, we do not conduct535

experiments on the entire test set. Besides, we536

include 6 datasets covering 4 different task types537

in this work. A further improvement could be to538

explore more diverse types of tasks.539
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A Appendix 940

A.1 Instructions and Input Formats of 941

Different Tasks 942

We show the instructions and input formats of 943

different types of tasks for in-context learning in 944

Fig. 5. 945

A.2 Datasets Information 946

We show the detailed information of different 947

datasets in Table 7. 948

A.3 Robustness to Embedding Models 949

Instead of using Sentence-BERT, we also ex- 950

plore adopting the OpenAI embedding model (text- 951

embedding-ada-002) as the encoder. Specifically, 952

we conduct experiments on 3 datasets: BoolQ, 953

CommonsenseQA and GSM8K. For each dataset, 954

we randomly sample 500 test examples and com- 955

pare IDS with the baseline Top-k-Consistency. The 956

results reported in Table 8 demonstrate IDS’s ro- 957

bustness to different embedding models. 958

A.4 Average Similarity Scores 959

In Table 9, we report the average similarity scores 960

between test samples and the corresponding demon- 961

strations of different methods. Specifically, we ran- 962

domly select 200 test examples for each dataset and 963
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What is the sentiment of the review? Positive or negative?
Examples:
Review: a captivating drama
Sentiment: Positive

...
The response should follow the format: Sentiment: {positive or negative}\nReason: {reason}
Here is the test data.
Review: a tender, heartfelt family drama.
Let's think step by step.

Sentiment Analysis
What is the topic of the input? World, sports, business or technology?
Examples:
Input: Cavs earn fourth straight win ...
Topic: Sports

...
The response should follow the format: Topic: {world, sports, business or technology}\nReason: {reason}
Here is the test data.
Input: Microsoft intros new mice, keyboards ...
Let's think step by step.

Topic Classification

Please answer the question based on the context.
Examples:
Context: Sikma was voted as one of the ...
Question: is jack sikma in the hall of fame
Answer: Yes

...
The response should follow the format: Answer: {yes or no}\nReason: {reason}
Here is the test data.
Context: Blue is a playful female puppy ...
Question: is blue off of blue's clues a girl
Let's think step by step.

Question Answering

Which choice is the correct answer to the question?
Examples:
Question: If you poke yourself ... Answer Choices: (A) have fun ...
Answer: C

...
The response should follow the format: Answer: {A, B, C, D or E}\nReason: {reason}
Here is the test data.
Question: How can I store ... Answer Choices: ...
Let's think step by step.

Commonsense Reasoning
Please answer the following mathematical question with Arabic numerals.
Examples:
Question: Eric, Ben, and Jack have some money. Eric has $10 less than Ben ...
Answer: Ben has 26-9=17 dollars ... The answer is 50

...
The response should follow the format: {reason} The answer is {arabic numerals}
Here is the test data.
Question: Kim raises $320 more than Alexandra, who raises $430, and Maryam raises $400 more than 
Sarah, who raises $300. How much money did they all raise in total?

Mathematical Reasoning

Which choice is the correct answer to the question?
Examples:
Context: Li Lin is a civil servant, but not a college graduate.
Question: Which of the following is necessarily true? Answer Choices: (A) Not all university ...
Answer: B

...
The response should follow the format: Answer: {A, B, C or D}\nReason: {reason}
Here is the test data.
Context: The people in Harbin are all northerners, and some people in Harbin are not workers.
Question: If the above proposition is true, then which answer must be true? Answer Choices: ...
Let's think step by step.

Logical Reasoning

Figure 5: Instructions and input formats of four different categories of tasks (sentiment analysis, topic classification,
reasoning, and question answering) for ICL. For Zero-shot-CoT in the first step of IDS, there is no demonstration
example and the instruction “Here is the test data.”.

BoolQ CommonsenseQA GSM8K LogiQA AGNews SST2

# Training Samples 9427 (full) 9741 (full) 7473(full) 7376(full) 10000 10000
# Test Samples 2000 1221 (full) 1000 500 1000 872 (full)

Table 7: Deailed information of different datasets. # refers to ‘the number of’ and ‘full’ means the whole set. Note
that different random seeds do not result in different samples if the whole set is used.

BoolQ CommonsenseQA GSM8K

Top-k-Consistency 86.0 75.4 75.8
IDS 87.2 78.0 77.6

Table 8: Accuracy (%) of different methods with Ope-
nAI embedding model (text-embedding-ada-002) on
three datasets.

Top-k-Consistency IDS Random-Voting

Average Similarity Score 0.69 0.46 0.31

Table 9: Average similarity scores between test exam-
ples and the corresponding selected demonstrations of
three methods (Top-k-Consistency, IDS and Random-
Voting).

use Sentence-BERT to obtain contextual represen-964

tations for calculating similarity scores. We can see965

that the average similarity score of IDS is between966

that of Top-k-Consistency and Random-Voting, in-967

dicating that it can indeed strike a balance between968

two selection dimensions.969
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