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Abstract

Spurred by advancements in scale, large lan-
guage models (LLMs) have demonstrated
strong few-shot learning ability via in-context
learning (ICL). However, the performance of
ICL has been shown to be highly sensitive to
the selection of few-shot demonstrations. Se-
lecting the most suitable examples as context
remains an ongoing challenge and an open
problem. Existing literature has highlighted the
importance of selecting examples that are di-
verse or semantically similar to the test sample
while ignoring the fact that the optimal selec-
tion dimension, i.e., diversity or similarity, is
task-specific. Leveraging the merits of both
dimensions, we propose Iterative Demonstra-
tion Selection (IDS). Using zero-shot chain-of-
thought reasoning (Zero-shot-CoT), IDS iter-
atively selects examples that are diverse but
still strongly correlated with the test sample as
ICL demonstrations. Specifically, IDS applies
Zero-shot-CoT to the test sample before demon-
stration selection. The output reasoning path
is then used to choose demonstrations that are
prepended to the test sample for inference. The
generated answer is followed by its correspond-
ing reasoning path for extracting a new set of
demonstrations in the next iteration. After sev-
eral iterations, IDS adopts majority voting to
obtain the final result. Through extensive exper-
iments on tasks including reasoning, question
answering, topic classification, and sentiment
analysis, we demonstrate that IDS can consis-
tently outperform existing ICL demonstration
selection methods.

1 Introduction

With the recent advancements in scaling up model
parameters, large language models (LLMs) show-
case promising results on a variety of few-shot
tasks through in-context learning (ICL), where the
model is expected to directly generate the output of
the test sample without updating parameters. This
is achieved by conditioning on a manually designed

Review: Good movie! Sentiment: Positive

Review: It is terrible. Sentiment: Negative

Review: The movie is great! Sentiment: Positive

Review: | like this movie. Sentiment:

Frozen LLM

Positive

Figure 1: Illustration of in-context learning (ICL) on
sentiment analysis. A frozen large language model di-
rectly generates the sentiment ‘Positive’ for the test
sample ‘I like this movie.” by taking the demonstrations
and the test sample as input.

prompt consisting of an optional task description
and a few demonstration examples (Brown et al.,
2020). Fig. 1 shows an example describing how
LLMs perform ICL on the sentiment analysis task.
Given a few review-sentiment pairs as demonstra-
tions, ICL combines them with the test sample as
input, to the LLM for inference. The output, i.e.,
‘Positive’, is generated by the model autoregres-
sively without any parameter updates.

Despite the effectiveness, the performance of
ICL has been shown to be highly sensitive to the
selection of demonstration examples (Zhao et al.,
2021). Different sets of demonstrations can yield
performance ranging from nearly random to com-
parable with state-of-the-art models (Gao et al.,
2021; Lu et al., 2022). To alleviate the above is-
sue, researchers in ICL have proposed a number
of methods to select a set of examples as few-shot
demonstrations (Rubin et al., 2022; Liu et al., 2022;
Li and Qiu, 2023; Wang et al., 2023b; Li et al.,
2023a; Ma et al., 2023; An et al., 2023b). Neverthe-



less, most of the existing approaches are only ap-
plicable to small language models as they typically
require accessing model parameters or detailed out-
put distributions which are usually not available
for LLMs (Sun et al., 2022). Therefore, it is still
a common practice to randomly select examples
or select examples that are semantically similar to
the test sample as demonstrations for LLMs, i.e.,
considering diversity or similarity. While several
approaches investigate the combination of similar-
ity and diversity when prompting with explanations
or exploring compositional generalization (Ye et al.,
2022; An et al., 2023a), it remains unclear to us
how to determine and leverage the optimal dimen-
sion for different tasks in ICL.

Actually, the optimal dimension for selecting
demonstration examples is task-specific. As we
will show in §4, the diversity dimension is superior
to the similarity dimension on CommonsenseQA
and SST2 while the similarity dimension outper-
forms the diversity dimension on AGNews and
BoolQ. Thus, it is unreasonable to claim that one di-
mension is consistently better than the other across
different tasks.

To fully leverage the merits of both dimen-
sions, we propose Iterative Demonstration Selec-
tion (IDS) for ICL (Fig. 2). IDS can iteratively
select demonstration examples that are diverse but
still have a strong correlation with the test sam-
ple through zero-shot chain-of-thought reasoning
(Zero-shot-CoT) (Kojima et al., 2022). Specifically,
Zero-shot-CoT, e.g., “Let’s think step by step.”,
is first applied to the test sample before selecting
demonstrations to obtain a reasoning path. The
training examples that are most semantically simi-
lar to the generated reasoning path are then selected
as demonstrations. They are prepended to the test
sample for inference. Note that IDS ensures that
the generated answer is accompanied by the rea-
soning path through designed prompts. The new
reasoning path is then used for extracting another
set of demonstration examples by semantic simi-
larity in the next iteration. After a few iterations,
IDS adopts majority voting to obtain the final re-
sult. Empirical results on tasks spanning reason-
ing, question answering, topic classification, and
sentiment analysis show that IDS can consistently
outperform previous ICL demonstration selection
baselines. In summary, our main contributions are:

* We consider both the diversity and similarity
dimensions of ICL demonstration selection for

LLMs. We identify that the optimal dimension
for selecting demonstrations is task-specific and
propose Iterative Demonstration Selection (IDS)
to fully leverage the merits of both dimensions.

* With extensive experiments and analysis, we
demonstrate the effectiveness of IDS on a va-
riety of tasks. Our code base is available at
<redacted>.

2 Related Work

This work mainly explores how to select few-shot
in-context learning demonstrations for LLMs by
leveraging Zero-shot-CoT. In light of this, we re-
view four lines of research that form the basis of
this work: few-shot learning, in-context learning
basics, demonstration selection for in-context learn-
ing, and chain-of-thought reasoning.

2.1 Few-shot Learning

Few-shot learning aims to learn tasks with only a
few labeled samples, which results in a big chal-
lenge, i.e., over-fitting, for models as they typically
require large amounts of data for training. Prior
methods to address over-fitting mainly focused on
augmenting the few-shot data (Gao et al., 2020;
Qin and Joty, 2022), reducing the hypothesis space
(Triantafillou et al., 2017; Hu et al., 2018), or opti-
mizing the strategy for searching the best hypothe-
sis (Ravi and Larochelle, 2017; Finn et al., 2017).
More recently, LLMs have demonstrated strong
few-shot learning ability through in-context learn-
ing without any parameter updates (Brown et al.,
2020).

2.2 In-context Learning

Brown et al. (2020) first showed that a frozen GPT-
3 model can achieve impressive results on a vari-
ety of few-shot NLP tasks through conditioning
on manually designed prompts consisting of task
descriptions and several demonstration examples.
Since then many efforts have been made on in-
context learning (ICL). Chen et al. (2022); Min
et al. (2022a); Wei et al. (2023a) demonstrated
that the ICL ability of language models can be
further improved through self-supervised or super-
vised training. Some analytical studies attempted
to understand what factors affect ICL performance
(Zhao et al., 2021; Shin et al., 2022; Wei et al.,
2022a; Min et al., 2022b; Yoo et al., 2022; Wei
et al., 2023b) and why ICL works (Xie et al., 2022;
Olsson et al., 2022; Li et al., 2023b; Pan, 2023;


<redacted>

Dai et al., 2023). Other ongoing research on ICL
has also explored (i) demonstration designing, in-
cluding demonstration selection (Liu et al., 2022;
Rubin et al., 2022; Wang et al., 2023b), demonstra-
tion ordering (Lu et al., 2022), and demonstration
formatting (Wei et al., 2022b; Wang et al., 2022c;
Zhou et al., 2023; Zhang et al., 2023a), (i7) appli-
cations of ICL (Ding et al., 2022; Meade et al.,
2023; Zheng et al., 2023), and (iif) ICL beyond text
(Wang et al., 2023c; Huang et al., 2023; Zhu et al.,
2023; Wang et al., 2023a).

2.3 Demonstration Selection for In-context
Learning

The performance of ICL has been shown to be
highly sensitive to the selection of demonstration
examples (Zhao et al., 2021). Existing methods to
solve this problem can be mainly divided into two
categories. First, unsupervised methods rely on pre-
defined metrics. Liu et al. (2022) proposed to select
the closest neighbors as demonstrations. In con-
trast, Levy et al. (2022) selected diverse demonstra-
tions to improve in-context compositional general-
ization. More recent studies have explored lever-
aging the output distributions of language mod-
els to select few-shot demonstrations (Wu et al.,
2022; Nguyen and Wong, 2023; Li and Qiu, 2023).
Second, supervised methods involve model train-
ing. Rubin et al. (2022); Ye et al. (2023); Li et al.
(2023a); Luo et al. (2023) proposed to learn to re-
trieve demonstration examples. Wang et al. (2023b)
posited LMs as implicit topic models to facilitate
demonstration selection. In addition, some stud-
ies (Zhang et al., 2022; Scarlatos and Lan, 2023)
attempted to select demonstrations based on rein-
forcement learning. However, most of the existing
methods are not applicable to LLMs as model pa-
rameters or output distributions are typically not
available for LLMs (Sun et al., 2022), which mo-
tivates us to propose our simple but effective ap-
proach (IDS).

2.4 Chain-of-Thought Reasoning

Chain-of-thought (CoT) reasoning induces LLMs
to produce intermediate reasoning steps before gen-
erating the final answer (Wei et al., 2022b). De-
pending on whether there are manually designed
demonstrations, current CoT reasoning methods
mainly include Manual-CoT and Zero-shot-CoT.
In Manual-CoT, human-labeled reasoning paths
are used to perform CoT reasoning (Wei et al.,
2022b; Zhou et al., 2022; Wang et al., 2022b;

| CommonsenseQA | BoolQ | AGNews | SST2

Similar-ICL-Consistency (Similarity) 76.0 85.0 90.0 94.0
Random-ICL-Voting (Diversity) 79.0 84.0 88.0 95.0

Table 1: Results of different methods on Common-
senseQA, BoolQ, AGNews and SST2. The optimal
dimension for selecting ICL demonstrations is task-
specific.

Li et al., 2022; Wang et al., 2022a). In contrast,
LLMs leverage self-generated rationales for rea-
soning in Zero-shot-CoT (Kojima et al., 2022; Ze-
likman et al., 2022; Zhang et al., 2023a; Diao et al.,
2023). The ongoing research on CoT reasoning
has also explored (i) multimodal reasoning (Zhang
et al., 2023b; Wu et al., 2023), (ii) distilling knowl-
edge from LLMs (Ho et al., 2022; Fu et al., 2023),
and (iii) iterative optimization (Shinn et al., 2023;
Madaan et al., 2023; Paul et al., 2023).

3 Problem Formulation

Given the test set Dy and the training set Diin,
the goal of ICL demonstration selection is to find
an optimal subset S = {(z1,v1), ..., (zg, yr)} (k-
shot) of Dy, as demonstration examples for each
test sample (;, ;) to maximize the overall task
performance on Dy.,. More formally, the optimal
selection method % is defined as:

|Dlesl |

h = arg max
heH i=1

OLLM([A(Dyin1,5:),8:1),9 (1)

where 7 is the hypothesis space for searching
demonstration examples, h(Dyin, 2, ;) refers to
demonstrations selected for (z;,7;) using h, [, ]
stands for concatenation, and 9, j is the Kronecker
delta function: d,; = 1 if a equals b, otherwise
dq,p = 0. In this work, we aim to find the optimal
method h by leveraging Zero-shot-CoT.

4 What Makes Good In-Context
Demonstrations?

As demonstrated in previous work (Zhao et al.,
2021), the overall task performance is highly sen-
sitive to the selection method h. Different sets
of demonstration examples can yield significantly
different performance. For example, Zhang et al.
(2022) shows that the minimum and maximum ICL
performance due to random sampling differs by
> 30% on 4 classification tasks, which emphasizes
the importance of selecting good demonstrations
for LLMs.



Similar-ICL-Consistency

| Random-ICL-Voting

Which choice is the correct answer to the question?

Examples:

Question: If you have cleaned off dust here it may be dif-

ficult to do your homework where? Answer Choices: (A)
desktop (B) closet (C) most buildings (D) surface of earth
(E) stove

Answer: A

Question: Where is dust likely to be under? Answer Choices:

(A) closet (B) ground (C) windowsill (D) attic (E) carpet
Answer: E

Question: Where would you find a dustbin that is being
used? Answer Choices: (A) utility closet (B) ground (C)
cupboard (D) broom closet (E) kitchen

Answer: E

Question: Dust accumulates where? Answer Choices: (A)
ceiling (B) library (C) surface of earth (D) most buildings
(E) desktop

Answer: D

The response should follow the format: Answer: {A, B, C,

DorE}

Here is the test data.

Question: John wanted to clean all of the dust out of his
place before settling down to watch his favorite shows. What
might he hardest do dust? Answer Choices: (A) closet (B)
under the bed (C) television (D) attic (E) most buildings

Which choice is the correct answer to the question?

Examples:

Question: She had a busy schedule, she had to run errands
and pick up the kids the second she did what? Answer
Choices: (A) make time for (B) take money (C) go outdoors
(D) leave work (E) field

Answer: D

Question: What is the worst outcome of an injury? Answer
Choices: (A) cause death (B) cause bleeding (C) falling
down (D) become infected (E) claim insurance

Answer: A

Question: Mom said that Sarah should stay in bed until she
was able to go to school again.. What did mom say to Sarah
when she tried to get up? Answer Choices: (A) you're sick
(B) were sick (C) more rest (D) rest more (E) get back under
the covers

Answer: A

Question: John got a raise, but he lost rank. Overall, it was a
good what? Answer Choices: (A) demotion (B) push down
(C) go off strike (D) lower (E) go off strike

Answer: A

The response should follow the format: Answer: {A, B, C,
DorE}

Here is the test data.

Question: John wanted to clean all of the dust out of his
place before settling down to watch his favorite shows. What
might he hardest do dust? Answer Choices: (A) closet (B)
under the bed (C) television (D) attic (E) most buildings

Answer: E X

| Answer: D v/

Table 2: Examples of Similar-ICL-Consistency (first decoding path) and Random-ICL-Voting (first run) for
constructing demonstration examples. The upper part is the input to LLMs, including few-shot demonstrations, and
the lower part is the predicted answer. Similar-ICL-Consistency gives the wrong answer ‘most buildings’ which is
actually the output of the final demonstration example, indicating that the decision process of the model is misled by

this similar sample.

A natural question is: what makes good in-
context demonstrations? For LLMs, it is still a
common practice to select a subset S consisting of
examples that are diverse or semantically similar
to the test sample as demonstrations, i.e., consid-
ering the diversity or similarity of S. To investi-
gate whether one dimension is consistently better
than the other one across different tasks, we con-
duct some pilot experiments on CommonsenseQA
(Talmor et al., 2019), BoolQ (Clark et al., 2019),
AGNews (Zhang et al., 2015) and SST2 (Socher
et al., 2013). Specifically, we randomly sample
100 examples from the original test set for experi-
ments and conduct 4-shot learning using GPT-3.5
(gpt-3.5-turbo).

Following Zhang et al. (2023a), we use Sentence-
BERT (Reimers and Gurevych, 2019) to encode
all samples. For each test sample, the Similar-
ICL method selects the top-4 similar training data
based on cosine similarity while the Random-ICL
method randomly samples 4 training examples as

few-shot demonstrations. Inspired by Wang et al.
(2022b), we apply self-consistency with 3 decod-
ing paths (temperature 0.7) to Similar-ICL (named
Similar-ICL-Consistency) and run Random-ICL
3 times before majority voting (named Random-
ICL-Voeting) to improve the robustness.

The results of different methods on four datasets
are reported in Table 1. We can observe that the
diversity dimension outperforms the similarity di-
mension on CommonsenseQA and SST2 while the
similarity dimension is superior to the diversity di-
mension on BoolQ and AGNews. Therefore, the
optimal dimension for selecting demonstration ex-
amples is task-specific. Thus, it is unreasonable to
claim that one dimension is consistently better than
the other one in ICL. demonstration selection.

Intuitively, semantically similar examples can
help the model correctly answer the test query
as they might share similar input-output patterns
with the test sample which could unleash GPT-
3.5’s power of text generation. To further under-



stand why the similarity dimension underperforms
the diversity dimension on CommonsenseQA, we
present a case study in Table 2. We can see that
the answer of the final demonstration example
extracted by Similar-ICL-Consistency, i.e., ‘most
buildings’ is also in the options list of the test sam-
ple, which misleads the decision process of the
model, leading to a wrong answer. In addition, the
selected demonstrations might not include enough
important information as high similarity also re-
sults in redundancy.

Considering the strengths and weaknesses of
both dimensions, we aim to design a method that
can select demonstration examples that are di-
verse (minimizing misleading information) but still
strongly correlated with the test sample, which is
introduced in the next section.

5 Iterative Demonstration Selection

Based on the observations and considerations in
84, we introduce Iterative Demonstration Selec-
tion (IDS) for ICL demonstration selection (see
Fig. 2 for an illustration), which can fully leverage
the merits of both dimensions, i.e., diversity and
similarity. Intuitively, the demonstrations that are
similar to the reason for answering a sample are
strongly correlated with this sample. Therefore, we
propose to incorporate zero-shot chain-of-thought
reasoning (Zero-shot-CoT) into IDS to iteratively
select demonstration examples that are diverse but
still have a strong correlation with the test sample.

Specifically, for each test sample (Z;, 9;), IDS
mainly consists of four steps:

1. We apply Zero-shot-CoT, i.e., “Let’s think step
by step.” to the test sample (Z;, 3; ) before select-

ing demonstrations to obtain a reasoning path
R.

2. The reasoning path R is then used to
select top-k (k is the number of shot)
most semantically similar training examples
{(xz1,y1), ..., (x, yi) } as few-shot demonstra-
tions. We use Sentence-BERT (Reimers and
Gurevych, 2019) to encode the reasoning path
R and training examples to obtain the contex-
tual representations and use cosine similarity to
measure the similarity between representations.

3. The selected k&  training examples
{(x1,9y1), ..., (x,y)} are then prepended to
the test sample (Z;, 9;) for ICL. During infer-
ence, we ensure that the generated answer A

Algorithm 1 Selection process of IDS

Require: Training set Dy,;,, test set Dy, LLMy, number of
demonstrations k, number of iterations ¢ and answer set
A =0

1: ENCODE all samples in Dy,;, using Sentence-BERT >
Encode training set

2: for (£;,9;) in Dy do

3: APPLY Zero-shot-CoT to (Z;,%;) to obtain the rea-
soning path R >
Zero-shot-CoT

4. forj=1,...,qdo

S: ENCODE R using Sentence-BERT > Encode

reasoning path

6: USE R to select top-k most similar examples S =
{(z1,91), ..., (p, yi )} from Dy, as demonstrations [>
KNN selection

7: (A, R)=LLM,y(S, Z;) > ICL

8: R=R, A, =A, U{A} > Update reasoning
path and answer set

9: end for .

10: ADOPT majority voting for A,;; to obtain the final
result A tinal Tor the test sample (&;,3;) > Majority
voting

11: end for

is accompanied by its corresponding reasoning
path R through designed prompts, e.g., “The
response should follow the format: Sentiment:
{positive or negative}\nReason: {reason}”.
Note that Zero-shot-CoT is also applied in
this step to improve the quality of generated
reasoning paths. After ICL, we go back to Step
2 for iterations using the new reasoning path R.

4. After ¢ rounds of iterations between Step 2 and
3, we adopt majority voting on all A to obtain
the final result A ;4.

Obviously, the selected demonstration examples
are strongly correlated with the original test sam-
ple, i.e., achieving similarity, as they are selected
by the generated reasoning paths. And they can
be different during iterations to achieve diversity
because the reasoning paths vary in different it-
erations. Note that there is no reasoning path in
few-shot demonstrations (as shown in the
part in Fig. 2). The reasoning path only exists in
the output of LLMs.

In addition, we illustrate the whole selection
process in Alg. 1 and show the instructions and
input formats of different types of tasks for ICL in
Appendix A.1.

6 Experiments

In this section, we first describe the tasks and
datasets, and then introduce methods compared



What is the sentiment of the review? Positive or
negative?

Review: | like this movie.
Let's think step by step.

Task description

Frozen
LLM

|

| Test sample
B Zero-shot-CoT trigger
|

Reasoning path

Sentiment: positive

Reason: The verb 'like' expresses a positive
emotion...Therefore, the sentiment of the given
review is positive.

KNN
selection

Training
examples

Update reasoning path for next iteration

What is the sentiment of the review? Positive or
negative?

Examples:

Review: | love the theme song of this movie!

_} Sentiment: Positive

Review: So great, | want to watch it again!
Sentiment: Positive

Here is the test data.
Review: | like this movie.
Let's think step by step.

Sentiment: positive
Reason: 'like' expresses similar emotions to
'love'...The correct sentiment is positive.

Majority
voting

=

Figure 2: Illustration of our proposed Iterative Demonstration Selection (IDS). IDS first applies Zero-shot-CoT
to the test sample to obtain a reasoning path, which is then used to select few-shot demonstrations from training
examples through KNN. The selected demonstration examples are prepended to the test sample for ICL. To obtain
the new reasoning path for extracting another set of demonstrations in the next iteration, an instruction for output
format is inserted before the test sample. After several iterations, IDS uses majority voting to obtain the final result.

in our work. Finally, we present the experimental
results.

6.1 Experimental Setup

Tasks and Datasets We mainly investigate 6 dif-
ferent datasets covering 4 representative task cate-
gories: reasoning (commonsense reasoning (Com-
monsenseQA (Talmor et al., 2019)), mathematical
reasoning (GSMS8K (Cobbe et al., 2021)) and logi-
cal reasoning (LogiQA (Liu et al., 2020))), question
answering (BoolQ (Clark et al., 2019)), topic clas-
sification (AGNews (Zhang et al., 2015)) and sen-
timent analysis (SST2 (Socher et al., 2013)). For
each dataset, we randomly sample at most 10000
examples from the original training set as Dy;,;, and
at most 2000 test examples as Dy, for evaluating
the performance of selected demonstrations. The
detailed information of different datasets is shown
in Appendix A.2. To reduce the randomness, we
run every experiment five times with different ran-
dom seeds (resulting in different training and test

samples if not using the whole set) and report the
average results. Without specification, we use k =
4 number of demonstrations following Wang et al.
(2023b) and set the number of iterations ¢ to 3.

Methods Compared We mainly use GPT-3.5
(gpt-3.5-turbo) as the LLM and compare our IDS
with the following methods in the experiments for
selecting ICL demonstrations:

¢ Top-k-Consistency (Liu et al., 2022) selects the
top-k semantically similar examples from the
training set Dy, as demonstrations for each test
sample and applies self-consistency (Wang et al.,
2022b) with g decoding paths (temperature 0.7)
to match the number of iterations. Following
Zhang et al. (2023a), all samples are encoded by
Sentence-BERT (Reimers and Gurevych, 2019)
to obtain contextual representations for calculat-
ing the cosine similarity.

* Random-Voting randomly selects k& examples
from Dy, as few-shot demonstrations for every



Method BoolQ  CommonsenseQA GSMSK LogiQA AGNews SST2 Average
G—fair—Prompting 84.8i0.7 75.510.3 76-9i0.6 43.8i0,4 88.9i1_0 94-6i0.3 77'4i0-2
Skill-KNN 85~9i0.5 75.2i0,2 76'5i0.3 44'6i0.2 88.7i0'9 94'9i0.2 77'6i0.1
Top-k-Consistency 87.140.2 74.540.2 76.1405 45.7104 89.3408 952404 78.0401
Random—Voting 87.3i0.6 77.010_2 75'6i0.4 45'1i0.3 87-0i1.6 95-6i0.1 77'9i0.2
Cluster-Voting 86~4i0.7 76.5i0.3 76.8i0_3 44'1i0.3 86.8i1'2 95'2i0.4 77'6i0.2
IDS 87-8i0.8 78.1i0.1 78'5i0.4 46'9i0.2 89-8i0.8 95'8i0.2 79'5i0.1

Table 3: Accuracy (%) of different methods on 6 datasets. Bold indicates the best result. IDS is consistently better

than all previous baselines.

|2 [4]6]38
Top-k-Consistency | 77.9 [ 78.2 | 78.4 | 78.4

IDS 79.1|79.6|79.4|79.3

Table 4: Accuracy (%) of Top-k-Consistency and IDS
with different numbers of demonstrations k.

test sample and runs experiments ¢ times before
majority voting.

* Cluster-Voting partitions Dy, into k clusters
and selects a representative example from each
cluster to form demonstrations. Following Zhang
et al. (2023a), we choose the sample closest to
the centroid in each cluster as the representative
example. Same as Random-Voting, after run-
ning experiments ¢ times, Cluster-Voting adopts
majority voting to obtain the final result.

Besides, we also compare IDS with two latest
ICL demonstration selection approaches: G-fair-
Prompting (Ma et al., 2023) and Skill-KNN (An
et al., 2023b). Note that we find that simultane-
ously generating answers and reasoning paths can
improve the ICL performance in general even if
the target task is not a reasoning task in the conven-
tional sense, e.g., sentiment analysis. Therefore, we
apply the same prompt, e.g., “The response should
follow the format: Sentiment: {positive or nega-
tive \nReason: {reason}”, and Zero-shot-CoT to
baseline methods.

6.2 Main Results

Table 3 shows the average performance scores
of different methods on all investigated datasets.
From the results, we can observe that

e Qur proposed IDS consistently outperforms pre-
vious baselines on all datasets with a negligible
increase in API request cost (Zero-shot-CoT in the
first step), which demonstrates that our method can
indeed effectively and efficiently select better ICL

Top-k-Consistency IDS

~
©

Accuracy (%)
3

1 3 5 7 Average

Figure 3: Accuracy (%) of Top-k-Consistency and IDS
with different numbers of reasoning paths or iterations.

demonstration examples. On average, IDS yields
about 1.5% performance boost compared to the
best baseline as it can fully leverage the merits of
both selection dimensions (diversity and similarity).
In particular, IDS outperforms Top-k-Consistency
by 3.6% on CommonsenseQA and Random-Voting
by 2.9% on GSMS8K.

e Cluster-Voting underperforms Random-Voting
and Top-k-Consistency on most datasets, which
is inconsistent with the conclusion in AutoCoT
(Zhang et al., 2023a). As shown in Zhang et al.
(2023a), selecting a representative sample from
each cluster and generating the corresponding rea-
soning chain using Zero-shot-CoT to construct
chain-of-thought demonstrations can achieve better
performance than selection by similarity or random
selection. We speculate that this is because there is
no rationale in ICL demonstration examples except
GSMB8K, which eliminates the advantage of cluster-
based methods in mitigating misleading caused by
rationale errors. In addition, Cluster-Voting selects
demonstrations at the dataset level, i.e., all test sam-
ples use the same demonstration examples, which
is not as flexible as other instance-level methods.

6.3 Analysis

Different Numbers of Demonstrations While
we use k = 4 demonstration examples for all ex-



‘ gpt-3.5-turbo ‘ gpt-4
Top-k-Consistency 78.2 80.8

IDS 79.6 82.1

Table 5: Accuracy (%) of Top-k-Consistency and IDS
with different LLMs (gpt-3.5-turbo and gpt-4). For gpt-
4, we randomly sample 200 test examples per dataset
due to the high cost.

| BoolQ | GSM8K
842 | 496

IDS

Top-k-Consistency
854 51.4

Table 6: Accuracy (%) of different methods with Llama-
2-70b-chat.

periments, we also evaluate the effectiveness of
IDS with different k. We randomly choose one
seed for experiments and report the average results
of the 6 datasets in Table 4. We can see that IDS
consistently outperforms the best baseline Top-k-
Consistency with different numbers of demonstra-
tions. In addition, more demonstrations do not
guarantee better ICL performance, which is consis-
tent with the observation in Wang et al. (2023b).

Different Numbers of Iterations Our experi-
ments and analysis so far use ¢ = 3 iterations. To
verify whether the performance gain of IDS is con-
sistent across different numbers of iterations, we
conduct controlled experiments with ¢ = {1, 5, 7}.
The average results of the 6 datasets with a ran-
domly selected seed are reported in Fig. 3. IDS
consistently outperforms Top-k-Consistency with
different ¢. Interestingly, the performance of ICL
does not always improve with the number of itera-
tions, which might be because increased iterations
can also lead to unnecessary noise.

Robustness to Model Types To demonstrate the
robustness of IDS to model types, we conduct con-
trolled experiments with GPT-4 (gpt-4). Specifi-
cally, we randomly select one seed and sample 200
test examples per dataset for experiments due to the
expensive cost. From the average results reported
in Table 5, we can observe that IDS still achieves
better performance than Top-k-Consistency when
using GPT-4 as the LLM, showing its robustness
to different LLMs.

Generalization to Open-source LLMs To bet-
ter verify the generalization ability of IDS, we use

Iterative Demonstration Selection

Question: The homeowner frowned at the price
of gas, what did he have to do later? Answer
Choices: (A) own home (B) mail property tax
payments (C) board windows (D) cut grass (E)
receive mail

Iteration 1: Answer: B\nReason

Iteration 2: Answer: D\nReason

Iteration 3: Answer: D\nReason

Top-k-Consistency

Question: The homeowner frowned at the price
of gas, what did he have to do later? Answer
Choices: (A) own home (B) mail property tax
payments (C) board windows (D) cut grass (E)
receive mail

Response: Answer: B\nReason: ...; Answer:
B\nReason: ...; Answer: B\nReason

Label: D

Iterative Demonstration Selection

Input: Texas entrepreneur wants to kick computer
gaming up to the next level by offering players a
chance at some real-live killing via mouse and
modem

Label: D

Random-Voting

Input: Texas entrepreneur wants to kick computer
gaming up to the next level by offering players a
chance at some real-live killing via mouse and
modem

Iteration 1
Examples:

Input: Six days a week, teens crowd the Blue
Screen Gaming cybercafe to hunt each other

down with assault rifles inside virtual computer
worlds

Topic: Technology

Response: Topic: Technology\nReason

Iteration 1

Examples:

Input: The Boston Celtics added a healthy Tom
Gugliotta and d injured Delonte West. Tom,
34, was activated Wednesday from the injured list
after missing seven games

Topic: Sports

Response: Topic: Sports\nReason

Iteration 2:
Iteration 3.

Iteration 2:
Iteration 3:

Response: Topic: Technology
Response: Topic: Technology

Response: Topic: Business
Response: Topic: Sports

Label: Technology Label: Technology

Figure 4: Several case studies of model responses. We
color correct outputs in , and wrong outputs in red.

vLLM (Kwon et al., 2023) to serve a Llama-2-70b-
chat model (Touvron et al., 2023) for experiments
and compare IDS with the best baseline Top-k-
Consistency on two datasets: BoolQ and GSMS8K.
We randomly sample 500 test examples for exper-
iments and report the results in Table 6, which
demonstrates that IDS can successfully generalize
to open-source LLMs.

Case Study To further understand the advantage
of IDS, we show several cases in Fig. 4. As shown
in the upper part of the figure, IDS can iteratively
select more diverse demonstration examples than
Top-k-Consistency which may be able to correct
errors from previous iterations. Compared with
Random-Voting, IDS can find examples that share
more similar input-output patterns with the test
sample to induce the LLM to generate correct an-
swers (the lower part of the figure).

In addition, we show the robustness of IDS to
different embedding models and the analysis of
average similarity scores in Appendix A.3 ~ A4,
respectively.

7 Conclusion

In this work, we have introduced Iterative Demon-
stration Selection (IDS) that can iteratively select
examples that are diverse but still strongly correlate
with the test sample as demonstrations by leverag-
ing Zero-shot-CoT to improve the performance of
in-context learning (ICL). Extensive experimental
results and analysis show that IDS can consistently
outperform previous ICL demonstration selection
baselines.



Limitations

This work has several limitations. First, due to the
inference cost of ChatGPTl, we do not conduct
experiments on the entire test set. Besides, we
include 6 datasets covering 4 different task types
in this work. A further improvement could be to
explore more diverse types of tasks.
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A Appendix

A.1 Instructions and Input Formats of
Different Tasks

We show the instructions and input formats of
different types of tasks for in-context learning in
Fig. 5.

A.2 Datasets Information

We show the detailed information of different
datasets in Table 7.

A.3 Robustness to Embedding Models

Instead of using Sentence-BERT, we also ex-
plore adopting the OpenAl embedding model (text-
embedding-ada-002) as the encoder. Specifically,
we conduct experiments on 3 datasets: BoolQ,
CommonsenseQA and GSMS8K. For each dataset,
we randomly sample 500 test examples and com-
pare IDS with the baseline Top-k-Consistency. The
results reported in Table 8 demonstrate IDS’s ro-
bustness to different embedding models.

A.4 Average Similarity Scores

In Table 9, we report the average similarity scores
between test samples and the corresponding demon-
strations of different methods. Specifically, we ran-
domly select 200 test examples for each dataset and
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Sentiment Analysis Topic Classification

What is the sentiment of the review? Positive or negative? What is the topic of the input? World, sports, business or technology?
Examples: Examples:

Review: a captivating drama Input: Cavs earn fourth straight win

Sentiment: Positive Topic: Sports

The response should follow the format: Sentiment: {positive or negative}\nReason: {reason} The response should follow the format: Topic: {world, sports, business or technology\nReason: {reason}
Here is the test data. Here is the test data.

Review: a tender, heartfelt family drama. Input: Microsoft intros new mice, keyboards ...

Let's think step by step. Let's think step by step.

Commonsense Reasoning Mathematical Reasoning

Which choice is the correct answer to the question? Please answer the following mathematical question with Arabic numerals.
Examples Examples

Question: If you poke yourself ... Answer Choices: (A) have fun ... Question: Eric, Ben, and Jack have some money. Eric has $10 less than Ben
Answer: C Answer: Ben has 26-9=17 dollars ... The answer is 50

The response should follow the format: Answer: {A, B, C, D or EAnReason: {reason} The response should follow the format: {reason} The ¢

s {arabic numerals}

Here is the test data. Here is the test data.

Question: How can | store ... Answer Choices: Question: Kim raises $320 more than Alexandra, who raises $430, and Maryam raises $400 more than
Let's think step by step. Sarah, who raises $300. How much money did they all raise in total?

Question Answering Logical Reasoning

Please answer the question based on the context. Which choice is the correct answer to the question?

Examples: Examples:

Context: Sikma was voted as one of the Context: Li Lin is a civil servant, but not a college graduate

Question: is jack sikma in the hall of fame Question: Which of the following is necessarily true? Answer Choices: (A) Not all university .
Answer: Yes Answer: B

The response should follow the format: Answer: {yes or noj\nReason: {reason} The response should follow the format: Answer: {A, B, C or Dj\nReason: {reason}

Here is the test data. Here is the test data.

Context: Blue is a playful female puppy ... Context: The people in Harbin are all northerners, and some people in Harbin are not workers
Question: is blue off of blue's clues a girl Question: If the above proposition is true, then which answer must be true? Answer Choices:
Let's think step by step. Let's think step by step.

Figure 5: Instructions and input formats of four different categories of tasks (sentiment analysis, topic classification,
reasoning, and question answering) for ICL. For Zero-shot-CoT in the first step of IDS, there is no demonstration
example and the instruction “Here is the test data.”.

BoolQ CommonsenseQA  GSMSK LogiQA  AGNews SST2

# Training Samples 9427 (full) 9741 (full) 7473(full)  7376(full) 10000 10000
# Test Samples 2000 1221 (full) 1000 500 1000 872 (full)

Table 7: Deailed information of different datasets. # refers to ‘the number of” and ‘full’ means the whole set. Note
that different random seeds do not result in different samples if the whole set is used.

| BoolQ | CommonsenseQA | GSM8K

Top-k-Consistency | 86.0 75.4 75.8
DS 87.2 78.0 77.6

Table 8: Accuracy (%) of different methods with Ope-
nAl embedding model (text-embedding-ada-002) on
three datasets.

‘ Top-k-Consistency ‘ IDS ‘ Random-Voting
Average Similarity Score | 0.69 [0.46| 0.31

Table 9: Average similarity scores between test exam-
ples and the corresponding selected demonstrations of
three methods (Top-k-Consistency, IDS and Random-
Voting).

use Sentence-BERT to obtain contextual represen-
tations for calculating similarity scores. We can see
that the average similarity score of IDS is between
that of Top-k-Consistency and Random-Voting, in-
dicating that it can indeed strike a balance between
two selection dimensions.
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