
Adaptive Q-Network: On-the-fly Target Selection for
Deep Reinforcement Learning

Théo Vincent1,2,∗ Fabian Wahren1,2 Jan Peters1,2,3,4

Boris Belousov1 Carlo D’Eramo2,3,5

1DFKI GmbH, SAIROL 2 Department of Computer Science, TU Darmstadt
3 Hessian.ai 4 Centre for Cognitive Science, TU Darmstadt

5Center for Artificial Intelligence and Data Science, University of Würzburg

Abstract

Deep Reinforcement Learning (RL) is well known for being highly sensitive to
hyperparameters, requiring practitioners substantial efforts to optimize them for
the problem at hand. In recent years, the field of automated Reinforcement Learn-
ing (AutoRL) has grown in popularity by trying to address this issue. However,
these approaches typically hinge on additional samples to select well-performing
hyperparameters, hindering sample-efficiency and practicality in RL. Furthermore,
most AutoRL methods are heavily based on already existing AutoML methods,
which were originally developed neglecting the additional challenges inherent to
RL due to its non-stationarities. In this work, we propose a new approach for
AutoRL, called Adaptive Q-Network (AdaQN), that is tailored to RL to take into
account the non-stationarity of the optimization procedure without requiring addi-
tional samples. AdaQN learns several Q-functions, each one trained with different
hyperparameters, which are updated online using the Q-function with the small-
est approximation error as a shared target. Our selection scheme simultaneously
handles different hyperparameters while coping with the non-stationarity induced
by the RL optimization procedure and being orthogonal to any critic-based RL
algorithm. We demonstrate that AdaQN is theoretically sound and empirically
validate it in MuJoCo control problems, showing benefits in sample-efficiency,
overall performance, training stability, and robustness to stochasticity.

1 Introduction

Deep Reinforcement Learning (RL) has proven effective at solving complex sequential decision
problems in various domains (Mnih et al., 2015; Haarnoja et al., 2018; Silver et al., 2017). Despite
their success in many fields, deep RL algorithms suffer from brittle behavior with respect to their
hyperparameters (Mahmood et al., 2018; Henderson et al., 2018). For this reason, the field of
automated Reinforcement Learning (AutoRL) (Parker-Holder et al., 2022) has gained popularity in
recent years. AutoRL methods aim to optimize the hyperparameter selection so that RL practitioners
can avoid time-consuming hyperparameter searches. AutoRL methods also seek to minimize the
number of required samples to achieve reasonable performances so that RL algorithms can be used in
applications where a limited number of interactions with the environment is available. AutoRL is still
in its early stage of development, and most existing methods adapt techniques that have been shown
to be effective for automated Machine Learning (AutoML) (Hutter et al., 2019; Falkner et al., 2018).
However, RL brings additional challenges that have been overlooked till now, despite notoriously
requiring special care (Igl et al., 2021). For example, due to the highly non-stationary nature of
RL, there is no static selection of hyperparameters that works optimally for a given problem and
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Figure 1: Left: Each line represents a training of Q-Network (QN) with different hyperparameters.
Right: At the ith target update, Adaptive Q-Network (AdaQN) selects the network Qi (highlighted
with a crown) that is the closest to the previous target ΓQ̄i−1, where Γ is the Bellman operator.

algorithm (Mohan et al., 2023). This has led to the development of several techniques for adapting
the training process online to prevent issues like local minima (Nikishin et al., 2022; Sokar et al.,
2023), lack of exploration (Klink et al., 2020), and catastrophic forgetting (Kirkpatrick et al., 2017).

In this work, we introduce a novel approach for AutoRL to improve the effectiveness of learning
algorithms by coping with the non-stationarities of the RL optimization procedure. Our investigation
stems from the intuition that the effectiveness of each hyperparameter selection changes dynamically
after each training update. Building upon this observation, we propose to adaptively select the
best-performing hyperparameters configuration to carry out Bellman updates. To highlight this idea,
we call our approach Adaptive Q-Network (AdaQN). In practice, AdaQN uses an ensemble of Q-
functions, trained with different hyperparameters, and selects the one with the smallest approximation
error (Schaul et al., 2015; D’Eramo & Chalvatzaki, 2022) to be used as a shared target for each
Bellman update. By doing this, our method considers several sets of hyperparameters at once each
time the stationarity of the optimization problem breaks, i.e., at each target update (Figure 1). In
the following, we provide theoretical motivation for our selection mechanism of AdaQN. Then, we
empirically validate our approach in MuJoCo control problems, showing that AdaQN has several
advantages over carrying out individual runs with static hyperparameters. Importantly, AdaQN
performs better or on par with individual runs while using the same amount of samples. More
interestingly, by trading off different hyperparameters configurations dynamically, AdaQN not only
can match the performance of the best hyperparameter selection at no cost of additional samples, but
can also reach superior overall performance than any individual run.

2 Preliminaries

We consider discounted Markov decision processes (MDPs) defined as M = ⟨S, A, P , R,
γ⟩, where S and A are measurable state and action spaces, P : S × A → ∆(S)2 is a transi-
tion kernel, R : S × A → R is a reward function, and γ ∈ [0, 1) is a discount factor (Put-
erman, 1990). A policy is a function π : S → ∆(A), inducing an action-value function
Qπ(s, a) ≜ Eπ [

∑∞
t=0 γ

tR(st, at)|s0 = s, a0 = a] that gives the expected discounted cumulative
return executing action a in state s, following policy π thereafter. The objective is to find an optimal
policy π∗ = argmaxπ V

π(·), where V π(·) = Ea∼π( · )[Qπ(·, a)]. Approximate value iteration (AVI)
and approximate policy iteration (API) are two paradigms to tackle this problem (Sutton & Barto,
1998). While AVI aims at estimating the optimal action-value function Q∗, i.e., the action-value
function of the optimal policy, API is a two-step procedure that alternates between Approximate
policy evaluation (APE), a method to evaluate the action-value function Qπ of the current policy π,
and policy improvement, which updates the current policy by taking greedy actions on Qπ .

In this work, we focus on AVI and APE. Both aim to solve a Bellman equation, whose solution
is Q∗ for AVI and Qπ for APE. Those solutions are the fixed point of a Bellman operator Γ,
where Γ is the optimal Bellman operator Γ∗ for AVI, and the Bellman operator Γπ for APE. For
a Q-function Q, a state s and an action a, Γ∗Q(s, a) = r + γEs′∼P(s,a)[maxa′ Q(s′, a′)] and
ΓπQ(s, a) = r + γEs′∼P(s,a),a′∼π(s′)[Q(s′, a′)]. Γ∗ and Γπ are γ-contraction mapping in the
infinite norm. Because of this, these two methods repeatedly apply their associated Bellman operator,
starting from a random Q-function. The fixed point theorem ensures that each iteration is closer to
the fixed point of the respective Bellman equation. Hence, the more Bellman iterations are performed,
the closer the iterated Q-function will be to the desired action-value function.

2∆(X ) denotes the set of probability measures over a set X .
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In model-free RL, Γ∗ and Γπ are approximated by their empirical version that we note Γ̂ without
distinguishing between AVI and APE since the nature of Γ̂ can be understood from the context. We
denote Θ, the space of Q-functions parameters. In common Q-Network (QN) approaches, given a
fixed vector of parameters θ̄ ∈ Θ, another vector of parameters θ is learned to minimize

LQN(θ|θ̄, s, a, r, s′) = (Γ̂r,s′Qθ̄(s, a)−Qθ(s, a))2 (1)

for a sample (s, a, r, s′). Qθ̄ is usually called the target Q-function because it is used to compute
the target Γ̂Qθ̄ while Qθ is called the online Q-function. We refer to this step as the projection
step since the Bellman iteration ΓQθ̄ is projected back into the space of Q-functions that can be
represented by our function approximations. The target parameters θ̄ are regularly updated to the
online parameters θ so that the following Bellman iterations are learned. This step is called the target
update. We note θ̄i the target parameters after the ith target update. Importantly, when the projection
step is carried out for non-linear function approximation, convergence to the fixed point is no longer
guaranteed. Nevertheless, well-established theoretical results in AVI help relate the approximation
error ∥Γ∗Qθ̄i−1

−Qθ̄i∥ at each target update i to the performance loss ∥Q∗−QπN ∥, i.e., the distance
between the last Q-function learned during the training and the optimal one Q∗.
Theorem 2.1. (Theorem 3.4 (Farahmand, 2011)). Let N ∈ N∗, and ρ, ν two probability measures
on S × A. For any sequence (θ̄i)

N
i=0 ∈ ΘN+1 where Rγ depends on the reward function and the

discount factor, we have

∥Q∗ −QπN ∥1,ρ ≤ CN,γ,Rγ + inf
r∈[0,1]

F (r;N, ρ, γ)

(∑N
i=1 α

2r
i ∥Γ∗Qθ̄i−1

−Qθ̄i∥
2
2,ν

) 1
2

(2)

whereCN,γ,Rγ , F (r;N, ρ, γ), and (αi)
N
i=0 do not depend on (θ̄i)

N
i=0. πN is a greedy policy computed

from QθN .

For a fixed number of Bellman iterations N , we obtain, by applying Theorem 2.1 to the sequence of
parameters learned during the training (θ̄i)

N
i=0, that the performance loss is upper bounded by a term

that decreases when each approximation error decreases, i.e., each projection step improves.

Automated reinforcement learning Methods for AVI or APE (Mnih et al., 2015; Dabney et al.,
2018; Haarnoja et al., 2018; Bhatt et al., 2024) are highly dependent on the chosen hyperparameters
(Henderson et al., 2018; Andrychowicz et al., 2020; Engstrom et al., 2019). AutoRL addresses
this issue by automatizing the search for effective hyperparameters. To mitigate the burden of
non-stationarity imposed by the RL setting, some approaches consider adapting the hyperparameters
during the training to better adapt to situations where specific hyperparameters are only optimal for a
certain period of time during the training. Considering Theorem 2.1 w.r.t. a sequence of parameters
(θ̄i)

N
i=0, we observe that the approximation errors (∥Γ∗Qθ̄i−1

− Qθ̄i∥2,ν)
N
i=1 are the only terms of

the approximation error bound on which an RL algorithm has influence. Based on this observation,
we propose a new method for AutoRL that leverages Theorem 2.1 to minimize each approximation
error over multiple sets of hyperparameters, hence minimizing the resulting performance loss.

3 Adaptive temporal-difference target selection

We propose a new method belonging to the AutoRL family, called Adaptive Q-Network (AdaQN),
which considers K pairs of online networks trained with different sets of hyperparameters. Each
online network is trained w.r.t. a shared target chosen from the set of online networks at each target
update. More precisely, we consider K online vectors of parameters (θk)Kk=1 in the loss and we note
θ̄, the parameters of the shared target network. Then, each online network parameterized by θk is
trained to minimize its distance to ΓQθ̄. For any sample (s, a, r, s′), this results in

LAdaQN((θ
k)Kk=1|θ̄, s, a, r, s′) =

K∑
k=1

LQN(θ
k|θ̄, s, a, r, s′). (3)

where the target θ̄ is selected at each target update according to

θ̄ ← argmin
θk,k∈{1,...,K}

∑
(s,a,r,s′)∈D

LQN(θ
k|θ̄, s, a, r, s′), (4)
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where D is the replay buffer, thus utilizing the network that minimizes the TD-error at the current
training step to compute the target shared across the online Q-networks. In the following, we provide
the theoretical justification for this choice. Key to our approach is that each vector of parameters θk
can be trained with a different optimizer, learning rate, architecture, activation function, or any other
hyperparameter that only affects its training.

3.1 Theoretical motivation

We denote θ̄i the shared target Q-function after the ith target update. The above-proposed selec-
tion strategy in Equation (4) addresses the goal of minimizing the sum of approximation errors∑N
i=1 ∥ΓQθ̄i−1

− Qθ̄i∥
2
2,ν in Equation (2), by cleverly selecting a target Q-function from a set of

diverse target Q-functions. Then, the resulting bound on the performance loss would be smaller than
the bound for any individual trial on a fixed set of hyperparameters. This means that, within a single
training, AdaDQN would match or outperform every individual training performed from a grid search
by taking all combinations of hyperparameters individually. Given θ̄i−1, an optimal choice for θ̄i is
the index of the closest online Q-function from the target ΓQθ̄i−1

:

θ̄i = argmin
θk,k∈{1,...,K}

∥ΓQθ̄i−1
−Qθk∥22,ν , (5)

where ν is the distribution of state-action pairs in the replay buffer. This way, the sum of approximation
errors

∑N
i=1 ∥ΓQθ̄i−1

−Qθ̄i∥
2
2,ν would be the minimal achievable sum of approximation errors with

the considered set of hyperparameters since at each target update i, the algorithm would select the
Q-function that minimizes the ith approximation error ∥ΓQθ̄i−1

−Qθ̄i∥2,ν . Note that Equation (5)
contains the true Bellman operator Γ which is not known. For this reason, our proposed selection
mechanism in Equation (4) uses the empirical Bellman operator Γ̂. Theorem 3.1 shows under which
condition the selected index in Equation (4) is the same as the one in Equation (5). The proof, inspired
by the bias-variance trade-off in supervised learning, can be found in Appendix A.
Theorem 3.1. Let (θk)Kk=1 ∈ ΘK and θ̄ ∈ Θ be vectors of parameters representing K + 1 Q-
functions. Let D = {(s, a, r, s′)} be a set of samples. Let ν be the distribution represented by the
state-action pairs present in D. If, for every state-action pair in D, the empirical Bellman operator is
an unbiased estimate of the Bellman operator, then we have

argmin
k∈{1,...,K}

∑
(s,a,r,s′)∈D

LQN(θ
k|θ̄, s, a, r, s′) = argmin

k∈{1,...,K}
||ΓQθ̄ −Qθk ||22,ν .

We stress that the selection strategy presented in Equation (5) is a sufficient condition for AdaQN to
reach a sum of approximation errors that is smaller than any sum of approximation errors that an
individual trial of hyperparameters would achieve. This means that a suboptimal sequence of target
Q-functions can also lead to better performance than every single trial of a grid search.

3.2 Algorithmic implementation

Multiple algorithms can be derived from our formulation. Algorithm 1 shows an adaptive version
of Deep Q-Network (DQN, Mnih et al. (2015)) that we call Adaptive Deep Q-Network (AdaDQN).
Similarly, Adaptive Soft Actor-Critic (AdaSAC), presented in Algorithm 2, is an adaptive version of
Soft Actor-Critic (SAC, Haarnoja et al. (2018)). In SAC, the target network is updated using Polyak
averaging (Lillicrap et al., 2015). Therefore, we consider K target networks (θ̄k)Kk=1. Each target
network θ̄k is updated from its respective online network θk, as shown in Line 11 of Algorithm 2.
However, each online network is trained w.r.t. a shared target chosen from a single target that comes
from the set of K target networks. Similarly to the strategy presented in Equation (4), the shared
target network is chosen as

θ̄ ← θ̄ψ where ψ = argmin
k∈{1,...,K}

∑
(s,a,r,s′)∈D

LQN(θ
k|θ̄, s, a, r, s′). (6)

Having multiple online networks enables us to choose which network to use to sample actions in a
value-based setting (see Line 3 of Algorithm 1) and which network is selected to train the actor in
an actor-critic setting (see Line 13 of Algorithm 2). This choice is related to the behavioral policy,
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Algorithm 1 Adaptive Deep Q-Network (AdaDQN). Modifications to DQN are marked in purple.

1: Initialize K online parameters (θk)Kk=1, and an empty replay buffer D. Set the target parameters
θ̄ ← θ0 and the cumulative losses Lk = 0, for k = 1, . . . ,K. Set ψ = 0 the index to be selected
for computing the target.

2: repeat
3: Set ψb ∼ U{1, . . . ,K} w.p. ϵb and ψb = ψ w.p. 1− ϵb.
4: Take action at ∼ ϵ-greedy(Q

θψb
(st, ·)); Observe reward rt, next state st+1.

5: Update D ← D
⋃
{(st, at, rt, st+1)}.

6: every G steps
7: Sample a mini-batch B = {(s, a, r, s′)} from D.
8: Compute the shared target y ← r + γmaxa′ Qθ̄(s

′, a′).
9: for k = 1, ...,K do

10: Compute the loss w.r.t θk, LkQN =
∑

(s,a,r,s′)∈B (y −Qθk(s, a))
2.

11: Update Lk ← Lk + LkQN.

12: Update θk using its specific optimizer and learning rate from∇θkLkQN.
13: every T steps
14: Update ψ ← argmink Lk; Lk ← 0, for k ∈ {1, . . . ,K}.
15: Update the target network with θ̄ ← θψ .

thus, we choose the same strategy in both settings. Intuitively, the optimal choice would be to pick
the best-performing network; however, this information is not available. More importantly, only
exploring using the best-performing network could lead the other online networks to learn passively,
see Section 4.1. This would make the performances of the other networks drop, as identified in
Ostrovski et al. (2021), making them useless for the rest of the training. Inspired by ϵ-greedy policies
commonly used in RL for exploration, we choose to select a random network with probability ϵb
and to select the online network corresponding to the selected target network as a proxy for the
best-performing network with probability 1− ϵb. We use a linear decaying schedule for ϵb.

4 Experiments
We evaluate our method on lunar lander (Brockman et al., 2016) for AdaDQN, in Section 4.1. We
also show experiments on the MuJoCo benchmark (Todorov et al., 2012) for AdaSAC, in Section 4.2.
AdaQN automatizes the selection of hyperparameters in a very different way compared to the existing
approaches in the literature (see Section 5), which makes the comparison to any autoRL method
impractical. Therefore, we propose to compare AdaQN to an exhaustive grid search where both
approaches have access to the same sets of hyperparameters. We report the performances of every
single set of hyperparameters given as input to AdaQN. This allows us to see how AdaQN performs
compared to the best static set of hyperparameters. Additionally, this work focuses on sample
efficiency, this is why we report the performances of the agent by counting every environment
interaction used for the meta-optimization process as advocated by Franke et al. (2021). For reporting
the grid search results, this translates to multiplying the number of interactions of the best achieved
performance by the number of individual trials. We also report the average performance over the
individual runs as the performance that a random search would obtain in expectation. The remaining
hyperparameters are kept unchanged. Table 1 and 2 of Appendix B reference all the hyperparameters
used for the experiments. The code is based on the Stable Baselines implementation (Raffin et al.,
2021). It is available in the supplementary material and will be made open source upon acceptance.

Performance metric. As recommended by Agarwal et al. (2021), we plot the interquartile mean
(IQM) along with shaded regions showing pointwise 95% percentile stratified bootstrap confidence
intervals. IQM is a trade-off between the mean and the median where the tail of the score distribution
is removed on both sides to consider only 50% of the runs. We argue that the final score is not enough
to properly compare RL algorithms since methods that show higher initial performances are better
suited for real-world experiments compared to methods that only show higher performances later
during training. This is why we also analyze the performances with the Area Under the Curve (AUC)
that computes the integral of the IQM along the training. We also report the worst-performing seed to
analyze the robustness of AdaQN w.r.t. stochasticity. The IQM is computed over 20 seeds for the
Lunar Lander experiments and over 9 seeds and 6 environments for the MuJoCo experiments.
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Figure 2: On-the-fly architecture selection on Lunar Lander. All architectures contain two hidden
layers. The number of neurons in each layer is indicated in the legend. Left: AdaDQN yields a
better AUC than every DQN run. Right: Ablation on the behavioral policy and on the strategy to
select the target network used to compute the target. Each version of AdaDQN uses the 4 presented
architectures. The strategy presented in Equation (4) outperforms the other considered strategies.
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Figure 3: Bar plots of the distribution of networks selected as target networks across all seeds. Left:
In most cases, AdaDQN selects the best individual architecture. Middle: AdaDQN with ϵb = 0 also
focuses on the best individual architecture. The fact that it underperforms compared to AdaDQN
is coming from the behavioral policy. Right: AdaDQN-max is a version of AdaDQN where the
minimum operator is replaced by the maximum operator for selecting the following target network.

4.1 A proof of concept

We consider 4 different architectures for AdaDQN and compare their performances to the individual
runs in Figure 2 (left). The 4 architectures are composed of two hidden layers, with the number of
neurons forming each layer indicated in the legend. Interestingly, AdaDQN performs better than
the best individual architecture, meaning that by selecting different architectures during the training,
AdaDQN better copes with the non-stationarities of the optimization procedure. Figure 3 shows the
distribution of the selected target (see Line 14 of Algorithm 1) along the training across all seeds.
Importantly, the selected target is not always computed from the same target network. For example,
the network DQN [100, 100] is sometimes selected instead of DQN [200, 200]. This result is even
more interesting because, intuitively, AdaDQN should always select the biggest network (DQN
[200, 200]) since it greatly outperforms the other networks.
To better understand this, Figure 2 (right) shows the performances for AdaDQN along with a version
of AdaQN where ϵb is equal to 0 during the training (AdaDQN ϵb = 0). This variant of AdaQN
performs similarly to the best individual run but underperforms compared to AdaDQN. Despite
selecting the target networks in a similar way as AdaDQN (see Figure 3 (middle)), AdaDQN ϵb = 0
leaves only a few online transitions to the other networks. As explained in Section 3.2, this shows
the benefit of allowing each online Q-function to interact with the environment (ϵb > 0) such that
they do not learn passively. Additionally, we show a version where the target network is selected
randomly from the set of online networks, calling this variant RandDQN. This version is similar to
the way the target is computed in REDQ (Chen et al., 2020). While sampling uniformly from similar
agents yields better performance, as shown in Chen et al. (2020), this strategy suffers when one agent
is not performing well. In our case, DQN [25, 25] harms the overall performance. Finally, taking the
maximum instead of the minimum to select the target (AdaDQN-max) performs as badly as the worst
available agent (DQN [25, 25]). Figure 3 (bottom) shows that the worst-performing agent is almost
always selected, in line with the theoretical analysis developed in Section 3.1.
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Figure 4: On-the-fly hyperparameter selection on MuJoCo. The 16 sets of hyperparameters are the
elements of the cartesian product between the learning rates {0.0005, 0.001}, the optimizers {Adam,
RMSProp}, the critic’s architectures {[256, 256], [512, 512]} and the activation functions {ReLU,
Sigmoid}. Left: AdaDQN is more sample-efficient than grid search. Right: AdaDQN yields a better
AUC than every DQN run while having a greater final score than 13 out of 16 DQN runs. The color
shading of the dashed lines is used to indicate their ranking for the AUC metric.
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Figure 5: Top: Per environment return of AdaSAC and RandSAC when the 16 sets of hyperparam-
eters, described in Figure 4, are given as input. Bottom: Bar plot presenting the distribution of
networks selected for the critic’s loss and the actor’s loss along the training. AdaSAC outperforms
RandSAC and most individual run by designing non-trivial hyperparameter schedules.

4.2 Continuous control: MuJoCo environments

We evaluate AdaSAC for a wider choice of hyperparameters on 6 MuJoCo environments. We
consider selecting from 16 sets of hyperparameters. Those sets form the Cartesian product between
the learning rates {0.0005, 0.001}, the optimizers {Adam, RMSProp}, the critic’s architectures
{[256, 256], [512, 512]} and the activation functions {ReLU, Sigmoid}. This fixes K to 24 = 16.
The values of the hyperparameters were chosen to be representative of common choices made when
tuning by hand a SAC agent. In Figure 4 (left), we compare AdaSAC with a grid search performed
on the 16 set of hyperparameters. AdaSAC is an order of magnitude more sample efficient than grid
search. Notably, AdaSAC’s worst-performing seed performs on par with the random search approach
while greatly outperforming the worst-performing seed of the grid search. In Figure 4 (right), we
show AdaSAC’s performance along with the individual performance of each set of hyperparameters.
AdaSAC yields the highest AUC metric while outperforming 13 out of the 16 individual runs in terms
of final performance. Interestingly, AdaSAC reaches the performance of vanilla SAC in less than half
of the samples. We also show the performance of RandSAC, for which a random target network is
selected to compute the target instead of following the strategy presented in Equation (4). For clarity,
the labels of the 16 individual runs are not shown, they are available in Figure 7 of Appendix D.1.

We now analyze the proposed strategy for selecting the networks during the training of AdaSAC.
The top row of Figure 5 shows the scores obtained for 3 MuJoCo environments. In the bottom row,
we plot the distribution across the seeds of the target networks selected to compute the critic’s loss
and the actor’s loss (see Line 12 and 13 of Algorithm 2). Figure 6 shows a similar plot for the 3
remaining MuJoCo environments. Overall, the selected networks are changing during the training,
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Figure 6: Top: Per environment return of AdaSAC and RandSAC when the 16 sets of hyperparam-
eters, described in Figure 4, are given as input. Bottom: Bar plot presenting the distribution of
networks selected for the critic’s loss and the actor’s loss along the training.

which indicates that the loss is not always minimized by the same set of hyperparameters. This
supports the idea of selecting the target network based on Equation (4). Furthermore, the selected
networks are not the same across the different environments. This shows that AdaSAC designs non-
trivial hyperparameter schedules that cannot be handcrafted. On Humanoid, selecting the network
corresponding to the best-performing agent leads to similar performances to the best-performing
agents when trained individually. On HumanoidStandup, the selection strategy avoids selecting the
worst-performing agents. This is why AdaSAC outperforms RandSAC, which blindly selects agents.
A similar scenario happens on Ant. HalfCheetah is the only environment where RandSAC slightly
outperforms AdaSAC. AdaSAC still yields a better final performance than 6 of the individual runs.
Finally, on Hopper and Walker2d, AdaSAC outperforms every individual run for the AUC metric
by mainly selecting hyperparameters that are not performing well when trained individually. The
ability of AdaSAC to adapt the hyperparameters at each target update allows the proposed algorithm
to better fit the targets, which yields better performances. The distribution of the selected online
networks in the actor’s loss, shown at the bottom of Figures 5 and 6, are chosen uniformly at the
beginning since ϵb starts with a high value. At the end of the training, the distribution of the selected
online networks is similar to the distribution of selected target networks in the critic’s loss since ϵb is
low at the end of the training.

Ablations. We evaluate AdaSAC against a grid search in 4 different scenarios to show that it is
robust to variations in the hyperparameters. All the figures are shown in Appendices D.2, D.3, D.4,
and D.5. We first give 4 architectures of different capacities as input. Then, we run AdaSAC with 3
different learning rates, and we also run another study where AdaSAC is given 3 different optimizers.
In each case, AdaSAC matches the best-performing individual runs while successfully ignoring the
worst-performing sets of hyperparameters. Finally, we evaluate AdaSAC with 3 different activation
functions given as input. This time, AdaSAC outperforms 2 out of the 3 individual runs. Interestingly,
RandSAC seems to suffer more in that setting by only outperforming the worst-performing individual
run. This further demonstrates that the strategy presented in Equation (4) is effective.

5 Related work

We follow the clustering of AutoRL methods presented in Parker-Holder et al. (2022) to position
our work in the AutoRL landscape. Contrary to AdaQN, many approaches consider optimizing the
hyperparameters through multiple trials. A classic approach is to cover the search space with a grid
search or a random search (Hutter et al., 2019; Bergstra & Bengio, 2012). Some other methods use
Bayesian optimization to guide the search in the space of hyperparameters (Chen et al., 2018; Falkner
et al., 2018; Nguyen et al., 2020; Shala et al., 2022), leveraging the information collected from
individual trials. Those methods consider the problem of finding the best set of hyperparameters but
do not consider changing the hyperparameters during a single trial, which would be more appropriate
for handling the non-stationarities inherent to the RL problem. Evolutionary approaches have been
developed for that purpose (Stanley et al., 2009; Awad et al., 2021; Jaderberg et al., 2019), where
the best elements of a population of agents undergo genetic modifications during training. As an
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example, in SEARL (Franke et al., 2021), a population of agents is first evaluated in the environment.
Then, the best-performing agents are selected, and a mutation process is performed to form the
next generation of agents. Finally, the samples collected during evaluation are taken from a shared
replay buffer to train each individual agent, and the loop repeats itself. Even if selecting agents
based on their performance in the environment seems reasonable, we argue that it hinders sample-
efficiency since exploration in the space of hyperparameters might lead to poorly performing agents.
Moreover, if poorly performing agents are evaluated, low-quality samples will then be stored in
the replay buffer and used later for training, which could lead to long-term negative effects. This
is why we propose to base the selection mechanism on the approximation error, which does not
require additional interaction with the environment. Other methods have considered evaluating the
Q-functions offline (Tang & Wiens, 2021). Most approaches consider the Bellman error ∥ΓQi −Qi∥
instead of the approximation error ∥ΓQi−1 − Qi∥, where Qi is the Q-function obtained after i
Bellman iterations (Farahmand & Szepesvári, 2011; Zitovsky et al., 2023). However, this approach
considers the empirical estimate of the Bellman error which is a biased estimate of the true Bellman
error (Baird, 1995). Lee et al. (2022) propose to rely on the approximation error to choose between
two different classes of functions in an algorithm called ModBE. AdaQN differs from ModBE since
ModBE does not adapt the hyperparameters at each Bellman iteration but instead performs several
training steps before comparing two classes of functions. We argue that the approximation error
is a natural metric in our specific setting, since choosing the best-performing Q-function or the Q-
function minimizing its Bellman error would not guarantee that the bound presented in Theorem 2.1
is minimized at the end of the training or, in other words, that the future Bellman iterations would
lead to well-performing agents.

Similarly to AdaQN, Meta-Gradient methods are optimizing the hyperparameters in a single training
(Finn et al., 2017; Zahavy et al., 2020; Flennerhag et al., 2021). Our approach differs from Meta-
Gradient methods because we do not require the hyperparameters to be differentiable. This is why
we can consider different optimizers or different activation functions. Finally, the cluster of methods
under the name "Blackbox Online Tuning" is closer to our approach. However, most methods in
this cluster focus on the behavioral policy (Schaul et al., 2019; Badia et al., 2020) or build the
hyperparameters as functions of the state of the environment (Sutton & Singh, 1994; White & White,
2016). For example, Riquelme et al. (2019) develop a method called adaptive TD that selects
between the TD update or the Monte-Carlo update depending on whether the TD update belongs to a
confidence interval computed from several Monte-Carlo estimates.

6 Discussion and conclusion

We have presented Adaptive Q-Network (AdaQN), a new method that selects the hyperparameters
during learning by training diverse Q-networks w.r.t. a shared target, selected as the target network
corresponding to the most accurate online network. We demonstrated that AdaQN is theoretically
sound and we devised its algorithmic implementation. By adaptively selecting from a set of hyperpa-
rameters, AdaQN achieves strong performance against individual runs in terms of sample efficiency,
final performance, and robustness.
We can identify some limitations of our work and suggest ways to tackle them. Our work focuses
on optimizing the agent’s hyperparameters; thus, the environment’s hyperparameters, such as the
reward or the discount factors, cannot be optimized with AdaQN. Nevertheless, an off-the-shelf
AutoRL algorithm can be used in combination with AdaQN to optimize those hyperparameters. To go
beyond the fixed set of hyperparameters, one could consider extending our work to a population-based
approach in a similar way as Franke et al. (2021) do it but, this time, a new population of online
networks could be generated starting from the agents having the lowest losses w.r.t. a shared target.
Moreover, since AdaQN considers multiple Q-functions in the loss, the training time and memory
requirements increase. We provide an extensive study in Appendix C to show that this increase
remains reasonable compared to the gain in performance and sample-efficiency. We stress that, in
theory, the computations can be parallelized so that the adaptive version of an algorithm requires the
same amount of time as its original algorithm. The additional "for loop" in Line 9 of Algorithm 1 and
the one in Line 7 of Algorithm 2 can be run in parallel as long as enough parallel processing capacity
is available, as it is common in modern GPUs. Instead of selecting one Q-function for computing the
target, future works could consider a mixture of Q-functions learned with different hyperparameters
as presented in Seyde et al. (2022).
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A Proofs

Theorem A.1. Let (θk)Kk=1 ∈ ΘK and θ̄ ∈ Θ be vectors of parameters representing K + 1 Q-
functions. Let D = {(s, a, r, s′)} be a set of samples. Let ν be the distribution represented by the
state-action pairs present in D. If, for every state-action pair in D, the empirical Bellman operator is
an unbiased estimate of the Bellman operator, then we have

argmin
k∈{1,...,K}

∑
(s,a,r,s′)∈D

LQN(θ
k|θ̄, s, a, r, s′) = argmin

k∈{1,...,K}
||ΓQθ̄ −Qθk ||22,ν .

Proof. Let (θk)Kk=1 ∈ ΘK and θ̄ ∈ Θ be vectors of parameters representing K + 1 Q-functions. Let
D = {(s, a, r, s′)} be a set of samples. Let ν be the distribution of the state-action pairs present in
D. We assume that for every state-action pair in D, the empirical Bellman operator is an unbiased
estimate of the Bellman operator. For every state-action pair (s, a) in D, we define the set Ds,a =

{(r, s′)|(s, a, r, s′) ∈ D}. We assume that for any θ̄ ∈ Θ, E(r,s′)∼Ds,a [Γ̂r,s′Qθ̄(s, a)] = ΓQθ̄(s, a).
Additionally, we note M the cardinality of D, Ms,a the cardinality of Ds,a and D̊ the set of unique
state-action pairs in D. We take k ∈ {1, . . . ,K} and write∑

(s,a,r,s′)∈D

LQN(θ
k|θ̄, s, a, r, s′) =

∑
(s,a,r,s′)∈D

(
Γ̂r,s′Qθ̄(s, a)−Qθk(s, a)

)2

=
∑

(s,a,r,s′)∈D

(
Γ̂r,s′Qθ̄(s, a)− ΓQθ̄(s, a) + ΓQθ̄(s, a)−Qθk(s, a)

)2

=
∑

(s,a,r,s′)∈D

(
Γ̂r,s′Qθ̄(s, a)− ΓQθ̄(s, a)

)2

+
∑

(s,a,r,s′)∈D

(ΓQθ̄(s, a)−Qθ̄k(s, a))
2
+2

∑
(s,a,r,s′)∈D

(
Γ̂r,s′Qθ̄(s, a)− ΓQθ̄(s, a)

)
(ΓQθ̄(s, a)−Qθk(s, a)).

The second last equation is obtained by introducing the term ΓQθ̄(s, a) and removing it. The last
equation is obtained by developing the previous squared term. Now, we study each of the three terms:

•
∑

(s,a,r,s′)∈D

(
Γ̂r,s′Qθ̄(s, a)− ΓQθ̄(s, a)

)2

is independent of θk

•
∑

(s,a,r,s′)∈D (ΓQθ̄(s, a)−Qθk(s, a))
2 equal to M × ||ΓQθ̄ −Qθk ||22,ν by definition of ν.

• And finally,∑
(s,a,r,s′)∈D

(
Γ̂r,s′Qθ̄(s, a)− ΓQθ̄(s, a)

)
(ΓQθ̄(s, a)−Qθk(s, a))

=
∑

(s,a)∈D̊

 ∑
(r,s′)∈Ds,a

(
Γ̂r,s′Qθ̄(s, a)− ΓQθ̄(s, a)

)
(ΓQθ̄(s, a)−Qθk(s, a))

 = 0

since, for every (s, a) ∈ D̊,∑
(r,s′)∈Ds,a

(
Γ̂r,s′Qθ̄(s, a)− ΓQθ̄(s, a)

)
=Ms,aE(r,s′)∼Ds,a [Γ̂r,s′Qθ̄(s, a)− ΓQθ̄(s, a)] = 0,

the last equality holds from the assumption.

Thus, we have∑
(s,a,r,s′)∈D

LQN(θ
k|θ̄, s, a, r, s′) = constant w.r.t θk +M × ||ΓQθ̄ −Qθk ||22,ν

This is why

argmin
k∈{1,...,K}

∑
(s,a,r,s′)∈D

LQN(θ
k|θ̄, s, a, r, s′) = argmin

k∈{1,...,K}
||ΓQθ̄ −Qθk ||22,ν .
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B Algorithms and Hyperparameters

Algorithm 2 Adaptive Soft Actor-Critic (AdaSAC). Modifications to SAC are marked in purple.

1: Initialize the policy parameters ϕ, K online parameters (θk)Kk=1, and an empty replay buffer D.
For k = 1, . . . ,K, set the target parameters θ̄k ← θk and the cumulative losses Lk = 0. Set
ψ1 = 0 and ψ2 = 1 the indices to be selected for computing the target.

2: repeat
3: Take action at ∼ πϕ(·|st); Observe reward rt, next state st+1; D ← D

⋃
{(st, at, rt, st+1)}.

4: for UTD updates do
5: Sample a mini-batch B = {(s, a, r, s′)} from D.
6: Compute the shared target

y ← r + γ

(
min

k∈{ψ1,ψ2}
Qθ̄k(s

′, a′)− α log πϕ(a
′|s′)

)
,where a′ ∼ πϕ(·|s′).

7: for k = 1, ...,K do
8: Compute the loss w.r.t θk, LkQN =

∑
(s,a,r,s′)∈B (y −Qθk(s, a))

2.
9: Update Lk ← (1− τ)Lk + τLkQN.

10: Update θk using its specific optimizer and learning rate from∇θkLkQN.
11: Update the target networks with θ̄k ← τθk + (1− τ)θ̄k.
12: Set ψ1 and ψ2 to be the indexes of the 2 lowest values of L.
13: Set (ψb1, ψ

b
2) ∼ DistinctU{1, . . . ,K} w.p ϵb and (ψb1, ψ

b
2) = (ψ1, ψ2) w.p 1− ϵb.

14: Update ϕ with gradient ascent using the loss

min
k∈{ψb1,ψb2}

Qθk(s, a)− α log πϕ(a|s), a ∼ πϕ(·|s)

Table 1: Summary of all hyperparameters used
for the Lunar Lander experiments.

Shared across all algorithms
Discount factor γ 0.99
Initial replay buffer size 1000
Replay buffer size 104

Batch Size 32
Target update frequency T 200
Training frequency G 1
Activation function ReLU
Learning rate 3× 10−4

Optimizer Adam
Starting ϵ 1
Ending ϵ 0.01
Linear decay duration of ϵ 1000

AdaDQN
Starting ϵb 1
Ending ϵb 0.01
Linear decay duration of ϵb Until end

Table 2: Summary of all hyperparameters used
for the MuJoCo experiments.

Shared across all algorithms
Discount factor γ 0.99
Initial replay buffer size 5000
Replay buffer size 106

Batch Size 256
Target update rate τ 0.005
UTD 1
Policy delay 1
Actor’s architecture 256, 256
Actor’s activation function ReLU
Actor’s learning rate 0.001
Actor’s optimizer Adam

Vanilla SAC
Critic’s architecture 256, 256
Critic’s activation function ReLU
Critic’s learning rate 0.001
Critic’s optimizer Adam

AdaSAC
Starting ϵb 1
Ending ϵb 0.01
Linear decay duration of ϵb Until end
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C Training time and memory requirements

Table 3: Final performances, memory requirements, and training time of AdaSAC compared to the
average individual run. Computations are made on an NVIDIA GeForce RTX 4090 Ti.

Sets of hyperparameters Additional GPU Additional
given as input to AdaSAC vRAM usage training time
16 sets of hyperparameters

300 Mb 352%described in Figure 4
4 architectures

< 100 Mb 72%described in Figure 8
3 learning rates

< 100 Mb 43%described in Figure 10
3 optimizers

< 100 Mb 43%described in Figure 12
3 activation functions

< 100 Mb 43%described in Figure 14

D Additional Experiments

D.1 On-The-Fly Hyperparameter Selection on MuJoCo

Table 4: Number of individual runs outperformed by AdaSAC and RandSAC for the Area Under the
Curve (AUC) and Final Performance (FP) metrics, when the 16 sets of hyperparameters, described in
Figure 4, are given as input. AdaSAC outperforms every individual run for the AUC metric. Only 3
individual runs reach a higher final performance than AdaSAC’s policy. Unlike AdaSAC, RandSAC
randomly selects a target at each target update, which leads to poorer performance than AdaSAC on
both metrics.

Hopper Ant HalfCheetah Walker2d Humanoid HumanoidStandup All

AdaSAC
AUC 16 8 7 16 12 11 16
FP 11 7 6 15 16 11 13

RandSAC
AUC 6 1 8 16 12 4 9
FP 7 1 10 15 11 5 12

SAC learning rate: 0.001, optimizer: Adam, architecture: 512, 512, activation fn: ReLU
SAC learning rate: 0.0005, optimizer: Adam, architecture: 256, 256, activation fn: ReLU
SAC learning rate: 0.001, optimizer: Adam, architecture: 512, 512, activation fn: Sigmoid
SAC learning rate: 0.0005, optimizer: Adam, architecture: 512, 512, activation fn: ReLU
SAC learning rate: 0.001, optimizer: Adam, architecture: 256, 256, activation fn: Sigmoid
SAC learning rate: 0.0005, optimizer: Adam, architecture: 512, 512, activation fn: Sigmoid
SAC learning rate: 0.0005, optimizer: RMSProp, architecture: 256, 256, activation fn: ReLU
SAC learning rate: 0.0005, optimizer: RMSProp, architecture: 512, 512, activation fn: ReLU
SAC learning rate: 0.001, optimizer: RMSProp, architecture: 512, 512, activation fn: Sigmoid
SAC learning rate: 0.0005, optimizer: Adam, architecture: 256, 256, activation fn: Sigmoid
SAC learning rate: 0.001, optimizer: RMSProp, architecture: 256, 256, activation fn: ReLU
vanilla SAC learning rate: 0.001, optimizer: Adam, architecture: 256, 256, activation fn: ReLU
SAC learning rate: 0.001, optimizer: RMSProp, architecture: 256, 256, activation fn: Sigmoid
SAC learning rate: 0.001, optimizer: RMSProp, architecture: 512, 512, activation fn: ReLU
SAC learning rate: 0.0005, optimizer: RMSProp, architecture: 512, 512, activation fn: Sigmoid
SAC learning rate: 0.0005, optimizer: RMSProp, architecture: 256, 256, activation fn: Sigmoid

Figure 7: Legend of Figure 4 showing the ranking by AUC of the 16 considered sets of hyperparame-
ters described. Importantly, the ranking changes for each MuJoCo environment.
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D.2 On-The-Fly Architecture Selection on MuJoCo
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Figure 8: On-the-fly architecture selection on MuJoCo. All architectures contain hidden layers with
256 neurons. The architectures are indicated in the legend. Left: AdaSAC is more sample-efficient
than grid search. Right: AdaSAC yields similar performances as the best-performing architectures.
RandSAC and AdaSAC are on par.
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Figure 9: Top: Per environment return of AdaSAC and RandSAC when 4 different architectures are
given as input. Bottom: Bar plot presenting the distribution of networks selected for the critic’s loss
and the actor’s loss along the training. AdaSAC effectively ignores the worst-performing architecture
(256) while actively selecting the best-performing architecture. Interestingly, in HumanoidStandup,
despite not performing well, AdaSAC selects the architecture 256, 256 which is the best-performing-
architecture.
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D.3 On-The-Fly Learning Rate Selection on MuJoCo
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Figure 10: On-the-fly learning rate selection on MuJoCo. 3 different learning rates are given to
AdaSAC and RandSAC as input. Left: AdaSAC is more sample-efficient than grid search. Right:
AdaSAC yields performances slightly above the best-performing learning rate. RandSAC and
AdaSAC are on par.
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Figure 11: Top: Per environment return of AdaSAC and RandSAC when 3 different learning rates
are given as input. Bottom: Bar plot presenting the distribution of networks selected for the critic’s
loss and the actor’s loss along the training. AdaSAC creates a custom learning rate schedule for each
environment and each seed. Interestingly, this schedule seems to choose a low learning rate at the
beginning of the training before increasing it later during the training.

17



D.4 On-The-Fly Optimizer Selection on MuJoCo
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Figure 12: On-the-fly optimizer selection on MuJoCo. 3 different optimizers are given to AdaSAC
and RandSAC as input. Left: AdaSAC is more sample-efficient than grid search. Right: AdaSAC
yields similar performances as the best-performing optimizer (AdamW, Loshchilov & Hutter (2018)).
RandSAC and AdaSAC are on par.
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Figure 13: Top: Per environment return of AdaSAC and RandSAC when 3 different optimizers are
given as input. Bottom: Bar plot presenting the distribution of networks selected for the critic’s loss
and the actor’s loss along the training. AdaSAC effectively ignores the RMSProp, which performs
poorly in most environments.
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D.5 On-The-Fly Activation Function Selection on MuJoCo
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Figure 14: On-the-fly activation function selection on MuJoCo. 3 different activation functions are
given to AdaSAC and RandSAC as input. Left: AdaSAC is more sample-efficient than grid search.
Right: AdaSAC performs slightly below the best-performing activation function. In this setting,
RandSAC suffers from the fact that a network with Tanh activation functions is selected as the target
network one-third of the time.
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Figure 15: Top: Per environment return of AdaSAC and RandSAC when 3 different activation
functions are given as input. Bottom: Bar plot presenting the distribution of networks selected for
the critic’s loss and the actor’s loss along the training. Remarkably, AdaSAC selects the Sigmoid
activation function in environments where this activation function seems beneficial (Ant, HalfCheetah,
and Walker2d), while it does not select the Sigmoid activation function in environments where the
individual run performs poorly (Humanoid and HumanoidStandup).
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EWRL Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We introduce our approach, AdativeQ-network, in Section 3. Then, we provide
a theoretical motivation in Section 3.1. Finally, we empirically validated our approach in
MuJoCo control problems in Section 4.2.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In Section 6, we discuss and quantify the major limitations of our approach.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: The paper contains Theorem 3.1 which is proven in Appendix A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Pseudocodes for AdaDQN and AdaSAC are available in Section 3.2 and B.
Tables of hyperparameters are presented in Table 1 for the Lunar Lander experiments and in
Table 2 for the MuJoCo experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While EWRL does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We include our code in our submission and will release it publicly upon
acceptance. The code is commented, the dependencies required for the code to run are
indicated.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the EWRL code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the EWRL code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The experiment settings are described in Sections 4. Tables of hyperparameters
are presented in Table 1 for the Lunar Lander experiments and in Table 2 for the MuJoCo
experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: As described in Section 4, we use the metrics recommended by Agarwal et al.
(2021) for reporting our results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In Table 3, we report the additional training time and memory requirements of
the proposed approach compared to the baselines.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
EWRL Code of Ethics https://ewrl.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We confirm that the research conducted in the paper conforms with the EWRL
Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the EWRL Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper presents work whose goal is to advance the field of Machine
Learning. There are many potential societal consequences of our work, none which we feel
must be specifically highlighted here.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All the creators or original owners of assets have been properly credited
through the citations.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The code released with our submission is properly documented and come with
the MIT License.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the EWRL Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the EWRL Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

26


	Introduction
	Preliminaries
	Adaptive temporal-difference target selection
	Theoretical motivation
	Algorithmic implementation

	Experiments
	A proof of concept
	Continuous control: MuJoCo environments

	Related work
	Discussion and conclusion
	Acknowledgments
	Proofs
	Algorithms and Hyperparameters
	Training time and memory requirements
	Additional Experiments
	On-The-Fly Hyperparameter Selection on MuJoCo
	On-The-Fly Architecture Selection on MuJoCo
	On-The-Fly Learning Rate Selection on MuJoCo
	On-The-Fly Optimizer Selection on MuJoCo
	On-The-Fly Activation Function Selection on MuJoCo


