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ABSTRACT

Video anomaly detection (VAD) aims to identify novel actions or events which
are unseen during training. Existing mainstream VAD techniques typically fo-
cus on the global patterns with redundant details and struggle to generalize to
unseen samples. In this paper, we propose a framework that identifies the lo-
cal patterns which generalize to novel samples and models the dynamics of local
patterns. The capability of extracting spatial local patterns is achieved through
a two-stage process involving image-text alignment and cross-modality atten-
tion. Generalizable representations are built by focusing on semantically relevant
components which can be recombined to capture the essence of novel anoma-
lies, reducing unnecessary visual data variances. To enhance local patterns with
temporal clues, we propose a State Machine Module (SMM) that utilizes ear-
lier high-resolution textual tokens to guide the generation of precise captions
for subsequent low-resolution observations. Furthermore, temporal motion esti-
mation complements spatial local patterns to detect anomalies characterized by
novel spatial distributions or distinctive dynamics. Extensive experiments on
popular benchmark datasets demonstrate the achievement of state-of-the-art per-
formance. Code is available at https://github.com/AllenYLJiang/
Local-Patterns-Generalize-Better/.

1 INTRODUCTION

Video anomaly detection (VAD) is the task of localizing from videos the events that deviate from
regular patterns, such as violence, accidents and other unexpected events. Nowadays, numerous
platforms such as CCTVs and UAVs play an increasingly important role in surveillance. However,
given the vast volume of video data and the low probability of anomalies, it is impractical for humans
to manually detect these events. Additionally, visual data variances and domain differences between
normal and anomalous events hinder the effectiveness of detection methods. As a result, VAD
has become a significant research topic in weakly supervised or unsupervised learning Gong et al.
(2019); Shi et al. (2023b); Chalapathy et al. (2017); Lu et al. (2020); Pang et al. (2020); Lv et al.
(2021); Georgescu et al. (2021a); Zaheer et al. (2020b); Ristea et al. (2021); Acsintoae et al. (2021).

Existing main-stream works Li et al. (2022c); Luo et al. (2021a); Georgescu et al. (2021a) for VAD
are divided into four categories. The first category of methods detects anomalies by leveraging
distinctive spatial and temporal features. These methods include prediction-based ones Luo et al.
(2021a); Lv et al. (2021); Lu et al. (2020); Park et al. (2020) and reconstruction-based ones Yang
et al. (2023b); Lv et al. (2023); Chang et al. (2020); Liu et al. (2021). To enhance representational
capacity, some methods combine multi-grained spatio-temporal representations Zhang et al. (2024)
for better discrimination, or integrate various features Georgescu et al. (2021a); Cho et al. (2023)
to better align with unseen samples Liu et al. (2022b). The second category involves using Mul-
tiple Instance Learning (MIL) to iteratively identify useful data segments and fine-tune models for
anomaly detection Cho et al. (2023); Wang et al. (2022a); Li et al. (2022a); Zhu et al. (2022); Liu
et al. (2023c). For instance, dynamic clustering techniques adapt model representations to real-time
observations Wu et al. (2022); Yang et al. (2022). Prompt-enhanced MIL Chen et al. (2024) in-
tegrates semantic priors with visual features for improved modeling of anomalies. However, the
generalization ability is still insufficient because background noises lead to inconsistent represen-
tations over visual data variances, as is shown by Fig. 1. The third category Liu et al. (2023c)
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Figure 1: Top: Existing methods rely on global patterns with redundant details, which are inconsis-
tent across visual data variations, limiting their generalization to novel samples. As a result, normal
and abnormal samples are poorly distinguished. Bottom: Our method focuses on local patterns that
capture semantically meaningful features such as body joints and are consistent across domains and
generalize well. The spatial distributions of these local patterns highlight divergences.

focuses on generating realistic anomalies to refine the decision boundary between normal and ab-
normal samples. Prompt based approaches Wu et al. (2024a) have also been proposed for generating
pesudo anomalies. However, the generated anomalies are based on prior assumptions which cannot
cover diverse and unexpected anomalous samples in real-world cases. The fourth category Zanella
et al. (2024) leverages the visual-language knowledge and reasoning capabilities Yang et al. (2024a)
from large models to generate textual descriptions or produce pseudo labels for self-training Yang
et al. (2024b), thereby improving the discrimination of abnormal events Micorek et al. (2024).

To generalize model representations to novel anomalies, we propose a two-stage framework for
identifying local patterns. In Stage 1, image-text alignment is used to locate text-informative local
patterns that are consistent across visual data variances. Stage 2 further refines the local patterns us-
ing cross-modality attention, resulting in more compact local patterns. Finally, spatial local patterns
are augmented with temporal clues to better determine anomalies.

In sum, the proposed framework is composed of an Image-Text Alignment Module (ITAM) and
a Cross-Modality Attention Module (CMAM) for identifying local patterns in two stages. ITAM
selects text-informative regions, converting high-dimensional visual data into efficient image to-
kens. The tokens are converted by Temporal Sentence Generation Module (TSGM) into texts, which
CMAM uses to refine the selection of image tokens as local patterns. Temporal clues enhance local
patterns in two ways. TSGM generates the sentences for cross-modality attention by considering
multi-moment contexts, while temporal motion estimation enriches spatial local patterns with tem-
poral dynamics. The effectiveness is validated on multiple benchmarks, including ShanghaiTech,
Ubnormal and so on. The contributions can be highlighted as follows:

- This paper proposes a novel two-stage approach to identify the local patterns that are consistent
across visual data variances and generalize to novel abnormal samples. The first stage uses image-
text alignment to identify semantically meaningful components, facilitating generalizable represen-
tations. Cross-modality attention further refines the components, yielding both the benefits of texts
in generalization and the advantages of visual features in representing details.

- Temporal solutions are used to enhance spatial local patterns. Firstly, temporal sentence gener-
ation integrates the contexts from different moments to produce coherent descriptions of events.
Additionally, temporal motion estimation complements local patterns by modeling dynamics.

- State-of-the-art performance is achieved with the proposed framework on multiple benchmarks.

2 RELATED WORKS

2.1 UNSUPERVISED VIDEO ANOMALY DETECTION

Due to the unbalanced nature of surveillance videos, most training datasets are without anomaly
annotations because it is expensive to label Li et al. (2022b); Liu et al. (2023b); Deng et al. (2023).
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Reconstruction-based approaches Astrid et al. (2024); Yang et al. (2023b); Fang et al. (2020); Li
et al. (2020a); Gong et al. (2019); Asad et al. (2021); Abati et al. (2019); Sabokrou et al. (2018)
produce increased error when encountering irregular features Ramachandra et al. (2020); Madan
et al. (2023); Yu et al. (2023) that do not reside in training data. For instance, the method Zaheer
et al. (2022a) learns not to reconstruct anomalies. Gong et al. (2019); Gao et al. (2022) augment
encoders to improve the sensitivity of reconstruction error to anomalies. Madan et al. (2021); Chang
et al. (2020); Singh et al. (2023); Yu et al. (2022b); Shi et al. (2023a) integrate multi-modal features
Ding et al. (2021) while Huang et al. (2022) integrates a probabilistic decision model. Zaheer
et al. (2022b) assesses the quality of reconstruction to improve stability. Prediction-based methods
Luo et al. (2021b); Morais et al. (2019); Luo et al. (2021a); Liu et al. (2018); Nguyen & Meunier
(2019); Zeng et al. (2021) evaluate the divergence in normal and abnormal temporal dependencies,
leveraging latent spaces Zhang et al. (2020) or hybrid attention Zhang et al. (2022b).

To better distinguish anomalies, Lv et al. (2021); Lu et al. (2020); Liu et al. (2021); Park et al. (2020);
Li et al. (2021a) combine prediction with reconstruction. Sato et al. (2023); Wu et al. (2023); Luo
et al. (2019) study the distribution over normal samples and propose novel features Arad & Werman
(2023). Similarly, Yan et al. (2023) proposes denoising diffusion modules. Flaborea et al. (2023)
exploits the enhanced mode coverage of diffusive probabilistic models. To improve representation
capacities, Chang et al. (2021); Fan et al. (2024) propose snippet-level attention. Liu et al. (2023a);
Yu et al. (2022a); Purwanto et al. (2021) introduce pyramid deformation and CRFs to learn spatio-
temporal dependencies Bertasius et al. (2021); Cho et al. (2022). Wang et al. (2021) combines multi-
scale features to enhance prediction. Stergiou et al. (2024) combines interpolation with extrapolation
for prediction. Wang et al. (2022b) proposes a self-supervised scheme with discriminative DNNs.
We propose generalizable local patterns to better represent unseen samples.

2.2 WEAKLY SUPERVISED ANOMALY DETECTION

Multi-instance learning (MIL) takes videos as bags and snippets as instances, transforming video-
level labels to instance-level Feng et al. (2021). The methods iteratively locate abnormal segments
and fine-tune models using anomalous segments which are dissimilar to normal ones Zhang et al.
(2023a). To collect abnormal segments, inter-sample distances are evaluated Lu et al. (2022);
Ionescu et al. (2019) based on spatio-temporal similarities Dhiman & Vishwakarma (2020); Lv
et al. (2023); Chang et al. (2020); Markovitz et al. (2020). Li et al. (2021b) proposes a probabilistic
framework. Sun et al. (2020); Li et al. (2020b) build graphical representations and integrated col-
lective properties in measuring similarities. Sapkota & Yu (2022) performs dynamic non-parametric
clustering. To improve robustness, Zhang et al. (2023b) proposes to interpret the vulnerability of
MIL. Wu & Liu (2021) introduces causal relations to enhance MIL Tian et al. (2021). Yang et al.
(2023a) proposes binary network augmentation strategy. Differently, we propose generalizable rep-
resentations which facilitate the measurement of similarities between seen and unseen events.

2.3 METHODS WITH DATA AUGMENTATION

To generate pseudo abnormal samples in fine-tuning, Liu et al. (2023c); Lin et al. (2022); Kim
et al. (2022); Liu et al. (2022a); Astrid et al. (2021) propose pseudo abnormal snippet synthesizers
which are trained on normal samples Yu et al. (2021). Zaheer et al. (2020a) employs a generator
which was not fully trained to create abnormal samples. Chen et al. (2022) generates class balanced
training data with a conditional GAN. Lim et al. (2018) focuses on infrequent normal samples during
generation, harnessing novel sampling strategies. Besides frame-level analysis Zaheer et al. (2020b),
object-level approaches Sun & Gong (2023); Ionescu et al. (2019); Luo et al. (2021a) provide fine-
grained analysis. Acsintoae et al. (2022) introduces a new dataset with diverse anomalies. However,
the lack in real-world modes in generated data highlights the necessity for generalizable patterns.

2.4 METHODS EXPLORING THE REPRESENTATION OF UNSEEN CATEGORIES

To adapt model representations and work under changing anomalies, meta learning-based methods
Lu et al. (2020); Park et al. (2020), transfer-learning based approaches Doshi & Yilmaz (2020);
Perini et al. (2022), continual learning Doshi & Yilmaz (2020) and self-supervised approaches Pang
et al. (2020); Degardin & Proença (2021) introduce adaptable feature representations. Attention-
based methods Sultani et al. (2018); Guo et al. (2023); Li et al. (2021c); Luo et al. (2017) attend
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Figure 2: Structure of the method. (a) Main flow: Visual features are extracted using backbone and
Image-Text Alignment Module (ITAM) which identifies caption-informative local features as image
tokens. Conditioned on image tokens, the Temporal Sentence Generation Module (TSGM) generates
sentences which are then combined with image tokens using the Cross-Modality Attention Module
(CMAM) to highlight key patterns. HEVC Encoder estimates inter-frame motion through video
compression. Spatial local patterns and motion are jointly analyzed to detect anomalies through
reconstruction. (b) TSGM uses the State Machine Module (SMM) for sentence generation based on
image tokens and earlier sentences. (c) CMAM is implemented based on image-text similarity.

to domain-invariant features in addressing unseen samples. To better align with anomaly detection,
Georgescu et al. (2021a) integrates multiple sub-tasks. Zhou et al. (2023a) introduces hierarchical
graphs for representing videos and maximizing inter-class margins. Differently, our approach locates
the text-informative local patterns which generalize to unseen events.

2.5 PROMPTING METHODS

Prompt-based approaches have been widely used in anomaly detection Du et al. (2022); Liu et al.
(2023c); Sato et al. (2023). For instance, Zhou et al. (2023b) learns object-agnostic text prompts for
generalized abnormality recognition. Yang et al. (2024a) proposes rule-based reasoning to achieve
few-normal-shot prompting. Unlike approaches that use direct prompts, we explore local patterns
which bridge the gap between images and texts in Visual-Language Models (VLMs).

3 METHODOLOGY

To represent unexpected anomalies using generalizable representations, we establish a framework
capable of identifying caption-informative local patterns. The framework uses ITAM and CMAM
to localize spatial local patterns in two stages, as is shown in Fig. 2(a). To augment local patterns
with temporal clues, temporal sentence generation and temporal motion estimation are investigated.
Firstly, TSGM models the dependencies between earlier text tokens and later image tokens, enhanc-
ing the input sentence for CMAM, as is shown in Fig. 2(b). Then inter-frame motion vectors are
obtained from video compression. Finally, spatial and temporal clues are combined in the Recon-
struction Module (RM) to detect anomalies. In the following parts we will discuss each module.
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3.1 CROPPING OF IMAGE REGIONS

Due to the wide field of view in some frames containing numerous objects, it is difficult even for
GPT-4 Achiam et al. (2023) to focus on all objects together. As a result, local regions are cropped
as the first step in our pipeline. We have experimented with both YOLOv7 Wang et al. (2023)
and Qwen-7B Bai et al. (2023) for cropping bounding box regions based on prompts. Specifically,
”How many people are there?” and ”The bounding box of the i-th object” are sequentially provided
to Qwen-7B which returns corresponding boxes. The comparisons will be included in Appendix D.

3.2 STAGE 1 FOR IDENTIFYING SPATIAL LOCAL PATTERNS

This stage identifies features in cropped image regions that align with texts. The texts describe
generic movement attributes (e.g., ”A man is walking with swinging arms and legs”). When en-
countering an unseen action, such as running, the model can recombine known components like
arms and legs to generate descriptive language that captures the essence of the action without ex-
plicitly naming it. As illustrated in Fig. 1, heatmaps indicate the attention on local components,
highlighting similar semantic regions for shared attributes. More visualizations are in Fig. 4.

To identify the local patterns that align with texts, the frozen Image Encoder Li et al. (2023) and the
image transformer of Q-Former in BLIP-2 Li et al. (2023) are employed as backbone and ITAM,
respectively. The backbone outputs HI

i (t) ∈ RSd×Vd , Q-Former has an image transformer and a text
transformer for aligning features from both modalities, FI

i (t) ∈ RNq×Hd is the image transformer’s
output with Nq image tokens FI

i,1(t), ...,F
I
i,Nq

(t) which inform about the captions of image region
i and remain consistent over visual data variances, as will be shown by the heatmaps in Fig. 4.
Detailed structures are in Appendix C. Algorithm 1 shows the workflow of Stage 1 and Stage 2.

Algorithm 1 Two-Stage Process for Identifying Spatial Local Patterns

1: Input: Input image, Backbone, ITAM, CMAM, TSGM and Text tokenizer
2: Output: Cross-modal embedding GI

i (t) representing spatial local patterns
3: Stage 1: Image Token Extraction
4: Use the backbone to extract feature maps HI

i (t)

5: Feed HI
i (t) into ITAM to obtain image tokens {FI

i,j(t)}
Nq

j=1 which align with texts
6: Stage 2: Cross-Modality Attention
7: Feed image tokens {FI

i,j(t)}
Nq

j=1 into TSGM and obtain text tokens FT
i (t)

8: CMAM weightedly sums {FI
i,j(t)}

Nq

j=1 according to their similarity with FT
i (t)

9: Return: Return weighted sum GI
i (t), representing the cross-modal features

3.3 STAGE 2 FOR IDENTIFYING LOCAL PATTERNS

This stage further highlights local patterns by generating a sentence conditioned on image tokens
and summing them based on their similarities to the generated sentence. Using the image tokens
FI

i,1(t), ...,F
I
i,Nq

(t) from Stage 1, TSGM generates a sentence for image region i, as is shown in
Fig. 2(a). TSGM utilizes SMM for inter-frame caption augmentation and a frozen Q-Former Li et al.
(2023) for image-grounded text generation. SMM determines whether previous events still reside in
current frame while Q-Former captions current frame. The outputs from SMM and Q-Former are
combined to form the augmented sentence SI

i (t). Even with incomplete observations at t, SI
i (t) can

recognize previously occurring events from current frame as long as the events still reside.

The embedding FT
i (t) ∈ RSl×Hd of SI

i (t), where Sl = 32 denotes the maximum number of tokens
in one sentence, is provided to CMAM. CMAM uses the first element in FT

i (t) as query and the
image tokens as keys and values for attention operations, as is illustrated in Fig. 2(c) and Eq. (1):

GI
i (t) = (FT

i (t)[0]F
I
i (t)

⊤)FI
i (t),G

I
i (t) ∈ RHd (1)

FT
i (t) is obtained by the text transformer in Q-Former Li et al. (2023) with first element FT

i (t)[0]
representing the whole sentence. Eq. (1) weightedly sums image tokens according to their cosine
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Figure 3: Structure of SMM, which stacks NSMM state machines, each predicting δ ahead.

similarity to FT
i (t). In this way, the advantage of image tokens in characterizing visual details and

the benefits of textual features in generalizing over visual data variances are both achieved. Ablation
studies will compare the performance of GI

i (t) against features from single modalities.

3.4 TEMPORAL SENTENCE GENERATION IN STAGE 2

In Stage 2, the generation of captions is influenced by visual data variances such as low resolutions.
As is shown in Fig. 2(b), the module Li et al. (2023) for image-grounded text generation only pro-
vides a coarse caption ”A man is walking” on later low-resolution observations. It is not as precise
as earlier caption ”A man is pushing a stroller on the street” even if they actually describe the same
event. Therefore, SMM in TSGM determines whether earlier high-resolution events are represented
by later image tokens. It captures inter-frame dependencies and refines sentence coherence. SMM
uses earlier text tokens to generate precise captions for low-resolution observations. The objects in
consecutive frames are associated using intersection over union similarity between bounding boxes.

Specifically, SMM augments image tokens FI
i (t) = {FI

i,1(t), ...,F
I
i,Nq

(t)} with earlier captions
SI
i (t − 1) which are firstly converted from declarative sentences to interrogative sentences. For

instance, ”The man is pushing a stroller.” is changed to ”Is the man pushing a stroller?” whose text
tokens are FT

i (t − 1) = {FT
i,1(t − 1), ...,FT

i,Sl
(t − 1)}. Details of this conversion will be shown

in Appendix G Hardeniya et al. (2016) . As is shown in Fig. 2(b), SMM combines FT
i (t − 1)

with FI
i (t) as input. The state machines in SMM evolve across the dimension of input sequence

Vi(t) = [FT
i,1(t− 1); ...;FT

i,Sl
(t− 1);FI

i,1(t); ...;F
I
i,Nq

(t)]⊤ ∈ RHd×(Sl+Nq) where L = Sl +Nq

is the sequence length and each token has dimension Hd. SMM predicts a binary decision (”yes” or
”no”) based on the sequence, determining whether the event in SI

i (t− 1) is still present in FI
i (t).

Vi(t) is deemed as the combination of Hd 1-dimensional signals each with length L. The depen-
dencies in sequences are represented using O length-L Legendre polynomials Arfken et al. (2011)
[go(1), ..., go(L)], o ∈ [1, O], as will be shown in Fig. 6 of Appendix A. The input tensor Vi(t) is
approximated by the weighted sums of the O fixed polynomials. For simplicity, index t is omitted
in the following parts which conduct analysis along the column dimension of input tensor at any
moment t. The Feature Space Encoder produces Ui(t) = [ui(l − L + 1); ...;ui(l)]

⊤ ∈ RO×L,
where ui(l

′) = [ui,1(l
′), ..., ui,O(l

′)] for l′ ∈ (l − L, l]. Here, l varies along the column dimension
of Vi(t) and Ui(t), (l − L, l] is the window of columns which are encoded by ci(l) together.

To better model multi-modal sequence of Hd-dimensional signals, NSMM state machines are
stacked in SMM, each predicting ∆l/NSMM ahead, as is shown in Fig. 3. The advantages will
be shown in ablation studies. Eq. (2) shows the representation of Ui(t) with basis functions:

ui,o(l
′) = ci,o(l)go(l

′ − l + L), o ∈ [1, O], l′ ∈ (l − L, l] (2)

In SMM, a state vector ci(l) = [ci,1(l); ...; ci,O(l)]
⊤ with O weights encoding the dependencies

between texts and visual tokens in Vi(t), the dependencies are decomposed onto weighted Legendre
basis functions. State vector evolution informs about the prediction (”yes” or ”no”).

ci(l + 1) = Aci(l) +B
∑O

o=1
ui,o(l + 1) (3)
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where A = A(O,L) ∈ RO×O and B = B(O,L) ∈ RO×1 are derived from Legendre polynomials
Gu et al. (2020). As O grows, more diversified basis functions can represent more complex depen-
dencies. Assume that ci(l) encodes ui(l − L+ 1), ...,ui(l) based on which ui(l + 1) is predicted.
ui(l+1) denotes ”yes” or ”no”. ci(l+1) encodes ui(l−L+2), ...,ui(l+1). Eq. (3) will be derived
in Appendix A. In SMM shown by Fig. 3, the transformation xi(l) = Cci(l), where C ∈ RO×O is
learnable, highlights important components, Eq. (3) is transformed to

xi(l) = CAL−1B
∑O

o=1
ui,o(l − L+ 1) + ...+CB

∑O

o=1
ui,o(l) (4)

Finally, the elements of xi(l) are multiplied with shifted basis functions [go(1+δ), ..., go(L+δ)], o ∈
[1, O],∆l = 1, δ = ∆l/NSMM , producing shifted weighted basis functions:

ûi,o(l
′ + δ) = xi,o(l)go(l

′ − l + L+ δ), o ∈ [1, O], l′ ∈ (l − L, l] (5)

The Feature Space Decoder projects ûi(l + δ) = [ûi,1(l + δ), ..., ûi,O(l + δ)] onto a prediction
(”yes” or ”no”), as is shown by Fig. 3. Cross entropy loss is employed. In each batch, Bs images
correspond to Bs declarative sentences which are converted into Bs questions. The tokens of each
image are concatenated with those of each corresponding question before feeding into SMM.

LSMM = −
Bs−1∑
i=0

Bs−1∑
j=0

yi,j log(
Sim(P (i, j), Emb(”yes”))

Sim(P (i, j), Emb(”yes”)) + Sim(P (i, j), Emb(”no”))
) (6)

where ground truth yi,j takes 1 when the Qwen-Chat model Bai et al. (2023) receives question j
together with image i and returns ”yes”, else yi,j takes 0. Sim(P (i, j), Emb(”yes”)) is the cosine
similarity between the embedding P (i, j) of SMM’s output and the embedding of ”yes”.

3.5 TEMPORAL MOTION ESTIMATION AND SPATIO-TEMPORAL ANOMALY DETECTION

To enhance the spatial local patterns obtained from Stage 2, this paper proposes to encode frames
into H.265 (HEVC) videos using FFmpeg Zeng et al. (2016). As is illustrated in Fig. 2(a), motion
vectors from encoded videos are extracted, each motion vector is associated with a 8×8 macroblock.
The orientation of each motion vector is computed as atan2(y, x) and quantized into Dm = 8 equi-
spaced bins, x and y are the horizontal and vertical components. The average magnitudes of motion
vectors in these bins produce a Dm-dimensional histogram MI

i (t) representing region i.

To detect anomalies with anomalous local patterns or irregular dynamics, the Reconstruction Mod-
ule (RM) with 7 fully-connected layers is trained on normal spatial and temporal data. As is shown
in Fig. 2(a), the first layer takes in the concatenation of local patterns GI

i (t) and dynamics MI
i (t), it

maps Hd +Dm input channels to Dh output channels while the last layer maps Dh input channels
to Hd + Dm output channels. The 5 hidden layers have Dh input channels and Dh output chan-
nels. The reconstructions of spatial and temporal features are conducted together, facilitating the
reconstruction of each one to depend on the other. Reconstruction error determines anomaly scores.

4 EXPERIMENTS AND RESULTS

This section compares the proposed method with state-of-the-art ones and presents ablation studies.

4.1 EXPERIMENTAL SETUP

Datasets Experiments are conducted on seven datasets. The training sets of ShanghaiTech, Avenue
and UCSD Ped2 contain only normal events and anomalies reside in test data. (1) ShanghaiTech
dataset Liu et al. (2018) includes 330 training videos and 107 test videos. Among the two versions
of ShanghaiTech dataset Liu et al. (2018) and Zhong et al. (2019); Li et al. (2022a); Zanella et al.
(2023), the latter includes abnormal behaviors in both training set and test set. As our approach
is unsupervised, we use the first version. (2) CUHK Avenue dataset Lu et al. (2013) involves 16
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Table 1: Performance (AUC, %) on the benchmarks. ST, Ave, UB, Ped2 and NWPU represent
ShanghaiTech, CUHK Avenue, Ubnormal, UCSD Ped2 and NWPU Campus, respectively. Macro-
AUC and micro-AUC Reiss & Hoshen (2022) are evaluated.

Algorithm Year ST Ave UB Ped2 NWPU

Georgescu et al. (2021b) 2021 89.3 / 82.7 92.3 / 90.4 - / 61.3 99.7 / 98.7 -
Acsintoae et al. (2021) 2021 90.5 / - 93.2 / - - - -

Cai et al. (2021) 2021 - / 73.7 - / 86.6 - - / 96.6 - / 64.5

Reiss & Hoshen (2022) 2022 89.6 / 85.9 96.2 / 93.3 - 99.9 / 99.1 -
Zhong et al. (2022) 2022 - / 74.5 - / 89.0 - - / 98.1 -
Zhang et al. (2022a) 2022 - / 80.3 - / 80.5 - - / 92.9 -

Lu et al. (2022) 2022 85.9 / 77.6 88.6 / 87.4 - - - / 62.2
Acsintoae et al. (2022) 2022 90.5 / 83.7 93.2 / 93.0 - - -

Liu et al. (2023c) 2023 91.4 / 85.0 93.9 / 93.6 - - -
Cao et al. (2023) 2023 - / 79.2 - / 86.8 - - - / 68.2

Hirschorn et al. (2023) 2023 - / 85.9 - - / 79.2 - -
Arad & Werman (2023) 2023 - / 85.9 - / 93.5 - - / 99.1 -

Sun & Gong (2023) 2023 - / 83.4 - / 93.7 - - / 98.1 -
Liu et al. (2023a) 2023 - / 78.8 - / 92.8 - - / 99.7 -
Yu et al. (2022a) 2023 - / 72.6 - / 90.7 - - / 97.2 -

Zhang et al. (2024) 2024 93.0 / 87.5 94.5 / 94.3 - - 72.2 / 70.1
Micorek et al. (2024) 2024 91.5 / 86.7 96.1 / 94.3 85.5 / 72.8 99.9 / 99.7 -
Astrid et al. (2024) 2024 - / 71.39 - / 82.14 - - / 94.05 -
Yang et al. (2024a) 2024 - / 85.2 - /89.7 - / 71.9 - / 97.9 -

Proposed Method 2024 92.7 / 88.9 94.9 / 94.5 86.8 / 81.5 99.8 / 99.1 73.5 / 71.6

training videos and 21 test videos. (3) Ubnormal dataset Acsintoae et al. (2022) is divided into a
training set with 268 videos, a validation set with 64 videos, and a test set with 211 videos. (4)
NWPU Campus dataset Cao et al. (2023) comprises 43 scenes, 28 classes of anomalies and 16
hours of video footage. (5) UCSD Ped2 dataset Li et al. (2014) contains 16 normal training videos
and 12 test videos. (6) UCF Crime dataset Sultani et al. (2018) includes 1610 training videos in
which 800 contain only normal behaviors. The test set includes 290 videos in which 140 include
anomalies. (7) XD Violence Wu et al. (2020) includes 4754 videos where 2349 are non-violent and
2405 are violent. There are 3954 training videos and 800 test videos where 500 are violent.

Evaluation Metrics Following previous literature Markovitz et al. (2020), Area under Curve (AUC,
%) is adopted for evaluation. Differently, the accuracy on XD-Violence dataset is measured using
precision-recall curve and the corresponding Average Precision (AP, %) Panariello et al. (2022).

Implementation Details To capture more contexts, bounding boxes are expanded by 50% on both
sides horizontally and vertically. The benefits of box expansion will be shown in Table 4 of Appendix
D. For image region i at t, the output of backbone and ITAM are HI

i (t) ∈ RSd×Vd and FI
i (t) ∈

RNq×Hd which satisfy Sd = 257, Vd = 1408, Nq = 32, Hd = 768. Each of the Nq image tokens
has embedding size Hd. Following BLIP-2 Li et al. (2023), the backbone has ”ViT-L/14” structure
in Radford et al. (2021). The text tokenizer in Fig. 2(a) will be detailed in Appendix C. For sentences
with fewer than Sl tokens, FT

i (t) is padded with zeros. RM has Dh = 512 in intermediate layers.

SMM, with NSMM = 3 state machines, is trained on the COCO-Caption dataset Lin et al. (2014).
Table 3 shows the influences of NSMM . The Feature Space Encoder (Hd input channels, O = 64
output channels) and Feature Space Decoder (O input channels, Hd output channels) are learnable
fully-connected layers, the weights in C ∈ RO×O are also learnable. All weights are initialized with
distribution N(0, 0.02). Training spans 20 epoches with initial learning rate 5 × 10−5 and decay
0.99. RM takes concatenated GI

i (t) and MI
i (t) as input, with ReLU activations. It is trained using

Adam optimizer with learning rate 10−3 for 10 epoches, using MSE loss. Implementations are based
on Pytorch Pytorch (2018) and a NVIDIA A100 GPU. RM is trained on benchmark videos without
anomalies. The influences of RM’s number of layers will be shown in Appendix F. The evaluations
on operational efficiency will be detailed in Appendix H.
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Table 2: Performance on UCF-Crime (micro-AUC, %) and XD-Violence (AP, %). UCF and XD
represent UCF-Crime and XD-Violence, respectively.

Algorithm UCF XD Algorithm UCF XD

Joo et al. (2023) 87.58 82.19 Wu et al. (2024a) 86.40 76.03
Chen et al. (2023) 86.98 80.11 Chen et al. (2024) 86.83 88.21

Pu et al. (2023) 86.76 85.59 Yang et al. (2024b) 87.79 83.68
Tan et al. (2024) 86.71 82.10 Wu et al. (2024b) 88.02 84.51

Zanella et al. (2024) 80.28 85.36 Proposed Method 88.83 86.96

Table 3: Ablations of components using Micro-AUC. TME and TSG are short for Temporal Motion
Estimation and Temporal Sentence Generation, respectively. Nq is the number of image tokens.

Setting Stage 1 Stage 2 Nq TME TSG NSMM ST Ave UB Ped2

1 × × 32 × × - 71.9 85.1 72.8 79.3
2 ✓ × 32 × × - 80.3 86.5 73.6 90.7
3 ✓ ✓ 32 × ✓ 3 86.4 88.7 79.3 96.8
4 ✓ w/o image tokens 32 × ✓ 3 79.2 87.8 72.1 95.4
5 ✓ w/o text tokens 32 × ✓ 3 80.7 89.6 74.5 95.9
6 ✓ ✓ 32 ✓ ✓ 3 88.9 94.5 81.5 99.1
7 ✓ ✓ 32 ✓ w/o SMM 3 87.6 93.0 80.1 98.5
8 × × 32 ✓ × - 84.1 86.2 77.6 94.5
9 ✓ ✓ 32 ✓ ✓ 1 88.6 94.4 79.8 99.1
10 ✓ ✓ 32 ✓ ✓ 5 88.9 94.5 81.5 99.1

4.2 COMPARISONS WITH BASELINES

To demonstrate the superiority, the proposed approach is compared with existing ones, including
LLM-based baselines Yang et al. (2024a), for detecting anomalies. Significant improvements are
observed in Table 1. Such improvements are attributed to the identification of spatial local patterns
and dynamics. Results on non-human objects are shown in Table 2 with UCF-Crime and XD-
Violence datasets, suggesting that local patterns can generalize to different object types.

4.3 ABLATION STUDIES

Ablation on Stage 1 and Stage 2 In Setting 1 of Table 3, the reconstruction error of backbone
features HI

i (t) is used to detect anomalies. Setting 2 and Setting 3 show the utilization of Stage
1 and both stages for reconstruction, respectively. The comparison shows that Stages 1 and 2 both
play crucial roles in selecting text-informative local patterns, as will be illustrated in Fig. 4.

Ablation on ITAM’s Structure To demonstrate that the primary contributor to generalization is
image-text alignment instead of pre-existing models, we conduct an ablation study by varying the
structure and training data of ITAM. Detailed results and analysis are provided in Appendix E.

Ablation on Cross-Modality Attention Setting 4 in Table 3 replaces cross-modality feature GI
i (t)

in Setting 3 with textual feature FT
i (t) of sentence from TSGM, using reconstruction error on FT

i (t)
to determine anomalies. Setting 5 discards text tokens, only using the reconstruction error on FI

i (t).
Fig. 5 also shows that combining visual and textual features outperforms using a single modality.

Ablation on Temporal Motion Estimation The improvement of Setting 6 over Setting 3 demon-
strates that temporal dynamics complements local patterns in detecting anomalies. Setting 8 shows
the performance of only using reconstruction error on dynamics MI

i (t) for anomaly detection.

Ablation on the SMM in Temporal Sentence Generation in Stage 2 The comparison between
Setting 6 and Setting 7 shows that if TSGM only uses Q-Former Li et al. (2023) for image-grounded
text generation without SMM to incorporate previous captions, performance drops. As a result, the
mixture of image tokens and text tokens from different moments contributes to more informative
sentences. More ablations on SMM will be shown in Appendix B.
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Figure 4: Heatmaps of local patterns in two stages. (a) Normal events. (b) Abnormal events. Both
(a) and (b) follow the same row arrangement: the first row contains input images, the second row
shows the features from ITAM, and the third row shows the local patterns selected by CMAM.

Figure 5: Anomaly scores obtained using image features, text features and combined ones. Cross-
modality attention detects anomalies even under occlusion and low resolution. Green and red boxes
show the anomalies detected with single modality and cross-modality attention, respectively.

Ablation on SMM’s Structure SMM stacks Nsmm state machines, each predicting a future period
of ∆l/Nsmm. The stacking mechanism achieves the full prediction ∆l. Setting 6, 9 and 10 in
Table 3 show that Nsmm = 3 outperforms Nsmm = 1. The task for each state machine becomes
simpler because each one focuses on short-term dependencies. Predicting a long period ∆l requires
capturing both short- and long-term dependencies. A single state machine struggles to handle these
varying dependencies effectively, especially in our case with non-linear multi-modal dependencies.

Moreover, the ablation on the number of image tokens Nq will be involved in Appendix E.

4.4 SUBJECTIVE RESULTS ON LOCAL PATTERNS

Fig. 4 subjectively shows local patterns. The second rows of Fig. 4(a) and (b) highlight the patterns
for FI

i (t) while the third rows display those for GI
i (t). The heatmaps, generated using Grad-CAM

Selvaraju et al. (2017), show that local patterns span similar semantic regions across normal and
abnormal events. Cross-modality attention refines these patterns to focus on semantically relevant
components, enhancing generalization. More visualizations will be presented in Appendix I.

5 DISCUSSION AND CONCLUSION

Limitations: The limitation of our work lies in the reliance on object detectors, because the direct
processing of an image with many objects using VLM can result in context being ignored. Please
refer to Appendix J for more potential directions of improvement.

Conclusions: In this paper, we establish a framework for video anomaly detection by locating local
patterns through image-text alignment and cross-modality attention. At the core of the framework is
identifying the text-informative local patterns that generalize to novel anomalies, ensuring consistent
representations across novel visual data. Additionally, temporal sentence generation and motion
estimation augment cross-modality attention and complement spatial local patterns, respectively.
Extensive experiments show that the framework surpasses existing state-of-the-art methods.
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A DETAILS ABOUT SMM

We model the sequence Vi(t) = [FT
i,1(t − 1); ...;FT

i,Sl
(t − 1);FI

i,1(t); ...;F
I
i,Nq

(t)]⊤ ∈
RHd×(Sl+Nq), L = Sl + Nq of object i consisting of both Sl columns denoting the sentence from
t− 1 and Nq columns denoting image tokens at t. Matrix Vi(t) is projected to Ui(t) ∈ RO×L with
the Feature Space Encoder which is a fully-connected layer in Fig. 3. The l′-th column in Ui(t)
is [ui,1(l

′), ..., ui,O(l
′)]⊤, l′ ∈ (l − L, l]. l varies along the column dimension of Vi(t) and Ui(t),

(l − L, l] is the window of columns which are encoded by ci(l) together. For simplicity, we ignore
index t in the following parts which conduct analysis along the column dimension of input tensor at
any moment t.

Figure 6: Basis functions in state machines for modeling sequences.

Fig. 6 shows the basis functions in state machines for modeling sequences. The O rows in
Ui(t) are the weighted version of the O length-L Legendre polynomials Arfken et al. (2011)
[go(1), ..., go(L)], o ∈ [1, O]. Specifically, the o-th row can be represented as:

[ui,o(l − L+ 1), ..., ui,o(l)] = ci,o(l)[go(1), ..., go(L)], o ∈ [1, O] (7)

In SMM, a state vector ci(l) ∈ RO with O weights ci,1(t), ..., ci,O(t) are the weights of polynomials
and encode the dependencies among the columns in Vi(t).

As can be seen from Fig. 6, ci(l1) encodes the dependencies among l1 − L + 1, ..., l1 columns,
ci(l2) encodes the dependencies among l2 − L + 1, ..., l2 columns. According to Gu et al. (2020),
the dynamics of a 1-dimensional sequence fi(l) across a period can be represented by ci(l) ∈ RO,
satisfying [fi(l − L+ 1), ..., fi(l)] =

∑O
o=1 ci,o(l)[go(1), ..., go(L)], fi(l

′) ∈ R, l′ ∈ [l − L+ 1, l].
The transitions from ci(l1) to ci(l2) facilitates the prediction in the sequence:

d

dl
ci(l) = AHiPPOci(l) +BHiPPOfi(l) (8)

By combining Eq. (7) with Eq. (8), we can obtain:

d

dt
ci(l) = AHiPPOci(l) +BHiPPO

∑O

o=1
ui,o(l) (9)

The matrices AHiPPO and BHiPPO are defined in Gu et al. (2020) with o, h ∈ [1, O]:

AHiPPO(o, h) =


− (2o+1)0.5(2h+1)0.5

L if o > h,

0 if o < h,

− o+1
L if o = h.

(10)
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BHiPPO(o) = −
(2o+ 1)0.5

L
(11)

To discretize Eq. (9), we obtain

lim
∆→0

ci(l +∆)− ci(l)

∆
= lim

∆→0
(
AHiPPOci(l) +BHiPPO

∑O
o=1 ui,o(l)

2
+

AHiPPOci(l +∆) +BHiPPO

∑O
o=1 ui,o(l +∆)

2
),∆ = 1

(12)

which can be transformed to

ci(l) =
I+ ∆

2 AHiPPO

I− ∆
2 AHiPPO

ci(l − 1) +
∆BHiPPO

I− ∆
2 AHiPPO

∑O

o=1
ui,o(l) (13)

which simplifies to

ci(l) = Aci(l − 1) +B
∑O

o=1
ui,o(l) (14)

As a result, A = ALegendre(O,L) ∈ RO×O and B = BLegendre(O,L) ∈ RO×1 are determined
by Legendre bases.

B SUBJECTIVE RESULTS OF TEMPORAL SENTENCE GENERATION WITH
SMM

In Fig. 7, the green bounding boxes indicate the anomalies that can be detected by directly applying
the Q-Former, as described in Li et al. (2023), for image-grounded text generation in TSGM. The red
bounding boxes show the cases where only with the combination of SMM and Q-Former in TSGM
can the anomalies be detected. The curves show anomaly scores. Under poor observational condi-
tions like occlusions and low resolutions, SMM complements the Q-Former in TSGM to effectively
detect abnormal events.

C STRUCTURES OF MODULES FOR IMAGE-TEXT ALIGNMENT AND
IMAGE-GROUNDED TEXT GENERATION

ITAM is the image transformer of Q-Former Li et al. (2023), as is shown in Fig. 8. It outputs
FI

i (t) ∈ RNq×Hd which is aligned with the output from text transformer Li et al. (2023) during
training to learn extracting text-aligned features. The text tokenizer in Fig. 2 is part of the text
transformer of Q-Former Li et al. (2023). ITAM and text tokenizer are frozen in our work.

Image Transformer To select from HI
i (t) the caption-informative local patterns, this module is

built with self-attention layers, cross-attention layers and feed-forward layers, as is shown by Fig.
8. Firstly, Nq learnable query embeddings attend to each other in self-attention layers before inter-
acting with HI

i (t) through cross-attention layers. Each query embedding has dimension Hd. The
Image-attention Module involves 6 sequential transformer layers each of which includes one self-
attention layer, one cross-attention layer and one feed-forward layer. HI

i (t) acts as a static input to
the cross-attention layers across all transformer layers. The transformer layers sequentially refine
the understanding and integration of HI

i (t) with learned queries. Each self-attention layer is im-
plemented according to Vaswani et al. (2017) with 12 heads, producing output QI

i (t) ∈ RNq×Hd .
Each cross-attention layer has 12 heads with HI

i (t) functioning as key and value, it performs feature
fusion by combining HI

i (t) with QI
i (t) to ZI

i (t) ∈ RNq×Hd . ZI
i (t) is projected by fully-connected

feed-forward layers to FI
i (t) ∈ RNq×Hd .

21



Published as a conference paper at ICLR 2025

Figure 7: Demonstration of the effectiveness of SMM in TSGM. (a) The man is riding a unicycle
but viewed under low resolutions. (b) The man is running but viewed under low resolutions. (c) The
vehicle is viewed under occlusions. (d) The man is riding a bicycle but viewed under low resolutions.

Text Transformer To encode captions, the module is built with self-attention layers and feed-
forward layers, as is shown by Fig. 8. The self-attention layers and feed-forward layers are shared
by Image-attention Module and Text-attention Module. In self-attention modules, the text tokens
EI

j (t) = [EI
j,1(t),E

I
j,2(t), ...,E

I
j,Sl

(t)] ∈ RSl×Hd in a sentence with maximum length Sl attend to
each other. Sl = Nq and EI

j,1(t) ∈ RHd ,EI
j,2(t) ∈ RHd , ...,EI

j,Sl
(t) ∈ RHd .

To shorten the embeddings of an entire sequence, we follow Devlin et al. (2018) by prepending
special token [CLS] to the start of input sequence for aggregating information based on the fact that
all tokens attend to each other. Due to the fact that the first token informs about the whole sequence,
we only keep the first element FT

i (t)[0] ∈ RHd of text transformer’s output FT
i (t) ∈ RSl×Hd .

Image-Grounded Text Generation Module Conditioned on visual features FI
i (t), the module it-

eratively generates new text tokens until the full sentence with maximum length Sl is produced.
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Figure 8: ITAM is the image transformer in Q-Former Li et al. (2023), it identifies the local features
through aligning the visual features from image transformer with textual features from text trans-
former.

Figure 9: Structure of the module for image-grounded text generation, the module is part of the
Q-Former Li et al. (2023).

Following Radford et al. (2018) Devlin et al. (2018) where token ”[BOS]” signals the start of text
generation, we initialize the sentence to be ”[BOS]” following by Sl − 1 zero placeholders. In each
iteration, a new text token is generated and replaces one zero placeholder, as is shown in Fig. 9.

In the k − th iteration, the input sequence has previously generated tokens
Si,1(t),Si,2(t), ...,Si,k(t) followed by Sl − k zero placeholders, producing embeddings
ET

i,1(t),E
T
i,2(t), ...,E

T
i,Sl

(t). The visual embeddings are concatenated with text tokens, producing
X = [FI

i,1(t),F
I
i,2(t), ...,F

I
i,Nq

(t),ET
i,1(t),E

T
i,2(t), ...,E

T
i,Sl

(t)]T as the input to self-attention
layer. As is shown in Fig. 9, the mask in self-attention layer enables visual tokens to attend to each
other, and facilitates each of the Sl text tokens attend to all visual tokens and earlier text tokens.
Specifically, provided query, key and values Q = XWQ, K = XWK and V = XWV with WQ,
WK and WV being learnable weights, self-attention is implemented by

ZT
i (t) = Softmax(

QKT√
Hd/h

+M)V (15)

where the values in mask M are shown by black and white rectangles in Fig. 9. h = 12 denotes
the number of heads. ZT

i (t) = [ZT
i,1(t), ...,Z

T
i,Nq+Sl

(t)]T ∈ R(Nq+Sl)×Hd . Only the last token
ZT

i,Nq+Sl
(t) is fed into feed-forward layer because the last token is informative about the complete
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Table 4: Performance (AUC, %) on the benchmarks. ST, Ave, UB, Ped2 and NWPU represent
ShanghaiTech, CUHK Avenue, Ubnormal, UCSD Ped2 and NWPU Campus, respectively. Macro-
AUC and micro-AUC Reiss & Hoshen (2022) are evaluated.

Algorithm ST Ave UB Ped2 NWPU

Ours with VLM based
detector 92.7 / 88.9 94.9 / 94.5 86.8 / 81.5 99.8 / 99.1 73.5 / 71.6

Ours with VLM based
detector (w/o box expansion) 92.3 / 88.4 93.6 / 93.2 86.6 / 81.2 99.7 / 99.0 73.0 / 71.2

Ours with Yolo detector
Wang et al. (2023) 92.8 / 89.0 94.9 / 94.5 86.9 / 81.5 99.8 / 99.1 73.7 / 71.7

Ours with Yolo detector
(w/o box expansion) 92.3 / 88.5 93.7 / 93.3 86.6 / 81.3 99.7 / 99.0 73.0 / 71.2

Sliding windows 80.8 / 77.6 80.5 / 79.9 75.4 / 72.9 88.6 / 87.8 66.5 / 64.4
Ours with VLM based

detector, RM with 5 layers 91.3 / 87.4 92.8 / 92.1 85.1 / 80.4 99.0 / 98.6 72.0 / 70.1

Ours with VLM based
detector, RM with 9 layers 91.4 / 87.3 92.9 / 92.3 85.4 / 80.6 99.4 / 98.9 72.2 / 70.3

sequence. The feed-forward layer has Hd input channels and Nvocabulary output channels, produc-
ing Nvocabulary = 30, 523 probabilities indicating the likelihood of candidate tokens. Nvocabulary

is vocabulary size, according to BERT tokenizer Devlin et al. (2018). The best candidate Si,k+1(t)
is appended to the end of sequence Si,1(t),Si,2(t), ...,Si,k(t) before beginning the next iteration.
The iterations terminate upon generating the whole sequence Si(t) with length Sl. This module is
trained with cross-entropy loss.

D ABLATION STUDY ON THE METHOD FOR OBJECT DETECTION

Table 4 shows the comparison between using VLM Bai et al. (2023), YOLOWang et al. (2023)
and sliding windows for object detection. Specifically, window sizes are fixed as follows: 224 for
ShanghaiTech, 320 for CUHK Avenue, 320 for Ubnormal, 60 for UCSD Ped2, and 224 for NWPU
Campus, with the aim of including largest objects. The results indicate that effective object detection
is crucial for accurate performance. Furthermore, the comparisons between the settings with and
without bounding box expansions show that bounding box expansions contribute to capturing more
contextual information, benefiting performance.

E ABLATION STUDY ON ITAM’S STRUCTURE

Table 5 shows the influences of ITAM’s structures and training data on performance. Setting 1 is
the default setting with ”Str. 1” and ”D. 1”. ”Str. 1” denotes the structure Li et al. (2023) shown in
Section 3.2 and ”D. 1” denotes the training data of BLIP-2 Li et al. (2023). In ”Str. 1”, the image
transformer for feature extraction has 6 transformer layers each of which includes one self-attention
layer, one cross-attention layer and one feed-forward layer. Both of the self-attention layer and
the cross-attention layer have 12 heads. In ”Str. 2”, the numbers of heads are changed to 6 with
other settings fixed. In ”Str. 3”, the number of sequential transformer layers is changed to 3 with
other hyperparameters unchanged. ”D. 2” refers to the configuration where ITAM is trained on the
training set of anomaly detection benchmark in each experiment. These training sets include only
normal events. The captioning labels on benchmarks’ training data are generated by running the
pre-trained BLIP-2 model Li et al. (2023) on the normal videos. It can be seen that the structure
and data variations do not significantly influence performance as long as image-text alignment is
conducted. More importantly, ITAM can be trained using normal data and detect unseen anomalies.

Setting 5 and 6 show that the number of image tokens Nq does not significantly influence perfor-
mance. Setting 7 shows that if SMM is trained using the captioning labels from dataset Lin et al.
(2014) and without requiring Qwen-Chat, performance is not influenced. For instance, if the cap-
tioning label of an image is ”The man is running” which prompts SMM to output ”yes”, then we
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Table 5: Ablations of ITAM’s structure using Micro-AUC. TME and TSG are short for Temporal
Motion Estimation and Temporal Sentence Generation, respectively. Nq is the number of image
tokens.

Setting Stage 1 Stage 2 Nq TME TSG NSMM ST Ave UB Ped2

1 Str. 1, D. 1 ✓ 32 ✓ ✓ 3 88.9 94.5 81.5 99.1
2 Str. 1, D. 2 ✓ 32 ✓ ✓ 3 88.9 94.5 81.5 99.1
3 Str. 2, D. 1 ✓ 32 ✓ ✓ 3 88.6 94.1 81.3 99.1
4 Str. 3, D. 1 ✓ 32 ✓ ✓ 3 88.7 94.4 81.2 99.1
5 Str. 1, D. 1 ✓ 64 ✓ ✓ 3 88.8 94.5 81.5 99.1
6 Str. 1, D. 1 ✓ 128 ✓ ✓ 3 88.9 94.6 81.5 99.1

7 Str. 1, D. 1 ✓ 32 ✓
SMM

w/o Qwen 3 88.9 94.5 81.5 99.1

randomly sample another sentence with a different meaning, such as ”The man is fighting”, which
causes SMM to output ”no”. Implementations are based on NLTK library Hardeniya et al. (2016).

F ABLATION STUDY ON THE NUMBER OF LAYERS IN RM

Table 4 compares the performance of our RM with 7 layers to configurations with 5 layers and 9
layers, respectively. It can be seen that 7 is a better choice.

G PROCEDURES FOR GENERATING QUESTIONS IN TSGM

As is shown in Fig. 2(b), TSGM firstly converts the declarative sentence ”The man is pushing a
stroller on the street.” to an interrogative sentence ”Is the man pushing a strollor on the street?”
The conversion is based on nltk library Hardeniya et al. (2016) and the procedures are shown in
Algorithm 2:

Algorithm 2 Algorithm for Converting Declarative Sentences to Interrogative Sentences
1: Input sentence: D← SI

i (t− 1) = ’The man is pushing a stroller on the street.’
2: Tokenization: D→ [’The’, ’man’, ’is’, ’pushing’, ’a’, ’stroller’, ’on’, ’the’, ’street’, ’.’]
3: Locate first verb: Dfirstverb = ’is’
4: Divide sentence using first verb: D → D1 + Dfirstverb + D2, D1 = ’The man’, D2 =

’pushing a stroller on the street’
5: Change the order of parts: Q← Dfirstverb +D1 +D2

6: return Q

H OPERATIONAL EFFICIENCY

All experiments are conducted on an NVIDIA A100 GPU and an Intel(R) Xeon(R) Gold 6248R
CPU. For object detection, we have employed both YOLOv7 detector Wang et al. (2023) and another
detector based on Qwen-VL-7B Bai et al. (2023). As is shown by Table 4, both detectors achieve
similar accuracy. In terms of inference speed, the YOLO detector Wang et al. (2023) processes
each frame in 1.5 milliseconds, whereas Qwen-VL-7B Bai et al. (2023) requires 5.2 seconds per
frame. Consequently, we evaluate the operational efficiency of the proposed framework using the
YOLO detector. The inference times of all components in the proposed framework are measured and
summarized in Table 6. With all components considered, the proposed method achieves an average
frame rate of 12 FPS with an average of 5 objects per frame. The average number of 5 objects is
based on the findings of Wang et al. (2022a).

In the future, we aim to explore the methods that utilize a fixed number of bounding boxes per frame
to maintain a constant inference time, even with an increased number of objects. Additionally, we
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Figure 10: Visualization of the heatmaps of local patterns under occlusions, viewpoint changes and
low resolutions.

will investigate parsing multiple objects within a single bounding box to maintain a fixed number of
bounding boxes per frame.

Table 6: Runtime and memory consumption of different modules in the proposed framework, run-
time is measured in milliseconds(ms). Inference is conducted with batch size 256.

Modules Object detection
(YOLO)

Backbone
and ITAM

TSGM
(SMM)

TSGM
(IGTG) CMAM TME RM

Runtime 2.5 10.1 1.5 5.9 0.0078 2.6 0.28
GPU Memory
(Gigabytes) 2.78 18.88 0.63 13.54 0.04 0.0 0.55

Table 7 compares the proposed approach with baseline LLM-based AnomalyRuler Yang et al.
(2024a). AnomalyRuler involves a VLM Processing stage with CogVLM-17B and a LLM Rea-
soning stage with GPT-4, consuming 192.56 ms and 504.79 ms per frame on NVIDIA A100 GPU,
respectively .

Table 7: Comparison between the proposed method and LLM-based anomaly detector Yang et al.
(2024a). Runtime measured in milliseconds(ms), performance measured in AUC (%).

Methods Runtime per frame Performance on
Shanghaitech

Performance on
Avenue

Ours 83.95 88.9 94.5
AnomalyRuler

Yang et al. (2024a) 697.35 85.2 89.7
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I VISUALIZATION OF LOCAL PATTERNS UNDER OCCLUSIONS AND
VIEWPOINT CHANGES

In real-world surveillance videos, occlusions, viewpoint variations and low-resolution conditions are
common. Fig. 10 shows some examples of the local patterns identified by image-text alignment and
cross-modality attention. The local patterns capture semantically meaningful features such as body
joints which are consistent across the variations. The compact representations ignore redundant
details and contribute to generalizable embeddings.

J FUTURE WORK

One limitation of the current framework is the reliance on object detectors. Currently, the perfor-
mance of current Vision-Language Models (VLMs) is limited by their fields of view. For example,
when processing an image with a large scene, a vision-language model tends to overlook many
details, highlighting the necessity of object detectors that facilitate the processing of local regions
independently. Table 4 shows that object detectors significantly outperform sliding windows, the
poor performance of the latter may result from an incorrect strategy. As a result, we will try more
efficient and effective ways to parse events in complex scenes and images with large fields of view
where many objects reside. Specifically, we will explore the integration of object detectors in an
end-to-end large model. In simpler scenes with fewer objects, an input image is embedded with
fewer vision tokens. As scenes become more complex, more objects are involved, then an input
image is encoded with an increased number of vision tokens each of which describes one or more
objects. Besides, we will explore ways to improve efficiency.
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