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Figure 1: 3D Inference from Unposed Sparse views. Given a sparse set of input images without
associated camera poses, our proposed system UpFusion allows recovering a 3D representation and
synthesizing novel views. Top: 1, 3, or 6 input images of an object. Bottom: Synthesized novel
views using our approach.

ABSTRACT

We propose UpFusion, a system that can perform novel view synthesis and infer
3D representations for an object given a sparse set of reference images without cor-
responding pose information. Current sparse-view 3D inference methods typically
rely on camera poses to geometrically aggregate information from input views,
but are not robust in-the-wild when such information is unavailable/inaccurate. In
contrast, UpFusion sidesteps this requirement by learning to implicitly leverage
the available images as context in a conditional generative model for synthesizing
novel views. We incorporate two complementary forms of conditioning into dif-
fusion models for leveraging the input views: a) via inferring query-view aligned
features using a scene-level transformer, b) via intermediate attentional layers that
can directly observe the input image tokens. We show that this mechanism allows
generating high-fidelity novel views while improving the synthesis quality given
additional (unposed) images. We evaluate our approach on the Co3Dv2 dataset
and demonstrate the benefits of our method over pose-reliant alternates. Finally,
we also show that our learned model can generalize beyond the training categories,
and hope that this provides a stepping stone to reconstructing generic objects from
in-the-wild image collections.
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1 INTRODUCTION

The long-standing problem of recovering 3D objects from 2D images has witnessed remarkable
recent progress. In particular, recent neural field-based methods (Mildenhall et al., 2020) excel at
recovering highly detailed 3D models of objects or scenes given densely sampled multi-view obser-
vations. However, in real-world scenarios such as casual capture settings and online marketplaces,
obtaining dense multi-view images is often impractical. Instead, only a limited set of observed views
may be available, often leaving some aspects of the object unobserved. With the goal of reconstruct-
ing similarly high-fidelity 3D objects in these settings, several learning-based methods (Yao et al.,
2018; Yu & Gao, 2020; Zou et al., 2023) have pursued the task of sparse-view 3D inference. While
these methods can yield impressive results, they crucially rely on known accurate camera poses for
the input images, which are often only available in synthetic settings or using privileged information
in additional views, and are thus not currently applicable for in-the-wild sparse-view reconstruction
where camera poses are not available.

In this work, we seek to overcome the limitation of requiring known camera poses and address
the task of 3D inference given unposed sparse views. Unlike pose-aware sparse-view 3D inference
methods which use geometry-based techniques to leverage the available input, we introduce an
approach that can implicitly use the available views for novel-view generation. Specifically, we
designate one of the input images as an anchor to define a coordinate frame, and adopt a scene-level
transformer (Sajjadi et al., 2022) that implicitly incorporates all available input images as context to
compute per-ray features for a desired query viewpoint. Utilizing these query-aligned features, we
can train a conditional denoising diffusion model to generate novel-view images.

However, we observe that relying solely on query-aligned features learned from unposed input views
does not fully utilize the available context. To further enhance the instance-specificity in the gen-
erations, we propose to also add ‘shortcuts’ via attention mechanism in the diffusion process to
allow direct attending to the input view features during the generation. Furthermore, to enable
generalization to unseen categories during training, we adopt a pretrained 2D foundation diffusion
model (Rombach et al., 2022; Zhang & Agrawala, 2023) as initialization and adapt it to leverage
the two forms of context-based conditioning. Finally, the novel view images synthesized from the
learned diffusion model, despite high fidelity, may not guarantee 3D consistency. Therefore, we
additionally extract 3D-consistent models via score-based distillation (Poole et al., 2022; Zhou &
Tulsiani, 2023).

We present results using the challenging real-world dataset, Co3Dv2 (Reizenstein et al., 2021),
which comprises multi-view sequences from 51 categories with 6-DoF pose variations. Given our
unposed inference setup, we also introduce ‘alignment invariant’ versions of common evaluation
metrics to account for the possible coordinate mismatch between the predicted and ground-truth
3D representations. We find that our approach allows extracting signal from the available unposed
views, and that the performance improves with additional images, and that our system significantly
improves over recent pose-aware methods relying on predicted camera poses. Finally, we also
demonstrate the ability of our method to generalize beyond the training categories by showcasing its
performance on unseen object classes.

2 RELATED WORK

3D from Dense Multi-view Captures. Multi-view observations of a scene naturally provide geo-
metric cues for understanding its 3D structure, and this principle has been leveraged across decades
to infer 3D from dense multi-view. Classical Multi-View Stereo (MVS) methods (Furukawa et al.,
2015) leverage techniques such as structure from motion (SfM) (Schönberger & Frahm, 2016) to
estimate camera poses for dense matching to 3D points. Recent neural incarnations (Mildenhall
et al., 2020; Wang et al., 2021a) of these methods have further enabled breakthroughs in terms of the
quality of the obtained dense 3D reconstruction. While these methods rely on classical techniques
for camera estimation, subsequent approaches (Lin et al., 2021; Bian et al., 2023; Tian et al., 2023)
have relaxed this requirement and can jointly estimate geometry and recover cameras. However,
these methods are unable to predict unseen regions and crucially rely on densely-sampled images as
input – a requirement our work seeks to overcome.
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Figure 2: UpSRT performs novel view synthesis from a set of unposed images. UpSRT consists
of an encoder, a decoder, and an MLP. The encoder takes encoded image features as inputs and
outputs a set-latent representation cs. The decoder takes query rays as inputs and attends to the
set-latent representation to get features cd, which are then fed into MLP to obtain final novel view
RGB images. We make use of both cs and cd to provide conditional context to our model.

Single-view to 3D. On the other extreme from dense multi-view methods are approaches that aim
to reconstruct a 3D representation from just a single view. While easily usable, developing such sys-
tems is highly challenging as it requires strong priors to recover unknown information. A common
paradigm used to address this program is training models conditioned on encoded image features to
directly predict 3D geometry (e.g., voxels (Girdhar et al., 2016), meshes (Wang et al., 2018; Gkioxari
et al., 2019; Ye et al., 2021), point clouds (Fan et al., 2017), or implicit functions (Mescheder et al.,
2019; Xu et al., 2019; Cheng et al., 2023)). However, given the uncertain nature of the task, these
methods have regression-based objectives which limits their generation quality. More recently, there
has been growing interest in distilling large text-to-image diffusion models (Song et al., 2020; Sa-
haria et al., 2022; Rombach et al., 2022) to generate 3D representations (Poole et al., 2022; Wang
et al., 2023a;b; Chen et al., 2023). Building upon their advances, several distillation-based (Liu
et al., 2023b; Qian et al., 2023; Deng et al., 2023; Melas-Kyriazi et al., 2023; Tang et al., 2023; Xu
et al., 2022) and distillation-free (Liu et al., 2023a;c) single image to 3D methods were proposed.
While these methods can infer detailed 3D, they cannot benefit from additional information provided
by extra posed or unposed views. Moreover, as they hallucinate details in unobserved regions, the
reconstructed object may significantly differ from the one being imaged. If a user aims to faithfully
capture a specific object of interest in detail, single-view methods are fundamentally ill-suited for
this task.

Sparse-view to 3D. With the goal of reducing the burden in the multi-view capture process while
still enabling detailed capture of specific objects of interest, there has been a growing interest in
spare-view 3D inference methods. By leveraging the benefits of both multi-view geometry and
learning, regression-based methods achieve 3D consistency by using re-projected features obtained
from input views (Reizenstein et al., 2021; Wang et al., 2021b; Yu et al., 2021). However, the
results tend to be blurry due to the mean-seeking nature of regression methods under uncertainty. To
improve the quality of generations, another stream of work (Chan et al., 2023; Rombach et al., 2021;
Kulhánek et al., 2022; Zhou & Tulsiani, 2023) formulate the problem as a probabilistic generation
task. These methods achieve better perceptual quality, yet usually require precise pose information,
which is often not practically available. To overcome this issue, one may either consider leveraging
recent sparse-view pose estimation methods (Sinha et al., 2023; Zhang et al., 2022) in conjunction
with state-of-the-art novel-view synthesis methods, or consider methods that optimizes poses jointly
with the objective of novel-view synthesis (Smith et al., 2023; Jiang et al., 2022). However, the
computation of explicit poses may not always be robust, and we emprically show that this leads
to poor performance. Closer to our approach, SRT (Sajjadi et al., 2022) and RUST (Sajjadi et al.,
2023) allow novel view synthesis without explicit pose estimation (i.e., directly from unposed sparse
views). However, their regression-based pipelines limit the quality of the synthesized outputs.

3 APPROACH

Our goal is to infer a 3D representation of an object given a sparse set of images. While prior works
(Yu et al., 2021; Zhou & Tulsiani, 2023; Chan et al., 2023) typically aggregate information from the
input views by using geometric projection and unprojection, these crucially rely on the availability
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Figure 3: UpFusion 2D is the proposed conditional diffusion model performing novel view synthe-
sis conditional on information extracted from a set of unposed images. To reason about the query
view, Upfusion takes as additional inputs the view-aligned decoder features cd obtained from Up-
SRT decoder. To further allow the model to attend to details from input views, UpFusion condition
on the set-latent representation cs via attentional layers.

of accurate camera poses which are not readily available in-the-wild. We instead aim to tackle the
task of 3D inference given unposed sparse views.

Towards building a system capable of 3D inference in this unposed setting, we propose a mechanism
for implicitly leveraging the available images as context when generating novel views. Specifically,
we adapt Unposed Scene Representation Transformer (UpSRT) (Sajjadi et al., 2022), a prior work
that leverages transformers as a mechanism for implicitly aggregating information from input views,
and computes query-view-aligned features for view synthesis. However, instead of their mean-
seeking regression objective which results in blurry renderings, we enable probabilistic sparse view
synthesis by using the internal representations of UpSRT to condition a diffusion model to perform
novel view synthesis. While our diffusion model can yield high-fidelity generations, the outputs are
not 3D consistent. To obtain a consistent 3D representation, we then train instance-specific neural
representations (Müller et al., 2022; Tang, 2022) which maximizes the likelihood of the renderings
under the learned generative model. We detail our approach below, but first briefly review UpSRT
and denoising diffusion models (Ho et al., 2020) that our work builds on.

3.1 PRELIMINARIES

3.1.1 UNPOSED SCENE REPRESENTATION TRANSFORMER

Given a set of N images I = {I1, I2, ..., IN}, UpSRT (Sajjadi et al., 2022) seeks to generate
novel view images by predicting RGB color r for any query ray q. As illustrated in figure 2, it
first extracts patch-wise features for each image Ii with an image encoder UI . Then, it uses an
encoder transformer UE to obtain a set latent representation cs. Finally, it uses a decoder transformer
UD which attends to vc, followed by an MLP, to predict the RGB color. In summary, the UpSRT
workflow can be represented by the following equations:

cs = UE({UI(I)}), C(r) = MLP(UD(r|cs)) (1)

We pre-train an UpSRT model using a pixel-level regression loss and leverage it for subsequent
generative modeling. While we follow a similar design, we make several low-level modifications
from the originally proposed UpSRT architecture (e.g., improved backbone, differences in positional
encoding, etc.), and we expand on these in the appendix.

3.1.2 DENOSING DIFFUSION

Denoising diffusion models (Ho et al. (2020)) seek to learn a generative model over data samples
x by learning to reverse a forward process where noise is gradually added to original samples. The
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learning objective can be reduced to a denoising error, where a diffusion model ϵϕ is trained to
estimate the noise added to a current sample xt:

LDM = Ex0,t,ϵ∼N (0,1)[∥ϵt − ϵϕ(xt, t)∥22] (2)

While the above objective summarizes an unconditional diffusion model, it can be easily adapted
to learn conditional generative models p(x|y) by adding a condition y (such as a set of unposed
images) to the input of the denoising model ϵϕ(xt, t,y).

3.2 PROBABILISTIC VIEW SYNTHESIS USING SPARSE UNPOSED VIEWS

We aim to learn a generative model over novel views of an object given a sparse set of unposed im-
ages. We note that there is an inherent ambiguity in defining the coordinate frame in which this query
view is specified, and (partially) resolve this by using the first input image as an anchor to define
the coordinate system. Given this, our goal is to learn the distribution p(I|I, π), where π denotes
a query pose, I denotes the set of unposed images and I denotes the query-view image. Instead of
learning the distribution directly in pixel space, we follow a common practice of instead learning
this distribution in latent space p(x|I, π), using pre-trained encoders and decoders corresponding
to this latent space (Rombach et al., 2022): x = E(I); I = D(x).

We model this probability distribution by training a conditional diffusion model which leverages
the available unposed images as context, and seek to propose an architecture that embraces several
desirable design principles. First, we note that such a diffusion model must be able to (implicitly)
reason about the query view it is tasked with generating in the context of the available input, and
leverage the UpSRT encoder-decoder framework to enable this. While the decoder features from
UpSRT can ground the query-view generation, we note that these may abstract away the salient
details in the input, and we propose to complement these by allowing the generative model to directly
leverage the patch-wise latent features and more easily ‘copy’ content from input views. Lastly, to
enable efficient training and generalization beyond training data, we propose to adapt off-the-shelf
diffusion models for view-conditioned generation.

View-aligned Features for Image Generation. Given a target view π, we construct a set of rays
R corresponding to a grid of 2D pixel locations in this view. We query the UpSRT decoder with
this set of rays to obtain view-aligned decoder features cd of the same resolution as the image latent
x. As illustrated in figure 3, these query-aligned features are concatenated with the (noisy) image
latents to serve as inputs to the denoising diffusion model.

Incorporating Direct Attention to Input Patches. To allow the generation model to directly in-
corporate details visible in the input views, we also leverage the set-latent feature cs representation
extracted by the UpSRT encoder. Importantly, this representation comprises of per-patch features
aligned with the input images and allows efficiently ‘borrowing’ details visible in these images. Un-
like the view-aligned decoder feature which can be spatially concatenated with the noisy diffusion
input, we condition on these set-latent features via attentional layers in the generation model.

Adapting Large-scale Diffusion Models for Novel-view Synthesis. Instead of training our gener-
ative model from scratch, we aim to take advantage of the strong priors learned by large diffusion
models such as Stable Diffusion (Rombach et al. (2022)). To this end, we use a modified version
of the ControlNet architecture (Zhang & Agrawala, 2023) to adapt a pre-trained Stable Diffusion
model to incorporate additional conditionings cd, cs for view generation.

Putting it Together. In summary, we reduce the task of modeling p(x|I, π) to learning a denois-
ing diffusion model pϕ(x|cd, cs), and leverage the ControlNet architecture to incorporate the two
conditioning features and learn a denoising model ϵϕ(xt, t, cd, cs). More specifically, ControlNet
naturally allows adding the spatial feature cd as via residual connections to the spatial layers of the
UNet in a pre-trained Stable Diffusion model. To incorporate the set-level features cs, we modify
the ControlNet encoder blocks to use cs in place of a text encoding (see appendix for details). We
can train such a model using any multi-view dataset, where we train the denoising diffusion model to
generate the underlying image from a query view given a variable number of observed input views.
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3.3 INFERRING 3D CONSISTENT REPRESENTATIONS

While the proposed conditional diffusion model can provide high-fidelity renderings from query
views, the generated views are not 3D consistent. To obtain a 3D representation given the inferred
distribution over novel views, we subsequently optimize an instance-specific neural representation.
Towards this, we follow SparseFusion (Zhou & Tulsiani, 2023) which seeks neural 3D modes by
optimizing the likelihood of their renderings by adapting a Score Distillation Sampling (SDS) (Poole
et al., 2022) loss to view-conditioned generative models.

Specifically, we optimize a neural 3D representation gθ by ensuring its renderings have high like-
lihood under our learned distribution p(I|I, π). We do so by minimizing the difference between
the renderings of the instance-specific neural model and the denoised predictions from the learned
diffusion model. Denoting by gθ(π) the rendering of the neural 3D representation from viewpoint
π, and by x̂0 the denoised prediction inferred from the learned diffusion model ϵϕ(xt; t, cd, cs), the
training objective can be specified as:

L3D = Et,ϵ,π[∥gθ(π)−D(x̂0)∥2] (3)

Unlike SparseFusion (Zhou & Tulsiani, 2023) which additionally uses a rendering loss for the avail-
able input views using known cameras, we rely only on the above denoising objective for optimizing
the underlying 3D representation given unposed input views.

3.4 TRAINING DETAILS

We follow a multi-stage training procedure to optimize our models. We first train the UpSRT model
separately using a reconstruction loss on the color predicted for query rays given the set of reference
images I. Then, we train the denoising diffusion model while using the conditioning information
from the pre-trained UpSRT, which is frozen in this stage.

To enable the usage of classifier-free guidance (Ho & Salimans, 2021) during inference, we train our
diffusion model in the unconditional mode for a small fraction of the time. We do this by follow-
ing the condition dropout procedure used in (Brooks et al., 2023; Liu et al., 2023b) that randomly
replaces the conditioning information with null tokens (for more details, see B.2).

Once the diffusion model is trained, we can extract a 3D representation for an object by optimizing
an Instant-NGP (Müller et al., 2022; Tang, 2022) using the neural mode seeking objective discussed
in section 3.3. We use DDIM (Song et al., 2020) for fast multi-step denoising. Inspired by Wang
et al. (2023b), we follow an annealed time schedule for score distillation. We also use some regular-
ization losses while training the NeRF as used in Zhou & Tulsiani (2023). For more details, please
refer to section B.3.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

4.1.1 DATASET

We train and evaluate our models on Co3Dv2 (Reizenstein et al., 2021), a large-scale dataset with
real multi-view images of objects from 51 categories. Following (Zhang et al., 2022; Lin et al.,
2023), we train our model on 41 categories and hold out 10 categories to test the ability of our
method to generalize to unseen categories. We use the fewview-train split for training and fewview-
dev split for evaluation. We limit our focus to modelling only objects and not their backgrounds. To
this end, we create a white background for our objects by using the masks available in the dataset.
As our full method (as well as some baselines) optimize instance-specific neural representations,
which can take 1hr per instance, we limit our evaluations to 5 object instances per category.

We note that popular state-of-the-art single-view baselines are trained on Objaverse (Deitke et al.,
2023). Hence, to allow fair comparison, we fine-tune a version of our model (which are already pre-
trained on Co3Dv2) on Objaverse renderings as well. We denote versions of our model fine-tuned
on Objaverse with † as a superscript (for example, UpFusion† (3D)).

6



Under review as a conference paper at ICLR 2024

Input 
Images

SF+RP

UpSRT

UpFusion 2D

UpFusion 3D

Ground 
Truth

Figure 4: Qualitative comparison with sparse-view baselines We compare UpFusion with base-
line methods using 3 and 6 unposed images as inputs. SparseFusion fails to capture the correct
geometry, due to the imperfect camera poses estimated by RelPose++. UpSRT generates blurry
results due to the nature of regression-based methods. On the contrary, UpFusion 2D synthesizes
sharp outputs with correct object poses. UpFusion 3D further improves the 3D consistency.

Type Method PSNR-A (↑) SSIM-A (↑) LPIPS-A (↓)
1V 3V 6V 1V 3V 6V 1V 3V 6V

Posed SparseFusion (GT) — 22.41 24.02 — 0.79 0.81 — 0.20 0.18

Unposed

SparseFusion (RelPose++) — 17.76 17.12 — 0.67 0.64 — 0.30 0.33
UpSRT 16.84 17.75 18.36 0.73 0.74 0.75 0.34 0.32 0.31
UpFusion (2D) 16.54 17.12 17.41 0.71 0.72 0.73 0.23 0.22 0.22
UpFusion (3D) 18.17 18.68 18.96 0.75 0.76 0.76 0.22 0.21 0.21

Table 1: Sparse-view synthesis evaluation on seen categories (41 categories). We conduct com-
parisons using 5 samples per category and then and report the average across these. UpFusion
performs favorably against baseline methods, and demonstrates the capability to improve the results
when more views are provided. Moreover, UpFusion 3D consistently improves the results from Up-
Fusion 2D.

4.1.2 EVALUATING VIEW SYNTHESIS IN UNPOSED SETTINGS

We are interested in evaluating our performance using standard view-synthesis metrics such as
PSNR, SSIM, and LPIPS (Zhang et al. (2018)). However, these pixel-aligned metrics are not well
suited for evaluating unposed view synthesis due to the fundamental ambiguities between the coor-
dinate systems of the ground-truth and prediction. In particular, given unposed images, there can be
an ambiguity up to a similarity transform between the coordinate frames of the reconstruction and
prediction. While anchoring the coordinate orientation to the first camera reduces this uncertainty,
we still need to consider scaling and shift between predictions and ground truth.

We highlight this issue in Figure 12, where we observe that despite generally matching the ground
truth, the prediction is misaligned in pixel space. To circumvent this issue, we compute aligned
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Figure 5: Generalization beyond training categories. We show results for UpFusion (3D) across
object categories not seen in training. For each instance, we present the 1, 3, or 6 unposed input
views (left), as well as 4 novel view renderings (right). We observe that despite not being trained
on these categories, UpFusion is able to accurately infer the underlying 3D structure and generate
detailed novel views.

versions of the standard image reconstructions metrics (PSNR-A, SSIM-A, and LPIPS-A) by first
optimizing for an affine image warping transform WA that best matches a predicted image to its
corresponding ground truth and then computing the metric. In other words, we evaluate aligned
metrics as minWA

M(WA(x), y), where M is a metric, x is a predicted image and y is the ground
truth image. In practice, for expediency, we compute the optimal transform for minimizing a pixel-
wise L2 error instead of computing a per-metric warp.

4.1.3 BASELINES

We highlight the benefits of our approach by comparing it to prior pose-dependent and unposed
novel-view generation techniques. Specifically, we compare our 2D diffusion model (‘UpFusion
2D’) and obtained 3D representations (‘UpFusion 3D’) against the following baselines:

SparseFusion (Zhou & Tulsiani, 2023) is a current state-of-the-art method for pose-dependent
sparse-view inference on Co3Dv2. We compare against its performance when using a recent sparse-
view pose estimation system RelPose++ (Lin et al., 2023), and also report its performance using GT
camera poses as an upper bound.

UpSRT. As a representative approach for view synthesis from unposed images, we compare against
the prediction from the UpSRT (Sajjadi et al., 2022) backbone used in our approach.

FORGE (Jiang et al., 2022) is a method that jointly optimizes for poses while being trained on a
novel-view synthesis objective. As FORGE uses the GSO dataset (Downs et al., 2022) to demon-
strate its generalization capability, we compare it against our Objaverse fine-tuned UpFusion† (3D).

Single-view methods. To highlight the benefit of using more input views, we compare UpFusion†

(3D) to two representative state-of-the-art single-view baselines: Zero-1-to-3 (Liu et al., 2023b)
and One-2-3-45 (Liu et al., 2023a). For Zero-1-to-3, we include comparisons with two versions
– the original version which uses SJC (Wang et al., 2023a) and the highly optimized threestudio
implementation (Guo et al., 2023) (which uses additional tricks to aid 3D distillation). We compare
against these baselines on the GSO dataset.

4.2 RESULTS

4.2.1 NOVEL-VIEW SYNTHESIS ON CO3DV2

Comparisons against Sparse-view Methods. We compare UpFusion with baseline methods on
the categories seen during training, as shown in Table 1. UpFusion performs favorably against both
UpSRT and unposed SparseFusion. Furthermore, UpFusion consistently improves the prediction
when more views are provided. However, there is still room for improvement compared to the
methods using ground-truth poses. In figure 4, we qualitatively present the novel view synthesis
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Method PSNR-A (↑) SSIM-A (↑) LPIPS-A (↓)
1V 3V 6V 1V 3V 6V 1V 3V 6V

UpSRT 16.75 17.57 18.06 0.73 0.74 0.74 0.35 0.33 0.32
UpFusion (2D) 16.33 17.04 17.38 0.70 0.71 0.72 0.25 0.23 0.23
UpFusion (3D) 18.27 18.83 19.11 0.75 0.76 0.76 0.23 0.22 0.22

Table 2: Sparse-view synthesis evaluation on unseen categories (10 categories). We conduct
comparisons using 5 samples per category and report the average across these. We observe a com-
parable performance to the results on seen categories.

# Input Views Method PSNR (↑) SSIM (↑) LPIPS (↓)

1V

Zero-1-to-3 (SJC) 18.72 0.90 0.12
Zero-1-to-3 (TS) 21.71 0.91 0.09
One-2-3-45 17.77 0.87 0.15
UpFusion† (3D) 20.52 0.89 0.12

6V FORGE 17.40 0.88 0.15
UpFusion† (3D) 22.51 0.91 0.08

Table 3: Novel-view synthesis evaluation on GSO. We compare UpFusion 3D to single-view base-
lines as well as a sparse-view pose-optimization baseline on GSO dataset which is out of distribution
for all methods.

results. SparseFusion can capture some details visible in the input views but largely sufferrs due
to the error in input poses. UpSRT, on the other hand, can robustly generate coarse renderings,
but is unable to synthesize high-fidelity outputs from any viewpoints. Our 2D diffusion model,
UpFusion 2D, generates higher fidelity images that improve over the baselines in the perceptual
metrics. Finally, the 3D-consistent inferred representation Upfusion3D yields the best results.

Characterizing Generalization. As UpFusion is trained upon a pre-trained large-scale diffusion
model providing strong general priors, the learned novel view synthesis capability is expected to be
generalized to categories beyond training. We evaluate UpFusion on 10 unseen categories, as shown
in Table 2. Encouragingly, we find that the performance does not degrade compared to the results
on seen categories and believe this highlights the potential of our approach to perform in-the-wild
sparse-view 3D inference. We also depict some qualitative results on unseen objects in Figure 5.

4.2.2 NOVEL-VIEW SYNTHESIS ON GSO

We compare UpFusion† (3D) to two state-of-the-art single-view baselines (Zero-1-to-3 and One-
2-3-45) and a sparse-view baseline (FORGE) on 20 randomly sampled instances from the GSO
dataset. For Zero-1-to-3, we compare with both the original SJC implementation and threestudio
(TS) implementation. From table 3, we can observe that UpFusion† (3D) while using 6 inputs views
is able to outperform all baselines. This demonstrates the ability of our method to effectively incor-
porate more information when additional views are available, which single-view baselines cannot.
Moreover, we can see that our model significantly outperforms FORGE, which also uses 6 input
views, and we believe this is because our approach allows bypassing explicit pose prediction which
can lead to inaccurate predictions. Qualitative comparisons in Figure 6 further demonstrates the
effectiveness of our approach in utilizing information from multiple unposed images.

5 DISCUSSION

We presented UpFusion, an approach for novel-view synthesis and 3D inference given unposed
sparse views. While our approach provided a mechanism for effectively leveraging unposed images
as context, we believe that several challenges still remain towards the goal of sparse-view 3D infer-
ence in-the-wild. In particular, although our approach allowed high-fidelity 2D generations, these
are not always precisely consistent with the details in the (implicitly used) input views. Moreover,
while our approach’s performance does improve given additional context views, it does not exhibit
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Input 
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Zero-1-to-3
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Ground Truth
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Figure 6: Qualitative comparison on GSO. We compare UpFusion† (3D) to two single-view base-
lines and one sparse-view baseline (FORGE) on the GSO dataset. For each instance, single-view
methods use only the image with the black border as input, whereas sparse-view methods use all
input images. We can observe that UpFusion† (3D) while using 6 inputs views is able to better
understand the 3D structure of the object than the single-view baselines. Moreover, it is able to
incorporate information from the 6 inputs views much better than the sparse-view baseline.

a strong scaling similar to pose-aware methods that can geometrically identify relevant aspects of
input images. Finally, while our work provided a possible path for 3D inference from unposed
views by sidestepping the task of pose estimation, it remains an open question whether explicit pose
inference for 3D estimation might be helpful in the long term.
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A ADDITIONAL RESULTS

We visualize additional samples results from UpFusion (3D) for seen and unseen categories in Fig-
ures (7,8, 9) and Figure 10 respectively.

Figure 7: Additional results with 1 input view. We show results for UpFusion (3D) across different
object categories given 1 input view (left), and show 4 novel view renderings (right).

B IMPLEMENTATION AND TRAINING DETAILS

B.1 UPSRT

We use 8 encoder transformer blocks and 4 decoder transformer blocks in our architecture. For
the feature extractor, we use features from DINOv2 (specifically, the dinov2 vitb14) model. We
leverage the key facet from the attention block number 8 to extract features. We use sinusoidal
positional encoding instead of learnable positional encoding for the camera and patch encoding. We
also provide information about image intrinsics in the form of additional positional encoding. We
trained our model for about 1M optimizer steps on 2 GPUs with a global batch size of 12.

B.2 UPFUSION 2D

Following suggestions from the ControlNet Zhang & Agrawala (2023) repository, we start training
our model with the Stable Diffusion decoder locked for a few iterations. Then, we resume training
with the decoder unlocked. We train our model for about 1M optimizer steps on 2 GPUs with a
global batch size of 8.
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Figure 8: Additional results with 3 input views. We show results for UpFusion (3D) across differ-
ent object categories given 3 input views (left), and show 4 novel view renderings (right).

Figure 9: Additional results with 6 input view. We show results for UpFusion (3D) across different
object categories given 6 input views (left), and show 4 novel view renderings (right).
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Figure 10: Additional results for generalization beyond training categories. We show results
for UpFusion (3D) across object categories not seen in training. For each instance, we present the
1,3, or 6 unposed input views (left), as well as 4 novel view renderings (right). We observe that
despite not being trained on these categories, UpFusion is able to accurately infer the underlying 3D
structure and generate detailed novel views.

B.3 UPFUSION 3D

For the multi-step diffusion model sampling, we use the DDIM (Song et al., 2020) sampler. Inspired
by (Wang et al., 2023b), we use an annealed time schedule for optimizing our NeRF. For the first
300 iterations, we sample time steps corresponding to very high noise to enable the NeRF to quickly
learn coarse level details. Overall, the NeRF is trained for 3000 iterations, which takes a little more
than an hour on an A5000 GPU. We use the same regularization losses as of (Zhou & Tulsiani,
2023).

C ADDITIONAL EXPERIMENTS

C.1 ABLATING DIFFUSION CONDITIONING.

We empirically study the complementary benefits of the two forms of conditioning used. We il-
lustrate the qualitative results in Figure 11 and quantitative results in Table 4. We find that both,
the decoder features and the set-latent representations are complementary and both instrumental to
UpFusion.
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Figure 11: Ablation of generative model conditioning. Visualizations from category-specific mod-
els trained teddybears using varying conditioning for novel-view generation. We find that the model
using only set-latent conditioning is unable to understand the query pose, while the one relying on
only decoder features alters the object identity.

Conditioning PSNR-A (↑) SSIM-A (↑) LPIPS-A (↓)
1V 3V 6V 1V 3V 6V 1V 3V 6V

DF Only 14.65 15.28 15.53 0.63 0.64 0.64 0.32 0.30 0.30
SLT Only 13.15 13.38 13.49 0.60 0.60 0.60 0.36 0.35 0.35
DF+SLT 15.58 16.11 16.26 0.65 0.66 0.66 0.30 0.28 0.28

Table 4: Ablation of generative model conditioning. We ablate our conditional diffusion model
with different conditional contexts. DF stands for decoder features cd, and SLT stands for set-latent
representations cs. We train a category-specific generation model for this ablation on the teddybear
category and report performance averaged across all test instances.

Ground Truth Aligned Pred Aligned Overlay Unaligned Pred Unaligned Overlay

Figure 12: Comparison of aligned and unaligned metric. Conventional image reconstruction
metrics are not well-suited to evaluate unposed view synthesis methods due to the inherent ambi-
guities between coordinate systems. We adopt aligned versions of these metrics by first performing
optimized image warping. We illustrate the images and metrics with and without the alignment.
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