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Abstract
Retrieval-augmented generation (RAG) enhances
language models by integrating external knowl-
edge, but its effectiveness is highly dependent on
system configuration. Improper retrieval settings
can degrade performance, making RAG less reli-
able than closed-book generation. In this work,
we introduce RAGGED, a framework for system-
atically evaluating RAG systems across diverse
retriever-reader configurations, retrieval depths,
and datasets. Our analysis reveals that reader ro-
bustness to noise is the key determinant of RAG
stability and scalability. Some readers benefit
from increased retrieval depth, while others de-
grade due to their sensitivity to distracting content.
Through large-scale experiments on open-domain,
multi-hop, and specialized-domain datasets, we
show that retrievers, rerankers, and prompts in-
fluence performance but do not fundamentally
alter these reader-driven trends. By providing a
principled framework and new metrics to assess
RAG stability and scalability, RAGGED enables
systematic evaluation of retrieval-augmented gen-
eration systems, guiding future research on opti-
mizing retrieval depth and model robustness. 1

1. Introduction
Retrieval-augmented generation (RAG) (Chen et al., 2017;
Lewis et al., 2020) enhances large language models (LLMs)
by retrieving relevant external contexts, enabling more spe-
cific and factually grounded responses. However, despite
its promise, RAG’s effectiveness is not guaranteed. In fact,
improper configurations can degrade model performance,
leading to outputs that are worse than closed-book genera-
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Figure 1: Roadmap of what our framework RAGGED anal-
yses across the RAG pipeline.

tion. Understanding when and why RAG helps or harms is
critical for optimizing system design.

Most prior work evaluates RAG under controlled conditions
and curated contexts (Liu et al., 2023; Cuconasu et al., 2024),
which fail to reflect real-world retrieval challenges. In prac-
tice, retrieved contexts contain both relevant and irrelevant
information, making the reader model’s ability to filter noise
a critical factor in RAG success. Additionally, prior studies
provide conflicting findings on retrieval depth (k)— while
some suggest increasing k improves performance (Izacard
& Grave, 2021), others observe diminishing returns (Liu
et al., 2023) or even degradation at high k (Cuconasu et al.,
2024; Jiang et al., 2024). This lack of consensus leaves
practitioners without clear guidance on how to configure
RAG systems for different tasks.

To address these challenges, we introduce RAGGED
(Retrieval-Augmented Generation Generalized Evalu-
ation Device), a framework for systematically evaluating
RAG performance across retrieval depths, model architec-
tures, and retrieval conditions. Unlike prior work, which
often relies on synthetic or manual retrieval modifications,
RAGGED assesses models under realistic retrieval scenar-
ios — analyzing performance on naturally retrieved top-k
contexts rather than manually curated, oracle-aware con-
texts.

Our study reveals that reader robustness to noise is the pri-
mary factor driving RAG stability and scalability, rather
than retriever quality alone. To quantify this, we intro-
duce two new metrics: the RAG Stability Score (RSS) and
RAG Scalability Coefficient (RSC), providing a princi-
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Figure 2: While some readers exhibit ‘peak-then-decline’
(left), others exhibit ‘improve-then-plateau’ behavior (right)
with increasing number of contexts.

pled framework for evaluating retrieval effectiveness across
diverse configurations.

Using RAGGED, we conduct a large-scale empirical study
to answer four key questions (Figure 1), each corresponding
to a core section of our paper:

1. Under What Conditions Does Retrieval Outperform
Closed-Book Generation? (§4) We analyze when
retrieval improves performance and identify that some
readers frequently benefit from RAG, particularly at
large k, while others degrade due to noise sensitivity.

2. How Does Retrieval Depth Impact Stability and
Scalability? (§5) We identify two distinct reader be-
haviors: improve-then-plateau models, which scale
effectively, and peak-then-decline models, which de-
grade at higher k (Figure 2).

3. How Do Readers Handle Noisy Retrieval, and Is
Prompting a Reliable Fix? (§6) We evaluate RAG
performance under realistic retrieval conditions, show-
ing that noise sensitivity—rather than retriever quality
alone—determines downstream effectiveness. We also
assess whether instructing readers to focus on relevant
content mitigates noise sensitivity.

4. When Does a Better Retriever Actually Lead to
Better Performance? (§7) While retriever choice
shifts overall performance, it does not alter fundamen-
tal reader behaviors, thus highlighting the reader as the
key driver of stability and scalability.

By introducing a structured and reproducible evaluation
framework, our study provides foundational insights into
the dynamics of RAG systems and guides future research
toward optimizing retrieval-augmented generation for real-
world applications.

2. The RAGGED Framework
Evaluating retrieval-augmented generation (RAG) remains
challenging due to inconsistencies across retrieval depths,

datasets, and reader models. Prior evaluations often rely
on oracle-aware curation of contexts or fixed retrieval con-
figurations, thereby failing to capture how RAG systems
behave under real-world retrieval conditions. These limi-
tations obscure the key factors that determine RAG effec-
tiveness, particularly in terms of stability (consistency near
the retrieval depth that yields optimal performance) and
scalability (sustained performance gains as retrieval depth
increases).

To address these gaps, we introduce RAGGED, a system-
atic framework for evaluating RAG systems across diverse
retrieval settings. RAGGED provides a principled approach
to assessing model behavior and optimizing retrieval depth
for robust performance.

Objectives of RAGGED: RAGGED provides a structured
evaluation of RAG effectiveness, enabling:

• Retrieval-depth analysis: Identifying whether increas-
ing k improves or harms model performance.

• Stability assessment: Measuring how consistently
models maintain performance near their optimal re-
trieval depth, avoiding sharp performance drops.

• Scalability evaluation: Determining whether a model
continues to benefit from increasing retrieval depth or
experiences diminishing returns.

• Reproducible benchmarking: Standardizing evalua-
tion across different RAG implementations.

To operationalize these goals, we introduce two new metrics:

RAG Stability Score (RSS) The RSS metric quantifies how
consistently a model maintains performance around its op-
timal retrieval depth (k∗). A stable model should exhibit
minimal performance fluctuation within a small retrieval
window, while an unstable model’s performance will de-
grade noticeably when retrieval depth varies slightly. RSS
is formally defined as:

RSS =

min
k∈[k∗−∆,k∗+∆]\{k∗}

Performance at k

Performance at k∗
(1)

where k∗ is the retrieval depth that yields peak model per-
formance, and ∆ defines a local window (e.g., k∗ ± 5) to
assess stability. The numerator captures the minimum per-
formance in this range, excluding k∗, effectively measuring
the worst-case volatility.

A higher RSS (≈ 1.0) indicates that performance remains
steady across nearby retrieval depths, suggesting robustness
to retrieval variations. A lower RSS (RSS ≪ 1.0) signals
sharp fluctuations near k∗, implying sensitivity to retrieval
depth choices and reduced stability.
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While RSS currently uses a symmetric window to evaluate
performance variation around the optimal retrieval depth,
we acknowledge that retrieval effects can be directionally
asymmetric – adding irrelevant context (right side) may de-
grade performance differently than omitting high-quality
content (left side). However, our empirical analysis shows
that this asymmetry is not consistent across models (e.g.,
LLAMA2 vs. LLAMA3), thus supporting the use of a sym-
metric window as a general-purpose diagnostic. That said,
directional extensions of RSS could offer deeper insight
into model fragility under under- or over-retrieval, which
we leave to future work.

RAG Scalability Coefficient (RSC) The RSC metric cap-
tures the total accumulated benefit a model gains as retrieval
depth increases before performance plateaus or declines. A
model with high scalability should continue to improve with
additional retrieved contexts, while a low-scalability model
will either plateau early or exhibit only minimal improve-
ment. The RSC is defined as:

RSC = klast gain ·
klast gain∑
k=1

F1k − F1k−1 (2)

where klast gain is the last retrieval depth before performance
plateaus or declines. This is determined as the last k where:

F1k − F1k−1 ≥ ϵ

for a predefined threshold ϵ.

A higher RSC reflects sustained improvements over a
broader range of retrieval depths, demonstrating strong scal-
ability. Conversely, a lower RSC suggests the model stops
improving early, indicating limited scalability.

By providing a structured evaluation across diverse retriever-
reader configurations, RAGGED enables systematic com-
parisons of different RAG systems and offers insights into
optimizing retrieval depth for robust performance. In par-
ticular, the metrics RSS and RSC serve as complementary
diagnostics rather than substitutes for task-specific metrics
like F1: RSS quantifies how brittle or robust a model is
to changes in retrieval depth near its peak performance,
while RSC assesses how much a model continues to benefit
from additional retrieval. A model may achieve high per-
formance at a single retrieval depth but still have low RSS
(unstable across depths) or low RSC (unable to scale with
more information). Conversely, a model with slightly lower
peak performance but high RSS/RSC may be more robust
and easier to deploy in real-world settings where retrieval
conditions fluctuate.

Together with task-specific performance scores, these diag-
nostic metrics provide a more complete picture of model

behavior. They help developers understand not only how
well a system performs, but also how reliably and efficiently
it does so across changing retrieval conditions.

Hyperparameter Justification and Metric StabilityWe set
ϵ = 0.5 for RSC and k = 5 for RSS. To evaluate the stability
of our metrics under different hyperparameter choices, we
analyzed the standard deviation of F1 across all models
and retrieval depths (mean = 0.38, max = 0.46), which
provides a conservative basis for setting ϵ = 0.5 in RSC.
We further verified that model rankings remain unchanged
when varying ϵ from 0.5 to 0.7 and δ from ±5 to ±10. This
indicates that both RSS and RSC are robust to reasonable
parameter shifts and provide consistent comparative signals
across models.

3. Experimental Setup
We implement the RAGGED framework by evaluating re-
trievers and readers across multiple retrieval depths, ana-
lyzing how models respond to increasing context sizes and
retrieval noise.

3.1. Retrievers

We evaluate three retrievers with different retrieval
paradigms: (1) BM25 (Robertson et al., 2009), a sparse
lexical retriever based on term matching. (2) ColBERT
(Santhanam et al., 2021), a neural retriever using contextual-
ized late interaction. (3) Contriever (Izacard et al., 2022), an
unsupervised dense retriever emphasizing document-level
semantic similarity.

3.2. Readers

We analyze both closed-source and open-source reader mod-
els: Open-source: We use FLANT5-XXL (Chung et al.,
2022) (11B parameters) and FLAN-UL2 (Tay et al., 2023)
(20B), as well as LLAMA2 (Touvron et al., 2023) (7B, 70B)
and LLAMA3 (8B, 70B).

Closed-source: We evaluate GPT-3.5-turbo (16k context
length) and CLAUDE-3-HAIKU (200k). A subset of experi-
ments includes GPT-4O with a 128k context window. We
include both open- and closed-source models to ensure that
our findings generalize across different architectures and
training paradigms.

3.3. Datasets

We evaluate RAG performance across three datasets
spanning different reasoning complexities and domain-
specificity (Table 2, Table 3):

• Natural Questions (NQ) (Kwiatkowski et al., 2019):
Wikipedia-based, single-hop QA with real user queries.
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• HotpotQA (Yang et al., 2018): Wikipedia-based, multi-
hop QA requiring reasoning over multiple passages.

• BioASQ (Task 11B) (Krithara et al., 2023): PubMed-
based biomedical QA for specialized domains.

These datasets allow us to assess RAG performance across
general knowledge (NQ), complex reasoning (HotpotQA),
and domain-specific retrieval (BioASQ).

3.4. Metrics

We evaluate both retrieval and reader performance following
best practices from Petroni et al. (2021).

Retriever Performance: We report recall@k, which mea-
sures the fraction of ground-truth passages present in the top-
k retrieved results. Higher recall indicates better retrieval
coverage but does not guarantee better reader performance.

Reader Performance: We compute unigram F1, which
measures lexical overlap between model predictions and
gold answers. Each query is evaluated against all gold
answers, and the highest score is reported. To further assess
correctness, we validate key results using an LLM-based
semantic correctness metric (Kim et al., 2024) on a subset
of responses (Appendix J).

To analyze retrieval-depth stability and scalability, we eval-
uate the RAG Stability Score (RSS) and RAG Scalability
Coefficient (RSC) as defined in section 2. These metrics
provide a principled way to assess RAG systems beyond
traditional retrieval and reader accuracy measures.

4. Under What Conditions Does Retrieval
Outperform Closed-Book Generation?

Retrieval-augmented generation (RAG) is widely assumed
to enhance model performance by providing external knowl-
edge, but our findings reveal that its effectiveness is highly
model-dependent. While some models benefit from re-
trieved context, others perform worse than when no retrieval
is used at all. This section investigates when retrieval ac-
tually helps, which models are most affected by retrieval
noise, and how retrieval effectiveness varies across tasks
and domains.

4.1. When Does Retrieval Help?

Retrieval effectiveness is primarily determined by the
model’s ability to selectively use relevant information while
ignoring misleading or redundant content. We observe two
distinct behaviors:

First, some models benefit consistently from retrieval,
showing significant performance improvements when re-
trieval is enabled. Models such as FLAN and GPT-3.5 con-

sistently achieve gain with RAG, suggesting that they can ef-
fectively extract useful information from retrieved passages
while discarding irrelevant details. However, just because a
reader consistently gains, does not mean the gain amount is
significant. For example, across datasets, FLANT5 achieves
an average gain of 16-30 F1 points whereas GPT-3.5
achieves an average gain of 1 to 9 F1 points in compari-
son to closed-book generation.

In contrast, some models degrade with retrieval, some-
times performing worse than their no-context baseline. Mod-
els like LLAMA and CLAUDE struggle with filtering noisy
retrievals, which results in lower accuracy when using RAG.
Instead of leveraging additional knowledge, these models
become more susceptible to incorrect or distracting pas-
sages.

This suggests that retrieval is not inherently beneficial, but
instead depends on how well a reader can balance the trade-
off between extracting useful knowledge and avoiding re-
trieval noise.

While retrieval can provide additional signal (relevant
knowledge), it also introduces noise (irrelevant passages).
The models that benefit most from retrieval tend to be those
that can effectively distinguish between high-value and low-
value context, whereas noise-sensitive models treat all re-
trieved passages equally, leading to instability. We discuss
some hypothesis Appendix E reader architecture and train-
ing details to trends.

4.2. Task-Specific Retrieval Trends

We observe that retrieval effectiveness is not uniform across
tasks and domains.

Multi-hop questions benefit more from retrieval than
single-hop questions. Since multi-hop reasoning requires
synthesizing multiple pieces of information, and can not
be tackled simply by retrieving a short fact learned from
pretraining. Thus, retrieval can be particularly helpful for
multi-hop settings.

Key Takeaways

Our results show that retrieval is not inherently helpful. Its
effectiveness depends on the model’s ability to handle noisy
information. While some models consistently benefit from
retrieval, others degrade due to over-reliance on irrelevant
or misleading content. This highlights the need for retrieval-
aware reading mechanisms that allow models to selectively
integrate useful passages rather than treating all retrieved
content equally.
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Dataset
ColBERT BM25

Dataset
ColBERT BM25

GPT-3.5-turbo Claude-3-haiku

NQ only for k ≥ 5 ✗ NQ ✗ ✗

HotpotQA ✓ ✓ HotpotQA only for k ≤ 2 ✓

BioASQ ✓ ✓ BioASQ ✗ ✗

FlanT5 FlanUL2

NQ ✓ ✓ NQ ✓ only for k ¿ 3
HotpotQA ✓ ✓ HotpotQA ✓ ✓

BioASQ ✓ ✓ BioASQ ✓ ✓

Llama2 7B Llama2 70B

NQ only for k ¡ 10 ✓ NQ only for k ¡ 20 ✓

HotpotQA ✓ ✓ HotpotQA ✓ ✓

BioASQ ✓ ✓ BioASQ only for k ¡ 20 only for k ¡ 20

Llama3 8B Llama3 70B

NQ only for k = 2 ✗ NQ ✗ ✗

HotpotQA only for k ≤ 5 only for k ≤ 5 HotpotQA only for k ≤ 5 only for k ≤ 5

BioASQ only for k ≤ 2 only for k ≤ 2 BioASQ only for k = 1 ✗

Table 1: ✓ means the particular reader-retriever combination performs better than closed-book generation for all k’s. On
the other hand, ✗ signifies that the particular reader-retriever combination consistently performs worse than closed-book
generation, regardless of k. Otherwise, we describe the k-condition for which the retriever-reader combination performs
better than closed-book generation.

5. How Does Retrieval Depth Impact Stability
and Scalability?

Prior work reports conflicting effects of increasing retrieval
depth (k): some studies find that performance saturates at
high k (Liu et al., 2023), while others observe degradation
(Cuconasu et al., 2024; Jiang et al., 2024). Although these
findings appear contradictory, we argue that they are actually
complementary, as each study focuses on a limited range
of retrievers, readers, and datasets. Our experiments, which
span a wider variety of retrievers, readers, and datasets,
demonstrate that both saturation and degradation behaviors
can occur with the determining factor being the choice of
reader model.

Specifically, we observe two distinct trends in reader perfor-
mance (Figure 3):

Improve-then-Plateau Models Models such as FLAN
and GPT-3.5 improve as k increases and plateau around
k = 10. For these models, increasing k maximizes per-
formance without significant risk of degradation.

Peak-then-Decline Models In contrast, models like
LLAMA and CLAUDE-3-HAIKU peak at small k (around
k < 5) but degrade as k increases due to their sensitivity to
retrieval noise. For these models, a small k is optimal to

minimize performance drops.

Re
ad

er
 F

1

NQ

ColBERT

k (# of context passages)

FlanT5

FlanUL2

LLaMa3 8B

LLaMa3 70B

GPT-3.5

Claude Haiku

LLaMa2 7B

LLaMa2 70B

Figure 3: Reader performance on the NQ dataset as k, the
number of contexts retrieved by ColBERT, varies. Col-
ored circles indicate reader performance at the optimal k∗.
Similar trends hold across retrievers (BM25, ColBERT, Con-
triever) and datasets (NQ, HotpotQA, BioASQ) in Figure 14
and Figure 15.

Why This Matters A model’s response to increasing k
affects not only its peak performance but also its stability
and scalability.

A well-designed RAG system should be scalable, meaning
it should benefit from increasing k. Multi-hop reasoning
tasks, in particular, require synthesizing multiple pieces of
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information, making large k essential. Peak-then-Decline
models struggle in such cases.

We should also strive for stable model that maintains consis-
tent performance near the optimal k∗, so that retrieval depth
tuning is practical. Peak-then-decline models can exhibit a
sharp performance drops even when k is only 1 off from k∗,
making them harder to tune and unreliable in practice.

To quantify these trends, we compute the RAG Scalability
Coefficient (RSC) Figure 4 and the RAG Stability Score
(RSS) Figure 5. We note that improve-then-plateau mod-
els have high RSC and RSS, which aligns with the intu-
ition. Models like FLANT5 and GPT-3.5 exhibit high RSS
scores, indicating strong performance stability across re-
trieval depths. In particular, FLANT5 achieves an RSS of
0.99, reflecting near-constant performance around its opti-
mal k. We confirmed that this is not due to input truncation
masking additional retrieved content, where we provide
supporting analysis in Appendix G.
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Figure 5: Ragged stability score for NQ, retriever colbert.

What is more interesting is that while a scalable model is
often more stable, a stable model does not have to be a
scalable one. For example, LLAMA2 models are not as
scalable but are still stable. Although they are peak then

decline models, they decline steadily. This reminds us that
we really should aspire to optimize for both metrics, not just
one.

To assess how well our findings generalize beyond tradi-
tional QA datasets, we conduct a preliminary evaluation
on CRAG, a newer and more challenging RAG benchmark
(Yang et al., 2024). We observe that the same reader-specific
retrieval-depth trends hold: LLAMA2 exhibits early degra-
dation, while FLANT5 remains stable across increasing k.
Full results are provided in Appendix F.

Key Takeaways More retrieval is not always bet-
ter—some models improve with increasing k, while others
degrade due to noise sensitivity. More importantly, the kind
of improvement future research should strive for is better
scalability and stability. RAGGED provides a principled
way to assess these two critical aspects, helping practitioners
determine optimal retrieval depth per model.

6. How Do Readers Handle Noisy Retrieval,
and Is Prompting a Reliable Fix?

Real-world RAG systems retrieve a mix of relevant and
irrelevant content, making reader robustness to noise a key
factor in performance. This section evaluates reader behav-
ior when (1) at least one gold passage is present and (2)
no gold passage is retrieved. The former setting represents
a good scenario when there is sufficient signal to answer
the question, the latter setting represents the worst-case sce-
nario where there is not enough information to answer the
question.

Throughout this section, we define noise as naturally re-
trieved, non-gold passages from actual retrievers. These
are not artificially injected distractors but instead reflect
real-world retrieval failures, such as topically related but
misleading or irrelevant content.

6.1. With Gold Passages

We compare three conditions: (1) Top-k: full retrieved set,
(2) Top-gold: only gold passages within the top-k, and (3)
No-context: no retrieval. This evaluates how distracting
noise compared to the signal (Figure 6).

Reader Robustness Determines Gains from Retrieval
While robust models (e.g., FLAN, GPT) consistently im-
prove with retrieval, noise-sensitive models (e.g., LLAMA,
CLAUDE) degrade below their no-context baselines. This
suggests that some models are not as good at performing the
second-step filtering, leaving them vulnerable to noise when
irrelevant passages are included. Future work should ex-
plore fine-tuning readers on diverse, noisy retrieval settings
to improve robustness.

Multi-hop Questions Mitigate Noise Effects In Hot-
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Figure 6: NQ results when at least one gold passage is in
the top-k. ‘Top-gold’ includes only gold passages.

potQA, models maintain accuracy above no-context longer
than in NQ. We hypothesize that multi-hop signals force the
model to rely on more signal anchors, reducing reliance on
single-passage heuristics and making models more resilient
to noise.

Domain-Specific Jargon Strengthens Retrieval In
BioASQ, the gap between top-gold and top-k is smaller than
in open-domain datasets, indicating that domain-specific ter-
minology provides stronger retrieval cues. However, noise-
sensitive models (e.g., CLAUDE-3-HAIKU and LLAMA3)
still fall below no-context performance, suggesting that re-
trieval alone is insufficient — fine-tuning on domain-specific
noisy retrievals may be necessary.

6.2. Without Gold Passages ColBERT no 
gold found - 
nq

no-ctxtop-k
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Figure 7: NQ results when no gold passages are retrieved.

When no gold passages are retrieved, most models degrade

below their no-context baseline (Figure 7). This is not sur-
prising since these models are instructed to use the context
at hand, which has insufficient information.

What is more interesting is that FLAN models outperform
no-context baselines even without gold passages. They
seem better than other readers at processing partial clues
from these non-gold passages. For example, on NQ with
k = 5, the FLAN models achieve 20% accuracy when no
gold paragraphs are retrieved but paragraphs from the gold
Wikipedia pages are present. Although such paragraphs are
not sufficient themselves, they are highly related to the right
information, thus providing some contextual clues.

6.3. Can Prompting Improve Noise Filtering?

We test whether explicit relevance instructions improve
noise filtering (Figure 8). We pick one noise-robust model
(FLANT5) and one noise-sensitive model (LLAMA2 7B).

Fig 17

FlanT5 LLaMa2 7B
rerank +
relevantbase relevantrerank

Figure 8: Effects of applying reranking and instructing
the model to focus on the relevant passages (“relevant”).
These results are for when the retriever is ColBERT and the
dataset is NQ. Results for HotpotQA and BioASQ are at
Appendix O.

Prompting Has Mixed Effects and Does Not Improve
Stability Across models, reranking consistently im-
proves retrieval, while prompting has inconsistent effects.
Prompting helps the noise-sensitive model but has no im-
pact on the noise-robust model, which may already have the
pretrained ability to pay attention to relevant passages. In-
terestingly, prompting does not improve performance when
reranking is already applied, reinforcing that prompting
cannot compensate for poor retrieval, and when retrieval is
strong, prompting is redundant.

Prompting Can Harm Performance in Specialized Do-
mains In BioASQ, prompting degrades performance
likely because the reader is not pretrained on enough
domain-specific knowledge to have and context and rea-
son what is relevant or not.
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Key Takeaways Future RAG research should focus on
fine-tuning readers for noise resilience rather than relying
on retrieval-side interventions. While prompting can help, it
is not a universal fix. RAGGED provides a structured way
to assess noise robustness, guiding both retrieval adaptation
and reader optimization.

7. When Does a Better Retriever Actually
Improve RAG Performance?

The reader robustness trends from Section 5 persist across
retrievers and even with reranking. That is not to say re-
triever choice has no impact. Retriever choice still affects
retrieval efficiency, computational cost, and domain-specific
performance. Below, we compare ColBERT (a neural re-
triever) and BM25 (a lexical retriever), analyze their impact
on different reader types, and assess reranking as a retrieval-
side intervention.

7.1. When Does a Stronger Retriever Improve RAG
Performance?

We evaluate retriever effects using two metrics in Table 8:
(1) Average Difference: Mean F1 difference between Col-
BERT and BM25 across k = 1 to 50. (2) Optimal F1

Difference: The peak performance difference between Col-
BERT and BM25 at each reader’s optimal-k. These met-
rics assess whether a stronger retriever consistently benefits
downstream readers (Table 8).

Retriever Quality Improves Recall, But Not Always
Reader Performance While ColBERT consistently
achieves higher recall@k than BM25, its downstream
gains vary by reader type. For peak-then-decline models
(LLAMA, CLAUDE-3-HAIKU), ColBERT performs worse
than BM25 at large k, despite better retrieval quality. This
suggests that some readers are highly sensitive to the nature
of the retrieval noise. One possible explanation is that Col-
BERT retrieves more semantically similar passages, which
can be more distracting and misleading than a less relevant
passage retrieved from BM25.

Retriever Improvements Have Modest Gains in Open-
Domain QA Although ColBERT improves recall sig-
nificantly in NQ (+21.3 recall@k) and HotpotQA (+14.6
recall@k), the corresponding reader gains are much smaller
(+5.2 and +1.9 F1, respectively). The low ratio of reader
gain to retrieval gain (0.13 in HotpotQA) suggests that better
retrieval alone does not guarantee proportionately substan-
tial reader improvement, especially in open-domain settings.

Specialized Domains Benefit More from Stronger Re-
trieval In contrast, in specialized domains (BioASQ),
even small retrieval improvements (+0.7 recall@k) yield
substantial reader gains (+2.08 F1).

One possible explanation is that domain-specific terminol-
ogy provides stronger retrieval cues, allowing retrievers to
separate relevant from irrelevant content more effectively.
This reduces the need for reader-level noise filtering, making
retrieval improvements directly beneficial.

7.2. Does Reranking Improve Retriever-Reader
Alignment?

Reranking Helps More in Open-Domain QA Than in
Specialized Domains Reranking improves performance
in open-domain datasets (NQ, HotpotQA), particularly for
noise-sensitive models like LLAMA Appendix O. How-
ever, in BioASQ, reranking fails to provide consistent gains
and in some cases degrades performance. In open-domain
QA, retrieval errors often involve partially relevant passages,
meaning reranking can improve performance by elevating
the most useful documents. However, in domain-specific
tasks like BioASQ, where documents contain dense techni-
cal content, reranking may prioritize semantically similar
but not specific enough passages, leading to worse perfor-
mance.

Reranking Outperforms Prompting, But Gains Do Not
Stack Across datasets, reranking consistently outper-
forms prompting as a noise-filtering strategy. However,
applying both does not yield additional gains. Once re-
trieval quality is improved via reranking, prompting has
little residual effect. Since reranking, in some sense, fil-
ters input before it reaches the model, prompting has no
additional noise to filter out.

Key Takeaways Stronger retrievers do not always lead
to better RAG performance, and reader robustness to noise
remains the key bottleneck. While dense retrievers improve
recall, their benefits depend on how well the reader inte-
grates retrieved information. Reranking, although beneficial,
depends on domain-specific retrieval quality and does not
fundamentally change a reader’s stability and scalability.

8. Related Work
Retrieval Depth and Performance Prior work offers
mixed conclusions on increasing retrieval depth (k). Some
studies report consistent improvements (Izacard & Grave,
2021), while others find diminishing returns (Liu et al.,
2023) or even performance degradation at high k (Cuconasu
et al., 2024; Jiang et al., 2024).

Rather than contradictory, we find these trends depend on
the reader’s robustness to noise. Our work systematically
evaluates retrieval depth effects across diverse readers, dis-
tinguishing improve-then-plateau vs. peak-then-decline be-
haviors as key factors in retrieval effectiveness.

8



RAGGED: Towards Informed Design of Scalable and Stable RAG Systems

Domain-Specific RAG Effectiveness RAG’s impact
varies by domain, particularly for long-tail knowledge.
Some studies suggest retrieval is beneficial (Kandpal et al.,
2023), while others find it unnecessary or even harmful for
common knowledge (Mallen et al., 2023).

We show that domain effects are not inherently stronger
or weaker but depend on the retriever-reader interaction,
highlighting the need to optimize retrieval strategies per
task rather than assuming domain specificity guarantees
improvements.

Retriever Choice and Reader Performance Dense re-
trievers often improve retrieval quality (Lewis et al., 2020),
but their downstream impact is not always positive. Fi-
nardi et al. (2024) report a correlation between retriever and
reader performance in specialized settings, yet our results
reveal that stronger retrievers do not always yield better
RAG outputs, especially for noise-sensitive readers.

While retriever quality enhances recall, reader robustness
dictates final performance, with specialized-domain tasks
benefiting disproportionately from even minor retrieval im-
provements. This underscores the need for domain-aware
retrieval strategies rather than assuming higher retrieval ac-
curacy guarantees better generation.

9. Conclusion
Retrieval-augmented generation (RAG) systems are widely
used to enhance language models, but their performance
hinges not just on retrieval quality, but on the reader’s ability
to handle noise and uncertainty. Our study demonstrates that
retrieval depth must be dynamically tuned for each model,
and that reader robustness, not retriever strength, is the key
driver of scalable and stable RAG performance.

To support this insight, we introduce RAGGED, a modu-
lar evaluation framework that systematically analyzes re-
trieval depth, noise sensitivity, and reader-retriever dynam-
ics. Through two new metrics – RAG Stability Score (RSS)
and RAG Scalability Coefficient (RSC) – RAGGED of-
fers a principled way to assess how reliably and efficiently
models use retrieved information across configurations and
domains.

These findings challenge the assumption that retrieval qual-
ity alone governs RAG success, and highlight the impor-
tance of tuning retrieval strategies around reader behavior.
As models continue to evolve, RAGGED remains appli-
cable as a model-agnostic harness for measuring retrieval
sensitivity and guiding deployment decisions.

Looking ahead, expanding RAGGED to adversarial, out-
dated, or temporally shifting noise scenarios will further
enhance its relevance to high-stakes, real-world settings. By

formalizing how we evaluate reader robustness and retrieval
utility, RAGGED lays a foundation for building more reli-
able, adaptive, and efficient retrieval-augmented generation
systems.

Impact Statement
Our work contributes to improving the evaluation and op-
timization of RAG systems, which are increasingly used
in knowledge-intensive tasks such as question answering,
fact-checking, and scientific information retrieval. By intro-
ducing a systematic framework for assessing RAG stability
and scalability, our study provides actionable insights for
building more reliable and robust AI systems.

Ethical Considerations: While RAG systems enhance fac-
tual accuracy by incorporating external knowledge, they
also introduce risks such as information distortion when
retrieval is noisy or biased. Our findings highlight the im-
portance of reader robustness to retrieval noise, suggesting
that deployments of RAG models should include safeguards
against misleading or incorrect retrieved content.

Future Societal Impact: As RAG-based models become
integral to decision-making in fields like healthcare, law, and
education, ensuring their stability and reliability is crucial.
The RAGGED framework provides a principled way to
measure and improve retrieval robustness via RSS and RSC,
which could help mitigate misinformation risks in high-
stakes applications.

While our study focuses on evaluation, its insights can in-
form the development of more scalable and stable RAG
systems.
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A. Reader Implementation Details
We truncate the context to make sure the the rest of the
prompt still fits within a reader’s context limit. Specifi-
cally, when using FLANT5 and FLANUL2 readers, we use
T5Tokenizer to truncate sequences to up to 2k tokens; when
using LLAMA models, we apply the LlamaTokenizer and
truncate sequences by 4k tokens for LLAMA2 and 8k for
LLAMA3. For closed-source models, we spent around
$300. Subsequently, we incorporate a concise question-and-
answer format that segments the query using ”Question:”
and cues the model’s response with ”Answer:”, ensuring
precise and targeted answers.

For our reader decoding strategy, we used greedy decoding
with a beam size of 1 and temperature of 1, selecting the
most probable next word at each step without sampling. The
output generation was configured to produce responses with
10 tokens. The experiments were conducted on NVIDIA
A6000 GPUs, supported by an environment with 60GB
RAM. The average response time was ∼1.1s per query
when processing with a batch size of 50.

B. Prompt
For all experiments, we use the following prompt:

Instruction: Give simple short one phrase answers for
the questions based on the context
Context: [passage1, passage2, · · · , passagek]
Question: [the question of the current example]
Answer:

.

For the “relevant” prompt, we swap the instruction for “Give
simple short one phrase answers for the questions based on
only the parts of the context that are relevant to the question.”

C. Dataset Details
All corpus and datasets use English.

For NQ and HotpotQA datasets in the open domain, we
use the Wikipedia paragraphs corpus provided by the KILT
benchmark (Petroni et al., 2021). For BioASQ, we use the
PubMed Annual Baseline Repository for 2023 (of Medicine,
2023), where each passage is either a title or an abstract of
PubMed papers. Dataset sizes are in Table 3.

The Medline Corpus is from of Medicine (2023) provided
by the National Library of Medicine.

For NQ and HotpotQA, we use KILT’s dev set versions of
the datasets, allowed under the MIT License (Petroni et al.,
2021). For BioASQ (Krithara et al., 2023), we use Task
11B, distributed under CC BY 2.5 license.

Corpus # of par # of doc Avg # of doc

Wikipedia 111M 5M 18.9
Medline 58M 34M 1.7

Table 2: Retrieval corpus information

Dataset # of Queries

NQ 2837
HotpotQA 5600
BioASQ 3837

Table 3: Dataset information

D. Comparison with No-Context Performance
We include additional reader results comparing ColBERT
and BM25 at Table 4 and Table 5.

E. Relating Reader Trends to Reader
Architectures and Training Details

There are two primary types of readers observed in our
experiments:

• Peak-then-Decline Behavior: Models including those
from the LLAMA and CLAUDE families show sen-
sitivity to noisy documents, leading to performance
degradation as the number of retrieved passages (k)
increases beyond a certain point.

• Improve-then-Plateau Behavior: Models including
those from the GPT and FLAN families are more ro-
bust to noise, continuing to benefit from additional
context until performance plateaus.

Since we do not have access to the details of the closed-
source models, we will focus on providing hypotheses ac-
cording to the open-source model (LLAMA belonging to the
peak-then-decline behavior and the FLAN models belonging
to the improve-then-plateau family).

On one hand, FLAN, an improve-then-plateau model fam-
ily, incorporates additional strategies explicitly designed
to handle noisy or diverse contexts. It employs denoising
strategies, such as a mixture-of-denoisers, during training to
improve its robustness to irrelevant or noisy contexts. These
enhancements enable it to filter out noise more effectively.

On the other hand, LLAMA ’s training predominantly relies
on next-token prediction with limited exposure to noisy or
retrieval-specific scenarios, making it sensitive to noise at
higher k.

We also note that there are some model architecture features
that alone do not determine reader behavior:
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Model NQ HotpotQA BioASQ
ColBERT BM25 ColBERT BM25 ColBERT BM25

GPT-3.5 1.1 -8.0 7.7 5.1 8.9 7.4
CLAUDE Haiku -15.7 -22.5 -6.5 -10.2 -21.7 -25.9
FlanT5 28.9 12.6 20.9 13.5 16.6 11.9
FlanUL2 21.5 4.9 18.9 15.7 5.3 2.8
LLAMA 2 7B 1.4 -4.5 10.4 8.2 6.4 5.9
LLAMA 2 70B -0.1 -7.6 11.2 9.2 4.4 3.9
LLAMA 3 8B -13.3 -14.9 -6.7 -5.7 -12.1 -14.9
LLAMA 3 70B -24.9 -26.2 -12.0 -11.3 -18.0 -21.4
Average (per dataset) -0.1 -8.3 5.5 3.06 -1.3 -3.8

Table 4: The average difference between the F1 score of RAG with k passages from ColBERT or BM25 and the F1 score
of no-context generation, calculated across k values from 1 to 50 for each dataset. Each value represents the difference
between the F1 score of the reader+retriever combination and the F1 score of the reader alone (without RAG or context).

Model NQ HotpotQA BioASQ
ColBERT BM25 ColBERT BM25 ColBERT BM25

GPT-3.5 3.8 -3.1 8.8 7.3 10.9 10.6
CLAUDE Haiku -2.4 -14.9 3.9 0.7 -1.7 -8.2
FlanT5 32.5 22.6 23.5 20.4 18.0 13.0
FlanUL2 24.4 14.8 22.0 19.7 7.1 3.4
LLAMA 2 7B 9.7 -0.5 15.2 11.0 8.5 6.9
LLAMA 2 70B 4.3 -0.3 14.0 11.4 7.3 6.8
LLAMA 3 8B 3.9 -3.0 11.2 8.4 3.6 1.7
LLAMA 3 70B -0.7 -9.6 14.9 8.1 4.4 0.3
Average (per dataset) 9.44 0.8 14.2 10.9 7.3 4.3

Table 5: The difference between the F1 score of RAG optimal k∗ from ColBERT or BM25 and the F1 score of no-context
generation. Each value represents the difference between the F1 score of the reader+retriever combination at optimal k∗ and
the F1 score of the reader alone (without RAG or context).

• Context window size: Models with longer context lim-
its like LLAMA 2 (4k tokens) don’t necessarily process
a larger number of contexts better than models with
smaller context limits like FLAN (2k tokens).

• Encoder-decoder v. decoder: LLAMA is a decoder-
only model that displays peak-then-decline behavior,
but GPT models are also decoder-only and instead
display improve-then plateau behavior.

F. Preliminary Results on CRAG
To evaluate the generalization of our findings to more recent
RAG benchmarks, we conducted a preliminary study using
the CRAG dataset (Yang et al., 2024). We selected one repre-
sentative model from each of the two major reader behavior
classes: FLANT5 (improve-then-plateau) and LLAMA2
(peak-then-decline).

As shown in Table 6, the core reader trends persist:
LLAMA2 exhibits early performance saturation and
plateaus, while FLANT5 demonstrates a mild performance

peak followed by flattening. Although performance is lower
overall (as expected given CRAG’s difficulty), these results
suggest that RAGGED’s retrieval-depth insights can gener-
alize to this newer benchmark.

Table 6: F1 scores of FLANT5 and LLAMA2 on CRAG at
varying retrieval depths (k).

Model k =1 k =5 k =10 k =20 k =30

FLANT5 0.19 0.17 0.18 0.18 0.18
LLAMA2 0.20 0.23 0.23 0.23 0.23

G. Investigating FLANT5 ’s High RSS and
Input Truncation

In Figure 5, FLANT5 achieves an RSS of 0.99 on the NQ
dataset. One possibility is that truncation effects at higher
retrieval depths (e.g., k = 25) may mask additional context,
artificially inflating stability.

To assess this, we compared tokenized input lengths be-
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tween k = 20 and k = 25. In 32% of cases, the k = 25
input included more tokens than k = 20, indicating that ad-
ditional retrieved passages were indeed processed. Despite
this, the model’s F1 score changes by < 0.5 on average, sup-
porting our interpretation that FLANT5’s high RSS reflects
genuine retrieval-depth robustness, not an artifact of context
truncation.

H. Slice Analysis on Other Datasets
We include with-gold-passages results for HotpotQA at Fig-
ure 9 and for BioASQ at Figure 10.
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Figure 9: HotpotQA results when there is sufficient infor-
mation (all gold passages) included in the top-k passages
to answer the question. For multi-hop questions, we select
examples retrieved with all gold passages within the top-
k passages since all passages are necessary to answer the
question.
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Figure 10: BioASQ results when there is sufficient infor-
mation (at least one gold passage) included in the top-k
passages to answer the question.

We include without-gold-passages results for HotpotQA at
Figure 11 and for BioASQ at Figure 12. ColBERT no 

gold found - 
nq

no-ctxtop-k

k (# of retrieved passages)

Re
ad

er
 P

er
fo

rm
an

ce
 (F

1)

FlanT5

FlanUL2

LLaMa3 8B

LLaMa3 70B

GPT-3.5

Claude 
Haiku

LLaMa2 7B

LLaMa2 70B

Figure 11: HotpotQA results when there are no gold pas-
sages included in the top-k passages to answer the question.
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Figure 12: BioASQ results when there are no gold passages
included in the top-k passages to answer the question.

I. Comparing Optimal k Values
We include the optimal k for ColBERT and BM25 in Ta-
ble 7.

J. LLM-Based Evaluation
While we chose F1 for its simplicity and alignment with
prior work, we agree that it may not fully reflect nuanced
semantic equivalence. To address this, we ran an LLM-
based evaluation of the models for the NQ dataset using
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Model NQ HotpotQA BioASQ Average (per reader)
BM25 ColBERT BM25 ColBERT BM25 ColBERT BM25 ColBERT

GPT-3.5 50 20 50 20 20 20 40 20
CLAUDE Haiku 1 1 1 1 1 1 1 1
FlanT5 50 20 10 10 50 1 36.67 10.33
FlanUL2 50 10 20 10 2 1 24 7
LLAMA 2 7B 1 1 2 2 2 1 1.67 1.33
LLAMA 2 70B 10 5 10 2 5 5 8.33 4
LLAMA 3 8B 1 1 1 1 1 1 1 1
LLAMA 3 70B 1 1 1 1 1 1 1 1
Average (per dataset) 20.5 7.38 11.88 5.88 10.25 3.88 14.21 5.71

Table 7: Optimal k∗ for BM25 and ColBERT (NQ, HotpotQA, and BioASQ).

Prometheus (Kim et al., 2024), specifically the Prometheus-
7b-v2.0 model. We find that the conclusions about reader
trends do not change: the same reader trends apply to the
same models (peak-then-decline v. improve-then-plateau).
We use Prometheus-7b-v2.0 to evaluate the correctness of
the generated answer against the gold answer on a 5-point
scale, where 1 is the least correct and 5 is the most correct
Figure 13.
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Figure 13: Reader Performance on NQ dataset as evaluated
by Prometheus on a 5-point scale where 1 is the least correct
and 5 the the most correct.

K. Comparing Reader Trends when using
ColBERT v. BM25

We include the top-k performance for ColBERT, BM25
Figure 14 and in Table 8

L. Comparing Neural Retrievers
We compare the top-k performance of ColBERT and Con-
triever at Figure 15.

M. Comparing GPT-3.5 and GPT-4O

We compare how GPT-3.5 and GPT-4O perform, and find
that they both display the same reader trend of improve-then-
plateau, with the main difference being GPT-4O’s reader
performance is shifted up (Figure 16).

N. Retriever Performance
We include the retriever performance at select k’s at Table 9.

O. Effect of Reranker and Relevance
Prompting

We test whether reranking and/or explicit relevance prompt-
ing instructions improve noise filtering on NQ, HotpotQA,
and BioASQ (Figure 8, Figure 17, Figure 18). We pick
one noise-robust model (FLANT5) and one noise-sensitive
model (LLAMA2 7B) to demonstrate preliminary results.
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Figure 14: Top-k performance on NQ, HotpotQA, and BioASQ. Colored circles mark the reader performance at optimal k∗.
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Figure 15: Example of how reader response to increasing context applies across neural retrievers (e.g., ColBERT and
Contriever) and datasets. We choose one reader model from each trend for demonstration — LLAMA2 7B for peak-then-
decline and FLANT5 for improve-then-plateau.
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Model
Average Difference (across k) Difference in Optimal Performance

NQ HotpotQA BioASQ NQ HotpotQA BioASQ

GPT-3.5 8.6 2.0 1.1 6 1 0
Claude Haiku 3.9 4.0 2.4 12 3 6
FlanT5 12.6 10.5 4.2 9 3 4
FlanUL2 12.9 2.0 1.9 9 2 3
LLaMa2 7B 3.6 0.9 -0.3 10 4 1
LLaMa2 70B 2.6 0.7 -0.2 4 2 0
LLaMa3 8B -0.7 -2.2 1.4 6 2 1
LLaMa3 70B -1.9 -2.7 1.5 8 6 4

Average 5.2 1.9 1.5 8 2.9 2.4

Table 8: For each reader, the average difference and optimal difference in F1 scores between ColBERT and BM25 are
reported. (See the main text above for detailed definitions.)

Retriever Recall@k

1 2 5 10 20 50

NQ

BM25 2.7 4.4 8.0 11.5 16.3 22.8
10.3 16.3 27.8 36.8 47.7 53.2

ColBERT 12.3 18.0 25.7 32.1 38.1 41.8
27.2 38.8 54.4 65.0 72.9 77.2

Contriever 4.65 6.91 11.14 15.17 20.19 28.46
24.0 32.3 44.9 53.2 62.1 72.0

HotpotQA

BM25 19.1 25.9 34.6 41.1 46.8 54.2
23.3 31.2 42.7 52.1 59.1 62.8

ColBERT 31.1 40.1 49.9 56.2 61.9 64.9
34.2 44.7 56.3 63.6 69.9 73.1

Contriever 2.35 4.44 8.14 11.75 15.46 20.79
22.39 29.54 39.39 45.71 51.51 59.08

BioASQ

BM25 8.8 12.9 19.6 25.8 33.3 37.8
12.4 16.4 23.9 30.6 38.7 43.6

ColBERT 8.8 13.5 20.7 27.1 34.3 38.6
14.2 18.2 25.6 32.2 39.8 44.2

Contriever 3.82 5.87 9.55 12.95 17.48 24.58
7.91 10.55 15.36 19.61 24.89 33.03

Table 9: Retriever performance (recall@k). For the
Wikipedia-based dataset, the top row indicates recall@k
at the retrieval unit of Wikipedia paragraph and the bottom
row for the unit of Wikipedia page. For BioASQ, the top
row indicates recall@k at the unit of title or abstract of a
PubMed article and the bottom row at the unit of the article
itself.
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Figure 16: Comparison of GPT-3.5 and GPT-4O perfor-
mance on NQ.
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Fig 8,18

FlanT5 LLaMa2 7B
rerank +
relevantbase relevantrerank

Figure 17: Effects of applying reranking and instructing the
model to focus on the relevant passages (“relevant”). These
results are for when the retriever is ColBERT and the dataset
is HotpotQA.

Fig 19

FlanT5 LLaMa2 7B
rerank +
relevantbase relevantrerank

Figure 18: Effects of applying reranking and instructing the
model to focus on the relevant passages (“relevant”). These
results are for when the retriever is ColBERT and the dataset
is BioASQ.
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