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Abstract
We consider molecule generation in 3D space
using language models (LMs), which requires dis-
crete tokenization of 3D molecular geometries.
Although tokenization of molecular graphs ex-
ists, that for 3D geometries is largely unexplored.
Here, we attempt to bridge this gap by proposing
the Geo2Seq, which converts molecular geome-
tries into SE(3)-invariant 1D discrete sequences.
Geo2Seq consists of canonical labeling and in-
variant spherical representation steps, which to-
gether maintain geometric and atomic fidelity in
a format conducive to LMs. Our experiments
show that, when coupled with Geo2Seq, various
LMs excel in molecular geometry generation, es-
pecially in controlled generation tasks. Our code
has been released as part of the AIRS library
(https://github.com/divelab/AIRS/).

1. Introduction
The generation of novel molecules with desired properties is
an important step in drug discovery. Specifically, the design
of three-dimensional (3D) molecular geometries is particu-
larly important because 3D information plays a critical role
in determining many molecular properties. Different gen-
erative models have been used for 3D molecule generation.
Early studies such as G-SchNet (Gebauer et al., 2019) use
autoregressive generative models to generate 3D molecules
by sequentially placing atoms in 3D space. It was observed
that these models often yield results with low chemical va-
lidity. Recently, diffusion models (Hoogeboom et al., 2022;
Xu et al., 2023a) achieve better performance in 3D molecule
generation tasks. However, they typically need thousands
of diffusion steps, resulting in long generation time.

Language models (LMs) (Vaswani et al., 2017; Devlin et al.,
2018; Brown et al., 2020; Gu et al., 2021), with their stream-
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lined data processing and powerful generation capabilities,
have shown success across various domains, particularly
in natural language processing (NLP). Recently, large lan-
guage models (LLMs) (Zhao et al., 2023b) show extraordi-
nary capabilities in learning complex patterns (Zhang et al.,
2024) and generating meaningful outputs (Touvron et al.,
2023; Achiam et al., 2023; Chowdhery et al., 2023). De-
spite their potential, the application of LLMs to the direct
generation of 3D molecules is largely under-explored. This
is primarily due to the fact that geometric graph structures
of molecular data are fundamentally different from texts.
However, 3D geometric information is crucial in molecular
tasks, since different conformations of the same molecule
topology have different properties, such as per-atom forces.
This gap reveals a unique challenge of how to make use of
the powerful pattern recognition and generative capabilities
of LLMs to handle complicated molecular graph structures,
especially geometries. On the other hand, solutions to this
challenge with model-level modifications cannot effectively
leverage the rapidly developing power of LMs. These so-
lutions require specific module designs, which needs to be
done separately for each LM architecture and can be infea-
sible for modern LMs released via APIs.

In this work, we bridge this gap by applying LMs to the task
of 3D molecule generation. We employ a novel approach
translating the intricate geometry of molecules into a format
that can be effectively processed by LMs. This is achieved
by our proposed tokenization method Geo2Seq, which con-
verts 3D molecular structures into SE(3)-invariant one-
dimensional (1D) discrete sequences. The transformation is
based on canonical labeling, which allows dimension reduc-
tion with no information loss outside graph isomorphism
groups, and invariant spherical representations, which guar-
antees SE(3)-invariance under the equivariant global frame.
By doing so, we harness the advanced sequence-processing
capabilities and efficiency of LMs while retaining essential
geometric and atomic information. Note that since Geo2Seq
operates solely on input data, our method is agnostic to the
subsequent LMs used. and can seamlessly adapt to any
state-of-the-art sequence model, maximizing LM capabili-
ties while avoiding additional architecture design or redun-
dant computations. When combined with powerful modern
LLMs, Geo2Seq can achieve highly accurate modeling of
3D molecular structures. In addition, Geo2Seq can benefit
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conditional generation by including real-world chemical
properties in sequences because modern LLMs are capable
of capturing long-context correlations to comprehend global
structure and information in sequences. Our experimental
results demonstrate these advantages. We show that using
different LMs with Geo2Seq can reliably produce valid and
diverse 3D molecules and outperform the strong diffusion-
based baselines by a large margin in conditional generation.
These results validate the feasibility of using LMs for 3D
molecule generation and highlight the potential to aid in the
discovery of new molecules, paving the way for applications
such as drug development and material science.

2. Preliminaries and Related Work
2.1. 3D Molecule Generation

In this work, we study the problem of generating 3D
molecules from scratch. Note that this problem is different
from the 3D molecular conformation generation problem
studied in the literature (Mansimov et al., 2019; Simm &
Hernandez-Lobato, 2020; Gogineni et al., 2020; Xu et al.,
2021a;b; Shi et al., 2021; Ganea et al., 2021; Xu et al., 2022;
Jing et al., 2022), where 3D molecular conformations are
generated from 2D molecular graphs. We represent a 3D
molecule with n atoms in the form of a 3D point cloud (i.e., a
set of points with different positions in 3D Euclidean space)
as G = (z,R). Here, z = [z1, · · · , zn] ∈ Zn is the atom
type vector where zi is the atomic number (nuclear charge
number) of the i-th atom, and R = [r1, · · · , rn] ∈ R3×n is
the atom coordinate matrix, where ri is the 3D coordinate
of the i-th atom. Note that 3D atom coordinates R are com-
monly called 3D molecular conformations or geometries in
chemistry. We aim to solve the following two generation
tasks in this work:

• Random generation. Given a 3D molecule dataset G =
{Gj}mj=1, we aim to learn an unconditional generative
model pθ(·) on G so that the model can generate valid and
diverse 3D molecules.

• Controllable generation. Given a 3D molecule dataset
G = {(Gj , sj)}mj=1 where sj is a certain property value
of Gj , we aim to learn a conditional generative model
pθ(·|s) on G so that for a given s, the model can generate
3D molecules whose quantum property values are s.

A major technical challenge of 3D molecule generation lies
in maintaining invariant to SE(3) transformations, includ-
ing rotation and translation. In other words, ideal models
should assign the same probability to G = (z,R) and
G′ = (z,R′) if R′ = QR + b1T , where 1 is an n-
dimensional vector whose elements are all one, b ∈ R3

is an arbitrary translation vector, and Q ∈ R3×3 is a ro-
tation matrix satisfying QQT = I, |Q| = 1. To achieve

SE(3)-invariance in 3D molecule generation, existing stud-
ies have proposed various strategies. Early studies pro-
pose to generate 3D atom positions by SE(3)-invariant
features, such as interatomic distances, angles and torsion
angles. They construct 3D molecular structures through
either atom-by-atom generation (Gebauer et al., 2019; Luo
& Ji, 2022) or generating full distance matrices (Hoffmann
& Noé, 2019) in one shot. Recently, more and more studies
have applied generative models to generate 3D atom coordi-
nate directly. These studies include E-NFs (Satorras et al.,
2021a) and EDM (Hoogeboom et al., 2022), which com-
bine equivariant atom coordinate alignment process with
equivariant EGNN (Satorras et al., 2021b) model for 3D
molecule generation. Following EDM, many other stud-
ies have proposed to improve diffusion-based 3D molecule
generation frameworks by stochastic differential equation
(SDE) based diffusion models (Wu et al., 2022; Bao et al.,
2023) or latent diffusion models (Xu et al., 2023a). Besides,
some recent studies (Qiang et al., 2023) have explored gen-
erating 3D molecules through generating and connecting
fragments first, then aligning atom coordinates with soft-
ware like RDKit. We refer readers to Du et al. (2022); Zhang
et al. (2023b) for a comprehensive review.

While generating 3D molecules in the form of 3D point
clouds have been well studied, few studies have tried ap-
plying powerful language models to this problem. In this
work, different from mainstream methods, we convert 3D
point clouds to SE(3)-invariant 1D discrete sequences, and
show that generating sequences by LMs achieves promising
performance in the 3D molecule generation task.

2.2. Chemical Language Model

LMs have catalyzed significant advancements across a spec-
trum of fields. Recently, LLMs have revolutionized the land-
scape of NLP and beyond (Touvron et al., 2023; Achiam
et al., 2023; Chowdhery et al., 2023). Drawing inspira-
tion from NLP methodologies, chemical language models
(CLMs) have emerged as a competent way for represent-
ing molecules (Bran & Schwaller, 2023; Janakarajan et al.,
2023; Bajorath, 2024; Zhang et al., 2024). Due to the su-
periority LMs show in generation tasks, most CLMs are
designed as generative models. Variants of LMs have been
adapted for molecular science, producing a variety of works.

CLMs learn the chemical vocabulary and syntax used to
represent molecules, as well as the conditional probabilities
of character occurrence at given positions of sequences de-
pending on preceding characters. This vocabulary covers all
characters from the adopted molecule representation. All in-
puts including chemical structures and properties should be
converted into sequence form and tokenized for compatibil-
ity with language models. Commonly, SMILES (Weininger,
1988) is used for this sequential representation, although
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other formats like SELFIES (Krenn et al., 2019), atom type
strings, and custom strings with positional or property val-
ues are also viable options. To learn representations, CLMs
are usually pre-trained on extensive molecular sequences
through self-supervised learning. Subsequently, models are
fine-tuned on more focused datasets with desired proper-
ties, such as activity against a target protein. Generative
CLMs generally adopt an autoregressive training approach
of next token prediction, i.e., iteratively predicting each sub-
sequent token in a sequence based on the preceding tokens.
Traditional autoregressive models use the Transformer archi-
tecture with causal self-attention (Brown et al., 2020) due
to its superior efficacy, while other sequence models like
recurrent neural networks (RNNs) and state space models
(SSMs) (Gu et al., 2021; Özçelik et al., 2024; 2023) also
show considerable functionality.

Given a dataset of sequences, U = {U1, U2, · · · , UN},
where Ui is transformed from the representation, property
conditions and/or descriptions of a molecule Gi with ni

nodes, let Ui = {u1, u2, · · · , uni
} and all tokens ui be-

long to vocabulary V . An autoregressive CLM has pa-
rameters θ encoding a distribution with conditional proba-
bilities of each token given its predecessors, p(Ui; θ) =∏ni

j=1 p(uj |u0 : uj−1; θ). The optimization process in-
volves maximizing the probabilities of the entire dataset
p(U ; θ) =

∏N
i=1 p(Ui; θ). Each conditional distribution

p(uj |u0 : uj−1; θ) is a categorical distribution over the vo-
cabulary size |V |; thus the loss for each term aligns with
the standard cross-entropy loss. To generate new sequences,
the model samples each token sequentially from these con-
ditional distributions. To introduce randomness and control
into generation, the sampling process is typically modu-
lated with Top-K (k) and temperature (τ) hyperparameters,
enabling a balance between adherence and diversity.

Most existing CLM works consider chemical structures
as well as other modalities such as natural language cap-
tions (Bagal et al., 2021; Li et al., 2023a;b; Edwards et al.,
2022; Xie et al., 2023; Chen et al., 2023b; Tysinger et al.,
2023; Xu et al., 2023b; Chen et al., 2023a; Pei et al., 2023;
Liu et al., 2023b; Wang et al., 2023), while some focus
on pure text of chemical literature (Luo et al., 2022a) or
molecule strings (Haroon et al., 2023; Mao et al., 2023b;
Blanchard et al., 2023; Mazuz et al., 2023; Fang et al., 2023;
Kyro et al., 2023; Izdebski et al., 2023; Yoshikai et al., 2023;
Wu et al., 2023; Mao et al., 2023a). Notably, all these works
solely consider 2D molecules for representation learning
and downstream tasks, overlooking 3D geometric structures
which is crucial in many molecular predictive and genera-
tive tasks. For example, different conformations of the same
2D molecule have different potentials and per-atom forces.
In order to use pivotal 3D information, another line of work
incorporate geometric models such as GNNs in parallel
with the CLM (Xia et al., 2023; Zhang et al., 2023a; Cao

et al., 2023; Liang et al., 2023; Liu et al., 2023a; Frey et al.,
2023), which requires additional design and training tech-
niques to mitigate alignment issues. Some works extend the
architecture of CLM to include 3D-geometric-model-like
modules in the attention block (Fuchs et al., 2020; Shi et al.,
2022; Liao & Smidt, 2022; Thölke & De Fabritiis, 2021;
Luo et al., 2022b; Masters et al., 2022; Ünlü et al., 2023;
Zhao et al., 2023a), capturing 3D information as positional
encodings with considerable computations and framework
design. In contrast, Flam-Shepherd & Aspuru-Guzik (2023)
make an initial attempt showing language models trained
directly on contents of XYZ format chemical files can gen-
erate molecules with three coordinates, implying pure LMs’
potential to directly explore 3D chemical space. In this work,
we propose an invariant 3D molecular sequencing algorithm,
Geo2Seq, to empower CLMs with structural completeness
and geometric invariance, showing LMs’ capabilities of un-
derstanding molecules precisely in 3D space. We extend
beyond the conventional Transformer architecture of CLMs
and additionally employ SSMs as LM backbones. Further-
more, Geo2Seq operates solely on the input data, which
allows independence from model architecture and training
techniques and provides reuse flexibility.

3. Tokenization of 3D Molecules
A fundamental difference between LMs and other models
is that LMs use discrete inputs, i.e., tokens. In this sec-
tion, we introduce our tokenization method to map input
3D molecules with atomic coordinates to discrete token
sequences appropriate for LM learning.

A main challenge in tokenization design is to develop bijec-
tive mappings between 3D molecules and token sequences,
i.e., obtaining the same token sequence for the same input
3D molecule, while obtaining different sequences for dif-
ferent inputs. In this section, we present our solutions to
tackle this challenge. We first reorder the atoms in the input
molecule to a canonical order (Section 3.1), such that any
two isomorphic graphs result in the same canonical form,
and any non-isomorphic graphs yield different canonical
forms. We then convert 3D Cartesian coordinates to SE(3)-
invariant spherical representations, including distances and
angles (Section 3.2). Combining them together, we ob-
tain our geometry informed tokenization method Geo2Seq
(Section 3.3). We provide rigorous proof of all theorems
supporting the bijective mapping relation in Appendix B.

3.1. Serialization via Canonical Ordering

As the first step in 3D molecule tokenization, we need to
transform a graph to a 1D sequential representation. We
resort to canonical labeling as a solution for dimension
reduction without information loss.
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Spherical Representation

Input Molecule

H O N C C H H H C H H H

H 0.00 0.00° 0.00° O 0.96 1.57° 0.00° 
N 1.86 2.40° 0.00° C 2.97 2.13° -0.01° 
C 3.58 1.71° -0.03° H 4.29 2.30° 0.25° 
H 5.25 2.20° -0.25° H 4.57 2.61° -0.01° 
C 4.23 2.37° -0.00° H 6.85 2.54° 0.18° 
H 6.59 2.81° -0.29° H 6.13 2.83° 0.24°

Tokenization

Unconditional generation

Conditional generation

Input: H 0.00 0.00° 0.00° O 0.96 1.57° …

Input: H 0.00 0.00° 0.00° O 0.96 1. 57° …
Condition:               property *-5.9484* <latexit sha1_base64="3usemW4xGDJj+/2dzldTddigaCA=">AAACBnicbVDJSgNBEO2JW4zbqEcRBhPBU5gRt2PAi+AlglkgCaGnU5M06ZkeumuCYcjJi7/ixYMiXv0Gb/6NneWgiQ8KHu9VUVXPjwXX6LrfVmZpeWV1Lbue29jc2t6xd/eqWiaKQYVJIVXdpxoEj6CCHAXUYwU09AXU/P712K8NQGkuo3scxtAKaTfiAWcUjdS2D5sID+gHaaE5oApizYWR054M5agwatt5t+hO4CwSb0byZIZy2/5qdiRLQoiQCap1w3NjbKVUIWcCRrlmoiGmrE+70DA0oiHoVjp5Y+QcG6XjBFKZitCZqL8nUhpqPQx90xlS7Ol5byz+5zUSDK5aKY/iBCFi00VBIhyUzjgTp8MVMBRDQyhT3NzqsB5VlKFJLmdC8OZfXiTV06J3UTy/O8uXbmdxZMkBOSInxCOXpERuSJlUCCOP5Jm8kjfryXqx3q2PaWvGms3skz+wPn8ATD+Zsg==</latexit>"homo

Figure 1: Overview of Geo2Seq. We use the canonical labeling order to arrange nodes in a row, fill in the place of each node
with vector [zi, di, θi, ϕi], and concatenate all elements into a sequence. Each node vector contains atom type and spherical
coordinates. Notably, the spherical coordinates are SE(3)-invariant.

Canonical labeling (CL), in the context of graph theory, is a
process to assign a unique form to each graph in a way that
two graphs receive the same canonical form only if they are
isomorphic (McKay et al., 1981). The canonical form is a
re-indexed version of a graph, which is unique for the whole
isomorphism class of a graph. The new indexes naturally
establish the order of nodes in the graph. The order, which
we refer to as canonical labels, is not necessarily unique if
the graph has symmetries and thus has an automorphism
group larger than 1. However, all canonical labels are strictly
equivalent when used for serialization. The canonical label
essentially re-assigns an index ℓi to each node originally
indexed with i in graph G. Since canonical labeling can pre-
cisely distinguish non-isomorphic graphs, it fully contains
the structure information of a graph G. Thus, by arranging
nodes with attributes in the labeling order ℓ1, ℓ2, · · · , we
obtain a sequential representation of attributed graphs with
all structural information preserved.

The Nauty algorithm (McKay & Piperno, 2014), tailored for
CL and computing graph automorphism groups, presents
a rigorous formulation of CL. In this paper, we adopt the
Nauty algorithm for CL calculation, while all analyses
and derivations apply to other rigorous algorithms. The
bijective mapping between CL-obtained sequential repre-
sentation and graph can be be proved based on graph iso-
morphism. First, due to the geometric need here, we extend
to define the isomorphism problem for attributed graphs.

Definition 3.1. [Graph Isomorphism] Let G1 =
(V1, E1, A1) and G2 = (V2, E2, A2) be two graphs, where
Vi denotes the set of vertices, Ei denotes the set of edges,
and Ai denotes the node attributes of Gi for i = 1, 2. Let
attr(v) denote the node attributes of vertex v. The graphs
G1 and G2 are said to be isomorphic, denoted as G1

∼= G2,
if there exists a bijection b : V1 → V2 such that for every
vertex v ∈ V1, attr(v) ∈ A1 = attr(b(v)) ∈ A2, and for
every pair of vertices u, v ∈ V1,

(u, v) ∈ E1 ⇔ (b(u), b(v)) ∈ E2.

CL processes can also be extended to node/edge-attributed
graphs, leading us to the guarantee below.

Lemma 3.2. [Canonical Labeling for Colored Graph Iso-
morphism] Let G1 = (V1, E1, A1) and G2 = (V2, E2, A2)
be two finite, undirected graphs where Vi denotes the set
of vertices, Ei denotes the set of edges, and Ai denotes the
node attributes of the graph Gi for i = 1, 2. Let L : G → L
be a function that maps a graph G ∈ G, the set of all finite,
undirected graphs, to its canonical label L(G) ∈ L, the set
of all possible canonical labels, as produced by the Nauty
algorithm. Then the following equivalence holds:

L(G1) = L(G2) ⇔ G1
∼= G2

where G1
∼= G2 denotes that G1 and G2 are isomorphic.

Lemma 3.2 indicates that the CL process is both complete
(sufficient to distinguish non-isomorphic graphs) and sound
(not distinguishing actually isomorphic graphs). Note that if
L(G) corresponds to multiple automorphic labels, we can
randomly select one since they are all equivalent and pro-
duce the same sequence later through Geo2Seq, as detailed
in Appendix B. However, this is a very uncommon case for
real-world 3D attributed graphs like molecules.

3.2. Invariant Spherical Representations

In this section, we describe how to incorporate 3D structure
information into our sequences. One main challenge here is
to ensure the SE(3)-invariance property described in Sec-
tion 2.1. Specifically, given a 3D molecule, if it is rotated or
translated in the 3D space, its 3D representation should be
unchanged. Another challenge is to ensure no information
loss (Liu et al., 2022; Wang et al., 2022). Specifically, given
the 3D representation, we can recover the given 3D struc-
ture. If two 3D structures cannot be matched via a SE(3)
transformation, the representations should be different. This
property is important to the discriminative ability of models.

We address these challenges by spherical representations,
i.e., using spherical coordinates to represent 3D structures.
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Figure 2: Illustrations of the equivariant frame and invariant
spherical representations. If the molecule is rotated and
translated by a rotation matrix Q and a translation vector b,
the atom coordinates change accordingly. But our spherical
representations remain invariant since the frame is equivari-
ant to the SE(3)-transformation.

Compared to Cartesian coordinates, spherical coordinate
values are bounded in a smaller region, namely, a range of
[0, π] or [0, 2π]. This makes spherical coordinates advanta-
geous in discretized representations and thus easier to be
modeled by LMs. Given the same decimal place constraints,
they require a smaller vocabulary size, and given the same
vocabulary size, they lose less information. This is also
supported by empirical results and analysis in Appendix C.

We propose to maintain SE(3)-invariance while ensuring no
information loss. Given a 3D molecule G with atom types z
and atom coordinates R, we first build a global coordinate
frame F = (x,y, z) based on the input. Specifically, as
shown in Figure 1, the frame is built based on the first three
non-collinear atoms in the canonical ordering L(G). Let
ℓ1, ℓ2, and ℓF be the indices of these three atoms. Then the
global frame F = (x,y, z) is calculated as

x = normalize(rℓ2 − rℓ1),

y = normalize ((rℓF − rℓ1)× x) ,

z = x× y.

(1)

Here normalize(·) is the function to normalize a vector to
unit length. Note that the global frame is equivariant to
the rotation and translation of the input molecule, as shown
in Figure 2 and Appendix B.2. After obtaining the global
frame, we use a function f(·) to convert the coordinates
of each atom to spherical coordinates d, θ, ϕ under this
frame. Specifically, for each node ℓi with coordinate rℓi ,
the corresponding spherical coordinate is

dℓi = ||rℓi − rℓ1 ||2,
θℓi = arccos ((rℓi − rℓ1) · z/dℓi) ,
ϕℓi = atan2 ((rℓi − rℓ1) · y, (rℓi − rℓ1) · x) .

(2)

The spherical coordinates show the relative position of each

atom in the global frame F . As shown in Figure 2, if the
input coordinates are rotated by a matrix Q and translated
by a vector b, the transformed spherical coordinates remain
the same, so the spherical coordinates are SE(3)-invariant.

Next, we demonstrate that there is no information loss in
our method. We show that given our SE(3)-invariant spher-
ical representations, we can recover the given 3D struc-
tures. For each node ℓi, we convert the spherical coordinate
[dℓi , θℓi , ϕℓi ] to coordinate r′ℓi in 3D space as
[dℓi sin(θℓi) cos(ϕℓi), dℓi sin(θℓi) sin(ϕℓi), dℓi cos θℓi ].

Note that our reconstructed coordinate r′ℓi may not be ex-
actly the same as the original coordinate rℓi . However, there
exists a SE(3)-transformation g, such that g(r′ℓi) = rℓi for
all i. Note that the same transformation g is applied to all
nodes. Formally, by applying the function f(·) to the 3D
coordinate matrix R, we can demonstrate the following
properties of spherical representations.

Lemma 3.3. Let G = (z,R) be a 3D graph with node
type vector z and node coordinate matrix R. Let F be the
equivariant global frame of graph G built based on the first
three non-collinear nodes in L(G). f(·) is our function that
maps 3D coordinate matrix R of G to spherical representa-
tions S under the equivariant global frame F . Then for any
3D transformation g ∈ SE(3), we have f(R) = f(g(R)).
Given spherical representations S = f(R), there exist a
transformation g ∈ SE(3), such that f−1(S) = g(R).

Lemma 3.3 indicates that our spherical representation is
SE(3)-invariant, and we can reconstruct (a transformation
of) the original coordinates. Therefore, our method can
convert 3D structures into SE(3)-invariant representations
with no information loss. Proofs are in Appendix B.

3.3. Geo2Seq: Geometry Informed Tokenization

In this section, we describe the process and properties of our
3D tokenization method, Geo2Seq. Equipped with canoni-
cal labeling that reduces graph structures to 1D sequences
with no information loss regarding graph isomorphism, and
SE(3)-invariant spherical representations that ensure no 3D
information loss, we develop Geo2Seq, a reversible trans-
formation from 3D molecules to 1D sequences. Figure 1
shows an overview of Geo2Seq. Specifically, given a graph
G with n nodes, Geo2Seq concatenates the node vector
[zi, di, θi, ϕi] of every node in G to a 1D sequence by its
canonical order, ℓ1, · · · , ℓn. To formulate the properties of
Geo2Seq, we extend the concept of graph isomorphism in
Definition B.1 to 3D graphs.

Definition 3.4. [3D Graph Isomorphism] Let G1 =
(z1,R1) and G2 = (z2,R2) be two 3D graphs, where zi is
the node type vector and Ri is the node coordinate matrix
of the molecule Gi. Let Vi denote the set of vertices, Ai

denote node attributes, and no edge exists. Two 3D graphs
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G1 and G2 are 3D isomorphic, denoted as G1
∼=3D G2,

if there exists a bijection b : V1 → V2 such that G1
∼= G2

given Ai = [zi,Ri], and there exists a 3D transformation
g ∈ SE(3) such that rG1

i = g(rG2

b(i)). If a small error ϵ is

allowed such that |rG1
i − g(rG2

b(i))| ≤ ϵ, we call the two 3D
graphs ϵ-constrained 3D isomorphic.

Considering Lemma 3.2, we specify G = (V,E,A) with
A = [z,R] and define the CL function for 3D molecules
as Lm, which extends the equivalence of Lemma 3.2 to
Lm with 3D isomorphism. We formulate Geo2Seq and our
major theoretical derivations below.

Theorem 3.5. [Bijective Mapping between 3D Graph and
Sequence] Following Definition 3.4, let G1 = (z1,R1)
and G2 = (z2,R2) be two 3D graphs. Let Lm(G) be
the canonical label for 3D graph G and f : R → S
be the function that maps 3D coordinates to its spheri-
cal representations. Given a graph G with n nodes and
X = [x1, · · · ,xn]

T ∈ Rn×m, where m ∈ Z, we define
Lm(G)⊗X = concat(xℓ1 , ...,xℓn), where ℓi is the index
of the node labeled i by Lm(G), and concat(·) concatenates
elements as a sequence. We define

Geo2Seq(G) = Lm(G)⊗ (z, f(R)) = Lm(G)⊗X,

where xi = [zi, di, θi, ϕi]. Then Geo2Seq : G → U is a
surjective function, and the following equivalence holds:

Geo2Seq(G1) = Geo2Seq(G2) ⇔ G1
∼=3D G2,

where G1
∼=3D G2 denotes G1 and G2 are 3D isomorphic.

Theorem 3.5 establishes the following guarantees for
Geo2Seq: (1) Given a 3D molecule, we can uniquely con-
struct a 1D sequence using Geo2Seq. (2) If two molecules
are 3D isomorphic, their sequence outputs from Geo2Seq
are identical. (3) Given a sequence output of Geo2Seq,
we can uniquely reconstruct a 3D molecule. (4) If two
constructed sequences from Geo2Seq are identical, their
corresponding molecules must be 3D isomorphic. This en-
able sequential tokenization of 3D molecules, preserving
structural completeness and geometric invariance.

Due to the necessity of discreteness in serialization and
tokenization for LMs, in reality, numerical values need to
be discretized before concatenation. In practice, we round
up numerical values to certain decimal places. Thus Theo-
rem 3.5 can be extended with constraints, as below.

Corollary 3.6. [Constrained Bijective Mapping between
3D Graph and Sequence] Following the notations and defi-
nitions of Theorem 3.5, let spherical coordinate values be
rounded up to b decimal places. Then Geo2Seq : G → U is
a surjective function, and the following equivalence holds:
Geo2Seq(G1) = Geo2Seq(G2) ⇔ G1

∼=3D−|10−b|/2 G2,

where G1
∼=3D−|10−b|/2 G2 denotes graphs G1 and G2 are

(|10−b|/2)-constrained 3D isomorphic.

Corollary 3.6 extends Theorem 3.5’s guarantees for the
practical use of Geo2Seq. If we allow a round-up error
below |10−b|/2 for coordinates when distinguishing 3D iso-
morphism, all properties still hold. This implies that the
practical Geo2Seq implementation retains near-complete
geometric information and invariance, with numerical preci-
sion of ϵ ≤ |10−b|/2.

With discreteness incorporated, we can collect a finite vo-
cabulary covering all accessible molecule samples to enable
tokenization for LMs. Specifically, we use vocabularies of
approximately 1K-16K tokens consisting of atom type to-
kens ‘C,N,O · · · ’, and spherical coordinate tokens such as
‘−1.98’, ‘1.57◦’ or ‘−0.032◦’. Specifically, the vocabulary
size is approximately 1.8K for the QM9 dataset, and 16K
for the Geom-Drug dataset. Note that we consider chirality
for atoms and use the special token suffixes ‘@’ and ‘@@’
to distinguish clockwise and counterclockwise chiral cen-
ters, for example, ‘C@’ and ‘C@@’. The numerical tokens
range from the smallest to the largest distance and angle
values with restricted precision of 2 or 3 decimal places.
Experimental results show the benefits in using this level of
tokenization, as detailed in Appendix C.

4. 3D Molecule Generation
Training and Sampling. Now that we have defined a canon-
ical and robust sequence representation for 3D molecules,
we turn to the method of modeling such sequences, U . Here,
we attempt to train a model M with parameters θ to capture
the distribution of such sequences, pθ(U), in our dataset. As
this is a well-studied problem within language modeling, we
opt to use two language models, GPT (Radford et al., 2018)
and Mamba (Gu & Dao, 2023), which have shown effective
sequence modeling capabilities on a range of tasks. Both
models are trained using a standard next-token prediction
cross-entropy loss ℓ for all elements in the sequence:

min
θ

E
u∈U

|u|−1∑
i=1

ℓ (Mθ(u1, · · · , ui), ui+1)

 .

To sample from a trained model, we first select an initial
atom token by sampling from the multinomial distribution
of first-tokens in the training data (we note that in almost all
cases this is ‘H’). We then perform a standard autoregressive
sampling procedure by iteratively sampling from the condi-
tional distribution pθ(ui+1|u1, · · · , ui) until the stop token
or max length is reached. We sample from this distribution
using top-k sampling (Fan et al., 2018) and a softmax tem-
perature τ (Ackley et al., 1985; Ficler & Goldberg, 2017).
Unless otherwise noted, τ = 0.7 and k = 80.

Controllable Generation. For controllable generation, we
follow Bagal et al. (2021) and use a conditioning token for
the desired property. This token is created by projecting the
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desired properties through a trainable linear layer to create
a vector with the model’s initial token embedding space.
This property token is then used as the initial element in the
molecular sequence. Training and sampling are performed
as before with this new sequence formulation. Sampling
begins with the desired property’s token as input.

5. Experimental Studies
In this section, we evaluate the method of generating 3D
molecules in the form of our proposed Geo2Seq represen-
tations by LLMs. We show that in the random generation
task (see Section 2.1), the performance of Geo2Seq with
GPT (Radford et al., 2018) or Mamba (Gu & Dao, 2023)
models is better than or comparable with state-of-the-art 3D
point cloud based methods, including EDM (Hoogeboom
et al., 2022) and GEOLDM (Xu et al., 2023a). In addi-
tion, in the controllable generation task (see Section 2.1),
we show that Geo2Seq with Mamba models outperform
previous 3D point cloud based methods by a large margin.

5.1. Random Generation
Data. We adopt two datasets, QM9 (Ramakrishnan et al.,
2014) and GEOM-DRUGS (Axelrod & Gomez-Bombarelli,
2022), to evaluate performances in the random generation
task. The QM9 dataset collects over 130k 3D molecules
with 3D structures calculated by density functional theory
(DFT). Each molecule in QM9 has less than 9 heavy atoms
and its chemical elements all belong to H, C, N, O, F. Fol-
lowing Anderson et al. (2019), we split the dataset into train,
validation and test sets with 100k, 18k and 12k samples, sep-
arately. The GEOM-DRUGS dataset consists of over 450k
large molecules with 37 million DFT-calculated 3D struc-
tures. Molecules in GEOM-DRUGS has up to 181 atoms
and 44.2 atoms on average. We follow Hoogeboom et al.
(2022) to select 30 3D structures with the lowest energies
per molecule for model training.

Setup. On the QM9 dataset, we set the training batch
size to 32, base learning rate to 0.0004, and train a
12-layer GPT model and a 26-layer Mamba model by
AdamW (Loshchilov & Hutter, 2019) optimizers. On the
GEOM-DRUGS dataset, we set the training batch size to
32, base learning rate to 0.0004, and train a 14-layer GPT
model and a 28-layer Mamba model by AdamW optimizers.
See Appendix D for more information about hyperparame-
ters and other settings. When model training is completed,
we randomly generate 10,000 molecules, and evaluate the
performance on these molecules. Specifically, we first trans-
form 3D molecular structures to 2D molecular graphs using
the bond inference algorithm implemented in the official
code of EDM. Then, we evaluate the performance by atom
stability, which is the percentage of atoms with correct bond
valencies, and molecule stability, which is the percentage
of molecules whose all atoms have correct bond valencies.

In addition, we report the percentage of valid molecules that
can be successfully converted to SMILES strings by RDKit,
and the percentage of valid and unique molecules that can
be converted to unique SMILES strings.

Baselines. We compare GPT and Mamba models with sev-
eral strong baseline methods. Specifically, we compare with
an autoregressive generation method G-SchNet (Gebauer
et al., 2019) and an equivariant flow model based method
E-NFs (Satorras et al., 2021a). We also compare with
some recently proposed diffusion based methods, including
EDM (Hoogeboom et al., 2022), GDM (the non-equivariant
variant of EDM) and GDM-AUG (GDM trained with ran-
dom rotation as data augmentation). Besides, we compare
with EDM-Bridge (Wu et al., 2022) and GEOLDM (Xu
et al., 2023a), which are two latest 3D molecule generation
methods improving EDM by SDE based diffusion models
and latent diffusion models, respectively. To ensure that the
comparison is fair, our methods and baseline methods use
the same data split and evaluation metrics.

Results. We present the random generation results of dif-
ferent methods on QM9 and GEOM-DRUGS datasets in
Table 1. Note that for GEOM-DRUGS dataset, all methods
achieve nearly 0% molecule stability percentage and 100%
uniqueness percentage. Thus, following previous studies,
these two metrics are omitted. According to the results
in Table 1, on QM9 dataset, generating 3D molecules in
Geo2Seq representations with either GPT or Mamba models
achieve better performance than all 3D point cloud based
baseline methods in molecule stability and valid percent-
age, and achieves atom stability percentages close to the
upper bound (99%). This demonstrates that our method
can model 3D molecular structure distribution and capture
the underlying chemical rules more accurately. It is worth
noticing that our method does not achieve very high unique-
ness percentage, showing that it is not easy for our method
to generate a large number of diverse molecules. We be-
lieve this is due to that the conversion from real numbers
to discrete tokens limits the search space of 3D molecular
structures, especially on a small dataset like QM9, while it
is easier to generate more diverse molecules for 3D point
cloud based methods as they directly generate real numbers.
This is reflected by the fact that our method achieves nearly
100% uniqueness percentage on the large GEOM-DRUGS
dataset. On GEOM-DRUGS dataset, both GPT and Mamba
models achieve reasonably high atom stability and valid
percentage. The performance of our method is comparable
with strong diffusion based baseline methods, showing that
LLMs have the potential to model very complicated drug
molecular structures well. We will explore further improv-
ing the performance on GEOM-DRUGS dataset with larger
LLMs in the future.

See Appendix D.3 for additional experiments and met-
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Table 1: Random generation performance on QM9 and GEOM-DRUGS datasets with 3 runs. Larger numbers indicate better
performance. bold and underline highlight the best and second best performance, respectively. For GEOM-DRUGS dataset,
molecule stability and unique percentage are close to 0% and 100% for all methods so they are not presented.

Method QM9 GEOM-DRUGS
Atom Sta (%) Mol Sta (%) Valid (%) Valid & Unique (%) Atom Sta (%) Valid (%)

Data 99.0 95.2 97.7 97.7 86.5 99.9

E-NFs 85.0 4.9 40.2 39.4 - -
G-SchNet 95.7 68.1 85.5 80.3 - -
GDM 97.0 63.2 - - 75.0 90.8
GDM-AUG 97.6 71.6 90.4 89.5 77.7 91.8
EDM 98.7±0.1 82.0±0.4 91.9±0.5 90.7±0.6 81.3 92.6
EDM-Bridge 98.8±0.1 84.6±0.3 92.0±0.1 90.7±0.1 82.4 92.8
GEOLDM 98.9±0.1 89.4±0.5 93.8±0.4 92.7±0.5 84.4 99.3

Geo2Seq with GPT 98.3±0.1 90.3±0.1 94.8±0.2 80.6±0.4 82.6 87.4
Geo2Seq with Mamba 98.9±0.2 93.2±0.2 97.1±0.2 81.7±0.4 82.5 96.1

Table 2: Controllable generation performance on QM9 datasets. Smaller numbers indicate better performance.
Property (Units) α (Bohr3) ∆ϵ (meV) ϵHOMO (meV) ϵLUMO (meV) µ (D) Cv ( cal

mol K)

Data 0.10 64 39 36 0.043 0.040

Random 9.01 1470 645 1457 1.616 6.857
Natoms 3.86 866 426 813 1.053 1.971
EDM 2.76 655 356 584 1.111 1.101
GEOLDM 2.37 587 340 522 1.108 1.025

Geo2Seq with Mamba 0.46 98 57 71 0.164 0.275
Geo2Seq with GPT 0.53 102 48 53 0.097 0.325

rics (Huang et al., 2023; Vignac et al., 2023), Appendix C
for ablation studies, Appendix D for complexity analysis,
and Appendix F for visualization.

5.2. Controllable Generation
Data. In the controllable generation task, we train our mod-
els on molecules and their property labels in the QM9 (Ra-
makrishnan et al., 2014) dataset. Specifically, we try taking
a certain quantum property value as the conditional input
to LLMs, and train LLMs to generate molecules with the
conditioned quantum property values. Following Hooge-
boom et al. (2022), we split the training dataset of QM9 to
two subsets where each subset has 50k samples, and train
our conditional generation models and an EGNN (Satorras
et al., 2021b) based quantum property prediction models on
these two subsets, respectively. We conduct the controllable
generation experiments on six quantum properties from
QM9, including polarizability (α), HOMO energy (ϵHOMO),
LUMO energy (ϵLUMO), HOMO-LUMO gap (∆ϵ), dipole
moment (µ) and heat capacity at 298.15K (Cv).

Setup. For the controllable generation experiment, we train
16-layer Mamba (Gu & Dao, 2023) models with the same
hyperparameters as the random generation experiments in
Section 5.1. To evaluate the performance, we sample 10000
quantum property values, generate molecules conditioned
on these property values by trained models, and compute
the mean absolute difference (MAE) between the given
property values and the property values of the generated

molecules. Note that we use the trained EGNN based prop-
erty prediction models to calculate the property values of
the generated molecules.

Baselines. We compare our models with two equivariant
diffusion models, EDM (Hoogeboom et al., 2022) and GE-
OLDM (Xu et al., 2023a). In addition, we use several
baselines that are based on dataset molecules. One baseline
(Data) is directly taking the molecules from the QM9 dataset
and use their property values as conditions. The MAE met-
ric simply reflects the prediction error of the trained property
prediction model, which can be considered as a lower bound.
The second baseline (Random) is taking the molecules from
the dataset but uses the randomly shuffled property values
as conditions, and its MAE can be considered as an upper
bound. The third baseline (Natoms) uses the molecules from
the dataset but uses property values predicted from the num-
ber of atoms as conditions. Achieving better performance
than this baseline shows that models can use conditional
information beyond the number of atoms.

Results. Controllable generation results of different meth-
ods are summarized in Table 2. As shown in the table,
among all six properties, our method outperforms the strong
diffusion based baseline methods EDM and GEOLDM by
a large margin. Our method moves a significant step in
pushing the performance of controllable generation task
towards the lower bound, i.e., Data baseline. As we use
the same training set as EDM and GEOLDM to train the
conditional generation model, the good performance of our
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method shows that LLMs have more powerful capacity in
incorporating conditional information into the 3D molecular
structure generation process. We believe that the powerful
long-context correlation capturing structures from LLMs,
e.g., attention mechanism, play significant roles in achiev-
ing the good control of 3D molecule generation by the con-
ditioned property values. The huge success of LLMs in
controllable molecule generation will motivate broader ap-
plications of LLMs in goal-directed or constrained drug
design. See Appendix F for visualization of molecules gen-
erated from some given polarizability values.

6. Conclusion and Discussion
Geo2Seq showcases the potential of pure LMs in revolution-
izing molecular design and drug discovery when geometric
information is properly transformed. The framework has
certain limitations, particularly in the generalization abil-
ities across the continuous domain of real numbers. Due
to the discrete nature of vocabularies, LMs rely on large
pre-training corpus, fine-grained tokenization or emergent
abilities for better generalization, as a trade-off to high pre-
cision and versatility. Future works points towards several
directions, such as expanding on conditional tasks and ex-
ploring advanced tokenization techniques.
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A. Broader Impacts and Limitations
Our work demonstrates the significant potential of pure language models (LMs) in revolutionizing molecular design and
drug discovery by effectively transforming geometric information. The challenge of molecule design is particularly daunting
when scientific experiments are cost-prohibitive or impractical. In many real-world scenarios, data collection is confined to
specific chemical domains, yet the ability to generate molecules for broader tasks where experimental validation is difficult
remains crucial. Traditional diffusion-based models fall short in terms of efficiency, scalability, and the ability to learn from
extensive databases or transfer knowledge across different tasks. In contrast, LMs exhibit inherent advantages in these areas.
We envision the development of efficient, large-scale models trained on vast chemical databases that can function across
multiple datasets and molecular tasks. By introducing LMs into the 3D molecule generation field, we unlock substantial
potential for broad scientific impact.

Our research adheres strictly to ethical guidelines, with no involvement of human subjects or potential privacy and fairness
issues. This work aims to advance the field of Machine Learning and AI for drug discovery, with no immediate societal
consequences requiring specific attention. We foresee no potential for malicious or unintended usage beyond known
chemical applications. However, we recognize that all technological advancements carry inherent risks, and we advocate for
ongoing evaluation of the broader implications of our methodology in various contexts.

We admit certain limitations, including that rounding up numerical values to certain decimal places bring information loss
and discretized numbers impair generalization abilities across the continuous domain of real numbers. However, this is
a trade-off betweeen advantages brought by our model-agnostic framework. Due to the discrete nature of vocabularies,
LMs depend on extensive pre-training corpora, fine-grained tokenization, or emergent abilities for better generalization,
balancing high precision and versatility. Geo2Seq operates solely on the input data, which allows independence from model
architecture and training techniques and provides reuse flexibility. This also means that we can effortlessly apply Geo2Seq
on the latest generative language models, making seamless use of their capabilities. Future work points towards expanding
on conditional tasks and exploring advanced tokenization techniques to enhance the model’s performance and applicability.

B. Proofs
B.1. Proof of Lemma 3.2

First, we define the isomorphism problem for attributed graphs as follows.

Definition B.1. [Graph Isomorphism] Let G1 = (V1, E1, A1) and G2 = (V2, E2, A2) be two graphs, where Vi denotes the
set of vertices, Ei denotes the set of edges, and Ai denotes the node attributes of Gi for i = 1, 2. Let attr(v) denote the
node attributes of vertex v. The graphs G1 and G2 are said to be isomorphic, denoted as G1

∼= G2, if there exists a bijection
b : V1 → V2 such that for every vertex v ∈ V1, attr(v) ∈ A1 = attr(b(v)) ∈ A2, and for every pair of vertices u, v ∈ V1,

(u, v) ∈ E1 ⇔ (b(u), b(v)) ∈ E2.

Next we prove Lemma 3.2.

Lemma (Colored Canonical Labeling for Graph Isomorphism). Let G1 = (V1, E1, A1) and G2 = (V2, E2, A2) be two
finite, undirected graphs where Vi denotes the set of vertices, Ei denotes the set of edges, and Ai denotes the node attributes
of the graph Gi for i = 1, 2. Let L : G → L be a function that maps a graph G ∈ G, the set of all finite, undirected graphs,
to its canonical labeling L(G) ∈ L, the set of all possible canonical labelings, as produced by the Nauty algorithm. Then
the following equivalence holds: L(G1) = L(G2) ⇐⇒ G1

∼= G2

where G1
∼= G2 denotes that the graphs G1 and G2 are isomorphic.

The Nauty algorithm, tailored for CL and computing graph automorphism groups, presents rigorous mathematical underpin-
nings to guarantee the CL properties. Here we leave out the proof of Nauty algorithm’s rigor for canonical labeling, which is
detailed in the work of McKay & Piperno (2014). The key is the refinement process ensuring that the partitioning of the
graph’s vertices is done in such a way that any two isomorphic graphs will end with the same partition structure.

B.2. Proof of Lemma 3.3

Lemma. Let G = (z,R) be a 3D graph with node type vector z and node coordinate matrix R. Let F be the equivariant
global frame of graph G built based on the first three non-collinear nodes in L(G). f(·) is our function that maps 3D coor-
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dinate matrix R to spherical representations S under the equivariant global frame F . Then for any SE(3) transformation
g, we have f(R) = f(g(R)). Given spherical representations S = f(R), there exist a SE(3) transformation g, such that
f−1(S) = g(R).

Proof. Let ℓ1, ℓ2, and ℓF be the indices of the first three non-collinear atoms in G. Then the global frame F = (x,y, z) is
x = normalize(rℓ2 − rℓ1)

y = normalize ((rℓF − rℓ1)× x1)

z = x× y

For a SE(3) transformation g, let R′ = g(R) = QR+ b. Then the global frame F ′ = (x′,y′, z′) is
x′ = normalize(rℓ2 − rℓ1) = normalize(g(rℓ2)− g(rℓ1)) = Qx

y′ = normalize ((rℓF − rℓ1)× x2) = normalize ((g(rℓF )− g(rℓ1))× x2) = Qy

z′ = x′ × y′ = (Qx)× (Qy) = Qz

Thus F ′ = QF . Here normalize(·) is the function to normalize a vector to the corresponding unit vector. Then ∀i, the
spherical representations f(R)ℓi is

dℓi = ||rℓi − rℓ1 ||2
θℓi = arccos ((rℓi − rℓ1) · z/dℓi)
ϕℓi = atan2 ((rℓi − rℓ1) · y, (rℓi − rℓ1) · x)

Similarly, the spherical representations f(R′)ℓi is
d′ℓi = ||r′ℓi − r′ℓ1 ||2 = ||g (rℓi)− g (rℓ1) ||2 = dℓi

θ′ℓi = arccos
((
r′ℓi − r′ℓ1

)
· z′/d′ℓi

)
= arccos

(
(g (rℓi)− g (rℓ1)) · z′/d′ℓi

)
= θℓi

ϕ′
ℓi = atan2

((
rℓ′i − rℓ′1

)
· y′,

(
rℓ′i − rℓ′1

)
· x′) = atan2 ((g (rℓi)− g (rℓ1)) · y′, (g (rℓi)− g (rℓ1)) · x′) = ϕℓi

Therefore, we show that f(R) = f(g(R)). Next, we consider the function f−1(·). For all i, the three terms in f−1(S)ℓi are
dℓi sin(θℓi) cos(ϕℓi)

dℓi sin(θℓi) sin(ϕℓi)

dℓi cos θℓi

(3)

Then we have rℓi = f−1(S)TℓiF + rℓ0 . Therefore, we show that there exist a SE(3) transformation g, such that
g(f−1(S)) = R.

B.3. Proof of Theorem 3.5

First we establish a lemma and provide its proof.

Lemma B.2. Let G1 = (z1,R1) and G2 = (z2,R2) be two 3D graphs, where zi is the node type vector and Ri is the
node coordinate matrix of the molecule Gi for i = 1, 2. Let L(G) be the canonical label of graph G. We have G1

∼= G2.
Let ℓi and ℓ′i denote the indexes of the node labeled i correspondingly in L(G1) and L(G2), respectively. Let F be the
equivariant global frame of graph G built based on the first three non-collinear atoms in L(G). Let f : G → S be a
surjective function that maps a 3D graph G ∈ G to its spherical representations S = f(G) ∈ S under the equivariant
global frame F . Then the following equivalence holds:

∀i ∈ V1, f(G1)ℓi = f(G2)ℓ′i ⇐⇒ G1
∼=3D G2

where G1
∼=3D G2 denotes that the graphs G1 and G2 are 3D isomorphic.

Proof. Let L(G) be the canonical labeling of graph G. Let ℓi and ℓ′i denote the index of the node labeled i correspondingly
in L(G1) and L(G2), respectively. We have

G1
∼=3D G2 ⇐⇒

{
G1

∼= G2, and
there exists a 3D transformation g ∈ SE(3) such that rG2

ℓ′i
= g(rG1

ℓi
).

Specifically, g(rℓi) = Qrℓi + b. Here Q is a rotation matrix, and b is a translation vector.
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Let ℓ1, ℓ2, and ℓF be the indices of the first three non-collinear atoms in G1. Then the equivariant global frame F1 =
(x1,y1, z1) is x1 = normalize(rℓ2 − rℓ1)

y1 = normalize ((rℓF − rℓ1)× x1)

z1 = x1 × y1

Here normalize(·) is the function to normalize a vector to the corresponding unit vector. Then ∀i, the spherical representations
f(G1)ℓi is dℓi = ||rℓi − rℓ1 ||2

θℓi = arccos ((rℓi − rℓ1) · z1/dℓi)
ϕℓi = atan2 ((rℓi − rℓ1) · y1, (rℓi − rℓ1) · x1)

Similarly, for G2, let ℓ′1, ℓ
′
2, and ℓ′F be the indices of the first three non-collinear atoms. Then the equivariant global frame

F2 = (x2,y2, z2) is
x2 = normalize(rℓ′2 − rℓ′1) = normalize(g(rℓ2)− g(rℓ1)) = Qx1

y2 = normalize
((
rℓ′F − rℓ′1

)
× x2

)
= normalize ((g(rℓF )− g(rℓ1))× x2) = Qy1

z2 = x2 × y2 = (Qx1)× (Qy1) = Qz1

Then ∀i, the spherical representations f(G2)ℓ′i is

dℓ′i = ||rℓ′i − rℓ′1 ||2 = ||g (rℓi)− g (rℓ1) ||2 = dℓi

θℓ′i = arccos
((
r′ℓi − r′ℓ1

)
· z2/dℓ′i

)
= arccos

(
(g (rℓi)− g (rℓ1)) · z2/dℓ′i

)
= θℓi

ϕℓ′i
= atan2

((
rℓ′i − rℓ′1

)
· y2,

(
rℓ′i − rℓ′1

)
· x2

)
= atan2 ((g (rℓi)− g (rℓ1)) · y2, (g (rℓi)− g (rℓ1)) · x2) = ϕℓi

Therefore, we show that G1
∼=3D G2 ⇐⇒ ∀i,∈ V1, f(G1)ℓi = f(G2)ℓ′i holds.

Then we prove Theorem 3.5.

Theorem (Bijective mapping between 3D graph isomorphism and sequence). Let G1 = (z1,R1) and G2 = (z2,R2)
be two 3D graphs, where zj is the node type vector and Rj is the node coordinate matrix of the molecule Gj for
j = 1, 2. Let Lm(G) be the canonical label for 3D graph and f : G → S be the function that maps a 3D graph G to
its spherical representations. Given graph G with n nodes and X = [x1, ...,xn]

T ∈ Rn×m, where m ∈ Z, we define
Lm(G)⊗X = concat(xℓ1 , ...,xℓn), where ℓi is the node index of the node labeled i in Lm(G), and concat(·) concatenates
elements as a sequence. Define

Geo2Seq(Gi) = Lm(G)⊗ (z, f(G)) = Lm(G)⊗X,

where xi = [zi, di, θi, ϕi]. Then Geo2Seq : G → U is a surjective function, and the following equivalence holds:
Geo2Seq(G1) = Geo2Seq(G2) ⇐⇒ G1

∼=3D G2

where G1
∼=3D G2 denotes that the graphs G1 and G2 are 3D isomorphic.

Proof. First, we prove that Geo2Seq : G → U is a surjective function. Given the definition
Geo2Seq(Gi) = Lm(G)⊗ (z, f(G)) = Lm(G)⊗X,

where xi = [zi, di, θi, ϕi], we need to prove that all operations are deterministic. ⊗ and z are defined to be deterministic, and
f : G → S is a function. Lm(Gj) outputs the automorphism group of Gj’s canonical label. By definition, the automorphism
group contain different labels of the strictly identical graph. Let ℓi and ℓ′i describe two different sets of labels of the same
automorphism group with n nodes; since the graphs are identical,

[zℓi , dℓi , θℓi , ϕℓi ] = [zℓ′i , dℓ′i , θℓ′i , ϕℓ′i
]fori = 1, ..., n.

Thus concat(xℓ1 , ...,xℓn) = concat(xℓ′1
, ...,xℓ′n

), i.e., different labels of one automorphism group produce identical
sequences with Geo2Seq. Therefore, Geo2Seq : G → U is a well-defined function; given a 3D molecule, we can uniquely
construct a 1D sequence from Geo2Seq.

Next we prove Geo2Seq’s surjectivity. Given any output sequence q ∈ U of Geo2Seq, the sequence is in the format
q = concat([z1, d1, θ1, ϕ1], ..., [zn, dn, θn, ϕn]).

For the nodes in q, we denote with S = [[d1, θ1, ϕ1], ..., [dn, θn, ϕn]]. Given the surjectivity of the spherical representation
function f : G → S and the defined f−1 : S → G, there must be a unique G(z,R) ∈ G where S = f(G). Therefore, ∀
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output sequence q ∈ U there exists G(z,R) ∈ G s.t. q = Geo2Seq(G),

i.e., Geo2Seq is surjective; given a sequence output of Geo2Seq, we can uniquely reconstruct a 3D molecule.

Now we prove the equivalence Geo2Seq(Gi) = Geo2Seq(Gi) ⇐⇒ G1
∼=3D G2, starting from right to left. Considering

Lemma 3.2 for molecule G = (z,R), we specify G = (V,E,A) with A = [z,R] and define the CL function for 3D
molecule graphs as Lm, which extends the equivalence in Lemma 3.2 to Lm on molecules with 3D isomorphism. If
G1

∼=3D G2, i.e., graphs G1 and G2 are 3D isomorphic, then from Lemma 3.2 we know the canonical forms Lm(G1) =
Lm(G2). Let graphs G1 and G2 have numbers of node n. Let ℓi and ℓ′i be the denotations of a corresponding pair of
canonical labelings from Lm(G1) and Lm(G2), respectively. Since graphs G1 and G2 are 3D isomorphic, from Def.3.4 we
know ∀i ∈ V(G1), zℓi = zl′i ; and from Lemma B.2 we know ∀i ∈ V(G1), f(G1)ℓi = f(G2)ℓ′i . Thus, we have

Geo2Seq(G1) = Lm(G1)⊗ (z1, f(G1))

= concatzj∈z1,dj ,θj ,ϕj∈f(G1),i=1,...n([zℓi , dℓi , θℓi , ϕℓi ])

= concatzj∈z2,dj ,θj ,ϕj∈f(G2),i=1,...n([zℓ′i , dℓ′i , θℓ′i , ϕℓ′i
])

= Lm(G2)⊗ (z2, f(G2)) = Geo2Seq(G2).

(4)

Note that if Lm(G1) and Lm(G2) contain automorphism groups larger than 1, we can include all possible labelings, which
will all produce the same sequence later through Geo2Seq, as we have shown in detail above. However, this is a very
rare case for real-world 3D graphs like molecules. Therefore, we have shown that if two molecules are 3D isomorphic
considering atoms, bonds, and coordinates, their sequences resulting from Geo2Seq must be identical.

Finally, we prove the equivalence from left to right. We provide proof by contradiction. Given that Geo2Seq(G1) =
Geo2Seq(G2), we assume that the graphs G1 and G2 are not 3D isomorphic. We denote with G1 = (z1,R1) and
G2 = (z2,R2). If G1 and G2 are not even isomorphic for Ai = zi, then from Def.B.1, there does not exist a node-to-node
mapping from G1 to G2, where each node is identically attributed and connected. And from Lemma 3.2, we know the
canonical forms Lm(G1) ̸= Lm(G2). Thus for

Geo2Seq(G1) = concatzj∈z1,dj ,θj ,ϕj∈f(G1),i=1,...n([zℓi , dℓi , θℓi , ϕℓi ]),

and Geo2Seq(G2) = concatzj∈z2,dj ,θj ,ϕj∈f(G2),i=1,...n([zℓ′i , dℓ′i , θℓ′i , ϕℓ′i
]),

there must be at least one pair of zℓi , zℓ′i where zℓi ̸= zℓ′i . Therefore, Geo2Seq(G1) ̸= Geo2Seq(G2), which is a
contradiction to the initial condition that Geo2Seq(G1) = Geo2Seq(G2) and ends the proof.

If G1 and G2 are isomorphic for Ai = zi, we continue with the following analyses. Let ℓi and ℓ′i be the denotations of
a corresponding pair of canonical labelings from Lm(G1) and Lm(G2), respectively. Let f : G → S be the surjective
function mapping a 3D graph to its spherical representations. Since G1 and G2 are not 3D isomorphic, from Lemma B.2,
we know there exists at least one i ∈ V1, s.t.f(G1)ℓi ̸= f(G2)ℓ′i ;

otherwise, we would have ∀i ∈ V1, f(G1)ℓi = f(G2)ℓ′i ⇒ G1
∼=3D G2,

contradicting the above condition. Thus for
Geo2Seq(G1) = concatzj∈z1,dj ,θj ,ϕj∈f(G1),i=1,...n([zℓi , dℓi , θℓi , ϕℓi ]),

and Geo2Seq(G2) = concatzj∈z2,dj ,θj ,ϕj∈f(G2),i=1,...n([zℓ′i , dℓ′i , θℓ′i , ϕℓ′i
]),

G1 and G2 are isomorphic, so ∀i = 1, ...n, zℓi = zℓ′i ;

at least one pair of spherical coordinates does not correspond, so there must be at least one pair of (dℓi , θℓi , ϕℓi) and
(dℓ′i , θℓ′i , ϕℓ′i

) where (dℓi , θℓi , ϕℓi) ̸= (dℓ′i , θℓ′i , ϕℓ′i
).

Thus, Geo2Seq(G1) ̸= Geo2Seq(G2), which contradicts the initial condition that Geo2Seq(G1) = Geo2Seq(G2). There-
fore, we have shown that if two constructed sequences from Geo2Seq are identical, their corresponding molecules must be
3D isomorphic considering atoms, bonds, and coordinates. This ends the proof.

B.4. Proof of Corollary 3.6

Corollary (Constrained bijective Mapping between 3D graph and sequence). Let G1 = (z1,R1) and G2 = (z2,R2)
be two 3D graphs, where zj is the node type vector and Rj is the node coordinate matrix of the molecule Gj for
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j = 1, 2. Let Lm(G) be the canonical labeling for 3D graph and f : G → S be the function that maps a 3D graph G
to its spherical representations. Given graph G with n nodes and X = [x1, ...,xn] ∈ Rn×m, where m ∈ Z, we define
Lm(G)⊗X = concat(xℓ1 , ...,xℓn), where ℓi is the node index of the node labeled i in Lm(G), and concat(·) concatenates
elements as a sequence. Define

Geo2Seq(Gi) = Lm(G)⊗ (z, f(G)) = Lm(G)⊗X,

where xi = [zi, di, θi, ϕi]. Let the truncation of spherical coordinate values be after b decimal digits. Then Geo2Seq : G →
U is a surjective function, and the following equivalence holds:

Geo2Seq(Gi) = Geo2Seq(Gi) ⇐⇒ G1
∼=

3D− |10−b|
2

G2

where G1
∼=

3D− |10−b|
2

G2 denotes that the graphs G1 and G2 are |10−b|
2 -constrained 3D isomorphic.

Proof. First, we prove that Geo2Seq : G → U is a surjective function, which resembles the proof for Theorem 3.5. Given
the definition Geo2Seq(Gi) = Lm(G)⊗ (z, f(G)) = Lm(G)⊗X,

where xi = [zi, di, θi, ϕi], we need to prove that all operations are deterministic. ⊗ and z are defined to be deterministic, and
f : G → S with truncation after certain decimal places is still a well-defined function. Lm(Gj) outputs the automorphism
group of Gj’s canonical label. By definition, the automorphism group contain different labels of the strictly identical graph.
Let ℓi and ℓ′i describe two different sets of labels of the same automorphism group with n nodes; since the graphs are
identical, [zℓi , dℓi , θℓi , ϕℓi ] = [zℓ′i , dℓ′i , θℓ′i , ϕℓ′i

]fori = 1, ..., n.

Thus concat(xℓ1 , ...,xℓn) = concat(xℓ′1
, ...,xℓ′n

), i.e., different labels of one automorphism group produce identical
sequences with Geo2Seq. Therefore, Geo2Seq : G → U is still a well-defined function; given a 3D molecule, we can
uniquely construct a 1D sequence from Geo2Seq.

Next we prove Geo2Seq’s surjectivity. Given any output sequence q ∈ U of Geo2Seq, the sequence is in the format
q = concat([z1, d1, θ1, ϕ1], ..., [zn, dn, θn, ϕn]).

For the nodes in q, we define Strun = [[d1, θ1, ϕ1], ..., [dn, θn, ϕn]]. Given the surjectivity of the spherical representation
function f : G → S and the defined f−1 : S → G, there must be a unique G(z,R) ∈ G where Strun = f(G). Therefore, ∀
output sequence q ∈ U there exists G(z,R) ∈ G s.t. q = Geo2Seq(G),

i.e., Geo2Seq is surjective; given a sequence output of Geo2Seq, we can uniquely reconstruct a 3D molecule.

Now we prove the equivalence Geo2Seq(Gi) = Geo2Seq(Gi) ⇐⇒ G1
∼=3D G2, starting from right to left. When a

number is truncated after b decimal places, according to the rounding principle, the maximum error caused is ϵ ≤ |10−b|
2 .

Considering Lemma 3.2 for molecule G = (z,R), we specify G = (V,E,A) with A = [z,R] and define the CL function
for 3D molecule graphs as Lm, which extends the equivalence in Lemma 3.2 to Lm on molecules with 3D isomorphism. If
G1

∼=
3D− |10−b|

2

G2, i.e., graphs G1 and G2 are |10−b|
2 -constrained 3D isomorphic, then from Lemma 3.2 we know G1 and

G2 are still isomorphic for Ai = zi, and the canonical forms Lm(G1) = Lm(G2). Let graphs G1 and G2 have numbers
of node n. Let ℓi and ℓ′i be the denotations of a corresponding pair of canonical labelings from Lm(G1) and Lm(G2),
respectively. Since graphs G1 and G2 are |10−b|

2 -constrained 3D isomorphic, from Def.3.4 we know ∀i ∈ V(G1), zℓi = zl′i ;

and from Lemma B.2 we know ∀i ∈ V(G1), f(G1)ℓi = f(G2)ℓ′i with |10−b|
2 error range allowed for each numerical value.

Thus, we still have Geo2Seq(G1) = Lm(G1)⊗ (z1, f(G1))

= concatzj∈z1,dj ,θj ,ϕj∈f(G1),i=1,...n([zℓi , dℓi , θℓi , ϕℓi ])

= concatzj∈z2,dj ,θj ,ϕj∈f(G2),i=1,...n([zℓ′i , dℓ′i , θℓ′i , ϕℓ′i
])

= Lm(G2)⊗ (z2, f(G2)) = Geo2Seq(G2).

(5)

Note that if Lm(G1) and Lm(G2) contain automorphism groups larger than 1, we can include all possible labelings, which
will all produce the same sequence later through Geo2Seq, as we have shown in detail above. However, this is a very
rare case for real-world 3D graphs like molecules. Therefore, we have shown that if two molecules are 3D isomorphic
considering atoms, bonds, and coordinates within the round-up error range |10−b|

2 , their sequences resulting from Geo2Seq
must be identical.

Finally, we prove the equivalence from left to right. We provide proof by contradiction. Given that Geo2Seq(G1) =
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Geo2Seq(G2), we assume that the graphs G1 and G2 are not |10−b|
2 -constrained 3D isomorphic. We denote with G1 =

(z1,R1) and G2 = (z2,R2). If G1 and G2 are not even isomorphic for Ai = zi, then from Def.B.1, there does not exist a
node-to-node mapping from G1 to G2, where each node is identically attributed and connected. And from Lemma 3.2, we
know the canonical forms Lm(G1) ̸= Lm(G2). Thus for

Geo2Seq(G1) = concatzj∈z1,dj ,θj ,ϕj∈f(G1),i=1,...n([zℓi , dℓi , θℓi , ϕℓi ]),

and Geo2Seq(G2) = concatzj∈z2,dj ,θj ,ϕj∈f(G2),i=1,...n([zℓ′i , dℓ′i , θℓ′i , ϕℓ′i
]),

there must be at least one pair of zℓi , zℓ′i where zℓi ̸= zℓ′i . Therefore, Geo2Seq(G1) ̸= Geo2Seq(G2), which is a
contradiction to the initial condition that Geo2Seq(G1) = Geo2Seq(G2) and ends the proof.

If G1 and G2 are isomorphic for Ai = zi, we continue with the following analyses. Let ℓi and ℓ′i be the denotations of
a corresponding pair of canonical labelings from Lm(G1) and Lm(G2), respectively. Let f : G → S be the surjective
function mapping a 3D graph to its spherical representations. Since G1 and G2 are not |10−b|

2 -constrained 3D isomorphic,
from Lemma B.2, we know there exists at least one

i ∈ V1, s.t.f(G1)ℓi ̸= f(G2)ℓ′i ,

even with error range |10−b|
2 allowed; otherwise, we would have

∀i ∈ V1, f(G1)ℓi = f(G2)ℓ′i ⇒ G1
∼=3D G2,

contradicting the above condition. Thus for
Geo2Seq(G1) = concatzj∈z1,dj ,θj ,ϕj∈f(G1),i=1,...n([zℓi , dℓi , θℓi , ϕℓi ]),

and Geo2Seq(G2) = concatzj∈z2,dj ,θj ,ϕj∈f(G2),i=1,...n([zℓ′i , dℓ′i , θℓ′i , ϕℓ′i
]),

G1 and G2 are isomorphic, so ∀i = 1, ...n, zℓi = zℓ′i ;

at least one pair of spherical coordinates does not correspond, so there must be at least one pair of (dℓi , θℓi , ϕℓi) and
(dℓ′i , θℓ′i , ϕℓ′i

) where
min(|dℓi , θℓi , ϕℓi | − |dℓ′i , θℓ′i , ϕℓ′i

|) > |10−b|
2

.

Thus Geo2Seq(G1) ̸= Geo2Seq(G2), which contradicts the initial condition that Geo2Seq(G1) = Geo2Seq(G2). There-
fore, we have shown that if two constructed sequences from Geo2Seq are identical, their corresponding molecules must be
3D isomorphic considering atoms, bonds, and coordinates within the round-up error range |10−b|

2 . This ends the proof.

C. Ablation Studies

Table 3: Random generation performance with different atom generation orders.

Order Atom Sta (%) Mol Sta (%) Valid (%) Valid & Unique (%)

Canonical-locality 97.39 86.77 92.97 84.71
Canonical-nonlocality 96.45 81.36 90.89 83.37
Canonical-SMILES 97.35 85.86 92.97 84.05
DFS (Thomas et al., 2009) 95.95 81.54 90.45 82.48
BFS (Lee, 1961) 96.85 80.92 90.49 76.13
Dijkstra (Dijkstra, 2022) 95.29 77.25 88.97 73.52
Cuthill–McKee (Cuthill & McKee, 1969) 93.56 71.57 85.36 76.23
Hilbert-curve (Hilbert & Hilbert, 1935) 90.11 64.99 80.40 67.83
Random 64.87 20.14 43.16 38.44

To study the effects of atom order, 3D representations and tokenization of Geo2Seq on the generation performance of LLMs,
we conduct a series of ablation experiments. Among all ablation experiments, we train 8-layer GPT models on QM9 dataset
for 250 epochs with the same hyperparameters as Section 5.1 and use the random generation metrics in Section 5.1 to
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Table 4: Random generation performance with different 3D representations.

3D representation Atom Sta (%) Mol Sta (%) Valid (%) Valid & Unique (%)

Original coordinates 91.1 58.1 75.6 55.1
Normalized coordinates 92.7 63.2 83.1 72.5
Invariant Cartesian coordinates 96.0 78.5 89.7 74.1
Inv-spherical coordinates 97.3 83.4 91.0 82.7
Inv-spherical coordinates-local distances 97.1 82.8 91.7 79.6

Table 5: Random generation performance with different tokenization.

Tokenization Atom Sta (%) Mol Sta (%) Valid (%) Valid & Unique (%)

Char-tokenization 90.5 43.7 71.5 71.0
BPE 85.3 55.3 74.4 57.6
Sub-tokenization 96.4 80.3 89.9 74.4
Comp-tokenization 97.0 82.2 91.0 75.5

compare the performance under different settings.

Ablation on atom order. First, we show that our proposed canonical order of atoms in Geo2Seq sequence representation
is significant for LLMs to achieve good 3D molecular structure modeling. Specifically, we conduct an extended study of
ordering algorithms, comparing our Geo2Seq with alternative canonicalization strategies as well as established traversing
baselines. As we specified in Sec 3.1, theoretically, analyses and derivations apply to all rigorous CL algorithms. In the
paper, we select Nauty Algorithm because its implementation has the best time efficiency among all existing CL algorithms.
We implemented Nauty Algorithm for 3D molecules, where multiple strategies can be applied for the partitioning of graph
vertices (a step in Nauty). We compare canonicalization strategies with/without locality considered. Canonicalization
with locality considered can lead to better results, due to the importance of neighboring atom interactions in molecular
evaluations. Given the similar nature, canonical SMILES produces a very similar ordering with “Nauty with locality",
thus close in performances. The traversing baselines includes Breadth-First Search (BFS) (Lee, 1961), Depth-First Search
(DFS) (Thomas et al., 2009), Dijkstra’s algorithm (Dijkstra, 2022), Cuthill–McKee algorithm (Cuthill & McKee, 1969), and
Hilbert curve (Hilbert & Hilbert, 1935). We also compare with a Random sequence representation where atoms are randomly
ordered. All the other settings of sequence representations remain the same. As Table 3 shows, canonicalization with locality
considered can lead to better results, due to the importance of neighboring atom interactions in molecular evaluations.
In addition, we can clearly observe that well-designed canonical ordering as in Geo2Seq significantly outperforms basic
traverse strategies and the random order, which validates the significance of canonical order.

Advantage of Nauty Algorithm. Note that in the paper, we implement Nauty Algorithm for 3D molecules because: (1) its
implementation has the best time efficiency among all existing CL algorithms; (2) it is naturally rigorous. The widely used
canonical SMILES is based on the Morgan CL Algorithm, which is proven to be incomplete for isomorphism corner cases
(such as two triangles versus one hexagon). While canonical SMILES solve corner cases by manual restrictions, Nauty
Algorithm is elegantly rigorous. Still, we emphasize that all rigorous CL algorithms are usable for our method, while our
contribution lies in achieving structural completeness and geometric invariance for LM learning of 3D molecules.

Ablation on 3D representation. Besides, we explore using different methods to represent 3D molecular structures. We
compare the spherical coordinates in Geo2Seq with directly using the 3D Cartesian coordinates of atoms from QM9 xyz data
files in sequences. We also study whether normalizing the xyz coordinates is effective by subtracting the xyz coordinates
with the mass-center coordinates of each molecule. Additionally, we compare with using the SE(3)-invariant Cartesian
coordinates that are projected to the equivariant frame proposed in Section 3.2. We also explore adopting to manage
distances in a more local scheme, which reduces the scale of the distances. We compare with “local distances", where our
“distances to the global frame" are replaced with “relative distances to the previous atom" (except for the first atom) while the
angles remain the same. Results in Table 4 demonstrate that LLMs achieve the best performance on spherical coordinates.
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We believe this is due to that the numerical values of distances and angles of spherical coordinates lie in a smaller region
than coordinates, which reduces outliers and makes it easier for LLMs to capture their correlation. Furthermore, both our
spherical coordinates and that replaced with local distances achieve comparable results, while outperforming Cartesian
coordinates. From these empirical results, we can analyze that the representation of azimuth and polar angles has brought
sufficient advantage for LM learning over Cartesian coordinates, thus spherical representations with both distance schemes
are showing promising performances. In addition, the similar performances could be attributed to that molecular systems
often exhibit localized spatial structures (e.g., compact subunits or functional groups), which naturally constrain distances
for most small molecules.

Advantage of invariant spherical representations. The above experiments show the superiority of invariant spherical
coordinates over invariant Cartesian coordinates. While invariant Cartesian coordinates when our proposed equivariant frame
is applied can also SE(3)-invariance, spherical coordinates are advantageous in discretized representations. Compared
to Cartesian coordinates, spherical coordinate values are bounded in a smaller region, namely, a range of [0, π] or [0, 2π].
Given the same decimal place constraints, spherical coordinates require a smaller vocabulary size, and given the same
vocabulary size, spherical coordinates present less information loss. This makes spherical coordinates advantageous in
discretized representations and thus easier to be modeled by LMs. Lemma 3.3 and its proof aim to guarantee the validity
that our proposed invariant spherical representations possess SE(3)-invariance. We consider it as a part of our theoretical
contribution towards the derivation of Theorem 3.5.

Ablation on tokenization. Finally, we explore other ways to tokenize real numbers in spherical coordinates. Instead of
simply taking the complete real number as a token (Comp-tokenization), we try splitting it by the decimal point and treat
every part as an individual token (Sub-tokenization). We also explore the common NLP tokenization method, including
treating each character as a token (Char-tokenization) and Byte-Pair Encoding (BPE). We compare these tokenization
methods in Table 5. Results show that our used Comp-tokenization leads to better performance. This shows that treating the
complete real number as an individual token enables LLMs to capture 3D molecular structures more effectively.

Overall, through a series of ablation experiments, we show that canonical atom order, spherical coordinate representation
and Comp-tokenization in Geo2Seq are all very useful in parsing 3D molecules to good sequence representations.

D. Experimental Details and Additional Results
D.1. Hyperparameters and Experimental Details

In the random generation experiment (Section 5.1), we apply two LMs, GPT (Radford et al., 2018) and Mamba (Gu &
Dao, 2023), to our proposed Geo2Seq representations. For GPT models, we adopt the architecture of GPT-1, set the hidden
dimension to 768, the number of attention head to 8, and the number of layers to 12 and 14 for QM9 and GEOM-DRUGS
datasets, respectively. For Mamba models, we set the hidden dimension to 768 and the number of layers to 26 and 28
for QM9 and GEOM-DRUGS datasets, respectively. On QM9 dataset, we set the batch size to 32, base learning rate to
0.0004, the number of training epochs to 600 and 210 for GPT and Mamba models, respectively. On GEOM-DRUGS
dataset, we set the batch size to 32, base learning rate to 0.0004, the number of training epochs to 20 and 25 for GPT and
Mamba models, respectively. During model training, we use AdamW (Loshchilov & Hutter, 2019) optimizer and follow
the commonly used linear warm up and cosine decay scheduler to adjust learning rates. Specifically, the learning rate first
linearly increases from zero to the base learning rate 0.0004 when handling the first 10% of total training tokens, then
gradually decreases to 0.00004 by the cosine decay scheduler. Besides, the tokenization of real numbers uses the precision of
two and three decimal places for QM9 and GEOM-DRUGS datasets, respectively. In the controllable generation experiment
(Section 5.2), we train 16-layer Mamba models for 200 epochs, and all the other hyperparameters and settings are the same
as the random generation experiment. Based on data statistics, we set the context length to 512 for QM9 dataset and 744 for
GEOM-DRUGS dataset throughout the experiments. All experiments on the QM9 dataset are conducted using a single
NVIDIA A6000 GPU. Experiments on the GEOM-DRUGS dataset are deployed on 4 NVIDIA A100 GPUs.

D.2. Licenses

We strictly follow all licenses when using the public assets in this work. The QM9 dataset is under license CC-BY 4.0. The
GEOM-DRUGS dataset is under license CC0 1.0. The code of EDM, GEOLDM, JODO, and MiDi is under MIT License.
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D.3. Experiments on additional baselines and metrics

We extend our experiments with two more baselines, JODO (Huang et al., 2023) and MiDi (Vignac et al., 2023), which are
diffusion models jointly generating 2D and 3D molecular information. We exclude them in experiments of the main paper,
since the setting is not the same as ours. Our method follows works on 3D molecule generation without 2D information,
such as bonds.

We extend the metrics of our evaluation for more comprehensive comparisons on random generation of QM9 dataset. We
report the percentage of valid, unique and novel molecules, i.e., that are not present in the training set. We also report
the percentage of complete molecules in which all atoms are connected. Following JODO (Huang et al., 2023), we also
include 2D metrics. Frechet ChemNet Distance (FCD) measures the distance between the test set and the generated set
with the activation of the penultimate layer of ChemNet. Lower FCD values indicate more similarity between the two
distributions. Similarity to the nearest neighbor (SNN) calculates an average Tanimoto similarity between the fingerprints of
a generated molecule and its closest molecule in the test set. Fragment similarity (Frag) compares the distributions of BRICS
fragments in the generated and test sets, and Scaffold similarity (Scaf) compares the frequencies of Bemis-Murcko scaffolds
between them. Additionally, we include alignment metrics. For RDKit generated bonds, we compute the Maximum Mean
Discrepancy (MMD) distances of the bond length (Bond), bond angle (Angle), and dihedral angle (Dihedral) distributions,
and report their mean MMD distances. To ensure fair comparison, we evaluate the metrics of all methods on the generated
3D structures, and use RDKit to convert 3D structures to 2D graphs if needed. We use the same model and settings as the
main paper for Geo2Seq, and follow the released codes for the baselines’ respective hyperparameter and settings. Table 6
reports the random generation results on QM9 dataset. According to the results, though our model is not designed to directly
learn 2D information, the performance of our method is better than or comparable with baseline methods on all metrics
including the 2D metrics, which demonstrates the effectiveness of our design.

Table 6: Additional random generation results on QM9 dataset.

Metric EDM GEOLDM JODO MiDi Geo2Seq with Mamba

Atom Sta (%) 98.7 98.9 98.9 98.2 98.9
Mol Sta (%) 82.0 89.4 89.0 83.5 93.2
Valid (%) 91.9 93.8 94.9 95.2 97.1
Valid & Unique (%) 90.7 91.8 92.8 92.8 81.7
Valid & Unique & Novel (%) 83.0 83.1 85.2 85.5 71.2
Complete (%) 90.9 93.3 94.4 94.4 97.3
Bond Length MMD 0.18 0.12 0.27 1.09 0.08
Bond Angle MMD 0.04 0.04 0.05 0.05 0.04
Dihedral Angle MMD 0.003 0.003 0.0022 0.0033 0.0011
FCD 1.16 0.94 1.55 1.28 2.04
SNN 0.47 0.49 0.47 0.47 0.49
Frag 0.94 0.94 0.94 0.94 0.83
Scaf 0.29 0.33 0.25 0.26 0.38

Reporting the percentage of novel molecules is important in showing that language models can generate new molecules
instead of merely memorizing the training dataset. Given our improvements on controllable generation is significant, we
explore whether the generated molecules are different from the molecules in the training set. Thus we also extend the metric
on controllable generation experiments. We use the same model and setting as the main paper. Table 7 presents the novelty
results of controllable generation compared with EDM and JODO. Results show that our method achieves reasonably high
novelty scores, which demonstrates that our method is not simply memorizing training data.

In addition, following Hoogeboom et al. (2022), we compare negative log-likelihood (NLL) performance on the random
generation of QM9 dataset for Geo2Seq and baseline models that reports this metric. For this experiment, we use the same
model and setting as the main paper. From Table 8, we can see the performance of our method is better than or comparable
with all baseline methods, evidencing the validity of our model.

For more comprehensive comparisons, we also extend to include the metrics of Symphony (Daigavane et al., 2023) in our
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Table 7: Additional controllable generation results for the percentage of valid, unique, and novel molecules on QM9 dataset.

Method α ∆ϵ ϵHOMO ϵLUMO µ Cv

EDM 87.0% 84.1% 79.8% 84.7% 73.0% 68.0%
JODO 86.5% 87.3% 86.7% 86.2% 86.8% 85.6%
Geo2Seq with Mamba 82.8% 82.8% 83.6% 83.0% 83.3% 83.6%

Table 8: Additional Negative Log Likelihood (NLL) comparisons of random generation on QM9 dataset.

Method NLL

E-NF -59.7
GDM -94.7
EDM -110.7
GEOLDM -335.0
Geo2Seq with Mamba -242.0

evaluation. As shown in Table 9,10,11, we compare the performances of baseline methods and Geo2Seq with Mamba
on Symphony metrics. Multiple algorithms exist for bond order assignment: xyz2mol (Kim & Kim, 2015), OpenBabel
(Banck et al., 2011) and a simple lookup table based on empirical pairwise distances in organic compounds (Hoogeboom
et al., 2022). We perform the comparison between these algorithms for evaluating machine-learning generated 3D structures.
In Table 9, we use each of these algorithms to infer the bonds and create a molecule from generated 3D molecular structure.
A molecule is valid if the algorithm could successfully assign bond order with no net resulting charge. We also measure
the uniqueness to see how many repetitions were present in the set of SMILES strings of valid generated molecules.
Buttenschoen et al. (2023) showed that the predicted 3D structures from machine-learned protein-ligand docking models
tend to be highly unphysical. Table 10 utilizes the PoseBusters framework to perform the following sanity checks to count
how many of the predicted 3D structures are reasonable. The valid molecules from all models tend to be quite reasonable.
Next, we evaluate models on how well they capture bonding patterns and the geometry of local environments found in the
training set molecules as Table 11. We utilize the bispectrum (Uhrin, 2021) as a rotationally invariant descriptor of the
geometry of local environments. Given a local environment with a central atom u, all of the neighbors of u are projected
according to the inferred bonds onto the unit sphere S2. Then, the signal f is computed as a sum of Dirac delta distributions
along the direction of each neighbor. The bispectrum B(f) of f is then defined as B(f) = EXTRACTSCALARS(f ⊗ f ⊗ f).
Thus, f captures the distribution of atoms around u, and the bispectrum B(f) captures the geometry of this distribution.
The bispectrum varies smoothly when f is varied and is guaranteed to be rotationally invariant. We follow Symphony
and compute the bispectrum of local environments with atleast 2 neighboring atoms, and exclude the pseudoscalars in the
bispectra. For comparing discrete distributions, we use the symmetric Jensen-Shannon divergence (JSD) as Hoogeboom
et al. (2022). Given the true distribution Q and the predicted distribution P , the Jensen-Shannon divergence between
them is defined as: DJS(Q ∥P ) = 1

2DKL (Q ∥M) + 1
2DKL (P ∥M) where DKL is the Kullback–Leibler divergence and

M = Q+P
2 is the mean distribution. For continuous distributions, estimating the Jensen-Shannon divergence from samples

is tricky without further assumptions on the distributions. We follow Symphony and use the MMD scores to compare
samples from continuous distributions. Overall, the performance of our method is better than or comparable with baseline
methods across the metrics, showing the effectiveness of our 3D molecule generation.

D.4. Generation Efficiency Analysis

We compare the generation efficiency of our method and the diffusion-based methods using a single NVIDIA A100 GPU and
a batch size of 32. The results in Table 6 show that our method is much faster than diffusion-based methods, indicating the
great efficiency of our method. Though we have take more memory compared to diffusion-based methods, our time efficiency
is much better than diffusion-based methods. Throughput, or samples per second, is one of the most important metrics
to measure generation efficiency. In particular, Geo2Seq with Mamba is more than 100 times faster than diffusion-based
methods, indicating the high throughput of our method, a significant advantage in practical applications where speed is
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Table 9: Additional validity and uniqueness percentages of molecules following Symphony.

Metric ↑ Symphony EDM G-SchNet G-SphereNet Geo2Seq

Validity via xyz2mol 83.50 86.74 74.97 26.92 95.42
Validity via OpenBabel 74.69 77.75 61.83 9.86 83.84
Validity via Lookup Table 68.11 90.77 80.13 16.36 97.55

Uniqueness via xyz2mol 97.98 99.16 96.73 21.69 98.88
Uniqueness via OpenBabel 99.61 99.95 98.71 7.51 99.91
Uniqueness via Lookup Table 97.68 98.64 93.20 23.29 98.95

Table 10: Percentage of valid molecules passing each PoseBusters test following Symphony.

Test ↑ Symphony EDM G-SchNet G-SphereNet Geo2Seq

All Atoms Connected 99.92 99.88 99.87 100.00 100.00
Reasonable Bond Angles 99.56 99.98 99.88 97.59 99.90
Reasonable Bond Lengths 98.72 100.00 99.93 72.99 100.00
Aromatic Ring Flatness 100.00 100.00 99.95 99.85 99.98
Double Bond Flatness 99.07 98.58 97.96 95.99 99.45
Reasonable Internal Energy 95.65 94.88 95.04 36.07 96.10
No Internal Steric Clash 98.16 99.79 99.57 98.07 99.33

Table 11: Additional comparison statistics of generated molecules to the training set for QM9 dataset following Symphony.

MMD of Bond Lengths ↓ Symphony EDM G-SchNet G-SphereNet Geo2Seq

C-H: 1.0 0.0739 0.0653 0.3817 0.1334 0.0488
C-C: 1.0 0.3254 0.0956 0.2530 1.0503 0.0705
C-O: 1.0 0.2571 0.0757 0.5315 0.6082 0.0712
C-N: 1.0 0.3086 0.1755 0.2999 0.4279 0.1056
N-H: 1.0 0.1032 0.1137 0.5968 0.1660 0.0965
C-O: 2.0 0.3033 0.0668 0.2628 2.0812 0.0667
O-N: 1.5 0.3707 0.1736 0.5828 0.4949 0.1570
O-H: 1.0 0.2872 0.1545 0.7899 0.1307 0.0990
C-C: 1.5 0.4142 0.1749 0.2051 0.8574 0.0832
C-N: 2.0 0.5938 0.3237 0.4194 2.1197 0.2676
MMD of Bispectra ↓ Symphony EDM G-SchNet G-SphereNet Geo2Seq

C: C2,H2 0.2165 0.1003 0.4333 0.6210 0.0955
C: C1,H3 0.2668 0.0025 0.0640 1.2004 0.0011
C: C3,H1 0.1111 0.2254 0.2045 1.1209 0.0867
C: C2,H1,O1 0.1500 0.2059 0.1732 0.8361 0.1058
C: C1,H2,O1 0.3300 0.1082 0.0954 1.6772 0.0802
O: C1,H1 0.0282 0.0056 0.0487 0.0030 0.0022
C: C2,H1,N1 0.1481 0.1521 0.1967 1.3461 0.1111
C: C2,H1 0.2525 0.0468 0.1788 0.2403 0.0851
C: C1,H2,N1 0.3631 0.2728 0.1610 0.9171 0.1285
N: C2,H1 0.0953 0.2339 0.2105 0.6141 0.1081

Jensen-Shannon Divergence ↓ Symphony EDM G-SchNet G-SphereNet Geo2Seq

Atom Type Counts 0.0003 0.0002 0.0011 0.0026 0.0002
Local Environment Counts 0.0039 0.0057 0.0150 0.1016 0.0035

24



Geometry Informed Tokenization of Molecules for Language Model Generation

crucial.

Table 12: Generation efficiency comparison between diffusion-based methods and our LM-based method.

Method QM9 DRUG
Parameters Memory Sample/second Parameters Memory Sample/second

EDM 5.3M 1.5GB 1.4 2.4M 7.4GB 0.1
GeoLDM 11.4M 1.5GB 1.4 5.5M 8.4GB 0.1

Geo2Seq with GPT 87.7M 2.4GB 8.3 105.4M 3.1GB 0.2
Geo2Seq with Mamba 91.8M 2.2GB 100.0 108.4M 2.6GB 16.7

D.5. Results with Pretraining

To show the advantage of pretraining, we compare the random generation performance on QM9 for models with and without
pretraining on Molecule3D (Xu et al., 2021c) dataset, which includes around 4M molecules. Specifically, we conduct
experiments on an 8-layer GPT model and a 20-layer Mamba model. The models are pretrained for 20 epochs and then
finetuned for 200 epochs. The results in Table 13 demonstrate the advantage of pretraining. Future studies could explore
pretraining on larger datasets.

Table 13: Random generation performance on QM9 for models with and without pretraining on Molecule3D dataset.

Method Atom Sta (%) Mol Sta (%) Valid (%) Valid & Unique (%)

Geo2Seq with GPT 97.0 82.2 91.0 75.5
Geo2Seq with GPT + pretraining 98.5 89.7 94.8 76.6

Geo2Seq with Mamba 97.4 86.8 93.0 78.8
Geo2Seq with Mamba + pretraining 98.3 89.4 94.9 83.5

E. Extended Studies
E.1. Scaling Laws

Scaling law refers to the relations between functional properties of interest, performance metrics in our case, and properties
of the architecture or optimization process. In this section we explore the scaling laws of our models, specifically regarding
parameter size, since they provide typical insights for LMs. Scaling laws in 3D molecule generation appears similar to
that in NLP. We provide experiments on both GPT and Mamba in Table 14 and 15, respectively. As can be observed,
LMs’ performances on molecules grow significantly with parameter size increase, similar to the emergence abilities widely-
recognized in NLP tasks. As known from NLP studies (Schaeffer et al., 2024), model capabilities grow consistently with
model size, while emergence abilities are largely caused by nonlinear metrics. This matches our observations, since the
chemical metrics are hardly linear.

Table 14: Scaling laws on Geo2Seq with GPT model.

Parameter size - GPT 2556532 31309824 61650944 88012800 116342688

Atom sta(%) 76.2 89.6 96.5 98.3 98.5
Mol sta(%) 5.1 42.4 81.3 89.1 90.6
Valid(%) 45.5 73.1 90.9 94.3 95.1
Valid & Unique(%) 43.4 66.7 83.6 74.9 78.6

Note that we evaluate all models after 250 epochs for fairness concerns, while this fixed hyperparameter setting is not
optimal for performances at all parameter sizes. Other settings are the same as the ablation studies.
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Table 15: Scaling laws on Geo2Seq with Mamba model.

Parameter size - Mamba 2180352 31458048 61631232 93088512 121977600

Atom sta(%) 81.6 95.7 97.4 97.8 97.9
Mol sta(%) 13.6 79.2 86.8 88.3 89.0
Valid(%) 51.2 89.4 93 93.7 94.4
Valid & Unique(%) 49.6 78.7 78.8 82.6 83.5

E.2. Error Case Analysis

In the natural language domain, trained language models can produce error cases showing repetition or hallucinations. This
is also a problem that often arises with LLMs. In this section, we provide the analysis of some error cases to introduce more
insights into the field.

Similarly to NLP cases, our trained language models are showing repetition or hallucinations, especially when not trained
to best convergence. This happens to both GPT and Mamba models. Below we show some error cases from a 16-layer
Mamba model trained 150 epochs on the QM9 dataset. The error case below shows a typical repetition problem. The model
generates repeated tokens for several periods, resulting in an invalid sample.

• H 0.00 0.00° 0.00° C 1.09 1.57° 0.00° N 2.02 2.15° 0.00° C 3.39 1.99° -0.02° H 3.98 2.10° 0.23° C 4.34 2.11° -0.35° H
4.43 2.38° -0.46° H 5.41 2.09° -0.29° H 4.29 1.96° -0.59° C 4.05 1.63° 0.04° H 4.09 4.09 4.09 4.09 4.09 4.09 4.09 4.09
4.09 4.09 4.09 4.09 4.09 4.09 4.09 4.09 4.09 4.09 4.09 4.09 4.09 1.01° H 4.96 4.96 4.96 H 1.23° 1.23° 1.23° C 3.27
1.74° -0.03° H 4.02 1.83° -0.23° H 3.79 1.91° 0.17° H 3.79 1.53° -0.03°

For hallucination, our tokenization design actually prevents token-level hallucination by defining elements and whole-
numerical-values as tokens, instead of using single characters. This prevents token-level hallucination, i.e., non-existent
elements or numbers such as ‘Hr’ or ‘-0..15’. However, there can still be sequence-level hallucinations, such as the error
case below. The model generates distance values in the place the should be angle values (and vice versa).

• H 0.00 0.00° 0.00° N 1.01 1.57° 0.00° H 1.70 2.14° 0.00° C 2.06 1.13° -0.48° O 3.13 1.34° -0.42° N 2.49 0.62° -0.87°
C 2.94 0.10° -1.64° H 3.20 0.39° 3.91 H 2.81 0.33° -3.14° C 4.43 0.10° -1.77° H 5.15 0.22° 0.22° H 2.78 0.21° -0.95°
C 1.86° 1.86° 4.84 H 0.19° 1.89° -2.06° H 8.28 1.94° -1.69° H 6.24 1.71° 5.70 C 3.97 0.67° -0.90° H 5.02 0.68° -0.77°
H 4.15 0.91° -1.11° C 2.93 0.50° 6.97 H 3.54 0.42° 0.42° H 2.74 0.88° 0.88°

These error cases will be rarer if the model well converges. When trained for 150 epochs, the model would generate ∼ 15%
of invalid samples, including the above discussed syntax problems. When trained for 250 epochs, the model would generate
< 2% of invalid samples.

F. Visualization Results
F.1. Visualization of Generated Molecules

In this section, we provide visualizations of molecules generated from Geo2Seq with Mamba conditionally on the property
of Polarizability α in Figure 3. The Polarizability of a molecule is the tendency to acquire an electric dipole moment when
the molecule is subject to an external electric field. Large α values usually correspond to less isometrically molecular
geometries. This is consistent with our generated examples.

In addition, we provide visualizations of molecules generated from Geo2Seq with Mamba trained on QM9 and DRUG in
Figure 4 and Figure 5, respectively. These examples are randomly generated without any cherry pick. From the figures, we
can see that the model can generate realistic molecular geometries for both small and large size molecules. However, similar
to previous methods (Hoogeboom et al., 2022; Xu et al., 2023a), there are disconnected components, especially for larger
molecules. A possible future direction is to apply fragment-based methods to reduce the sequence length, thus benefiting the
training of language models.
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83.57 90.1270.82 91.7867.72 74.94 76.62 78.83

Figure 3: Visualization of generated molecules condition on the property of Polarizability α.

Figure 4: Visualization of molecules generated from Geo2Seq with Mamba trained on QM9.
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Figure 5: Visualization of molecules generated from Geo2Seq with Mamba trained on GEOM-DRUGS.
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F.2. Visualization of Learned Token Embeddings

In this section, we provide UMAP visualizations of different (atom type, distance, and angle) token embeddings learned
by Mamba models trained on QM9 and GEOM-DRUGS datasets. Patterns of the embeddings indicate that the model has
successfully learned structure information from the sequence data, showcasing LMs’ capabilities to understanding molecules
precisely in 3D space. For example, Figure 8 shows that similar angle tokens (e.g., ‘1.41°’ and ‘1.42°’) are placed next to
each other and the overall structure of all angles is a loop. Further, π-out-of-phase angles are placed near each other, such as
‘3.14°’, ‘-3.14°’, and ‘0°’. For atom type tokens, the model appears to capture the structure of the periodic table, although
the rows and columns are not perfect in Figure 6. One reason is the limited atom types in the datasets (5 in QM9 and 16
in GEOM-DRUG), limiting the model’s capabilities to learn chemical patterns from the entire periodic table. We provide
analyses of the visualization results in the caption of each figure as Figure 6 - Figure 10.

Figure 6: UMAP visualization of element token embeddings learned by a Mamba model trained on GEOM-DRUGS. Red
groups indicate columns in the periodic table and blue groups indicate rows, which are both numbered. Points are colored
by atomic weight. Overall, the model appears to capture the structure of the periodic table. The column generally increases
from top to bottom, and the row generally increases from left to right.

29



Geometry Informed Tokenization of Molecules for Language Model Generation

Figure 7: UMAP visualization of element token embeddings learned by a Mamba model trained on QM9. Points are colored
by atomic weight. Overall, the model appears to distinguish well between different elements. All different elements are
distributed distantly from each other in the embedding space.
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Figure 8: 2D and 3D UMAP visualization of angle token embeddings learned by a Mamba model trained on GEOM-DRUGS.
It can be observed that similar tokens (e.g., ‘1.41°’ and ‘1.42°’) are placed next to each other and the overall structure is a
loop. Further, π-out-of-phase angles are placed near each other, such as ‘3.14°’, ‘-3.14°’, and ‘0°’.

31



Geometry Informed Tokenization of Molecules for Language Model Generation

Figure 9: 2D and 3D UMAP visualization of distance token embeddings learned by a Mamba model trained on QM9.
Representations of distances lower than 6 form relatively distinct patterns. This is likely because these values are much
more frequently seen in the training data. Values over 20 cluster into a clump, suggesting that they are also recognized by
the model.
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Figure 10: 2D and 3D UMAP visualization of distance token embeddings learned by a Mamba model trained on GEOM-
DRUGS. It is notable that the best and most distinct representations seem to arise from between 5 and 20. This is
likely because these values are much more frequently seen in the training data. Values over 20 form an indistinct clump.
Interestingly, values > 20 are near values < 3, which is initially unintuitive; however, they are likely placed in a similar
location in the embedding space since both small and large distances are rarely seen in the data.
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