
Published in Transactions on Machine Learning Research (09/2024)

Tweedie Moment Projected Diffusions for Inverse Problems

Benjamin Boys bb515@cam.ac.uk
Department of Engineering, University of Cambridge, Cambridge, United Kingdom

Jakiw Pidstrigach jakiw.pidstrigach@stats.ox.ac.uk
Department of Statistics, University of Oxford, United Kingdom

Mark Girolami mag92@cam.ac.uk
Department of Engineering, University of Cambridge, Cambridge, United Kingdom
The Alan Turing Institute, London, United Kingdom

Sebastian Reich sereich@uni-potsdam.de
Universitat Potsdam, Berlin, Germany

Alan Mosca alan@nplan.io
nPlan

O. Deniz Akyildiz deniz.akyildiz@imperial.ac.uk
Imperial College London, London, United Kingdom

Reviewed on OpenReview: https: // openreview. net/ forum? id= 4unJi0qrTE& noteId= WhEZC9S1r4

Abstract

Diffusion generative models unlock new possibilities for inverse problems as they allow for the
incorporation of strong empirical priors in scientific inference. Recently, diffusion models are
repurposed for solving inverse problems using Gaussian approximations to conditional den-
sities of the reverse process via Tweedie’s formula to parameterise the mean, complemented
with various heuristics. To address various challenges arising from these approximations, we
leverage higher order information using Tweedie’s formula and obtain a statistically prin-
cipled approximation. We further provide a theoretical guarantee specifically for posterior
sampling which can lead to a better theoretical understanding of diffusion-based conditional
sampling. Finally, we illustrate the empirical effectiveness of our approach for general linear
inverse problems on toy synthetic examples as well as image restoration. We show that
our method (i) removes any time-dependent step-size hyperparameters required by earlier
methods, (ii) brings stability and better sample quality across multiple noise levels, (iii) is
the only method that works in a stable way with variance exploding (VE) forward processes
as opposed to earlier works.

1 Introduction

Due to the ease of scalability, diffusion models (Song et al., 2020; Ho et al., 2020) have received increased
attention, producing a variety of improvements in the conditional generation setting such as adding classifier
guidance (Dhariwal & Nichol, 2021), classifier free guidance (Ho & Salimans, 2022), conditional diffusion
models (Batzolis et al., 2021; Karras et al., 2022; 2024) and DEFT (Doob’s h-transform Efficient FineTuning)
(Denker et al., 2024). These methods are useful for problems where paired (x0, y) data are available, see, e.g.,
Saharia et al. (2022); Abramson et al. (2024). However, paired data is not always available, and there are cases
where we would like to study alternatives to classical Bayesian approaches to solve inverse problems (Taran-
tola, 2005; Stuart, 2010) to build samplers for complicated conditional distributions with a known observation
operator mapping x0 to the observed data y that is used to express a known likelihood p(y|x0). With their

1

https://openreview.net/forum?id=4unJi0qrTE¬eId=WhEZC9S1r4

Published in Transactions on Machine Learning Research (09/2024)

flexibility, diffusion models replace handcrafted priors on the latent signal with pretrained and strong empir-
ical priors. For example, given a latent signal x0 (say a face image), we can train a diffusion model to sample
from the prior p(x0). The idea for solving inverse problems is to leverage the extraordinary modelling power
of diffusion models to learn samplers for priors and couple this with a given likelihood p(y|x0) for a given
data y to sample from the posterior p(x0|y) for inverse problems. However, designing a diffusion model for
the posterior comes with challenges due to intractability. Despite its challenges, this approach has been re-
cently taking off with lots of activity in the field, e.g. for compressed sensing (Bora et al., 2017; Kadkhodaie
& Simoncelli, 2021), projecting score-based stochastic differential equations (SDEs) (Song et al., 2021b),
gradient-based approaches (Daras et al., 2022; Chung et al., 2022b), magnetic resonance imaging (MRI) by
approximating annealed Langevin dynamics with approximate scores (Jalal et al., 2021), image restoration
(Kawar et al., 2022), score-based models as priors but with a normalizing flow approach (Feng et al., 2023),
variational approaches (Mardani et al., 2023; Feng & Bouman, 2023). Most relevant ideas to us, which we will
review in detail in Section 5, use Tweedie’s formula (Efron, 2011; Laumont et al., 2022) to approximate the
smoothed likelihood, e.g. Diffusion posterior sampling (DPS) (Chung et al., 2022a; 2023) and pseudo-guided
diffusion models (ΠGDM) (Song et al., 2023). Similar approaches are also exploited using singular-value de-
composition (SVD) based approaches (Kawar et al., 2021). In this work, we develop an approach which builds
a tighter approximation to optimal formulae for approximating the scores of the posterior diffusion model.

TMPD DTMPD DPSAnalytic ΠGDM

M
ea
n

V
ar
ia
nc
e

Figure 1: Error to target posterior for a Gaus-
sian random field. (Top row) visualisation of
the empirical mean and variance of the 1500
samples that were used to compute this er-
ror against the analytical moments. (Bottom)
Wasserstein distances of different methods w.r.t.
sample size. For details, see Appendix E.2.

This paper is devoted to developing novel methods to
solving inverse problems, given a latent (target) signal
x0 ∈ Rdx , noisy observed data y ∈ Rdy , a known linear
observation map H, and a pretrained diffusion prior. The
main tool we use is Tweedie’s formula to obtain both the
mean and the covariance for approximating diffused likeli-
hoods, to be used for building the final posterior score ap-
proximation. This is as opposed to previous works which
only utilised first moment approximations using Tweedie’s
formula (Chung et al., 2022a; Song et al., 2023). We show
that utilising covariance approximation, with moment pro-
jections, provides a principled scheme with improved per-
formance, which we term Tweedie Moment Projected Dif-
fusions (TMPD).

To demonstrate our method briefly, Figure 1 demonstrates
a sampling scenario of a Gaussian random field (GRF)
whose mean and variance entries are plotted under “Ana-
lytic” column1. We demonstrate the approximations under
this setting provided by our method (TMPD) and its diag-
onal (cheaper) version (DTMPD), compared with ΠGDM
(Song et al., 2023), and DPS (Chung et al., 2022a). The fig-
ure demonstrates the optimality of our method: Our first
and second moment approximations become exact in this
case. This results in a drastic performance improvement
stemming from the statistical optimality of our method
for near-Gaussian settings and also unlocks a possible line
for theoretical research for understanding similar diffusion
models for inverse problems.

In what follows, we will first introduce the technical back-
ground in Section 2 and then describe TMPD in detail in
Section 3. We will then provide some theoretical results about our method in Section 4 and provide a discus-
sion to closely related work in literature in Section 5. Finally, Section 6 will present experiments on Gaussian

1We only plot the variances for visualisation while the GRF has a full covariance.

2

Published in Transactions on Machine Learning Research (09/2024)

mixtures, image inpainting and super-resolution, demonstrating quantitative and qualitative improvements
provided by TMPD.

2 Technical Background

In score based generative models (SGMs) (Song et al., 2020) and denoising diffusion probabilistic models
(DDPM) (Ho et al., 2020), the goal is to sample from a target distribution p0 := pdata. To that end, an
artificial path pt is introduced, with the property that pt will approach N (0, I) for large t, i.e., pt → N (0, Id)
as t → ∞. Then, one learns to reverse this process, in order to transform samples from a standard normal
distribution into samples from pdata. More recent advances in generative modelling include methods with
artificial paths based on stochastic interpolants or continuous normalizing flows, see, e.g., Albergo & Vanden-
Eijnden (2022); Lipman et al. (2022). Conditional flow matching draws inspiration from the denoising score
matching approach, but generalizes to matching vector fields directly. We have focused our approach to
denoising-diffusion models in the SGM paradigm because of readily available pretrained diffusion models.

In the SGM paradigm, a stochastic differential equation (SDE) is used to noise the data, and the interpolation
parameter t will take continuous values in t ∈ [0, T]. In the DDPM setting, t is discrete. However, the DDPM
Markov chain can be seen as a discretization of the SDE (Song et al., 2020).

Recent developments have improved the noising schedule of score-based diffusion models for image data
that parameterise the transition kernels of the forward process in terms of the signal-to-noise ratio σ2

t ,
pt(xt|x0) = N (xt; stx0, s2

tσ
2
t Idx

) (Karras et al., 2022; 2024). In this paper, we focus derivations on the
Variance Preserving (VP) SDE formulation, although our approach can be generalised and derived for other
SDEs, such as the Variance Exploding (VE) SDE (see Appendix C). The VP transition kernel that we choose
to focus our derivation is given by setting

pt(xt|x0) = N (xt;
√

αtx0, vtIdx) where αt := exp
(
−

∫ t

0
β(s)ds

)
and vt := 1− αt,

which are the transition kernels for the time-rescaled Ornstein-Uhlenbeck process:

dxt = −1
2β(t)xtdt +

√
β(t)dwt, x0 ∼ p0 = pdata. (1)

The corresponding reverse SDE is then given by

dzt = 1
2β(T − t)ztdt + β(T − t)∇zt

log pT−t(zt)dt +
√

β(T − t)dw̄t, z0 ∼ pT .

A parameterisation that performs well in practice is β(t) = βmin + t(βmax−βmin). In the diffusion modelling
literature, the time-rescaled OU process is also sometimes called a Variance Preserving SDE. This is not the
only SDE that is suitable for the forward process. See Appendix C for details on a time-rescaled Brownian
motion (Variance Exploding SDE (Song et al., 2020)).

There are two usual approximations to solve the SDE in Equation 2. First, we do not know pT , since
it is a noised version of the distribution pdata. However for T large enough, we can approximate pT ≈
pref = N (0, Idx). We also do not have ∇ log pT−t which we need for the drift in Equation 2. This can be
circumvented by approximating the drift using score-matching techniques (Hyvärinen, 2005; Ho et al., 2020).
These methods construct an estimate of the score function by solving the score matching problem in the
form of sθ(xt, t) ≈ ∇xt log pt(xt). This score can also be used in the setting of DDPM (Ho et al., 2020).

2.1 Conditional sampling for the linear inverse problem

In the preceding section we introduced diffusion models as a method to sample from a target distribution
pdata. We now suppose that we have access to measurements, or observations y ∈ Rdy of x0 ∈ Rdx :

y = Hx0 + u, u ∼ N (0, σ2
yIdy). (2)

3

Published in Transactions on Machine Learning Research (09/2024)

We would then be interested in sampling from the conditional distribution of x0 given y, i.e., pdata(· |y).
To that end, we have to modify the reverse SDE. We would like to sample from the reverse SDE targeting
pdata(· |y), instead of the one targeting pdata.

Optimally, we would want to replace the score ∇zt log pT−t(zt) in Equation 2 with the posterior score
∇zt log pT−t|y(zt|y). Written in terms of the forward process, this coincides with

∇xt
log pt|y(xt|y) = ∇xt

log pt(xt) +∇xt
log py|t(y|xt). (3)

The term py|t(y|xt) is given by the integral

py|t(y|xt) =
∫

py|0(y|x0)p0|t(x0|xt)dx0, (4)

which involves a marginalization over x0. The above integral is difficult to evaluate since the term p0|t(x0|xt)
is only defined implicitly through running the diffusion model. One way around this is to train a neural net-
work to directly approximate ∇ log pt|y(xt|y) (Batzolis et al., 2021; Karras et al., 2022). Alternatively, if one
already has access to an approximation of ∇xt log pt(xt), one can train an auxiliary network to approximate
the term ∇ log py|t(y|xt) in Equation 3, (Dhariwal & Nichol, 2021; Denker et al., 2024). However, these
methods can be time and training-data intensive, as it is necessary to retrain networks for each conditional
task as well have access to paired training data from the joint distribution of (x0, y). Alternatively, one could
try to do a Monte-Carlo approximation of the score corresponding to Equation 4. But this needs evaluating
the probability flow ODE together with its derivative (Song et al., 2020, Section D.2) for each sample, which
is prohibitive, also suffers from high variance (Mohamed et al., 2020, Section 3).

3 Tweedie Moment Projected Diffusions

In this section, we first introduce Tweedie moment projections in Section 3.1 below. Our method relies
on the approximation p0|t(x0|xt) ≈ N

(
x0; m0|t(xt), C0|t(xt)

)
to make the sampling process tractable. In

that case, since the conditional distribution of y given x0 is also Gaussian, we can compute the integral in
Equation 4 analytically — py|t(y|xt) will just be another Gaussian in that case, its mean and covariance
being determined through m0|t, C0|t, H and σy. In particular, we can then use this Gaussian to approximate
∇ log py|t(y|xt), since the score of a Gaussian is available in closed form.

3.1 Tweedie moment projections

Instead of just approximating the variance of p0|t(x0|xt) heuristically, we approximate it by projecting onto
the closest Gaussian distribution using Tweedie’s formula for the second moment. Our approximation at this
stage consists of two main steps: (i) Find the mean and covariance of p0|t(x0|xt) using Tweedie’s formula,
and (ii) approximate this density with a Gaussian using the mean and covariance of p0|t(x0|xt) (moment
projection). Due to this approximation, we will refer to the resulting methods as Tweedie Moment Projected
Diffusions (TMPD). We will first introduce Tweedie’s formula for the mean and covariance and then describe
the moment projection.
Proposition 1 (Tweedie’s formula). Let m0|t and C0|t be the mean and the covariance of p0|t(x0|xt),
respectively. Then given the marginal density pt(xt), the mean is given as

m0|t = E[x0|xt] = 1
√

αt
(xt + vt∇xt

log pt(xt)), (5)

and the covariance C0|t is given by

C0|t = E
[
(x0 −m0|t)(x0 −m0|t)⊤ |xt

]
= vt

αt
(Idx + vt∇2 log pt(xt)) = vt√

αt
∇xtm0|t.

(6)

4

Published in Transactions on Machine Learning Research (09/2024)

The proof is an adaptation of Meng et al. (2021, Theorem 1), see Appendix A.1. While m0|t and C0|t give
us the moments of the density p0|t(x0|xt), we do not have the exact form of this density. At this stage, we
employ moment projection, i.e., we choose the closest Gaussian in Kullback-Leibler (KL) divergence which
is a distribution with the same first and second moments, as formalised next.
Proposition 2 (Moment projection). Let p0|t(x0|xt) be a distribution with mean m0|t and covariance C0|t.
Let p̂0|t(x0|xt) be the the closest Gaussian in KL divergence to p0|t(x0|xt), i.e.,

p̂0|t(x0|xt) = arg min
q∈Q

DKL(p0|t(x0|xt)||q), (7)

where Q is the family of multivariate Gaussian distributions. Then

p̂0|t(x0|xt) = N (x0; m0|t, C0|t). (8)

This is a well-known moment matching result, see, e.g., Bishop (2006, Section 10.7). Merging Propositions 1
and 2 leads to the following Tweedie moment projection:

p0|t(x0|xt) ≈ N
(

x0; m0|t,
vt√
αt
∇xt

m0|t

)
, (9)

where m0|t is given in Proposition 1. In the next section, we demonstrate how to use this approximation to
obtain approximate likelihoods.

3.2 Tweedie Moment Projected Likelihood Approximation

We next use the approximation in Equation 9 to compute the following integral analytically

py|t(y|xt) ≈
∫

py|0(y|x0)p̂0|t(x0|xt)dxt

= N
(
y; Hm0|t, HC0|tH⊤ + σ2

yIdy

)
.

(10)

Let us recall that mean and covariance terms are a function of xt by making them explicit in the notation, i.e.,
m0|t(xt) and C0|t(xt) for the mean and covariance respectively. To compute ∇xt

log py|t(y|xt), we require
further approximations since we have xt dependence in both the mean and the covariance of Equation 10
which is computationally infeasible to differentiate through. For this reason, we treat the matrix C0|t like a
constant w.r.t. xt when computing the gradient (which is the case if pdata is Gaussian). For non-Gaussian
pdata, this results in a computationally efficient sampler using C0|t as a preconditioner for the step size, as
otherwise, the resulting terms can be expensive to compute. This leads to an approximation of the gradient

fy(xt) :=∇xt
m0|t(xt)H⊤(HC0|t(xt)H⊤ + σ2

yIdy)−1(y−Hm0|t(xt)) (11)
≈∇xt log py|t(y|xt),

where ∇xt only operates on m0|t in Equation 11. Another way to write this approximation is to use
Equation 6, which leads to

fy(xt) :=
√

αt
vt

C0|t(xt)H⊤(HC0|t(xt)H⊤ + σ2
yIdy)−1(y−Hm0|t(xt))

3.3 Algorithms

Plugging the approximation in Equation 11 into the reverse SDE in Equation 2 together with the prior score
as described in Section 2.1 results in a TMPD for conditional sampling to solve inverse problems. The SDE
we will approximate numerically to sample from the conditional distribution is given by

dzt =1
2β(T − t)ztdt + β(T − t)(∇zt

log pT−t(zt) + fy
T−t(zt))dt +

√
β(T − t)dw̄t (12)

5

Published in Transactions on Machine Learning Research (09/2024)

where z0 ∼ pT and fy
t (zt) ≈ ∇ log py|T−t(y|zt) is our approximation to the data likelihood, given by

Equation 11. We call this SDE the TMPD SDE.

We have two options to convert TMPD SDE into implementable methods: (1) score-based samplers (Song
& Ermon, 2020), which we abbreviate as TMPD since they are Euler-Maruyama discretizations of the
TMPD SDE; and (2) denoising diffusion models (TMPD-D). The denoising diffusion approach is derived
from approximate reverse Markov chains and is the approach of DDPM and DPS methods (Ho et al.,
2020; Chung et al., 2022a). We note that the Gaussian projection can be used in this discrete setting,
assuming that the conditional density is available analytically as in Ho et al. (2020), and can be written as
pn|0(xn|x0) = N (xn;√αnx0, vnIdx

). The idea is to update the unconditional mean m0|n(xn) of the density
p0|n(x0|xn) with a Bayesian update: p(x0|xn, y) ∝ p(y|xn)p0|n(x0|xn). Given a similar formulation as above,
assuming we have a readily available approximation p0|n(x0|xn) ≈ N (x0; m0|n, C0|n) and a likelihood similar
to Equation 10 where t can be replaced by n, we can compute the moments of p(x0|xn, y) analytically, which
we denote my

0|n and Cy
0|n. The Bayes update for Gaussians gives (Bishop, 2006)

my
0|n = m0|n + C0|nH⊤(HC0|nH⊤ + σ2

yIdx
)−1(y−Hm0|n). (13)

Incorporating Equation 13 for n = N − 1, . . . , 0 into the usual Ancestral sampling (Ho et al., 2020) steps
leads to Algorithm 1, termed TMPD-Denoising (TPMD-D). The update in Equation 13 can be used in any
discrete sampler such as denoising diffusion implicit models (DDIM) (Song et al., 2021a).

3.4 Computationally cheaper approximation of Moment Projection

We show in our experiments promising results for TMPD motivating the exploration of less computation-
ally expensive approximations to the full Jacobian. In particular, we empirically study a computationally
inexpensive method that applies to inpainting and super-resolution, below.

To make the computational cost of TMPD smaller, we can make an approximation of the Gaussian Projection
that requires fewer vector-Jacobian products and does not require linear solves. One approximation that we
found useful for sampling from high dimensional diffusion models, e.g., high resolution images, is denoted
here as diagonal Tweedie Moment Projection (DTMPD). Instead of the full second moment, DTMPD uses
the diagonal of the second moment ∇xt

m0|t ≈ diag(∇xt
m0|t). Intuitively, this approximation will perform

well empirically since it is a similar approximation to ΠGDM that assumes dimensional independence of
the distribution p(x0|xt), but unlike ΠGDM, this diagonal approximation is the same as using the closest
dimensionally independent Gaussian in KL divergence to p0|t(x0|xt).

The biggest drawback of our method is that without further approximation, it doesn’t scale up to the high
dimensions of image data. This is because even calculating the diagonal of a Jacobian requires computing dx
vector-Jacobian products since in general every element of the Jacobian at a location xt, ∇xt

m0|t depends
on every element of xt. Therefore we must resort to a further approximation that exploits knowledge of the
observation operator H.

For the cases of super-resolution and inpainting, a further approximation that allows scaling up to the
dimensions of image data is approximating the diagonal of the Jacobian by the row sum of the Jacobian
which only requires a single vector-Jacobian product and brings the memory and time complexity of DTMPD
down to that of ΠGDM. We exploit the sparsity of H to make the rowsum approximation of the diagonal more
accurate by masking out (zeroing) the values in the vector-Jacobian product that that will not contribute
to the diagonal of HC0|nH⊤. We discuss a justification of this approximation in Ap. E.1. We use this
approximation in the image experiments and find that in practice it is only (1.5 ± 0.1) × slower than ΠGDM
and DPS across all of our experiments (Sec. 6), with competitive sample quality for noisy inverse problems
and without the need for expensive hyperparameter tuning. Finally, we note a very recent work (Rozet et al.,
2024) that circumvents our heuristic by applying the conjugate gradient (CG) method, unlocking using the
approximation Eq. 11 to be used in practice for non-sparse H (see Ap. E.1 for more details).

6

Published in Transactions on Machine Learning Research (09/2024)

4 Theoretical Guarantees

Because of the approximations, our method, as well as ΠGDM Song et al. (2023) and DPS (Chung et al.,
2022a) do not sample the exact posterior for general prior distributions. Therefore, one cannot hope for these
methods to sample the true posterior and a priori it is not even clear how the sampled distribution relates
to the true posterior. Without further justification, such methods should only be interpreted as guidance
methods, where paths are guided to regions where a given observation y is more likely, not as posterior
sampling methods.

We justify our approximation by showing that the TMPD-SDE in Equation 12 is able to sample the exact
posterior in the Gaussian case. One can see that this contrasts with ΠGDM and DPS in our numerical
experiments or by explicitly evaluating their approximations on simple one-dimensional examples.
Proposition 3 (Gaussian data distribution). Assume that pdata is Gaussian. Then, the posterior score ex-
pression using Equation 11 is exact, i.e., if there are no errors in the initial condition and drift approximation
sθ(xt, t) = ∇xt

log pt(xt), the TMPD will sample pdata(·|y) at its final time.

The proof is given in Appendix B.1. However, most distributions will not be Gaussian. The following
theorem generalizes the above proposition to non-Gaussian distributions, as long as they have a density with
respect to a Gaussian. We study how close our sampled measure will be to the true posterior distribution
and give explicit bounds on the total variation distance in terms of the regularity properties of the density:
Theorem 1 (General data distribution). Assume that the data distribution pdata can be written as

pdata(x0) = exp(Φ(x0))N (x0; µ0, Σ0), (14)

for some µ0 and Σ0. We furthermore assume that for some M ≥ 1, it holds that 1/M ≤ exp(Φ(x)) ≤ M
and ∥∇xΦ(x)∥ ≤ L for all x ∈ Rdx . Then

∥pdata(·|y)− qT (·)∥TV ≤ C(1 + T 1/2)
(

(M5/2 − 1)(L1/2 + 1) + L1/2
)

, (15)

where qt denotes the law of the corresponding reverse-time process for Equation 12 at time t and the constant
C that only depends on y, H, σy, µ0 and Σ0.

See Appendix B.2 for a proof.

In the limit, when pdata becomes more similar to a Gaussian, the Φ in Equation 14 converges to zero, and
therefore M → 1 and L→ 0. In particular, the right hand side in Equation 15 converges to 0 and we recover
the result of Proposition 3. When pdata is not Gaussian, the right hand side of Equation 15 gives us an upper
bound of our sample distribution to the true posterior.

5 Related Work

In this section, we review two closely related methods, that we use as benchmarks, and summarise the
relationship between them.

The first work by Chung et al. (2022a), abbreviated DPS-D here2 introduced the use of Tweedie’s formula
to approximate pt(x0|xt) with a Dirac delta (point) distribution centred at m0|t. In our framework this
corresponds to choosing a zero covariance, i.e.,

mDPS-D
0|t = m0|t and CDPS-D

0|t = 0. (16)

In the work Song et al. (2023), abbreviated ΠGDM-D here3 the same estimator for the mean is chosen.
However, the variance is set to a multiple of the identity, corresponding to choices

mΠG
0|t = m0|t and CΠG

0|t = r2
t Idx (17)

2Since the authors run DDPM-type sampler, we re-abbreviate DPS as DPS-D in this work (as DPS approximation itself can
also be run with Euler-Maruyama schemes).

3Since the authors run DDIM-type sampler, we re-abbreviate ΠGDM as ΠGDM-D in this work (as ΠGDM approximation
itself can also be run with Euler-Maruyama schemes).

7

Published in Transactions on Machine Learning Research (09/2024)

The choice of rt is such that it matches the variance of the reverse SDE if pdata would be a standard normal
distribution. Since they employ a different forward SDE to ours (variance exploding SDE), rt is set, when
the variance of the data is 1, to be equal to vt/(vt + 1). In our case, with the OU/variance preserving SDE
as a forward process, rt would be equal to vt/(vt + αt), when the variance of the data is 1.

Another relevant very recent work by Finzi et al. (2023) arrives at the approximation matching ours in the
context of modelling physical constraints. However, we focus on general linear inverse problems outside the
physical domain in this paper together with a novel theoretical result. Also, we note the work of Stevens
et al. (2023) who consider the maximum-a-posteriori (MAP) approach to find the moments of p0|t.

Finally, sequential Monte Carlo (SMC) methods are particle-based posterior sampling schemes that are
asymptotically exact in the limit of infinitely many particles. Cardoso et al. (2023) target the posterior for
linear inverse problems, and our first experiment makes a comparison to Cardoso et al. (2023) for a Gaussian
Mixture model. However, for high dimensional data (such as images), this method can exhibit the well
studied SMC problem of weight degeneracy, where particle weights collapse. We note a recent state of the
art work (Wu et al., 2024) that tackles weight degeneracy by introducing the Twisted Diffusion Sampler
(TDS), with heuristic twisting functions approximating py|t(y|xt) that increase computational efficiency of
SMC. The method is still asymptotically exact as long as the approximation of py|t(y|xt) converges to p(y|x0)
as t approaches 0. The authors note that the efficiency of TDS (Wu et al., 2024) depends on how closely
the twisting function approximates the exact likelihood. TMPD (Equation 10) could be a good twisting
candidate.

6 Experiments

In this section, we demonstrate our results as well as the peformance of other approximations to the likelihood
provided in Chung et al. (2022a); Song et al. (2023). In particular, we perform comparisons for two of our
methods TMPD (an SGM using our approximation) and TMPD-D (a DDPM sampler using Equation 13).
We compare these to DPS (an SGM sampler using the posterior approximation in Equation 16), DPS-D
(Chung et al., 2022a) (a DDPM-type sampler using Equation 16), ΠGDM (Song et al., 2023) (an SGM
sampler using the posterior approximation in Equation 17), and finally ΠGDM-D (a DDIM-type sampler
using Equation 17, but in our experiments a DDPM-type sampler since we set the DDIM hyperparameter
η = 1.0 which is defined in Algorithm 1 by Song et al. (2021a) who show that this is equivalent to a
DDPM-type sampler).

The code for all of the experiments and instructions to run them are available at github.com/bb515/tmpdjax
and github.com/bb515/tmpdtorch.

6.1 Gaussian Mixture Model

We now demonstrate a nonlinear SDE example and follow the Gaussian mixture model example of Cardoso
et al. (2023) where the data distribution p0(x0) is a mixture of 25 Gaussian distributions. The means and
variances of the components of the mixture are given in Appendix E.3. In this case, for each choice of
observation y, observation map H and measurement noise standard deviation σy, the target posterior can
be computed explicitly (see Appendix E.3).

To investigate the performance of posterior sampling methods, for each pair of dimensions and observation
noise (dx, dy, σy) ∈ {8, 80, 800} × {1, 2, 4} × {10−2, 10−1, 100} we randomly generate multiple measurement
models (y, H) ∈ Rdy ×Rdy×dx , and equally weight each component of the Gaussian mixture. Further details
are given in Appendix E.3. We chose to control the dimension to gain insight into the performance of
posterior sampling methods under varying dimensions. We also chose to control the noise level since the
different posterior sampling methods have accuracy that depends on the signal-to-noise ratio. Through
randomly varying the observation model, we gain an insight into the performance of the posterior sampling
methods with different levels of posterior multimodality. This example is interesting because it allows us to
study the behaviour of our methods on non-Gaussian problems in high dimensions whilst having access to
the target posterior with which to compare (usually, obtaining a ‘ground-truth’ posterior is not feasible for
non-Gaussian problems).

8

https://github.com/bb515/tmpdjax
https://github.com/bb515/tmpdtorch

Published in Transactions on Machine Learning Research (09/2024)

Figure 2: We display the first two dimensions of the GMM inverse problem for one of the measurement models
tested (H, σy = 0.1, (dx, dy) = (80, 1)). The blue dots represent samples from the target posterior, while the
red dots correspond to samples generated by each of the algorithms used (the names of the algorithms are
given at the bottom of each column).

Table 1: Sliced Wasserstein for the GMM case. The full table is in Ap. E.3.
dx 8 8 8 80 80 80 800 800 800
dy 1 2 4 1 2 4 1 2 4
TMPD-D 1.6 0.7 0.3 2.7 1.0 0.3 3.1 1.4 0.4
DTMPD-D 1.8 3.3 0.4 2.8 3.2 0.7 3.7 3.5 0.7
DPS-D 4.7 1.8 0.7 5.6 3.2 1.2 5.8 3.5 1.4
ΠGDM-D 2.6 2.1 3.8 3.2 2.8 0.6 3.5 3.1 0.4
TMPD-D 1.4 0.9 0.3 2.3 1.2 0.4 2.9 1.3 0.4
DTMPD-D 1.8 2.7 0.5 2.6 3.2 0.8 3.4 3.4 0.8
DPS-D 4.7 1.5 0.8 5.1 3.1 1.0 5.7 3.1 1.3
ΠGDM-D 2.2 1.6 3.8 2.9 2.7 0.6 3.3 2.7 0.4
TMPD-D 0.9 0.9 0.6 1.5 1.1 0.9 1.5 1.2 0.9
DTMPD-D 0.9 1.7 0.9 1.4 2.1 0.9 1.4 2.0 1.1
DPS-D 5.2 3.5 2.5 6.9 3.9 1.7 6.8 4.7 0.9
ΠGDM-D 1.5 2.3 1.8 1.6 1.4 0.9 2.0 2.0 0.6

We use the sliced Wasserstein (SW) distance defined in Appendix E.3 to compare the posterior distribution
estimated by each algorithm with the target posterior distribution. We use 104 slices for the SW distance
and compare 1000 samples of TMPD-D, ΠGDM-D and DPS-D in Tables 1 obtained using 1000 denoising
steps and 1000 samples of the true posterior distribution.

Table 1 indicates the Central Limit Theorem (CLT) 95% confidence intervals obtained by considering 20
randomly selected measurement models (H) for each setting (dx, dx, σy). Figure 2 shows the first two
dimensions of the estimated posterior distributions corresponding to the configurations (80, 1) from Table 1
for one of the randomly generated measurement model (H, σy = 0.1). These illustrations give us insight
into the behaviour of the algorithms and their ability to accurately estimate the posterior distribution. We
observe that TMPD-D estimates the target posterior well compared to ΠGDM-D and DPS-D. TMPD-D
covers all of the modes, whereas ΠGDM-D and DPS-D do not.

We perform the same experiment using 1000 samples of TMPD, DTMPD, DPS and ΠGDM, obtained using
1000 Euler-Maruyama time-steps, and results are shown in Appendix E.3.

A direct comparison to Cardoso et al. (2023) using their original experimental setup is shown in Table 5 in
Appendix E.3, which shows competitive performance for posterior sampling compared to Sequential Monte-
Carlo, an exact sampling method.

9

Published in Transactions on Machine Learning Research (09/2024)

6.2 Noisy observation inpainting and super-resolution

We consider inpainting and super-resolution problems on the FFHQ 256 × 256 (Karras et al., 2019) and
CIFAR-10 32 × 32 (Krizhevsky et al., 2009) datasets. We compare TMPD to ΠDGM and DPS. We also
compare score-based diffusion models with their denoising-diffusion counterparts (denoted with suffix, -D).

Firstly, we follow the benchmark used by Chung et al. (2022a) and use a Variance Preserving (VP) SDE,
using a DDPM sampler, on FFHQ 256×256 using 1k validation images. The pre-trained diffusion model for
FFHQ was taken from Chung et al. (2022a) and was used directly without any finetuning. We follow Chung
et al. (2022a) and use various forward operators. For super-resolution, we use a downsampling ratio of 4
(256×256→ 64×64) and bicubic interpolation; for ‘box’ mask inpainting we mask out 128×128 region and
for ‘random’ mask inpainting we choose a random mask for each image masking between 30% and 70% of the
pixels. Images are normalized to the range [0, 1] and it is on this scale that we add Gaussian measurement
noise with standard deviation σy ∈ {0.01, 0.05, 0.1, 0.2}. For quantitative comparison, we focus on two
widely used perception distances, Fréchet Inception Distance (FID) and Learned Perceptual Image Patch
Similarity (LPIPS) distance. FID evaluates consistency with the whole dataset using summary statistics
from the FFHQ-50k dataset. We also evaluate observation data similarity using various distances between
a sampled image and ground truth image: LPIPS, mean-squared-error (MSE), peak signal-to-noise-ratio
(PSNR) and structural similarity index measure (SSIM). For ΠGDM-D we use the algorithm and default
hyperparameters as described in Song et al. (2023). For DPS-D we use the algorithm in the codebase provided
by the authors Chung et al. (2022a) and we use their default hyperparameters such as their suggested step-
size hyperparameter for this task, and static-thresholding (clipping the denoised image at each step to a
range [−1, 1]) whereas TMPD-D does not require hyperparameter tuning or static-thresholding. The results
for FFHQ sampled using VP DDPM are shown in the appendix Table 7. We observe that DTMPD-D is
competitive with DPD-D over a range of noise levels, however, ΠGDM-D is not able to produce high quality
reconstructions for larger noise levels.

We note that the heuristics used in the DPS and ΠGDM implementations have been designed to work with
the VP-SDE (DDPM sampler), and therefore the performance may not be robust to the choice of SDE.
Fig 14 illustrates this when each method is applied to the VE-SDE on a sample from the FFHQ validation
dataset. We next compare performance to TMPD across VP and VE-SDE samplers and a range of noise
levels on CIFAR-10 64× 64 using 1k validation images.

We use pretrained denoising networks for CIFAR-10 that are available here. For inpainting, we use ‘box’ and
‘half’ mask. For ‘half’-type inpainting, we mask out a 16 × 16 right half region of the image; for box-type
inpainting, we mask out an 8× 8 box region following Cardoso et al. (2023). For super-resolution, we use a
downsampling ratio of 2 on each axis (32× 32→ 16× 16) with a nearest-neighbour downsampling method;
and a downsampling ratio of 4 (32 × 32 → 8 × 8) with bicubic downsampling. Images are normalized to
the range [0, 1] and it is on this scale that we add Gaussian measurement noise with standard deviation
σy ∈ {0.01, 0.05, 0.1}. Whereas no hyperparameters are required for our method, we chose the DPS scale
hyperparameter by optimising LPIPS, MSE, PSNR and SSIM on a validation set of 128 images (see Fig. 9
for an example). We found that static thresholding (clipping the denoised image estimate to a range [0, 1]
at each sampling step) is critical for the stability and performance of both DPS-D and ΠGDM-D. Stability
was noted as a limitation in Chung et al. (2022a), and they suggest that devising methods to stabilize the
samplers would be a promising direction of research. We find that our TMPD-D method and the diagonal
approximation DTMPD-D is stable across SDE, noise-level and observation maps, without the need for static
thresholding. Whilst for VE ΠGDM-D we found the original algorithm in Song et al. (2023) to be stable, for
VP ΠGDM-D, the original algorithm, whilst stable for FFHQ, was not stable, even with static-thresholding,
for CIFAR-10. We chose to bring ΠGDM-D a step closer to our algorithm by substituting their likelihood
score into an Ancestral sampling algorithm, instead of a DDIM algorithm as suggested in Song et al. (2023),
which produced stable samples.

The methods TMPD, ΠGDM and DPS all have the same numerical solver of their respective reverse-SDE,
and DTMPD-D, ΠGDM-D and DPS-D all use DDPM since DDIM and DDPM are equivalent algorithms
with our chosen DDIM hyperparameter η = 1.0. Therefore, the sampling methods being compared only
differ in the ∇xt

log py|t(y|xt) term in their reverse-SDE, and so this experiment allows us to study the

10

https://github.com/yang-song/score_sde

Published in Transactions on Machine Learning Research (09/2024)

Table 2: Summary of results using the VE and VP-SDE for increasingly noisy σy ∈ {0.01, 0.05, 0.1} obser-
vation inpainting and super-resolution problems on FFHQ 1k validation set. The full results are in Ap. E.4.

SDE VE-SDE VP-SDE
Problem Method FID ↓ LPIPS ↓ FID ↓ LPIPS ↓
σy = 0.01 DTMPD-D 32.3 0.203 ± 0.039 29.6 0.230 ± 0.034

4× ‘bicubic’ DPS-D 47.0 0.273 ± 0.031 31.4 0.234 ± 0.048

super-resolution ΠGDM-D 37.4 0.244 ± 0.030 29.7 0.198 ± 0.037

σy = 0.05 DTMPD-D 32.1 0.268 ± 0.048 32.7 0.304 ± 0.043

4× ‘bicubic’ DPS-D 105.9 0.590 ± 0.036 29.3 0.280 ± 0.051

super-resolution ΠGDM-D 106.8 0.592 ± 0.041 45.1 0.311 ± 0.047

σy = 0.1 DTMPD-D 32.7 0.310 ± 0.053 38.0 0.348 ± 0.048

4× ‘bicubic’ DPS-D 114.0 0.569 ± 0.044 30.9 0.318 ± 0.051

super-resolution ΠGDM-D 206.0 0.724 ± 0.034 119.6 0.589 ± 0.047

σy = 0.01 DTMPD-D 30.2 0.114 ± 0.029 25.7 0.153 ± 0.033

‘box’ mask DPS-D 23.9 0.093 ± 0.019 31.5 0.175 ± 0.038

inpainting ΠGDM-D 27.1 0.108 ± 0.025 143.8 0.247 ± 0.024

σy = 0.05 DTMPD-D 33.6 0.186 ± 0.036 27.0 0.240 ± 0.038

‘box’ mask DPS-D 39.7 0.318 ± 0.044 30.7 0.228 ± 0.046

inpainting ΠGDM-D 49.5 0.354 ± 0.044 159.3 0.448 ± 0.046

σy = 0.1 DTMPD-D 34.0 0.223 ± 0.041 29.6 0.292 ± 0.049

‘box’ mask DPS-D 59.1 0.467 ± 0.053 29.3 0.259 ± 0.049

inpainting ΠGDM-D 72.6 0.529 ± 0.047 165.7 0.539 ± 0.083

behaviour of our method on inpainting and super-resolution compared to the different approximations of
the smoothed likelihood. A summary of the results for CIFAR-10 sampled using VE DDPM are shown in
Table 2. The complete results are in Tables 8 and 12 for VP and VE DDPM respectively, and Tables 9 and
13 for score-based VP and VE-SDE, respectively. For more experimental details including illustration of
samples used to generate the tables can be found in Appendix E.4. Our method is the only method able to
provide high-quality reconstructions independently of the SDE, time discretization or noise level used. On
the other hand, we see that DPS-D and ΠGDM-D are not able to provide high-quality reconstructions for
the VE-SDE. For the continuous time methods, ΠGDM and DPS are outperformed by TMPD for both VE
and VP-SDEs in the majority of tasks.

7 Discussions, limitations and future work

In this paper, we introduced TMPD, a diffusion modelling approach to solve inverse problems and sample
from conditional distributions using unconditional diffusion models. On various tasks on the VP-SDE,
TMPD achieves competitive quality with other methods that aim to solve the noisy, linear inverse problem
while avoiding the expensive, problem-specific training of conditional models. Our method is more versatile
since it can also be used for the VE-SDE, and for large noise and different time discretizations.

TMPD is slower, as each iteration costs more memory and compute due to the Jacobian over the score
model. Even with a diagonal and row-sum approximation to the Jacobian, the method is around 1.5×
slower than DPS and ΠGDM. The row-sum approximation is not suitable for inverse problems with more
complicated, non-diagonal and nonlinear observation operators, therefore, it would be helpful to explore
methods to circumvent heuristics. For example, heuristics can be circumvented by noting in the definition of
Equation 11 does not require the inverse but rather solving a system of linear equations with right hand side
y −Hm0|t(xt). A very recent work (Rozet et al., 2024), uses the natural choice of the conjugate gradient
(CG) method to solve this linear system with success on non-diagonal and nonlinear observation operators,
even for a small number of iterations of the CG method.

11

Published in Transactions on Machine Learning Research (09/2024)

Using flow based methods (Albergo & Vanden-Eijnden, 2022; Lipman et al., 2022) as unconditional priors
and building conditional sampling methods that leverage flows as pretrained models (Ben-Hamu et al., 2024;
Pandey et al., 2024) is related to the approach used in this paper. For example, it is possible to directly
substitute in the TMPD approximation to the PiGDM method applied to flows (Pokle et al., 2023), which
would be a fruitful direction for future work.

Many state of the art diffusion models operate in a latent space which would make any observation operator
nonlinear, and thus linear observations maps do not suffice in the latent diffusion setting. Furthermore, for
inverse problems in general it may be excessive to train a diffusion model for the full data distribution, and
it could be difficult to outperform a diffusion model trained for a specific inverse problem. For example,
using diffusion models trained specifically for the super-resolution problem in a cascade together with noise
conditioning augmentation (Ho et al., 2022) has been extremely effective in progressively generating high-
fidelity images, see e.g., Saharia et al. (2022).

A limitation of our method is that without approximations, the full method may be costly to implement in
high dimensions of image data. On the positive side, our approach does not require any hyperparameter
tuning, does not require static-thresholding of the denoised image, and is more principled when compared to
existing approaches, as shown in Section 4. We show that our method, unlike ΠGDM, does not fail for the
cases where the additive Gaussian noise is significant. We provided a way to analyse similar methods and
our moment approximations can be analysed more rigorously to provide deeper theoretical results for these
kinds of methods. Our future work plans include expanding the analysis we provided in this work.

Acknowledgements

This work has been supported by The Alan Turing Institute through the Theory and Methods Chal-
lenge Fortnights event Accelerating generative models and nonconvex optimisation, which took place on
6-10 June 2022 and 5-9 Sep 2022 at The Alan Turing Institute headquarters. JP and SR acknowledge
funding by Deutsche Forschungsgemeinschaft (DFG) – Project-ID 318763901 - SFB1294. M. Girolami
was supported by a Royal Academy of Engineering Research Chair grant RCSRF1718/6/34, and EPSRC
grants EP/W005816/1, EP/V056441/1, EP/V056522/1, EP/R018413/2, EP/R034710/1, EP/Y028805/1,
and EP/R004889/1. The authors would also like to thank the Isaac Newton Institute for Mathematical
Sciences, Cambridge, for support and hospitality during the programme The Mathematical and Statistical
Foundation of Future Data-Driven Engineering where work on this paper was undertaken. This work was
supported by EPSRC grant no EP/R014604/1. BB gratefully acknowledges the EPSRC for funding this
research through the EPSRC Centre for Doctoral Training in Future Infrastructure and Built Environment:
Resilience in a Changing World (EPSRC grant reference number EP/S02302X/1); and the support of nPlan,
and in particular Damian Borowiec and Peter A. Zachares, for the invaluable facilitation of work that was
completed whilst on internship with nPlan and access to A100 GPUs.

References
Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf Ronneberger,

Lindsay Willmore, Andrew J Ballard, Joshua Bambrick, et al. Accurate structure prediction of biomolec-
ular interactions with alphafold 3. Nature, pp. 1–3, 2024.

Michael S Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic interpolants. arXiv
preprint arXiv:2209.15571, 2022.

Georgios Batzolis, Jan Stanczuk, Carola-Bibiane Schönlieb, and Christian Etmann. Conditional image
generation with score-based diffusion models. arXiv preprint arXiv:2111.13606, 2021.

Heli Ben-Hamu, Omri Puny, Itai Gat, Brian Karrer, Uriel Singer, and Yaron Lipman. D-flow: Differentiating
through flows for controlled generation. arXiv preprint arXiv:2402.14017, 2024.

Christopher M Bishop. Pattern recognition and machine learning, volume 4. Springer, 2006.

12

Published in Transactions on Machine Learning Research (09/2024)

Ashish Bora, Ajil Jalal, Eric Price, and Alexandros G Dimakis. Compressed sensing using generative models.
In International conference on machine learning, pp. 537–546. PMLR, 2017.

Gabriel Cardoso, Yazid Janati El Idrissi, Sylvain Le Corff, and Eric Moulines. Monte carlo guided diffusion
for bayesian linear inverse problems, 2023.

Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, and Anru R Zhang. Sampling is as easy as learning
the score: theory for diffusion models with minimal data assumptions. In International Conference on
Learning Representations, 2023.

Hyungjin Chung, Jeongsol Kim, Michael Thompson Mccann, Marc Louis Klasky, and Jong Chul Ye. Diffu-
sion posterior sampling for general noisy inverse problems. In The Eleventh International Conference on
Learning Representations, 2022a.

Hyungjin Chung, Byeongsu Sim, Dohoon Ryu, and Jong Chul Ye. Improving diffusion models for inverse
problems using manifold constraints. Advances in Neural Information Processing Systems, 35:25683–25696,
2022b.

Hyungjin Chung, Jeongsol Kim, Sehui Kim, and Jong Chul Ye. Parallel diffusion models of operator and
image for blind inverse problems. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 6059–6069, 2023.

Giannis Daras, Yuval Dagan, Alex Dimakis, et al. Score-guided intermediate level optimization: Fast langevin
mixing for inverse problems. In Proceedings of the 39th International Conference on Machine Learning
(ICML), 2022.

Alexander Denker, Francisco Vargas, Shreyas Padhy, Kieran Didi, Simon Mathis, Vincent Dutordoir, Ric-
cardo Barbano, Emile Mathieu, Urszula Julia Komorowska, and Pietro Lio. Deft: Efficient finetuning of
conditional diffusion models by learning the generalised h-transform. arXiv preprint arXiv:2406.01781,
2024.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances in neural
information processing systems, 34:8780–8794, 2021.

Bradley Efron. Tweedie’s formula and selection bias. Journal of the American Statistical Association, 106
(496):1602–1614, 2011. doi: 10.1198/jasa.2011.tm11181. URL https://doi.org/10.1198/jasa.2011.
tm11181. PMID: 22505788.

Berthy T Feng and Katherine L Bouman. Efficient bayesian computational imaging with a surrogate score-
based prior. arXiv preprint arXiv:2309.01949, 2023.

Berthy T Feng, Jamie Smith, Michael Rubinstein, Huiwen Chang, Katherine L Bouman, and William T
Freeman. Score-based diffusion models as principled priors for inverse imaging. arXiv preprint
arXiv:2304.11751, 2023.

Marc Anton Finzi, Anudhyan Boral, Andrew Gordon Wilson, Fei Sha, and Leonardo Zepeda-Núñez. User-
defined event sampling and uncertainty quantification in diffusion models for physical dynamical systems.
In International Conference on Machine Learning, pp. 10136–10152. PMLR, 2023.

Clark R. Givens and Rae Michael Shortt. A class of Wasserstein metrics for probability distributions.
Michigan Mathematical Journal, 31(2):231 – 240, 1984. doi: 10.1307/mmj/1029003026. URL https:
//doi.org/10.1307/mmj/1029003026.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models, 2020.

Jonathan Ho, Chitwan Saharia, William Chan, David J Fleet, Mohammad Norouzi, and Tim Salimans.
Cascaded diffusion models for high fidelity image generation. The Journal of Machine Learning Research,
23(1):2249–2281, 2022.

13

https://doi.org/10.1198/jasa.2011.tm11181
https://doi.org/10.1198/jasa.2011.tm11181
https://doi.org/10.1307/mmj/1029003026
https://doi.org/10.1307/mmj/1029003026

Published in Transactions on Machine Learning Research (09/2024)

Aapo Hyvärinen. Estimation of non-normalized statistical models by score matching. Journal of Machine
Learning Research, 6(24):695–709, 2005. URL http://jmlr.org/papers/v6/hyvarinen05a.html.

Ajil Jalal, Marius Arvinte, Giannis Daras, Eric Price, Alexandros G Dimakis, and Jon Tamir. Robust
compressed sensing mri with deep generative priors. Advances in Neural Information Processing Systems,
34:14938–14954, 2021.

Zahra Kadkhodaie and Eero Simoncelli. Stochastic solutions for linear inverse problems using the prior
implicit in a denoiser. Advances in Neural Information Processing Systems, 34:13242–13254, 2021.

Ioannis Karatzas and Steven Shreve. Brownian motion and stochastic calculus, volume 113. Springer Science
& Business Media, 2012.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adversarial
networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
4401–4410, 2019.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-based
generative models. Advances in neural information processing systems, 35:26565–26577, 2022.

Tero Karras, Miika Aittala, Jaakko Lehtinen, Janne Hellsten, Timo Aila, and Samuli Laine. Analyzing and
improving the training dynamics of diffusion models. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 24174–24184, 2024.

Bahjat Kawar, Gregory Vaksman, and Michael Elad. Snips: Solving noisy inverse problems stochastically.
Advances in Neural Information Processing Systems, 34:21757–21769, 2021.

Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming Song. Denoising diffusion restoration models.
Advances in Neural Information Processing Systems, 35:23593–23606, 2022.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Rémi Laumont, Valentin De Bortoli, Andrés Almansa, Julie Delon, Alain Durmus, and Marcelo Pereyra.
Bayesian imaging using plug & play priors: when Langevin meets Tweedie. SIAM Journal on Imaging
Sciences, 15(2):701–737, 2022.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching for
generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Morteza Mardani, Jiaming Song, Jan Kautz, and Arash Vahdat. A variational perspective on solving inverse
problems with diffusion models. arXiv preprint arXiv:2305.04391, 2023.

Chenlin Meng, Yang Song, Wenzhe Li, and Stefano Ermon. Estimating high order gradients of the data
distribution by denoising. Advances in Neural Information Processing Systems, 34:25359–25369, 2021.

Shakir Mohamed, Mihaela Rosca, Michael Figurnov, and Andriy Mnih. Monte carlo gradient estimation in
machine learning. The Journal of Machine Learning Research, 21(1):5183–5244, 2020.

Kushagra Pandey, Ruihan Yang, and Stephan Mandt. Fast samplers for inverse problems in iterative refine-
ment models. arXiv preprint arXiv:2405.17673, 2024.

Jakiw Pidstrigach, Youssef Marzouk, Sebastian Reich, and Sven Wang. Infinite-dimensional diffusion models
for function spaces. arXiv preprint arXiv:2302.10130, 2023.

Ashwini Pokle, Matthew J Muckley, Ricky TQ Chen, and Brian Karrer. Training-free linear image inversion
via flows. arXiv preprint arXiv:2310.04432, 2023.

Herbert E. Robbins. An Empirical Bayes Approach to Statistics, pp. 388–394. Springer New York, New
York, NY, 1992. ISBN 978-1-4612-0919-5. doi: 10.1007/978-1-4612-0919-5_26. URL https://doi.org/
10.1007/978-1-4612-0919-5_26.

14

http://jmlr.org/papers/v6/hyvarinen05a.html
https://doi.org/10.1007/978-1-4612-0919-5_26
https://doi.org/10.1007/978-1-4612-0919-5_26

Published in Transactions on Machine Learning Research (09/2024)

François Rozet, Gérôme Andry, François Lanusse, and Gilles Louppe. Learning diffusion priors from obser-
vations by expectation maximization. arXiv preprint arXiv:2405.13712, 2024.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic text-
to-image diffusion models with deep language understanding. Advances in Neural Information Processing
Systems, 35:36479–36494, 2022.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. 2021a. URL https:
//openreview.net/forum?id=St1giarCHLP.

Jiaming Song, Arash Vahdat, Morteza Mardani, and Jan Kautz. Pseudoinverse-guided diffusion models
for inverse problems. In International Conference on Learning Representations, 2023. URL https://
openreview.net/forum?id=9_gsMA8MRKQ.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution, 2020.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Yang Song, Liyue Shen, Lei Xing, and Stefano Ermon. Solving inverse problems in medical imaging with
score-based generative models. arXiv preprint arXiv:2111.08005, 2021b.

Tristan SW Stevens, Jean-Luc Robert, Faik C Yu, Jun Seob Shin, and Ruud JG van Sloun. Removing
structured noise with diffusion models. arXiv preprint arXiv:2302.05290, 2023.

Andrew M Stuart. Inverse problems: a bayesian perspective. Acta numerica, 19:451–559, 2010.

Albert Tarantola. Inverse problem theory and methods for model parameter estimation. SIAM, 2005.

Luhuan Wu, Brian Trippe, Christian Naesseth, David Blei, and John P Cunningham. Practical and asymp-
totically exact conditional sampling in diffusion models. Advances in Neural Information Processing Sys-
tems, 36, 2024.

A Proofs for Section 3

A.1 Proof of Proposition 1

In order to prove this result, we adapt Theorem 1 of Meng et al. (2021). We write the proof for generic
exponential family which can be adapted to our case easily. Let us consider

pt|0(xt|x0) = N (xt;
√

αtx0, vtIdx
).

and write pt(xt) =
∫

pt|0(xt|x0)p0(x0)dx0. We are interested in finding the moments of the posterior

p0|t(x0|xt) =
pt|0(xt|x0)p0(x0)

pt(xt)
.

Let us redefine the right handside in this Bayes’ rule using the exponential family parameterisation of the
Gaussian pt|0(xt|x0)

p(η0|xt) =
pt|0(xt|η0)q0(η0)

pt(xt)
,

where η0 = x0
√

αt/vt and

pt|0(xt|η0) = eη⊤
0 xt−ψ(η0)q(xt),

15

https://openreview.net/forum?id=St1giarCHLP
https://openreview.net/forum?id=St1giarCHLP
https://openreview.net/forum?id=9_gsMA8MRKQ
https://openreview.net/forum?id=9_gsMA8MRKQ

Published in Transactions on Machine Learning Research (09/2024)

where

q(xt) = ((2π)dv2d)−1/2e−x⊤
t xt/2vt

Now let

λ(xt) = log pt(xt)
q(xt)

,

we can rewrite

p(η0|xt) = eη⊤
0 xt−ψ(xt)−λ(xt)q0(η0).

It is then easy to show that the moments of η0 are given by (Meng et al., 2021)

E[η0|xt] = Jλ(xt),
E[η⊤

0 |xt] = Jλ(xt)⊤,

E[η0η⊤
0 |xt] = Sλ(xt) + Jλ(xt)Jλ(xt)⊤,

where Jλ is the Jacobian of λ w.r.t. xt and Sλ is the Hessian of λ w.r.t. xt. Recall now that η0 = x0
√

αt/vt
and

λ(xt) = log pt(xt) + x⊤
t xt
2vt

+ C

Jλ(xt) = ∇xt log pt(xt) + xt
vt

Sλ(xt) = ∇2
xt

log pt(xt) + 1
vt

Idx
.

This implies that

E[x0|xt] = 1
√

αt
(xt + vt∇xt log pt(xt)),

which proves the Tweedie’s formula for the mean. For the covariance, note that

Cov(η0|xt) = E[η0η⊤
0 |xt]− E[η0|xt]E[η0|xt]⊤

= ∇2 log pt(xt) + 1
vt

Idx .

Since

Cov(η0|xt) = αt
v2
t

Cov(x0|xt),

we conclude

Cov(x0|xt) = vt
αt

(Idx
+ vt∇2 log pt(xt)),

which concludes the proof. □

B Proofs for Section 4

B.1 Proof of Proposition 3

If pdata is Gaussian, then the full process xt is a Gaussian process. In particular, (x0, xt) are jointly Gaussian:

x0|xt ∝ N (E[x0|xt],V[x0|xt]),

where V denotes the covariance. However, the right-hand side is precisely the approximation we make, due
to Proposition 1. Therefore, the approximation we make in Equation 11 is correct. Adding this to the
learned drift sθ(xt, t) = ∇ log pt(xt), we get an expression for ∇ log pt(xt|y) by Equation 3.

16

Published in Transactions on Machine Learning Research (09/2024)

B.2 Proof of Theorem 1

We first introduce three SDEs.

Conditioned SDEs : The first pair of SDEs is given by an OU process, but started in the conditional
distribution:

dxct = −1
2xctdt + dwt, xc0 ∼ pc0 := pdata(x0|y). (18)

We denote the marginals of xct by pct to differentiate them from the marginals pt of the OU process started
in the correct distribution, defined in Equation 2. Note that pct = pt(xt|y). The time reversal zt = xT−t
then satisfies the SDE

dzt =1
2ztdt +∇zt

log pcT−t(zt)dt + dwt

=1
2ztdt +∇zt log pT−t(zt)dt +∇zt log py|T−t(y|zt)dt + dwt

z0 ∼pcT ,

(19)

where we used Equation 3.

Solutions to the above reverse SDE will sample our target measure pc0 = pdata(x0|y) at final time. Therefore,
we want to study how our algorithm approximates solutions of xc.

Intermediate Gaussian SDE: Instead of bounding the distance of solutions to the above conditioned
reverse SDE to our algorithm, we will instead introduce an intermediate process, which we will later use in
a triangle inequality. The process will be a Gaussian process. Therefore, we denote it with a superscript G.

The process xGt will be defined analogous to Equation 2, but assuming that it is started in N (x0; µ0, Σ0)
instead of pdata. Since the forward SDE in Equation 2 is linear, all of the marginals of xGt , which we denote
by pGt , will also be Gaussian.

Again, we define a conditioned version of x, called xG,c analogous to Equation 18, i.e. xG,c0 will be distributed
as xG0 conditioned on y = y, i.e. pG(x0|y = y). Since we have a linear observation model, pG(x0|y = y) is
still a Gaussian, and therefore xG,c will also be a Gaussian process. Its reverse SDE zG,c is defined through
Equation 19, just that every appearance of p will also have a superscript G,

dzt = 1
2ztdt +∇zt

log pGT−t(zt)dt +∇zt
log pGT−t(y|zt)dt + dwt z0 ∼ pcT , (20)

Algorithm SDE: Finally, we define a third reverse SDE, which is the SDE that we are discretizing when
implementing our algorithm. It is given by

dzt = 1
2ztdt +∇zt

log pT−t(zt)dt + fT−t(zt)dt + dwt z0 ∼ pcT , (21)

where
ft(zt) = ∇zt

E[x0|xt = zt]H⊤(HV[x0|xt = zt]H⊤ + σ2
yI)−1(y−HE[x0|xt = zt]) (22)

and V denotes the conditional covariance. Except for approximation errors due to time discretization and
the initial conditions, this is the SDE we are sampling from in our algorithm. We denote the marginal of zt
by qt. Now we are ready to write our proof.

Proof of Theorem 1. We have that pdata(·|y) = pc0

∥pc0 − qT ∥TV ≤ ∥pc0 − pG,c0 ∥TV + ∥pG,c0 − qT ∥TV

We will bound the second term using Pinsker’s inequality to get a KL term on the path space, as done in
Chen et al. (2023). The proof then consists of bounding the first total variation term and the resulting KL
term.

17

Published in Transactions on Machine Learning Research (09/2024)

Bounding the first term: The first term is the total variation distance between p0(x0|y = y) and
pG0 (xG0 |y = y). Now,

p0(x0 = x0|y = y) =
py|0(y = y|x0 = x0)p0(x0 = x0)

py(y = y)

=
pGy|0(y = y|x0 = x0)pG0 (x0 = x0)

pGy (y = y)
p0(x0 = x0)

pG0 (xG0 = xG0)
pGy (y = y)
py(y = y)

= pGy|0(x0 = x0|y = y) exp(Φ(x0))
pGy (y = y)
py(y = y) ,

where we used that the conditional distribution of y given x0 does not depend on the distribution of x0. For
the last term we get

py(y = y) =
∫

py|0(y = y|x0 = x0)p0(x0 = x0)dx0

=
∫

pGy|0(y = y|x0 = x0)pG0 (x0 = x0) exp(Φ(x0))dx0

= NpGy (y = y),

with N ∈ [1/M, M]. Therefore,

∥pc0 − pG,c0 ∥TV ≤
∫
| pc0

pG,c0
(x0)− 1|pG,c0 (x0)dx0 ≤M2 − 1,

where we used that M − 1 is always greater or equal to 1− 1
M , since M ≥ 1.

Bounding the second term: For the second term we get that pG,c0 is the final marginal of Equation 20,
while qT is the final marginal of Equation 21. We now use Pinsker’s inequality,

∥pG,c0 − qT ∥TV ≤
√

KL(pG,c0 ∥qT).

We denote the path measures induced by Equation 20 and Equation 21 by PG,c and Q respectively. They
have final time marginals pG,c0 and qT . Therefore, we can bound the KL-Divergence of the marginals pG,c

and qT by the KL-Divergence on the full path space:

KL(pG,c0 ∥qT) ≤ KL(PG,c∥Q).

We will assume that we can apply Girsanovs theorem and show later that this is justified. Using Girsanovs
theorem, we can evaluate the Radon-Nikodym derivative dQ

dPG,c on the path space and therefore calculate the
KL-divergence:

KL(PG,c∥Q) =EPG,c [log dPG,c
dQ]

=EPG,c

[
−

∫ t

0
∇ log pt(xt) + fT−t(xt)−∇ log pG,cT−t(xt)dwt

]
+EPG,c

[∫ t

0
∥∇ log pt(xt) + fT−t(xt)−∇ log pG,cT−t(xt)∥2dt

]
=

∫ t

0
EpG,c

t
[∥∇ log pt(xt) + fT−t(xt)−∇ log pG,cT−t(xt)∥2]dt,

18

Published in Transactions on Machine Learning Research (09/2024)

where the term on the second line drops out because stochastic integrals have expectation 0. Now we have
the drift of the Gaussian SDE given by

∇ log pG,ct (xt)
=∇ log pGt (xt) +∇ log pG(y|xGt = xt)
=∇ log pGt (xt)
+∇xtE[xG0 |xGt = xt]H⊤(HV[xG0 |xGt = xt]H⊤ + σ2

yIdy)−1(y−HE[xG0 |xGt = xt])
=:∇ log pGt (xt) + f̃t(xt),

(23)

see Equation 48, while the drift of the algorithm SDE is given by

∇ log pt(xt) + ft(xt), (24)

where ft is given by Equation 22. We see that the difference in the SDE drifts mainly consists of differ-
ences between conditional moments of pt and pGt , as well as the derivatives of the conditional expectations.
Therefore, the main difficulty of the proof is to bound these.

The density of the conditional distribution of p0|t is given by

p0|t(x0|xt) =p0,t(x0, xt)
pt(xt)

=
pG0,t(x0, xt) exp(Φ(x0))

p(xt)
=

pG0|t(x0|xt)pG(xt) exp(Φ(x0))
p(xt)

=pG0|t exp(Φ(x0)− Φ(xt)),
(25)

where

exp(Φt(xt)) = pt(xt)
pGt (xt)

= E[exp(Φ(x0))|xt = xt]. (26)

In the last equality, we used that
dP

dPG (x[0,t]) = exp(Φ(x0)),

where we denoted by P the path measure induced by Equation 18. Therefore, also their marginals pt = PGt
and pt = Pt have relative densities, which are given by integrating out the density to time t, as we did in
Equation 26.

By assumption exp(Φ) is bounded from above and below by M and 1/M respectively, and by Equation 26
the same holds for exp(Φt). Therefore, by Equation 25, pt|0 is absolutely continuous with respect to pGt|0
with a density that is bounded from above and below by M2 and 1/M2 respectively. We now obtain

|E[x0|xt = xt]− E[xG0 |xGt = xt]|

=
∣∣∣∣∫ x0[p(x0|xt)− pG(x0|xt)]dx0

∣∣∣∣ =
∣∣∣∣∫ x0pG(x0|xt)(exp(Φ(x0)− Φ(xt))− 1)dx0

∣∣∣∣
≤(M2 − 1)E[|xG0 ||xGt = xt]

The same holds for every entry of the covariance matrix. We denote

Vij := V[x0|xt]ij ,
V G
ij := V[xG0 |xGt]ij = Nij ,

|Vij − V G
ij | ≤ (M2 − 1)Nij

Nij := E[|xG0,ixG0,j | |xGt]

Now we get that

∥V−VG∥F =

∑
ij

(Vij − V G
ij)2

1/2

≤ (M2 − 1)∥VG∥F max
ij

(Nij).

19

Published in Transactions on Machine Learning Research (09/2024)

We can bound Nij by
Nij ≤ E[(xG0,i)2 + (xG0,j)2|xGt] ≤ Tr(V[xG0 |xGt = xt]). (27)

The latter term does not actually depend on xt, but only on t. Using the formulas in Equation 44 we see
that it can be bounded independently of t (only depending on m0 and Σ0). Therefore, we can put it into a
constant. We get that

∥V−VG∥F ≲ (M2 − 1)∥VG∥F ,

where
a ≲ b ⇔ a ≤ Cb,

with a constant C only depending on m0, Σ0, H, σy and the observation y. Now let v be a vector with
∥v∥ = 1. It holds that

v⊤Vijv =
∫

(v⊤(x0 − E[x0|xt = xt]))2pG0|t(x0|xt) exp(Φ(x0)− Φt(xt))dx0

= 1
M

v⊤V G
ij v + N

∫
(v⊤(E[xG0 |xGt = xt]− E[x0|xt = xt]))2p0|t(x0|xt)dx0

≥v⊤V G
ij v

1
M

(28)

with N ≥ 1/M . Since V and V G are positive semidefinite, symmetric matrices, this implies that all eigen-
values of V are bounded by the lowest eigenvalue of V G times 1/M . We define

T1 = HVGH⊤ + σ2
yIdy (29)

T2 = HVH⊤ + σ2
yIdy

. (30)

We then need to bound
∥T−1

1 −T−1
2 ∥ ≤ ∥T1 −T2∥(∥T−1

1 ∥+ ∥T−1
2 ∥).

We start with

∥T1 −T2∥op ≤ ∥H∥2∥V−VG∥op ≲ ∥V−VG∥F ≲ (M2 − 1)∥VG∥F .

We also used the equivalence of the Frobenius and operator norm here. Due to our eigenvalue bound
(Equation 28) on V, we also get an analogous bound on V + σyIdy

. Therefore,

∥T−1
1 −T−1

2 ∥op ≲ (M2 − 1)∥VG∥F ∥VG∥−1
F (1 + M) ≤ (M2 − 1)(M + 1) ≤M3 − 1

where we used that the operator norm of the inverse, is the inverse of the operator norm and the equivalence
of the operator norm to the Frobenius norm.

Finally, we need to bound

∇xt

∫
x0p(x0|xt)dx0

=
∫

x0∇xt
pG(x0|xt) exp(Φ(x0)− Φ(xt))dx0

=
∫

x0 exp(Φ(x0)− Φ(xt))∇xt
pG(x0|xt)dx0 +

∫
x0∇xt

Φ(xt) exp(Φ(x0)− Φ(xt))pG(x0|xt)dx0

=
∫

x0 exp(Φ(x0)− Φ(xt))∇xt
pG(x0|xt)dx0 +∇xt

Φ(xt)E[x0|xt = xt].

(31)

20

Published in Transactions on Machine Learning Research (09/2024)

Also ∥∥∥∥∫
x0 exp(Φ(x0)− Φ(xt))∇xtp

G(x0|xt)dx0 −∇xtE[xG0 |xGt = xt]
∥∥∥∥

=
∥∥∥∥∫
∇xt

pG(x0|xt)x⊤
0 (exp(Φ(x0)− Φ(xt))− 1)dx0

∥∥∥∥
≤(M2 − 1)

∫
pG(x0|xt)∥∇ log pG(x0|xt)x⊤

0 ∥dx0

≤(M2 − 1)(
∫

pG(x0|xt)∥∇ log pG(x0|xt)x⊤
0 ∥dx0)1/2

≤(M2 − 1)(
∫

pG(x0|xt)x⊤
0 Σ−1

0|t (x0 −mxt

0|t)dx0)1/2

≲(M2 − 1)(
∫

pG(x0|xt)(x0 −mxt

0|t)
⊤Σ−1

0|t (x0 −mxt

0|t)dx0)1/2 ≲ ∥xt∥(M2 − 1)
√

dx

≲∥xt∥(M2 − 1),

(32)

here we used that we can upper bound the operator norm of a positive semidefinite matrix by its trace from
the third to the fourth line. We denoted by mxt

0|t and Σ0|t the mean and covariance of pG(xG0 |xGt = xt).
From the second to last to the last line we used that the mxt

0|t depends on xt linearly, and the magnitude of
the linear dependence can be bounded uniformly in t (see Equation 44). The integral in the last line is the
variance of a standard normal random variable, which evaluates to dx. Furthermore,

∇Φt(xt) = E[∇Φ0(x0)|xt = xt] ≤ L,

see for example the Proof of Theorem 1 in Pidstrigach et al. (2023). Therefore,

∥∇xt
E[xG0 |xGt = xt]−∇xt

E[x0|xt = xt]∥
≲∥xt∥(M2 − 1) + L∥E[x0|xt = xt]∥
≤∥xt∥(M2 − 1) + L(∥E[x0|xt = xt]− E[xG0 |xGt = xt]∥+ ∥E[xG0 |xGt = xt]∥)
≲∥xt∥(M2 − 1) + L(M2 − 1 + ∥xt∥) = ∥xt∥(M2 − 1 + L) + (M2 − 1)L =: Bxt

Furthermore, from Equation 31 we see that

∥∇xtE[x0|xt = xt]∥ ≤∥xt∥(M2 − 1) + L(M2 − 1 + ∥xt∥) = Bxt

too. We now subtract the full drifts in Equation 23 and Equation 24 and arrive at

∥∇f̃(xt)− ft(xt)∥
≤Bxt × ∥T−1

1 (y −HE[xG0 |xGt = xt])∥
+ Bxt

∥T−1
1 −T−1

2 ∥op∥y −HE[xG0 |xGt = xt]∥
+ Bxt

∥T−1
2 ∥op∥HE[xG0 |xGt = zt]−HE[x0|xt = zt]∥

≲Bxt
+ Bxt

(M3 − 1) + Bxt
M(M2 − 1)

≤Bxt(M3 − 1) = (M5 − 1)(∥xt∥+ L) + (M3 − 1)L∥xt∥.

Furthermore, we get that

∥∇ log pGt (xt)−∇ log pt(xt)∥ ≤ ∥∇ log pGt (xt)
pt(xt)

∥ ≤ ∥∇xtΦt(xt)∥ ≤ L.

Plugging in Equation 23, we get that

∥∇ log pt(xt) + ft(xt)− pG,ct (xt)∥ ≤ (M5 − 1)(∥xt∥+ L) + (M3 − 1)L∥xt∥+ L.

Using this expression, we see that the drift change is linear in ∥xt∥. We now want to apply an iterated
version of Novikov’s condition to show that our application of Girsanov’s Theorem is justified. To that end,

21

Published in Transactions on Machine Learning Research (09/2024)

we follow the argument Karatzas & Shreve (2012, Corollary 3.5.16). We repeat it here for completeness. We
see that

EPG,c

[
exp

(
1
2

∫ ti+1

ti

∥∇ log pt(xt) + ft(xt)−∇ log pG,ct (xt)∥2dt

)]
≤EPG,c

[
exp

(
c

∫ ti+1

ti

1 + ∥xt∥2dt

)]
.

Since the expectation is regarding a Gaussian random variable xt, we can make it finite as long as we pick
∆i = ti+1 − ti small enough. By setting t0 = 0 and t1 > 0, we can show equivalence on [t0, t1]. We can then
iterate this procedure, to get equivalence on [t1, t2] and so on. Since the lowest and highest eigenvalues of
Σt are bounded from below and above respectively, and mt is also bounded, the ∆i can be bounded from
below. Therefore, we get equivalence on [0, T] this way in at most ⌈T/∆⌉ steps.

Furthermore, we see that the likelihood KL-divergence can be bounded by

EPG,c

[
1
2

∫ t

0
∥∇ log pt(xt) + ft(xt)−∇ log pG,ct (xt)∥2dt

]
≲T ((M5 − 1)(L + 1) + (M3 − 1)L + L) ≤ T ((M5 − 1)(L + 1) + L),

where we used that the mean and covariance of the Gaussian process xt (under PG,c) can be bounded by a
constant only depending on y, Σt and mt. Taking the square root proves our theorem.

C Variance Exploding SDE (time-rescaled Brownian motion)

A second example of an SDE used frequently in denoising-diffusion is the Variance Exploding (Song et al.,
2020) or time-rescaled Brownian motion, is

dxt =
√

dv(t)
dt

dwt, x0 ∼ p0 = pdata (33)

where (wt)t∈[0,T] is a Brownian motion and v : R≥0 → R≥0 is an increasing function where v(0) = 0. The
transition kernel of the time-rescaled Brownian motion is

pt|0(xt|x0) = N (x0, vtIdx), (34)

denoting v(t) = vt. The signal x0 is sampled from a second SDE, the reverse process, given in forward time
as

dxt = −∇xt
log pt(xt)dt−

√
dvt
dt

dw̄t, xT ∼ pT . (35)

D Tweedie’s formula

In this section, we give an alternative derivation of the Tweedie’s formula for VP-SDEs and VE-SDEs.

Tweedie’s formula (Robbins, 1992; Efron, 2011) gives the minimum mean squared error (MMSE) estimator
of x0|xt when xt|x0 is Gaussian and the score ∇xt

log pt(xt) is available. Tweedie’s formula applied to the
time-rescaled SDEs is given below.

D.1 Variance Preserving SDE (time-rescaled Ornstein-Uhlenbeck process)

Using the Variance Preserving SDE or time-rescaled Ornstein-Uhlenbeck process in Equation 2, given the
random variable √

αt
vt

x0 := v0 ∼ pv0 ,

22

Published in Transactions on Machine Learning Research (09/2024)

where, we now define pv0(v0) as the probability density of the random variable v0 evaluated at the realization
v0, then the random variable

xt√
vt

:= vt ∼ N (v0, Idx),

has a marginal probability density evaluated at the realization vt is the convolution of the random variable
v0 with the Gaussian kernel

pvt
(vt) =

∫
ϕ(vt − v0)pv0(v0)dv0.

Then, Tweedie’s formula (Robbins, 1992; Efron, 2011) gives

Ev0∼pv0|vt
[v0] = vt +∇vt

log pvt
(vt)

From continuous change of random variables, pvt
(vt) = pxt

(vt
√

vt)
∣∣∣ dxt

dvt

∣∣∣ = pxt
(xt)
√

vt, giving log pvt
(vt) =

log pxt
(xt) + log√vt, which yields

∇vt
log pvt

(vt) = √vt∇xt
log pxt

(xt).

Now, substituting into Tweedie’s formula,

Ev0∼pv0|vt
[v0] = xt√

vt
+√vt∇xt log pxt(xt),

giving
Ex0∼px0|xt

[x0] = 1
√

αt
xt + 1

√
αt

vt∇xt log pxt(xt).

The covariance is given as (Robbins, 1992; Efron, 2011), Vv0∼pv0|vt
[v0|vt] = I +∇vt∇vt log pvt(vt), where

∇vt
∇vt

log pvt
(vt) = ∇vt

(√vt∇xt
log pxt

(xt)) (36)
= vt∇2

xt
log pxt(xt) (37)

(38)

and so
Vv0∼pv0|vt

[v0] = Idx + vt∇2
xt

log pxt(xt)

giving
Vx0∼px0|xt

[x0] = vt
αt

(Idx + vt∇xt
log pxt

(xt)).

In practice, we make the approximation ∇xt
log pxt

(xt) ≈ sθ(xt, t), giving

Ex0∼px0|xt
[x0] ≈m0|t := 1

√
αt

xt + 1
√

αt
vtsθ(xt, t)

and
Vx0∼px0|xt

[x0] ≈ vt
αt

(Idx + vt∇xt
sθ(xt, t)),

which yields a Gaussian approximation that matches the first and second moments,

px0|xt
(x0|xt) ≈ N

(
m0|t,

vt
αt

(Idx + vt∇xtsθ(xt, t))
)

(39)

= N
(

m0|t,
vt√
αt
∇xt

m0|t

)
. (40)

The matrix vt

αt
(Idx + vt∇xt

sθ(xt, t)) needs to be inverted to calculate the log likelihood, and therefore must
be both symmetric and positive definite for all time, which puts the requirement that sθ(xt, t) can be written
as the negative gradient of a potential, however it is only approximated as such sθ(xt, t) ≈ ∇ log pxt(xt).

23

Published in Transactions on Machine Learning Research (09/2024)

D.2 Variance Exploding SDE (time-rescaled Brownian motion)

Using the Variance Exploding SDE (Song et al., 2020) or time-rescaled Brownian motion, given the random
variable √

1
vt

x0 := v0 ∼ pz0 , (41)

a similar calculation as in D.1 gives

Ex0∼px0|xt
[x0] = xt + vt∇xt

log pxt
(xt),

and
Vx0∼px0|xt

[x0] = vt(Idx + vt∇xt
log pxt

(xt)).
Again, in practice, we make the approximation ∇xt

log pxt
(xt) = sθ(xt, t), giving

Ex0∼px0|xt
[x0] ≈m0|t := xt + vtsθ(xt, t)

and
Vx0∼px0|xt

[x0] ≈ vt(Idx + vt∇xtsθ(xt, t)),
which yields a Gaussian approximation that matches the first and second moments,

px0|xt
(x0|xt) ≈ N

(
m0|t, vt(Idx + vt∇xt

sθ(xt, t))
)

(42)
= N

(
m0|t, vt∇xt

m0|t
)

. (43)

E Algorithmic details and numerics

The code for all of the experiments and instructions to run them are available at github.com/bb515/tmpdjax
and github.com/bb515/tmpdtorch.

Algorithm 1 TMPD-D (Ancestral sampling, VP)
input y, σy

xN ∼ N (0, Idx)
for n = N − 1, . . . , 0 do

m0|t ← 1√
αn

(xn + vnsθ(xn, tn))
my

0|t ←m0|t + vn√
αn
∇xn

m0|tH⊤(H vn√
αn
∇xn

m0|tH⊤ + σ2
yIdy)−1(y−Hm0|t)

zn ∼ N (0, Idx)
σn ←

√
(1− αn−1)βn/(1− αn)

xn−1 ←
√

1−βn(1−αn−1)
1−αn

xn +
√
αn−1βn

1−αn
my

0|t + σnzn
end for

output x0

E.1 Computational Complexity

Let N is the number of noise scales, and let dy is the dimensions of the observation, dx are the dimension
of the image and Ts is the time complexity of evaluating the score network. Computing a vector-Jacobian
product has time complexity Ts. Then, the time complexity of TMPD (not including fast matrix-vector
products) is O(N(d3

y + Tsdy + Ts + Ts)). ΠGDM comes at a smaller computational cost due to needing only
O(1) vector-jacobian-products, instead of O(dy), resulting in a time complexity of O(N(Ts + Ts)). DPS
comes at the same complexity as ΠGDM.

Whereas TMPD requires calculating the Jacobian which has memory complexity of atleast O(dxdy). This is
too large for high resolution image problems where the dimension of the observation is large. In comparison,

24

https://github.com/bb515/tmpdjax
https://github.com/bb515/tmpdtorch

Published in Transactions on Machine Learning Research (09/2024)

the memory complexity of ΠGDM depends on the observation operator, but for the class of problems that
are explored in Song et al. (2023) is O(dx). DPS comes at the same memory complexity as ΠGDM.

As mentioned in the text, we make the following approximation

DTMPD ∇xt log py|t(y|xt) ≈ ∇xtm0|tH⊤(H vt√
αt

diag(∇xtm0|t)H⊤ + σ2
yIdy)−1(y−Hm0|t).

Whilst this approximation does not require a linear solve, taking out the O(Nd3
y) time complexity term,

we would still like to take out the O(NTsdy) time complexity and O(dxdy) memory complexity term from
calculating and storing the Jacobian, respectively, since this is too large for solving high resolution image
applications. A further approximation approximates the diagonal of the Jacobian by the row sum of the
Jacobian which only requires one vector-jacobian product and brings the memory and time complexity of
DTMPD down to that of ΠGDM and DPS. We use this approximation in the image experiments and find
that in practice it is only (1.5 ± 0.1) × slower than ΠGDM and DPS across all of our experiments. The
row sum will be a good approximation of the diagonal when the Jacobian is approximately diagonal, which
happens when there is small linear correlation between observation pixels, which we found to work well for
super-resolution and inpainting. In inpainting, we have further improved the accuracy of the rowsum by
instead of calculating the vector-Jacobian product evaluated at H1, masking out values of the vector in
the vector-Jacobian product using the inpainting observation operator since they won’t contribute to the
diagonal values of the of the variance.

However, heuristics can be circumvented by noting in the definition of Equation 11 does not require the
inverse but rather solving a system of linear equations with right hand side y −Hm0|t(xt). A very recent
work (Rozet et al., 2024), uses the natural choice of the conjugate gradient (CG) method to solve this linear
system noting that HC0|tH⊤ + σ2

yI is symmetric positive definite (SPD) and is therefore compatible with
the conjugate gradient (CG) method. The CG method is an iterative algorithm to solve linear systems of
the form Mv = b where SPD matrix M and vector b are known. Importantly, the CG method only requires
implicit access to M through an operator that performs the matrix-vector product Mv given a vector v. In
our case, the linear system to solve is y −Hm0|t = (HC0|tH⊤ + σ2

yI)v = H
√
α
vt
∇xtm0|tH⊤v + σ2

yIv. The
vector-jacobian product v⊤H∇⊤

xt
m0|t can be cheaply evaluated. In practice, there is no restriction on the

score network to be the gradient of a potential, and the gradient of the score need not be SPD. Due to this
and numerical errors, Rozet et al. (2024) observed that CG method becomes unstable after a large number of
iterations and fails to reach an exact solution. Fortunately, the authors find that using very few iterations (1
to 3) of the CG method as part of the computation of the posterior score approximation leads to significant
improvements over using heuristics for the covariance. Rozet et al. (2024) have successfully applied the CG
method to non-sparse H, such as accelerated MRI (where H is the composition of the Fourier transform and
frequency subsampling).

E.2 Gaussian

When the data distribution p0(x0) is a (multivariate) Gaussian, then the reverse SDE is a linear SDE and we
can calculate all of the terms needed to sample from the target posterior using diffusion explicitly. Moreover,
we can sample from the target posterior using a direct or implicit method such as Cholesky decomposition.
In this simple example, we compare samples from the direct method to various conditional diffusion methods
(TMPD, ΠGDM, DPM), by plotting a sample estimate of the L2 Wasserstein distance between the sample
and the target Gaussian measures (Givens & Shortt, 1984) by using the analytical mean and covariance of
the target distribution and empirical estimate of the mean and covariance of the sample distribution. To
generate p0(x0), we use an equally spaced grid of vectors ui ∈ [−5.0, 5.0]2 for i ∈ 1, 2, ..., 322, pick a Matern
5/2 kernel for the covariance function k(ui, uj) =

(
1 +
√

5|ui − uj |+ 5
3 |ui − uj |2

)
exp

(
−
√

3|ui − uj |
)

which
defines the prior p0(x0) = N (m0, C0) covariance C0 ∈ R1024×1024 where C0ij = k(ui, uj) and we define the
mean as a zero vector m0 = 0 ∈ R1024. To compute analytically the distribution of p0|y(x0|y), we sample
y = Hx0 + z, z ∼ N (0, σ2

yIdy) and use the standard Gaussian formula to calculate the mean and covariance
of x0|y which in this case are a complete description of p0|y(x0|y). The L2 Wasserstein estimate is plotted
over an increasing sample size N ∈ [9, 1500] and for σy = 0.1 in Figure 1.

25

Published in Transactions on Machine Learning Research (09/2024)

We provide an illustration of the mean and uncertainty captured by the diffusion samples using 1500 samples
of each diffusion model to produce a Monte-Carlo estimate of the mean and diagonal variance vector, and
compare these to the exact mean and diagonal variance.

Below, we provide a calculation comparing the exact diffusion posterior for the linear diffusion posterior
sde to the approximations used in ΠGDM (Song et al., 2023) and TMPD. Let us assume that the target
distribution be known p0(x0) = N (m0, C0). Then, via Bayes’ rule,

log p0|t(x0|xt) = log pt|0(xt|x0) + log p0(x0) + constant

=− 1
2(xt −

√
αtx0)⊤(vtIdx)−1(xt −

√
αtx0)

− 1
2(x0 −m0)⊤C−1

0 (x0 −m0) + constant

=− 1
2(√αtx0)⊤(vtIdx)−1(√αtx0) + x⊤

t (vtIdx)−1(√αtx0)

− 1
2x⊤

0 C−1
0 x0 + m⊤

0 C−1
0 x0 + constant

=− 1
2(x0 −mt)⊤Σ−1

t (x0 −mt),

so
p0|t(x0|xt) = N (mt, Σt) (44)

where
Σt =

(
(vt
αt

Idx)−1 + C−1
0

)−1
(45)

and
mt = Σt

(√
αt

vt
xt + C−1

0 m0

)
.

We also have that,
pt(xt) = N (√αtm0, Ct)

where Ct = αtC0 + vtIdx , and thus

log pt(xt) = −1
2(xt −m0

√
αt)⊤C−1

t (xt −m0
√

αt).

From
py|t(y|xt) =

∫
py|0(y|x0)p0|t(x0|xt)dx0 = N (Hmt, HΣtH⊤ + σ2

yIdy),

we have that
log pt(y|xt) = −1

2(y−Hmt)⊤(HΣtH⊤ + σ2
yIdy)−1(y−Hmt).

The posterior score can be calculated (see Cardoso et al. (2023)) from applying Bayes’ theorem,

log pt|y(xt|y) = log pt(xt) + log py|t(y|xt) + Constant,

and taking gradients with respect to the state xt gives

∇xt log pt|y(xt|y) =∇xt log pt(xt) +∇xt log py|t(y|xt) (46)
=− (αtC0 + vtIdx)−1(xt −m0

√
αt) (47)

+
√

αt
vt

Σ⊤
t H⊤(HΣtH⊤ + σ2

yIdy)−1(y−HΣt(
√

αt
vt

xt + C−1
0 m0)). (48)

Setting m0 = 0 in (48) gives,

∇xt log pt|y(xt|y) =− (αtC0 + vtIdx)−1xt (49)

+
√

αt
vt

Σ⊤
t H⊤(HΣtH⊤ + σ2

yIdy)−1(y−
√

αt
vt

HΣtxt) (50)

26

Published in Transactions on Machine Learning Research (09/2024)

E.2.1 Comparison of the exact posterior to the approximation made in Pseudo-Inverse-Guidance

We aim to compare (50), to the approximation used in ΠGDM (Song et al., 2023);

p0|t(x0|xt) ≈ N (m0|t, r2
t Idx),

where m0|t = xt + vt∇xt log pt(xt), which is the minimum mean squared error (MMSE) estimate of x0|xt
and rt is chosen empirically. This gives py|t(y|xt) ≈ N (Hm0|t, r2

tHH⊤ + σ2
yIdy), which in turn gives

∇xt
log pt|y(xt|y) ≈∇xt

log pt(xt) (51)
+∇xt

m0|tH⊤(r2
tHH⊤ + σ2

yIdy)−1(y−Hm0|t) (52)

which is computationally tractable in the standard diffusion model setting where the score is nonlinear and
approximated as ∇xt

log pt(xt) ≈ sθ(xt, t). Substituting in the known score and again setting m0 = 0 score
to compare to the linear case (50) gives,

∇xt
log pt|y(xt|y) ≈∇xt

log pt(xt) (53)
+∇xt

m0|tH⊤(r2
tHH⊤ + σ2

yIdy)−1(y −Hm0|t) (54)
=− (αtC0 + vtIdx)−1xt (55)

+ 1
√

αt
(Idx − vt(αtC0 + vtIdx)−1)H⊤(r2

tHH⊤ + σ2
yIdy)−1 (56)

(y− 1
√

αt
H(Idx − vt(αtC0 + vtIdx)−1)xt) (57)

comparing terms, ΠGDM is making the approximation

∇xt
m0|t = 1

√
αt

Idx −
vt√
αt

(αtC0 + vtIdx)−1 ≈
√

αt
vt

Σt.

Note that since,
√

αt
vt

Σt =
√

αt
vt

(C−1
0 + (vt

αt
Idx)−1)−1 (58)

= 1
vt
√

αt
((αtC0)−1 + (vtIdx)−1)−1 (59)

= 1
vt
√

αt
(vtI− v2

t (αtC0 + vtIdx)−1) Woodbury identity (60)

= 1
√

αt
(I− vt(αtC0 + vtIdx)−1) (61)

= ∇xtm0|t, (62)

this is exact. The other approximation ΠGDM is making is r2
t I ≈ Σt, and note that this approximation is

accurate with r2
t = vt as t → 0 but inaccurate as t → 1. But the exact linear SDE can be recovered by

instead using TMPD,

∇xt
log pt|y(xt|y) =∇xt

log pt(xt) (63)

+∇xtm0|tH⊤(H vt√
αt
∇xtm0|tH⊤ + σ2

yIdy)−1(y−Hm0|t) (64)

=∇xt log pt(xt) (65)

+
√

αt
vt

ΣtH⊤(HΣtH⊤ + σ2
yIdy)−1(y−

√
αt

vt
HΣtxt) (66)

27

Published in Transactions on Machine Learning Research (09/2024)

Table 3: Sliced Wasserstein for the GMM example using the reverse VP-SDEs discretized with Euler-
Maruyama.

σy = 0.01 σy = 0.1 σy = 1.0
dx dy TMPD DTMPD ΠGDM DPS TMPD DTMPD ΠGDM DPS TMPD DTMPD ΠGDM DPS
8 1 1.5 ± 0.5 1.5 ± 0.5 1.5 ± 0.4 5.7 ± 2.2 1.4 ± 0.5 1.4 ± 0.5 1.2 ± 0.4 5.6 ± 2.1 0.9 ± 0.3 0.9 ± 0.3 0.9 ± 0.3 0.9 ± 0.3
8 2 0.7 ± 0.3 3.2 ± 1.4 0.4 ± 0.3 6.2 ± 0.8 0.9 ± 0.3 2.7 ± 1.1 0.5 ± 0.3 6.2 ± 2.4 0.9 ± 0.2 1.8 ± 0.8 1.0 ± 0.3 1.2 ± 0.4
8 4 0.3 ± 0.3 0.6 ± 0.4 0.1 ± 0.1 - 0.3 ± 0.2 0.7 ± 0.4 0.1 ± 0.0 8.4 ± 3.1 0.6 ± 0.2 0.9 ± 0.5 0.2 ± 0.1 0.3 ± 0.2
80 1 2.7 ± 0.7 2.7 ± 0.7 2.9 ± 1.4 9.1 ± 1.3 2.3 ± 0.7 2.3 ± 0.7 2.1 ± 1.1 4.7 ± 1.8 1.5 ± 0.7 1.5 ± 0.7 1.8 ± 0.8 1.9 ± 0.9
80 2 1.0 ± 0.5 3.3 ± 1.0 0.8 ± 0.7 2.2 ± 0.9 1.2 ± 0.5 3.3 ± 1.0 0.8 ± 0.7 6.0 ± 2.1 1.1 ± 0.2 2.2 ± 1.0 1.3 ± 0.5 1.5 ± 0.5
80 4 0.3 ± 0.1 0.9 ± 0.5 0.1 ± 0.0 - 0.4 ± 0.2 1.0 ± 0.5 0.1 ± 0.1 4.4 ± 1.6 0.9 ± 0.2 1.0 ± 0.4 0.4 ± 0.2 0.5 ± 0.3
800 1 3.1 ± 0.7 3.1 ± 0.7 3.2 ± 1.0 6.8 ± 1.2 2.9 ± 0.6 2.9 ± 0.6 2.8 ± 0.7 6.4 ± 1.5 1.5 ± 0.4 1.5 ± 0.4 1.3 ± 0.3 1.3 ± 0.3
800 2 1.3 ± 0.4 3.6 ± 1.2 0.8 ± 0.5 7.4 ± 0.9 1.3 ± 0.3 3.2 ± 1.1 0.8 ± 0.4 6.4 ± 1.9 1.2 ± 0.3 1.9 ± 0.5 1.1 ± 0.3 1.1 ± 0.3
800 4 0.3 ± 0.2 0.9 ± 0.6 0.6 ± 0.5 - 0.4 ± 0.2 0.9 ± 0.6 0.1 ± 0.0 5.8 ± 1.4 0.9 ± 0.2 1.1 ± 0.5 0.4 ± 0.2 0.4 ± 0.2

E.3 GMM

For a given dimension dx, we consider p0 a mixture of 25 Gaussian random variables. The components have
mean µi,j := (8i, 8j, ..., 8i, 8j) ∈ Rdx for(i, j) ∈ −2,−1, 0, 1, 22 and unit variance. We have set the associated
unnormalized weights ωi,j = 1.0. We have set σ2

δ = 10−4.

Note that pt(xt) =
∫

pt|0(xt|x0)p0(x0)dx0. As p0(x0) is a mixture of Gaussians, pt(xt) is also a mixture of
Gaussians with means √αtµi,j and unitary variances. Therefore, using automatic differentiation libraries,
we can calculate ∇xt

log pt(xt). We chose βmax = 500.0 and βmin = 0.1. We use 1000 timesteps for the
time-discretization. For the pair of dimensions and chosen observation noise standard deviation (dx, dy, σy)
the measurement model (y, H) is drawn as follows:

• H: We first draw H̃ ∼ N (0dy×dx , Idy×dx) and compute the SVD decomposition of H̃ = USV⊤.
Then, we sample for (i, j) ∈ −2,−1, 0, 1, 22, si,j according to a uniform in [0, 1]. Finally, we set
H = Udiag(si,j(i,j)∈−2,−1,0,1,22)V⊤.

• y: We then draw x∗ ∼ p0 and set y := Hx∗ + z where z ∼ N (0, σ2
yIdy).

Once we have drawn both x∗ ∼ p0 and (y, H, σy), the posterior can be exactly calculated using Bayes formula
and gives a mixture of Gaussians with mixture components ci,j and associated weights ω̃i,j ,

ci,j := N (Σ(H⊤y/σ2
y + µi,j), Σ), (67)

ω̃i := ωiN (y; Hµi,j , σ2
δIdx + HH⊤), (68)

where Σ = (Idx + 1
σ2

δ

H⊤H)−1.

Euler-Maruyama solver To compare the posterior distribution estimated by each algorithm with the target
posterior distribution, we use 104 slices for the SW distance and compare 1000 samples of the continuous
SDEs defined by the TMPD, DTMPD, Song et al. (2023) and Chung et al. (2022a) approximations obtained
using 1000 Euler-Maruyama time-steps with 1000 samples of the true posterior distribution. Table 3 indicates
the Central Limit Theorem (CLT) 95% confidence intervals obtained by considering 20 randomly selected
measurement models (H) for each setting (dx, dx, σy).

DDPM Table 4 compares 1000 samples of TMPD-D, ΠGDM-D and DPS-D which are obtained using 1000
denoising steps and is the extended version of Table 1. We follow Cardoso et al. (2023) and compute the sliced
Wasserstein distance using Wasserstein-1 distance. Figure 2 shows the first two dimensions of the estimated
posterior distributions corresponding to the configurations (80, 1) and (800, 1) from Table 4 for one of the
randomly generated measurement model (H). These illustrations give us insight into the behaviour of the
algorithms and their accuracy in estimating the posterior distribution. We observe that TMPD-D (and the
Euler-Maruyama method TMPD) is the only method that covers the modes of the posterior distribution.
Finally, a direct comparison to Cardoso et al. (2023) using their original experimental setup is shown in
Table 5, which shows competitive performance for posterior sampling compared to Sequential Monte-Carlo,
an exact sampling method.

28

Published in Transactions on Machine Learning Research (09/2024)

Table 4: Sliced Wasserstein for the GMM example using VP DDPM.

σy = 0.01 σy = 0.1 σy = 1.0
dx dy TMPD-D DTMPD-D ΠGDM-D DPS-D TMPD-D DTMPD-D ΠGDM-D DPS-D TMPD-D DTMPD-D ΠGDM-D DPS-D
8 1 1.6 ± 0.5 1.8 ± 0.6 2.6 ± 0.9 4.7 ± 1.5 1.4 ± 0.5 1.8 ± 0.7 2.2 ± 0.9 4.7 ± 1.6 0.9 ± 0.3 0.9 ± 0.2 1.5 ± 0.4 5.2 ± 1.3
8 2 0.7 ± 0.3 3.3 ± 1.5 2.1 ± 1.0 1.8 ± 1.5 0.9 ± 0.3 2.7 ± 1.1 1.6 ± 0.6 1.5 ± 0.9 0.9 ± 0.2 1.7 ± 0.8 2.3 ± 0.4 3.5 ± 1.2
8 4 0.3 ± 0.3 0.4 ± 0.2 3.8 ± 2.3 0.7 ± 0.6 0.3 ± 0.2 0.5 ± 0.2 3.8 ± 2.2 0.8 ± 0.6 0.6 ± 0.2 0.9 ± 0.5 1.8 ± 0.3 2.5 ± 0.9
80 1 2.7 ± 0.7 2.8 ± 0.9 3.2 ± 1.0 5.6 ± 1.8 2.3 ± 0.7 2.6 ± 0.9 2.9 ± 0.8 5.1 ± 1.8 1.5 ± 0.7 1.4 ± 0.6 1.6 ± 0.5 6.9 ± 1.8
80 2 1.0 ± 0.5 3.2 ± 1.1 2.8 ± 1.3 3.2 ± 1.9 1.2 ± 0.5 3.2 ± 1.1 2.7 ± 1.2 3.1 ± 1.9 1.1 ± 0.2 2.1 ± 1.0 1.4 ± 0.2 3.9 ± 1.2
80 4 0.3 ± 0.1 0.7 ± 0.4 0.6 ± 0.4 1.2 ± 1.1 0.4 ± 0.2 0.8 ± 0.4 0.6 ± 0.4 1.0 ± 1.1 0.9 ± 0.3 0.9 ± 0.4 0.9 ± 0.2 1.7 ± 0.6
800 1 3.1 ± 0.7 3.7 ± 0.7 3.5 ± 1.1 5.8 ± 1.6 2.9 ± 0.6 3.4 ± 0.7 3.3 ± 0.9 5.7 ± 1.6 1.5 ± 0.4 1.4 ± 0.4 2.0 ± 0.4 6.8 ± 1.0
800 2 1.4 ± 0.4 3.5 ± 0.7 3.1 ± 1.1 3.5 ± 1.7 1.3 ± 0.3 3.4 ± 0.7 2.7 ± 0.9 3.1 ± 1.4 1.2 ± 0.3 2.0 ± 0.4 2.0 ± 0.5 4.7 ± 1.3
800 4 0.4 ± 0.2 0.7 ± 0.5 0.4 ± 0.2 1.4 ± 1.0 0.4 ± 0.2 0.8 ± 0.5 0.4 ± 0.2 1.3 ± 0.9 0.9 ± 0.2 1.1 ± 0.5 0.6 ± 0.2 0.9 ± 0.4

Table 5: Comparison to Cardoso et al. (2023) using their original experimental setup. TMPD-D and
DTMPD-D use 1000 steps of DDPM.

dx dy MCGdiff TMPD-D DTMPD-D
8 1 1.43 ± 0.55 1.83 ± 0.5 1.82 ± 0.5
8 2 0.49 ± 0.24 0.95 ± 0.3 2.27 ± 0.9
8 4 0.38 ± 0.25 0.61 ± 0.3 0.72 ± 0.4
80 1 1.39 ± 0.45 2.81 ± 0.8 2.81 ± 0.8
80 2 0.67 ± 0.24 1.14 ± 0.4 2.82 ± 0.9
80 4 0.28 ± 0.14 0.95 ± 0.5 0.95 ± 0.5
800 1 2.40 ± 1.00 2.96 ± 0.6 2.96 ± 0.6
800 2 1.31 ± 0.60 1.60 ± 0.5 3.07 ± 1.1
800 4 0.47 ± 0.19 0.60 ± 0.2 0.84 ± 0.5

E.4 Inpainting and super-resolution

Since the DPS-D method was derived and tuned specifically for VP-SDE, we look at the VP-SDE experiments
in Section E.4.1 separately from the VE-SDE experiments in Section E.4.2. In each comparison, we use the
same score network for each method and the same sampling or discretization numerical method. All methods
are discretized using 1000 denoising steps. For the Markov chain methods we use DDPM and for the SDE
methods we use an Euler-Maruyama discretization. In contrast to DPS(-D) ΠGDM(-D), we observe the
robustness of our method across both SDEs and inpainting and super-resolution observation maps.

E.4.1 VP-SDE

Imagenet 256×256 For VP-SDE, our Imagenet 256×256 experiment compares SNIPS (Kawar et al., 2021)
to diffusion methods (DDPM) DTMPD-D, DPS-D and ΠGDM-D, and results are shown in Table 6.

FFHQ 256×256 For VP-SDE, our FFHQ 256×256 experiment compares diffusion methods (DDPM)
DTMPD-D to DPS-D and ΠGDM-D, and results are shown in Table 7. Fig 3, Fig 4 and Fig 5 are a
visual summary of Table 7, plotting the LPIPS, SSIM and FID metrics against increasing noise for different
observation maps. Some uncurated samples that were used to generate Table 7 are shown in Fig 6, 7 and 8.
We observe that all methods can successfully produce high quality reconstructions in the low noise regime

Table 6: Comparison to SNIPS. 4× noiseless and noisy (images have an additive noise of σy = 0.05) super-
resolution results on ImageNet 1K (256 × 256).

Method 4 × noiseless super-resolution 4 × noisy super-resolution
PSNR↑ SSIM↑ KID↓ PSNR↑ SSIM↑ KID↓

SNIPS 17.6 0.22 35.2 16.3 0.14 67.8
ΠGDM-D 26.0 0.75 1.30 20.7 0.43 17.8
DPS-D 25.1 0.69 4.08 23.4 0.63 3.09
DTMPD-D 26.0 0.75 1.10 23.1 0.62 8.85

29

Published in Transactions on Machine Learning Research (09/2024)

Table 7: Quantitative evaluation of solving linear inverse problems for VP DDPM with increasing noise on
FFHQ 256×256-1k validation dataset.

Problem Method FID ↓ LPIPS ↓ MSE ↓ PSNR ↑ SSIM ↑
σy = 0.01 DTMPD-D 29.6 0.230 ± 0.034 1.60e-03 ± 7.74e-04 28.4 ± 1.9 0.784 ± 0.046

4× ‘bicubic’ DPS-D 31.4 0.234 ± 0.048 1.90e-03 ± 1.07e-03 27.8 ± 2.2 0.776 ± 0.062

super-resolution ΠGDM-D 29.7 0.198 ± 0.037 1.56e-03 ± 8.72e-04 28.6 ± 2.1 0.809 ± 0.051

σy = 0.05 DTMPD-D 32.7 0.304 ± 0.043 2.90e-03 ± 5.64e-03 26.0 ± 1.7 0.699 ± 0.060

4× ‘bicubic’ DPS-D 29.3 0.280 ± 0.051 2.90e-03 ± 5.73e-03 26.0 ± 1.8 0.719 ± 0.066

super-resolution ΠGDM-D 45.1 0.311 ± 0.047 3.08e-03 ± 5.79e-03 25.7 ± 1.7 0.682 ± 0.062

σy = 0.1 DTMPD-D 38.0 0.348 ± 0.048 4.33e-03 ± 4.72e-03 24.0 ± 1.6 0.635 ± 0.066

4× ‘bicubic’ DPS-D 30.9 0.318 ± 0.051 4.06e-03 ± 5.38e-03 24.4 ± 1.6 0.664 ± 0.069

super-resolution ΠGDM-D 119.6 0.589 ± 0.047 1.10e-02 ± 5.56e-03 19.7 ± 1.0 0.376 ± 0.055

σy = 0.2 DTMPD-D 45.6 0.401 ± 0.049 7.03e-03 ± 2.56e-03 21.8 ± 1.5 0.559 ± 0.071

4× ‘bicubic’ DPS-D 38.1 0.385 ± 0.061 7.59e-03 ± 3.50e-03 21.6 ± 1.8 0.570 ± 0.081

super-resolution ΠGDM-D 295.7 0.780 ± 0.033 5.65e-02 ± 5.20e-03 12.5 ± 0.4 0.117 ± 0.035

σy = 0.01 DTMPD-D 25.7 0.153 ± 0.033 9.04e-03 ± 7.25e-03 21.4 ± 2.9 0.829 ± 0.031

‘box’ mask DPS-D 31.5 0.175 ± 0.038 7.79e-03 ± 6.89e-03 22.4 ± 3.3 0.833 ± 0.035

inpainting ΠGDM-D 143.8 0.247 ± 0.024 2.58e-02 ± 7.11e-03 16.1 ± 1.3 0.759 ± 0.017

σy = 0.05 DTMPD-D 27.0 0.240 ± 0.038 9.68e-03 ± 6.62e-03 20.9 ± 2.6 0.760 ± 0.036

‘box’ mask DPS-D 30.7 0.228 ± 0.046 8.28e-03 ± 7.93e-03 22.0 ± 3.1 0.782 ± 0.047

inpainting ΠGDM-D 159.3 0.448 ± 0.046 2.71e-02 ± 7.91e-03 15.8 ± 1.2 0.504 ± 0.080

σy = 0.1 DTMPD-D 29.6 0.292 ± 0.049 1.06e-02 ± 1.15e-02 20.6 ± 2.5 0.709 ± 0.053

‘box’ mask DPS-D 29.3 0.259 ± 0.049 8.03e-03 ± 6.97e-03 22.0 ± 2.9 0.746 ± 0.051

inpainting ΠGDM-D 165.7 0.539 ± 0.083 2.84e-02 ± 6.57e-03 15.6 ± 1.0 0.418 ± 0.185

σy = 0.2 DTMPD-D 33.8 0.346 ± 0.061 1.13e-02 ± 8.65e-03 20.2 ± 2.4 0.649 ± 0.070

‘box’ mask DPS-D 34.9 0.337 ± 0.056 8.01e-03 ± 4.22e-03 21.5 ± 2.0 0.662 ± 0.067

inpainting ΠGDM-D 199.7 0.590 ± 0.099 3.17e-02 ± 1.01e-02 15.2 ± 1.4 0.461 ± 0.202

σy = 0.01 DTMPD-D 24.6 0.090 ± 0.033 4.87e-04 ± 6.27e-04 34.3 ± 2.8 0.931 ± 0.036

‘random’ mask DPS-D 32.7 0.137 ± 0.033 5.57e-04 ± 5.02e-04 33.4 ± 2.6 0.913 ± 0.031

inpainting ΠGDM-D 24.7 0.069 ± 0.023 4.71e-04 ± 5.18e-04 34.5 ± 3.0 0.940 ± 0.026

σy = 0.05 DTMPD-D 27.1 0.187 ± 0.032 8.86e-04 ± 4.84e-04 30.9 ± 1.8 0.851 ± 0.033

‘random’ mask DPS-D 38.0 0.256 ± 0.049 1.74e-03 ± 1.04e-03 28.1 ± 2.0 0.794 ± 0.056

inpainting ΠGDM-D 44.8 0.315 ± 0.043 2.15e-03 ± 6.65e-04 26.8 ± 1.2 0.647 ± 0.068

σy = 0.1 DTMPD-D 29.9 0.247 ± 0.038 1.74e-03 ± 8.94e-03 28.7 ± 1.8 0.787 ± 0.049

‘random’ mask DPS-D 34.8 0.274 ± 0.054 2.21e-03 ± 1.17e-03 27.1 ± 2.1 0.763 ± 0.065

inpainting ΠGDM-D 62.7 0.490 ± 0.059 6.71e-03 ± 1.80e-03 22.0 ± 1.7 0.410 ± 0.129

σy = 0.2 DTMPD-D 34.6 0.306 ± 0.046 2.71e-03 ± 2.89e-03 26.1 ± 1.7 0.714 ± 0.060

‘random’ mask DPS-D 35.9 0.317 ± 0.059 3.59e-03 ± 1.73e-03 24.9 ± 1.9 0.701 ± 0.073

inpainting ΠGDM-D 104.1 0.623 ± 0.109 1.77e-02 ± 8.62e-03 18.6 ± 3.8 0.316 ± 0.218

but, visually, only DPS-D and DTMPD-D successfully produce high quality reconstructions in the high noise
regime.

Whereas DPS-D requires a hyperparameter search, there are no hyperparameters for DTMPD-D. For ΠGDM-
D we use the algorithm and default hyperparameters as described in Song et al. (2023). For DPS-D we use
the algorithm in the codebase provided by the authors Chung et al. (2022a) and we use their suggested
hyperparameters for this task, such as step-size and using static-thresholding (clipping the denoised image
at each step to a range [−1, 1]) whereas DTMPD-D does not require any hyperparameter tuning or static-
thresholding.

CIFAR10 64×64 Our CIFAR-10 64×64 experiment compares TMPD to DPS and ΠGDM, and also com-
pares diffusion methods (DDPM) in Table 8 and score-based methods (discretized with Euler-Maruyama)
in Table 9. Various samples used to produce the figures in Tables 8 and 9 are shown in Fig 10 and 11.

We found the hyperparameter suggested for the DDIM method for the VP-SDE in Song et al. (2023)
r2
t = vt/(αt + vt), which is calculated by assuming the data distribution p0(x0) is a standard normal and

30

Published in Transactions on Machine Learning Research (09/2024)

Figure 3: 4× bicubic super-resolution FID vs LPIPS (left) and SSIM (right) using the VP-SDE on FFHQ-1k
validation dataset for increasing observation noise.

Figure 4: ‘box’ mask inpainting FID vs LPIPS (left) and SSIM (right) using the VP-SDE on FFHQ-1k
validation dataset for increasing observation noise.

then calculating the posterior variance, to give unstable solutions for the algorithm given in Song et al.
(2023). To make the method stable, we instead plug the ΠGDM posterior score approximation into a DDIM
sampler in a similar way to Algorithm 1, which, for the VPSDE, brings the algorithm ΠGDM-D closer to
our method; we are then able to choose r2

t = vt/(αt + vt) for both VP DDIM and VP-SDE methods.

For DDPM we use the step-size constant suggested in Chung et al. (2022a) for inpainting, ζi = ζ ′/∥y −
Hm0|t∥, where we tune ζ ′ over the suggested range of ζ ′ ∈ [0.1, 1.0] in Chung et al. (2022a) across LPIPS,
MSE, PSNR and SSIM, as shown in Fig. 9 for each inverse problem (each line in the Tables 8 and 9).

E.4.2 VE-SDE

FFHQ 256×256 For VE-SDE, our FFHQ 256×256 experiment compares diffusion methods (DDPM)
DTMPD-D to DPS-D and ΠGDM-D, and results are shown in Table 10. Fig 12 and Fig 13 are a visual
summary of Table 10, plotting the LPIPS, SSIM and FID metrics against increasing noise. Some uncurated
samples that were used to generate Table 10 are shown in Fig 14 and 15. Since the DPS-D and PiGDM
algorithms were developed for the VP-SDE, the method is not performant for the VE-SDE, and the ΠGDM

31

Published in Transactions on Machine Learning Research (09/2024)

Table 8: Noisy observation inpainting and super-resolution for VP DDPM on CIFAR-10 1k validation set.
Problem Method FID ↓ LPIPS ↓ MSE ↓ PSNR ↑ SSIM ↑
σy = 0.01 DTMPD-D 33.7 0.090 ± 0.048 0.007 ± 0.034 23.8 ± 3.7 0.784 ± 0.073

‘box’ mask DPS-D 31.5 0.064 ± 0.033 0.004 ± 0.003 25.8 ± 3.6 0.841 ± 0.068

inpainting ΠGDM-D 37.1 0.316 ± 0.108 0.012 ± 0.029 19.9 ± 1.9 0.546 ± 0.143

σy = 0.01 DTMPD-D 40.4 0.272 ± 0.071 0.028 ± 0.020 16.4 ± 3.0 0.584 ± 0.071

‘half’ mask DPS-D 33.1 0.221 ± 0.072 0.028 ± 0.021 16.8 ± 3.6 0.637 ± 0.093

inpainting ΠGDM-D 35.8 0.397 ± 0.103 0.031 ± 0.020 15.9 ± 2.8 0.419 ± 0.132

σy = 0.05 DTMPD-D 35.9 0.128 ± 0.061 0.006 ± 0.011 23.5 ± 3.3 0.763 ± 0.079

‘box’ mask DPS-D 31.1 0.078 ± 0.037 0.004 ± 0.003 25.5 ± 3.3 0.830 ± 0.070

inpainting ΠGDM-D 36.3 0.319 ± 0.110 0.012 ± 0.031 20.0 ± 1.9 0.545 ± 0.142

σy = 0.05 DTMPD-D 40.4 0.292 ± 0.075 0.029 ± 0.020 16.4 ± 3.1 0.572 ± 0.076

‘half’ mask DPS-D 32.5 0.230 ± 0.075 0.028 ± 0.023 16.7 ± 3.5 0.626 ± 0.096

inpainting ΠGDM-D 35.6 0.398 ± 0.109 0.032 ± 0.021 15.9 ± 2.8 0.421 ± 0.133

σy = 0.1 DTMPD-D 38.9 0.168 ± 0.072 0.007 ± 0.012 22.5 ± 2.9 0.728 ± 0.081

‘box’ mask DPS-D 31.6 0.101 ± 0.043 0.004 ± 0.003 24.5 ± 2.9 0.807 ± 0.078

inpainting ΠGDM-D 36.3 0.318 ± 0.109 0.012 ± 8.553 19.7 ± 1.8 0.546 ± 0.140

σy = 0.1 DTMPD-D 43.8 0.350 ± 0.088 0.030 ± 0.028 16.2 ± 2.9 0.547 ± 0.076

‘half’ mask DPS-D 33.0 0.522 ± 0.097 0.031 ± 0.022 16.3 ± 3.3 0.602 ± 0.097

inpainting ΠGDM-D 36.2 0.276 ± 0.085 0.034 ± 0.023 15.5 ± 2.7 0.412 ± 0.128

σy = 0.01 DTMPD-D 33.2 0.117 ± 0.051 0.004 ± 0.004 24.7 ± 3.0 0.835 ± 0.071

2× ‘nearest’ DPS-D 32.5 0.099 ± 0.044 0.004 ± 0.003 25.1 ± 3.1 0.847 ± 0.073

super-resolution ΠGDM-D 35.6 0.407 ± 0.118 0.016 ± 0.006 18.2 ± 1.7 0.442 ± 0.152

σy = 0.01 DTMPD-D 41.5 0.278 ± 0.084 0.011 ± 0.006 20.4 ± 2.7 0.563 ± 0.114

4× ‘bicubic’ DPS-D 33.9 0.220 ± 0.079 0.010 ± 0.006 20.8 ± 3.0 0.609 ± 0.135

super-resolution ΠGDM-D 39.4 0.279 ± 0.081 0.011 ± 0.006 20.1 ± 2.5 0.546 ± 0.111

σy = 0.05 DTMPD-D 33.9 0.156 ± 0.065 0.005 ± 0.025 24.1 ± 2.8 0.810 ± 0.079

2× ‘nearest’ DPS-D 34.4 0.127 ± 0.048 0.004 ± 0.003 24.4 ± 2.7 0.825 ± 0.070

super-resolution ΠGDM-D 35.1 0.407 ± 0.118 0.016 ± 0.006 18.2 ± 1.7 0.440 ± 0.153

σy = 0.05 DTMPD-D 38.3 0.332 ± 0.093 0.013 ± 0.032 19.6 ± 2.4 0.501 ± 0.116

4× ‘bicubic’ DPS-D 38.2 0.265 ± 0.087 0.011 ± 0.006 20.2 ± 2.4 0.567 ± 0.128

super-resolution ΠGDM-D 23.2 0.522 ± 0.101 0.034 ± 0.012 15.0 ± 1.7 0.215 ± 0.114

σy = 0.1 DTMPD-D 35.0 0.208 ± 0.085 0.006 ± 0.005 23.1 ± 2.5 0.760 ± 0.091

2× ‘nearest’ DPS-D 32.1 0.152 ± 0.058 0.005 ± 0.003 23.8 ± 2.5 0.802 ± 0.074

super-resolution ΠGDM-D 35.0 0.407 ± 0.122 0.017 ± 0.006 18.1 ± 1.8 0.435 ± 0.150

σy = 0.1 DTMPD-D 36.8 0.378 ± 0.102 0.015 ± 0.007 18.7 ± 2.1 0.435 ± 0.121

4× ‘bicubic’ DPS-D 34.8 0.308 ± 0.095 0.013 ± 0.006 19.4 ± 2.2 0.513 ± 0.132

super-resolution ΠGDM-D 23.0 0.521 ± 0.104 0.035 ± 0.013 14.9 ± 1.7 0.212 ± 0.117

32

Published in Transactions on Machine Learning Research (09/2024)

Table 9: Noisy observation inpainting and super-resolution for the reverse VP-SDEs on CIFAR-10 1k vali-
dation set.

Problem Method FID ↓ LPIPS ↓ MSE ↓ PSNR ↑ SSIM ↑
σy = 0.01 TMPD 33.2 0.088 ± 0.050 0.007 ± 0.019 23.8 ± 3.7 0.785 ± 0.071

‘box’ mask DPS 61.8 0.646 ± 0.078 0.111 ± 0.049 9.9 ± 1.9 0.050 ± 0.068

inpainting ΠGDM 34.8 0.073 ± 0.035 0.004 ± 0.004 25.1 ± 3.5 0.816 ± 0.068

σy = 0.01 TMPD 37.4 0.267 ± 0.068 0.030 ± 0.036 16.3 ± 3.0 0.581 ± 0.070

‘half’ mask DPS 65.8 0.645 ± 0.079 0.112 ± 0.050 9.9 ± 1.9 0.052 ± 0.069

inpainting ΠGDM 33.3 0.236 ± 0.068 0.027 ± 0.021 17.0 ± 3.6 0.620 ± 0.087

σy = 0.05 TMPD 33.5 0.117 ± 0.052 0.006 ± 0.017 23.5 ± 3.2 0.763 ± 0.074

‘box’ mask DPS 62.2 0.647 ± 0.078 0.110 ± 0.048 10.0 ± 1.9 0.055 ± 0.067

inpainting ΠGDM 35.2 0.103 ± 0.047 0.004 ± 0.003 24.8 ± 2.9 0.798 ± 0.074

σy = 0.05 TMPD 37.9 0.286 ± 0.073 0.030 ± 0.023 16.2 ± 3.1 0.567 ± 0.075

‘half’ mask DPS 65.1 0.647 ± 0.080 0.117 ± 0.054 9.7 ± 2.0 0.052 ± 0.063

inpainting ΠGDM 34.1 0.256 ± 0.078 0.027 ± 0.022 16.8 ± 3.3 0.605 ± 0.094

σy = 0.1 TMPD 35.1 0.159 ± 0.065 0.007 ± 0.006 22.6 ± 2.8 0.731 ± 0.078

‘box’ mask DPS 61.9 0.647 ± 0.074 0.112 ± 0.052 9.9 ± 1.9 0.054 ± 0.071

inpainting ΠGDM 36.2 0.140 ± 0.059 0.005 ± 0.003 23.7 ± 2.6 0.763 ± 0.083

σy = 0.1 TMPD 41.9 0.310 ± 0.077 0.031 ± 0.020 16.0 ± 2.9 0.541 ± 0.078

‘half’ mask DPS 81.0 0.646 ± 0.082 0.112 ± 0.052 10.0 ± 2.0 0.052 ± 0.069

inpainting ΠGDM 38.2 0.279 ± 0.074 0.029 ± 0.021 16.4 ± 3.2 0.577 ± 0.095

σy = 0.01 TMPD 32.4 0.123 ± 0.055 0.005 ± 0.008 24.5 ± 3.0 0.826 ± 0.077

2× ‘nearest’ DPS 71.6 0.645 ± 0.079 0.118 ± 0.054 9.7 ± 2.0 0.049 ± 0.068

super-resolution ΠGDM 41.7 0.192 ± 0.079 0.005 ± 0.003 23.3 ± 2.4 0.773 ± 0.079

σy = 0.01 TMPD 22.9 0.525 ± 0.098 0.035 ± 0.013 14.9 ± 1.7 0.206 ± 0.109

4× ‘bicubic’ DPS 77.9 0.640 ± 0.076 0.120 ± 0.060 9.7 ± 2.1 0.046 ± 0.070

super-resolution ΠGDM 36.7 0.461 ± 0.093 0.023 ± 0.009 16.7 ± 1.7 0.305 ± 0.106

σy = 0.05 TMPD 32.7 0.158 ± 0.060 0.005 ± 0.003 23.9 ± 2.6 0.800 ± 0.075

2× ‘nearest’ DPS 72.5 0.648 ± 0.078 0.118 ± 0.053 9.7 ± 1.9 0.050 ± 0.069

super-resolution ΠGDM 37.3 0.229 ± 0.086 0.006 ± 0.003 22.6 ± 2.1 0.735 ± 0.088

σy = 0.05 TMPD 35.7 0.328 ± 0.091 0.013 ± 0.011 19.5 ± 2.3 0.495 ± 0.117

4× ‘bicubic’ DPS 77.9 0.641 ± 0.071 0.120 ± 0.061 9.7 ± 2.1 0.047 ± 0.070

super-resolution ΠGDM 34.8 0.479 ± 0.094 0.026 ± 0.010 16.2 ± 1.7 0.276 ± 0.112

σy = 0.1 TMPD 32.9 0.207 ± 0.081 0.006 ± 0.005 23.0 ± 2.4 0.753 ± 0.088

2× ‘nearest’ DPS 72.2 0.644 ± 0.077 0.118 ± 0.056 9.7 ± 2.0 0.051 ± 0.067

super-resolution ΠGDM 35.9 0.273 ± 0.098 0.007 ± 0.003 21.7 ± 2.1 0.682 ± 0.105

σy = 0.1 TMPD 34.7 0.379 ± 0.096 0.016 ± 0.007 18.5 ± 2.0 0.429 ± 0.120

4× ‘bicubic’ DPS 78.3 0.639 ± 0.074 0.120 ± 0.060 9.7 ± 2.1 0.050 ± 0.068

super-resolution ΠGDM 34.4 0.492 ± 0.097 0.028 ± 0.010 15.8 ± 1.7 0.258 ± 0.112

33

Published in Transactions on Machine Learning Research (09/2024)

Figure 5: ‘random’ mask inpainting FID vs LPIPS (left) and SSIM (right) using the VP-SDE on FFHQ-1k
validation dataset for increasing observation noise.

Figure 6: 4× bicubic super-resolution samples from the VP-SDE on FFHQ across a range of observation
noise.

algorithm was only performant in low noise settings, whereas DTMPD-D is performant across a wide range
of noise levels.

It has been observed that ΠGDM-D performs worse for 1000 steps than 100 steps (see (Mardani et al., 2023,
Section 5)). We also provide results in Table 11 for 100 steps of DTMPD-D and ΠGDM-D for the same
FFHQ VE-SDE model, to compare to ΠGDM-D in its optimal setting.

34

Published in Transactions on Machine Learning Research (09/2024)

Figure 7: ‘Random’ mask inpainting samples from the VP-SDE on FFHQ across a range of observation
noise.

Table 10: Quantitative evaluation of solving linear inverse problems for VE DDPM for 1000 steps with
increasing noise on FFHQ 256×256-1k validation dataset.

Problem Method FID ↓ LPIPS ↓ MSE ↓ PSNR ↑ SSIM ↑
σy = 0.01 DTMPD-D 32.3 0.203 ± 0.039 1.57e-03 ± 8.89e-04 28.6 ± 2.1 0.810 ± 0.052

4× ‘bicubic’ DPS-D 47.0 0.273 ± 0.031 1.70e-03 ± 8.36e-04 28.1 ± 1.8 0.747 ± 0.037

super-resolution ΠGDM-D 37.4 0.244 ± 0.030 1.74e-03 ± 9.56e-04 28.1 ± 2.0 0.755 ± 0.042

σy = 0.05 DTMPD-D 32.1 0.268 ± 0.048 2.62e-03 ± 1.17e-03 26.2 ± 1.8 0.733 ± 0.066

4× ‘bicubic’ DPS-D 105.9 0.590 ± 0.036 6.18e-03 ± 8.50e-04 22.1 ± 0.6 0.404 ± 0.040

super-resolution ΠGDM-D 106.8 0.592 ± 0.041 7.92e-03 ± 1.07e-03 21.0 ± 0.6 0.353 ± 0.042

σy = 0.1 DTMPD-D 32.7 0.310 ± 0.053 3.99e-03 ± 1.84e-03 24.3 ± 1.7 0.679 ± 0.071

4× ‘bicubic’ DPS-D 114.0 0.569 ± 0.044 8.47e-03 ± 4.95e-03 21.1 ± 1.7 0.483 ± 0.046

super-resolution ΠGDM-D 206.0 0.724 ± 0.034 2.46e-02 ± 2.16e-03 16.1 ± 0.4 0.176 ± 0.034

σy = 0.01 DTMPD-D 30.2 0.114 ± 0.029 2.84e-03 ± 2.56e-03 26.5 ± 2.8 0.907 ± 0.020

‘box’ mask DPS-D 23.9 0.093 ± 0.019 2.53e-03 ± 1.77e-03 26.9 ± 2.8 0.899 ± 0.017

inpainting ΠGDM-D 27.1 0.108 ± 0.025 2.50e-03 ± 1.55e-03 26.7 ± 2.3 0.877 ± 0.015

σy = 0.05 DTMPD-D 33.6 0.186 ± 0.036 3.24e-03 ± 3.19e-03 25.8 ± 2.5 0.847 ± 0.030

‘box’ mask DPS-D 39.7 0.318 ± 0.044 3.81e-03 ± 1.92e-03 24.7 ± 2.0 0.677 ± 0.086

inpainting ΠGDM-D 49.5 0.354 ± 0.044 4.67e-03 ± 1.50e-03 23.5 ± 1.3 0.555 ± 0.091

σy = 0.1 DTMPD-D 34.0 0.223 ± 0.041 3.42e-03 ± 2.24e-03 25.3 ± 2.3 0.801 ± 0.045

‘box’ mask DPS-D 59.1 0.467 ± 0.053 7.78e-03 ± 3.19e-03 21.4 ± 1.7 0.476 ± 0.110

inpainting ΠGDM-D 72.6 0.529 ± 0.047 9.88e-03 ± 2.48e-03 20.2 ± 1.2 0.356 ± 0.118

CIFAR10 64×64 For VE-SDE, our CIFAR-10 64×64 experiments compare TMPD to DPS and ΠGDM,
and also compare diffusion methods (DDPM) in Table 12 and score-based methods (discretized with Euler-
Maruyama) in Table 13. Various samples used to produce the figures in Tables 12 and 13 are shown in Fig 16
and 17.

35

Published in Transactions on Machine Learning Research (09/2024)

Figure 8: ‘Box’ mask inpainting samples from the VP-SDE on FFHQ across a range of observation noise.

Table 11: Quantitative evaluation of solving linear inverse problems for VE DDPM for 100 steps with
increasing noise on FFHQ 256×256-1k validation dataset.

Problem Method FID ↓ LPIPS ↓ MSE ↓ PSNR ↑ SSIM ↑
σy = 0.01 DTMPD-D 38.8 0.215 ± 0.042 0.001 ± 0.001 28.9 ± 2.2 0.821 ± 0.051

4× ‘bicubic’ super-resolution ΠGDM-D 46.1 0.252 ± 0.042 0.002 ± 0.001 27.4 ± 1.9 0.788 ± 0.053

σy = 0.05 DTMPD-D 39.2 0.279 ± 0.049 0.003 ± 0.001 26.2 ± 1.8 0.741 ± 0.065

4× ‘bicubic’ super-resolution ΠGDM-D 43.3 0.302 ± 0.049 0.003 ± 0.001 25.1 ± 1.7 0.722 ± 0.067

σy = 0.1 DTMPD-D 41.1 0.317 ± 0.054 0.004 ± 0.002 24.5 ± 1.7 0.693 ± 0.073

4× ‘bicubic’ super-resolution ΠGDM-D 44.7 0.344 ± 0.053 0.005 ± 0.002 23.4 ± 1.6 0.672 ± 0.070

σy = 0.01 DTMPD-D 31.4 0.124 ± 0.030 0.003 ± 0.003 26.5 ± 3.0 0.906 ± 0.020

‘box’ mask inpainting ΠGDM-D 23.7 0.069 ± 0.021 0.002 ± 0.001 28.0 ± 2.6 0.925 ± 0.016

σy = 0.05 DTMPD-D 38.2 0.199 ± 0.039 0.003 ± 0.003 26.0 ± 2.5 0.848 ± 0.034

‘box’ mask inpainting ΠGDM-D 29.8 0.185 ± 0.028 0.002 ± 0.001 26.7 ± 2.1 0.825 ± 0.029

σy = 0.1 DTMPD-D 39.7 0.241 ± 0.046 0.004 ± 0.003 25.2 ± 2.4 0.799 ± 0.048

‘box’ mask inpainting ΠGDM-D 42.1 0.279 ± 0.040 0.003 ± 0.001 25.1 ± 1.6 0.716 ± 0.052

For ΠGDM(-D), we are able to use the hyperparameter r2
t = vt/(1 + vt) as suggested by Song et al. (2023),

which is calculated by assuming the data distribution p0(x0) is a standard normal and then calculating the
posterior variance, for both VE DDIM and VE-SDE methods, but note some instability for the ΠGDM
VE-SDE method for small noise, as shown in Fig 10.

For DDPM we use the step-size constant suggested in Chung et al. (2022a) for inpainting, ζi = ζ ′/∥y −
Hm0|t∥, where we tune ζ ′ over the suggested range of ζ ′ ∈ [0.1, 1.0] in Chung et al. (2022a) across LPIPS,
MSE, PSNR and SSIM, as shown in Fig. 9 for each inverse problem (each line in the Tables 12 and 13).

36

Published in Transactions on Machine Learning Research (09/2024)

Table 12: Noisy observation inpainting and super-resolution for VE DDPM on CIFAR-10 1k validation set.
Problem Method FID ↓ LPIPS ↓ MSE ↓ PSNR ↑ SSIM ↑
σy = 0.01 DTMPD-D 34.1 0.094 ± 0.044 0.006 ± 0.005 23.6 ± 3.3 0.782 ± 0.067

‘box’ mask DPS-D 40.6 0.085 ± 0.036 0.005 ± 0.004 24.2 ± 3.1 0.802 ± 0.064

inpainting ΠGDM-D 40.0 0.076 ± 0.035 0.004 ± 0.003 25.0 ± 3.3 0.824 ± 0.066

σy = 0.01 DTMPD-D 39.0 0.271 ± 0.069 0.028 ± 0.020 16.5 ± 3.1 0.582 ± 0.072

‘half’ mask DPS-D 42.8 0.247 ± 0.065 0.029 ± 0.020 16.5 ± 3.2 0.595 ± 0.077

inpainting ΠGDM-D 42.2 0.237 ± 0.067 0.029 ± 0.020 16.4 ± 3.1 0.610 ± 0.079

σy = 0.05 DTMPD-D 36.7 0.163 ± 0.070 0.007 ± 0.011 22.6 ± 2.8 0.724 ± 0.082

‘box’ mask DPS-D 101.5 0.224 ± 0.077 0.008 ± 0.004 21.8 ± 2.1 0.681 ± 0.087

inpainting ΠGDM-D 99.9 0.225 ± 0.076 0.007 ± 0.003 21.8 ± 1.7 0.682 ± 0.093

σy = 0.05 DTMPD-D 40.9 0.320 ± 0.078 0.029 ± 0.020 16.4 ± 2.9 0.544 ± 0.073

‘half’ mask DPS-D 105.5 0.362 ± 0.078 0.032 ± 0.021 15.7 ± 2.7 0.500 ± 0.075

inpainting ΠGDM-D 97.1 0.366 ± 0.079 0.033 ± 0.020 15.4 ± 2.5 0.503 ± 0.079

σy = 0.1 DTMPD-D 38.1 0.233 ± 0.086 0.009 ± 0.009 21.4 ± 2.5 0.652 ± 0.102

‘box’ mask DPS-D 80.4 0.313 ± 0.078 0.012 ± 0.006 19.7 ± 2.1 0.596 ± 0.088

inpainting ΠGDM-D 140.5 0.378 ± 0.086 0.013 ± 0.003 18.8 ± 0.9 0.550 ± 0.113

σy = 0.1 DTMPD-D 40.8 0.359 ± 0.086 0.030 ± 0.019 16.1 ± 2.8 0.495 ± 0.087

‘half’ mask DPS-D 99.5 0.434 ± 0.072 0.038 ± 0.023 14.8 ± 2.4 0.400 ± 0.083

inpainting ΠGDM-D 138.8 0.476 ± 0.078 0.039 ± 0.019 14.5 ± 1.9 0.402 ± 0.095

σy = 0.01 DTMPD-D 32.7 0.126 ± 0.058 0.004 ± 0.003 24.4 ± 2.9 0.828 ± 0.073

2× ‘nearest’ DPS-D 42.3 0.134 ± 0.053 0.004 ± 0.002 24.8 ± 2.5 0.839 ± 0.063

super-resolution ΠGDM-D 34.9 0.110 ± 0.042 0.004 ± 0.002 24.8 ± 2.8 0.839 ± 0.066

σy = 0.01 DTMPD-D 38.6 0.295 ± 0.082 0.011 ± 0.006 20.2 ± 2.4 0.544 ± 0.109

4× ‘bicubic’ DPS-D 53.4 0.296 ± 0.074 0.011 ± 0.006 20.1 ± 2.3 0.547 ± 0.101

super-resolution ΠGDM-D 37.8 0.250 ± 0.077 0.011 ± 0.006 20.4 ± 2.5 0.577 ± 0.119

σy = 0.05 DTMPD-D 34.0 0.204 ± 0.082 0.006 ± 0.004 23.1 ± 2.3 0.762 ± 0.089

2× ‘nearest’ DPS-D 98.8 0.283 ± 0.077 0.007 ± 0.003 21.9 ± 1.6 0.711 ± 0.081

super-resolution ΠGDM-D 99.6 0.298 ± 0.081 0.008 ± 0.003 21.1 ± 1.4 0.677 ± 0.092

σy = 0.05 DTMPD-D 36.8 0.380 ± 0.097 0.015 ± 0.006 18.8 ± 2.0 0.440 ± 0.113

4× ‘bicubic’ DPS-D 126.1 0.467 ± 0.072 0.017 ± 0.007 18.2 ± 1.7 0.434 ± 0.096

super-resolution ΠGDM-D 104.2 0.419 ± 0.088 0.016 ± 0.006 18.1 ± 1.6 0.454 ± 0.117

σy = 0.1 DTMPD-D 37.1 0.285 ± 0.100 0.008 ± 0.006 21.5 ± 2.1 0.657 ± 0.112

2× ‘nearest’ DPS-D 144.6 0.421 ± 0.082 0.012 ± 0.003 19.4 ± 1.1 0.571 ± 0.101

super-resolution ΠGDM-D 175.8 0.456 ± 0.085 0.016 ± 0.003 17.9 ± 0.9 0.514 ± 0.115

σy = 0.1 DTMPD-D 36.1 0.439 ± 0.099 0.019 ± 0.008 17.5 ± 1.9 0.353 ± 0.115

4× ‘bicubic’ DPS-D 155.1 0.535 ± 0.067 0.022 ± 0.007 16.8 ± 1.3 0.360 ± 0.092

super-resolution ΠGDM-D 196.2 0.539 ± 0.078 0.030 ± 0.007 15.3 ± 1.1 0.327 ± 0.106

37

Published in Transactions on Machine Learning Research (09/2024)

Table 13: Noisy observation inpainting and super-resolution for the reverse VE-SDEs on CIFAR-10 1k
validation set.

Problem Method FID ↓ LPIPS ↓ MSE ↓ PSNR ↑ SSIM ↑
σy = 0.01 TMPD 40.0 0.102 ± 0.047 0.005 ± 0.004 23.7 ± 3.1 0.773 ± 0.069

‘box’ mask DPS 103.6 0.637 ± 0.074 0.114 ± 0.052 9.9 ± 1.9 0.050 ± 0.068

inpainting ΠGDM 78.9 0.094 ± 0.039 0.005 ± 0.004 24.1 ± 3.1 0.787 ± 0.071

σy = 0.01 TMPD 45.8 0.279 ± 0.066 0.030 ± 0.029 16.3 ± 3.0 0.569 ± 0.069

‘half’ mask DPS 110.8 0.638 ± 0.072 0.117 ± 0.056 9.8 ± 2.0 0.045 ± 0.067

inpainting ΠGDM 50.5 0.264 ± 0.068 0.027 ± 0.020 16.7 ± 3.1 0.585 ± 0.077

σy = 0.05 TMPD 45.3 0.167 ± 0.065 0.007 ± 0.024 22.6 ± 2.7 0.718 ± 0.078

‘box’ mask DPS 103.4 0.638 ± 0.070 0.115 ± 0.055 9.8 ± 1.9 0.047 ± 0.067

inpainting ΠGDM 81.9 0.160 ± 0.056 0.006 ± 0.004 22.8 ± 2.4 0.720 ± 0.078

σy = 0.05 TMPD 51.1 0.319 ± 0.071 0.029 ± 0.019 16.2 ± 2.8 0.532 ± 0.071

‘half’ mask DPS 109.3 0.638 ± 0.070 0.116 ± 0.057 9.8 ± 2.0 0.044 ± 0.067

inpainting ΠGDM 56.0 0.311 ± 0.074 0.029 ± 0.021 16.4 ± 3.0 0.540 ± 0.078

σy = 0.1 TMPD 47.6 0.231 ± 0.079 0.008 ± 0.005 21.5 ± 2.3 0.650 ± 0.097

‘box’ mask DPS 104.3 0.639 ± 0.068 0.113 ± 0.049 9.9 ± 1.9 0.048 ± 0.065

inpainting ΠGDM 84.6 0.220 ± 0.079 0.008 ± 0.004 21.6 ± 2.1 0.665 ± 0.105

σy = 0.1 TMPD 54.1 0.366 ± 0.080 0.032 ± 0.020 15.8 ± 2.7 0.480 ± 0.085

‘half’ mask DPS 110.4 0.639 ± 0.068 0.117 ± 0.054 9.7 ± 2.0 0.046 ± 0.067

inpainting ΠGDM 58.5 0.349 ± 0.081 0.031 ± 0.021 16.1 ± 2.9 0.499 ± 0.090

σy = 0.01 TMPD 43.5 0.141 ± 0.070 0.007 ± 0.034 24.1 ± 3.1 0.810 ± 0.092

2× ‘nearest’ DPS 118.7 0.641 ± 0.066 0.117 ± 0.054 9.7 ± 1.9 0.048 ± 0.065

super-resolution ΠGDM 59.4 0.258 ± 0.083 0.007 ± 0.003 22.0 ± 2.2 0.716 ± 0.075

σy = 0.01 TMPD 49.6 0.439 ± 0.093 0.020 ± 0.008 17.3 ± 1.8 0.345 ± 0.115

4× ‘bicubic’ DPS 128.3 0.642 ± 0.071 0.122 ± 0.059 9.6 ± 2.0 0.046 ± 0.068

super-resolution ΠGDM 52.9 0.561 ± 0.083 0.042 ± 0.015 14.1 ± 1.7 0.167 ± 0.085

σy = 0.05 TMPD 47.5 0.213 ± 0.087 0.007 ± 0.012 22.8 ± 2.5 0.744 ± 0.100

2× ‘nearest’ DPS 119.1 0.638 ± 0.070 0.118 ± 0.059 9.7 ± 2.0 0.049 ± 0.068

super-resolution ΠGDM 60.0 0.326 ± 0.097 0.009 ± 0.004 20.7 ± 1.9 0.619 ± 0.104

σy = 0.05 TMPD 51.2 0.379 ± 0.094 0.016 ± 0.029 18.6 ± 2.1 0.428 ± 0.117

4× ‘bicubic’ DPS 128.0 0.642 ± 0.068 0.122 ± 0.061 9.6 ± 2.0 0.043 ± 0.067

super-resolution ΠGDM 53.8 0.548 ± 0.084 0.038 ± 0.014 14.5 ± 1.7 0.186 ± 0.087

σy = 0.1 TMPD 51.6 0.292 ± 0.097 0.009 ± 0.020 21.3 ± 2.2 0.646 ± 0.116

2× ‘nearest’ DPS 120.5 0.644 ± 0.074 0.121 ± 0.061 9.7 ± 2.0 0.048 ± 0.068

super-resolution ΠGDM 61.9 0.386 ± 0.100 0.012 ± 0.005 19.5 ± 1.9 0.523 ± 0.117

σy = 0.1 TMPD 49.6 0.439 ± 0.093 0.020 ± 0.008 17.3 ± 1.8 0.345 ± 0.115

4× ‘bicubic’ DPS 128.3 0.642 ± 0.071 0.122 ± 0.059 9.6 ± 2.0 0.046 ± 0.068

super-resolution ΠGDM 52.9 0.561 ± 0.083 0.042 ± 0.015 14.1 ± 1.7 0.167 ± 0.085

38

Published in Transactions on Machine Learning Research (09/2024)

Figure 9: DPS scale hyperparameter search across LPIPS, MSE, PSNR and SSIM for CIFAR-10 4× bicubic
interpolation super-resolution with σ = 0.05. Plotted are the mean values ± 2 standard deviations over a
128 sample/batch size, calculated over 10 values of ζ ′. We chose an optimal value of 0.15 for the DPS scale
hyperparameter in this case.

39

Published in Transactions on Machine Learning Research (09/2024)

Figure 10: Inpainting samples from the VP-SDE on CIFAR-10. The observation model was ‘box’ mask with
Gaussian (σy = 0.05) noise.

40

Published in Transactions on Machine Learning Research (09/2024)

Figure 11: 2× nearest-neighbour super-resolution samples from the VP-SDE on CIFAR-10. The observation
model was Gaussian (σy = 0.05) noise.

41

Published in Transactions on Machine Learning Research (09/2024)

Figure 12: 4× bicubic super-resolution FID vs LPIPS (left) and SSIM (right) using the VE-SDE on FFHQ-1k
validation dataset for increasing observation noise.

Figure 13: ‘box’ mask inpainting FID vs LPIPS (left) and SSIM (right) using the VE-SDE on FFHQ-1k
validation dataset for increasing observation noise.

42

Published in Transactions on Machine Learning Research (09/2024)

Figure 14: Whilst DTMPD-D with the VE-SDE remains robust to increasing noise, DPS-D and ΠGDM-
D do not. This is illustrated by samples from the different guidance methods for a 4× super-resolution
(256× 256→ 64× 64) problem with increasing Gaussian observation noise distorting a ground truth image.
The top row measurement has σy = 0.01, the middle row σy = 0.05 and the bottom row σy = 0.1. For the
full results, see Table 10.

Figure 15: 4× bicubic super-resolution samples from the VE-SDE on FFHQ. The observation model was
Gaussian (σy = 0.05) noise.

43

Published in Transactions on Machine Learning Research (09/2024)

Figure 16: Inpainting samples from the VE-SDE on CIFAR-10. The observation model was ‘box’ mask with
Gaussian (σy = 0.05) noise.

44

Published in Transactions on Machine Learning Research (09/2024)

Figure 17: 2× nearest-neighbour super-resolution samples from the VE-SDE on CIFAR-10. The observation
model was Gaussian (σy = 0.05) noise.

45

	Introduction
	Technical Background
	Conditional sampling for the linear inverse problem

	Tweedie Moment Projected Diffusions
	Tweedie moment projections
	Tweedie Moment Projected Likelihood Approximation
	Algorithms
	Computationally cheaper approximation of Moment Projection

	Theoretical Guarantees
	Related Work
	Experiments
	Gaussian Mixture Model
	Noisy observation inpainting and super-resolution

	Discussions, limitations and future work
	Proofs for Section 3
	Proof of Proposition 1

	Proofs for Section 4
	Proof of Proposition 3
	Proof of Theorem 1

	Variance Exploding SDE (time-rescaled Brownian motion)
	Tweedie's formula
	Variance Preserving SDE (time-rescaled Ornstein-Uhlenbeck process)
	Variance Exploding SDE (time-rescaled Brownian motion)

	Algorithmic details and numerics
	Computational Complexity
	Gaussian
	Comparison of the exact posterior to the approximation made in Pseudo-Inverse-Guidance

	GMM
	Inpainting and super-resolution
	VP-SDE
	VE-SDE

