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Abstract

The advanced deep learning-based Autoencoding techniques have enabled the introduction
of efficient Unsupervised Anomaly Detection (UAD) approaches. Several autoencoder-
based approaches have been used to solve UAD tasks. However, most of these approaches
do not have any constraints to ensure the removal of pathological features while restor-
ing the healthy regions in the pseudo-healthy image reconstruction. To minimize the oc-
currence of pathological features, we propose to utilize an Autoencoder which deploys
a masking strategy to reconstruct images. Additionally, the masked regions need to be
meaningfully inpainted to enforce global and local consistency in the generated images
which makes transformer-based masked autoencoder a potential approach. Although the
transformer models can incorporate global contextual information, they are often com-
putationally expensive and dependent on a large amount of data for training. Hence we
propose to employ a Swin transformer-based Masked Autoencoder (MAE) for anomaly
detection (Ano-swinMAE) in brain MRI. Our proposed method Ano-swinMAE is trained
on a healthy cohort by masking a certain percentage of information from the input images.
While inferring, a pathological image is given to the model, and different segments of the
brain MRI slice are sequentially masked, and their corresponding generation is accumulated
to create a map indicating potential locations of pathologies. We have quantitatively and
qualitatively validated the performance increment of our method on the following publicly
available datasets: BraTS (Glioma), MSLUB (Multiple Sclerosis), and White Matter Hy-
perintensities (WMH). We have also empirically evaluated the generalization capability of
the method in a cross-modality data setup.

Keywords: Unsupervised Anomaly Detection (UAD), Ano-swinMAE, MRI, Masked Au-
toencoder (MAE), Pathology Detection.

1. Introduction

The identification and delineation of pathology in brain MRI plays a crucial role in disease
diagnosis and prognosis. Unsupervised Anomaly detection (UAD) methods alleviate the
task of annotating pathologies at the pixel level. The state-of-the-art deep learning-based
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UAD methods are Autoencoding models that learn to encode healthy data distribution.
The appearance of pathological features in brain MRI scans is typically localized in certain
anatomical regions. The Autoencoding networks must ensure changes are introduced in
those localized pathological regions while restoring the healthy features. The changes in
pathological regions consequently arise due to the fact that Autoencoders are trained on
healthy data, and there is a performance degradation in these pathological regions. However,
there is no constraint in the Autoencoding models that ensure pathologies will be absent in
the pseudo-healthy reconstructed images. To mitigate this, a masking-based Autoencoding
strategy is an intuitive approach that can be incorporated. While masking strategies have
been adopted for unsupervised anomaly detection (Nguyen et al., 2021) (Iqbal et al., 2023),
most of the approaches do not consider position-aware global context dependencies. These
properties are capacitated by Vision transformers (ViT) (Dosovitskiy et al., 2020), which
will ensure that there is an association among distant imaging features of the brain MRI
scans (Wang et al., 2023) essential for in-painting the masked regions with meaningful
healthy features while removing the pathological ones. However, ViT-based models lack
(Xu et al., 2021)(Bietti and Mairal, 2019)inductive biases in modeling local visual structure
which cannot be traded with global context since inductive biases for locality information
is crucial as we can see in the case of CNN. Additionally, this limitation results in a heavy
reliance on large datasets and pre-trained models, which is difficult in scarce data setups like
in medical images. To mitigate these challenges, the Swin Transformer (Liu et al., 2021)
introduces a shifted windows-based Multi-head self-attention (MSA) for modeling global
feature relations. This not only enhances performance but also reduces model complexity.
Hence, (i) we propose to utilize a Swin Transformer-based Masked Auto Encoder (Ano-
swinMAE) for detecting and localizing pathologies in an unsupervised manner. We have
shown the efficacy of our method using publicly available pathology datasets. Additionally,
(ii) we have shown how masking helps our models map the pathological distribution closer
to a healthy distribution in the latent representational space. (iii) We also validate that
our method is generalizable in different datasets and computational efficiency is relatively
better.

2. Related work

Several deep-learning approaches have been investigated in recent research on Unsuper-
vised Anomaly Detection (UAD). Among these, methods incorporating Autoencoders (AE)
and Variational Autoencoders (VAE) have proven to be effective during both training and
inference (Zhou et al., 2021), (Baur et al., 2021a). Nevertheless, a common limitation ob-
served in these approaches is the reconstructed image quality, which tends to be blurry.
This blurriness poses a challenge, rendering these methods less effective for UAD tasks, as
described in (Baur et al., 2021b). To overcome this limitation, researchers have worked
towards utilizing the image context by adding spatial latent dimension (Baur et al., 2019),
erasing spatial context, (Zimmerer et al., 2018), making use of 3D information (Bengs et al.,
2021) (Behrendt et al., 2022)

As an alternative to AE, Generative Adversarial networks have been applied to the
problems of UAD task (Schlegl et al., 2019). However, the unstable training nature of
GANs poses challenges, leading to issues such as mode collapse and a lack of anatomical
coherence (Baur et al., 2021b). Meanwhile, the recent work in UAD has utilized DDPM
(Denoising Diffusion Probabilistic Model) because it exhibits scalable and stable training
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Figure 1: Main architecture consists of Training and Inference of Ano-swinMAE. Dur-
ing Inference, Mask slides across various parts of Anomaly brain MRI image(slice), and a
pseudo healthy MRI slice is reconstructed. Then with the help of original Anomaly MRI
image(slice), we get combined heatmap and one segmentation image using Atropos. With
the help of combined heatmap and Atropos segmentation image, Anomaly is Localised.

properties while producing high-quality, sharp images (Wolleb et al., 2022) (Wyatt et al.,
2022) (Sanchez et al., 2022) (Pinaya et al., 2022a). In the DDPM-based approach, there
is a tradeoff between preserving crucial information about healthy tissues and efficiently
eliminating anomalies due to the inherent noise addition strategy. Recent DDPM works
that are used for UAD tasks and deal with this tradeoff are (Behrendt et al., 2023) and
(Bercea et al., 2023). This tradeoff often limits the applicability of the models among
diverse pathological data. Additionally, (Iqbal et al., 2023) uses a DDPM-based model
which incorporates a mechanism to simulate pathology during the training phase. This
strategy involves an approximation of the pathological distribution in the training phase
that may not ensure capturing the true distribution.

However, the intricate structure of the brain can be captured by learning to model the
relationship between individual brain structures, which can be modeled using transformer
models. UAD using transformers was done by (Pinaya et al., 2022b), (Ghorbel et al., 2022).
The transformer-based approaches incorporate masking(Zhou et al., 2023) strategies that
ensure the mapping of the pathological brain into a healthy distribution without adding any
additional constraints. Employing transformer-based Masked Autoencoders (MAE) (Hu
et al., 2023), (Yu et al., 2022), (Georgescu, 2023) generate a pseudo-normal counterpart of

3



Rashmi Das Gayathri Ram

the normal image. Additionally, (Georgescu, 2023) integrates a pseudo-abnormal module
to simulate pathology to train a classifier to discriminate between healthy and unhealthy.
Their dependency on the secondary classifier clearly highlights that MAE independently is
not suitable for pathology detection.

3. Methodology

3.1. Problem Formulation

Let x ∈ RH×W×C be a healthy or pathology brain MRI scan with dimensions H ×W and
C channels. The task of unsupervised detection and localization of pathologies in x can
formulated as the reconstruction of the pseudo healthy (x̂ ∈ RH×W×C) counterpart of x
and extracting the residual information by subtracting x̂ from x. The reconstruction task
is achieved by an Autoencoding network, which is trained to map x to x̂, where x belongs
to a healthy cohort input and x̂ is its reconstruction respectively. At the inference time,
x belonging to a pathological distribution is given as input to the model and expected to
generate x̂ belonging to the healthy distribution.

3.2. Proposed Framework (Ano-swinMAE)

The overview of our proposed Swin Transformer-based MAE (Ano-swinMAE) for anomaly
detection is given in Figure 1. In the training phase, an input to the model (x) is randomly
masked at regions within the brain area, which are passed through the encoder to extract
latent representations (z ). These representations are further processed through the decoder
to generate the reconstructed image, learning to incorporate meaningful information within
the masked regions. The masking positions used during training are random but the masking
ratio and size of the masks are given by us. The learning objective is a mean square error
between the masked region of the original and reconstructed image.

The significance of the model lies in the integration of three key components within
the autoencoding model. First, a Swin Transformer block (Liu et al., 2021) is introduced
within the model along with a patch merging layer which reduces the number of positional
information (token). This is quite essential for task which faces data scarcity and requires
lesser model complexity. Second, A windowing strategy is incorporated which limits the
capability of every patch to be masked. This strategy allows patches within a certain
window size to be masked. This masking strategy resembles the pathological occurrence
since frequent masking with a small mask size will fail to reconstruct in realistic larger
pathological cases. Third, The token of a masked patch is allowed to pass through the
model such that the model is aware of the absolute positions of all the patches. This
strategy helps in obtaining reconstructed images with better fidelity. We have incorporated
all these three strategies and adopted the architectural details of (Dai et al., 2023) to build
the encoder-decoder structure of the Ano-swinMAE.

In the inference phase, we generate a non-overlapping sliding mask sequentially moving
across regions having brain pixels as indicated in the Inference block of Figure 1. Each
masked reconstruction undergoes L1 norm-based computation to derive a residual map
compared to its original counterpart. These individual residual maps are then aggregated
to form a coarse anomaly map.
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4. Experiments and Results

4.1. Dataset Description, Pre and Post Processing, Evaluation Metrics and
Implementation Details

Dataset Description: We have used four publicly available datasets, IXI (IXI), BraTS21
(Baid et al., 2021), MSLUB (Lesjak et al., 2018) and WMH dataset(Kuijf et al., 2022). The
IXI dataset(T1, T2) consisting of 580 subjects MRI volume is used as a reference for train-
ing our healthy distribution. BraTS21 dataset(T2) consisting of 1251 subjects with MRI
volume, and the MSLUB dataset (T2) consisting of 30 subjects with MRI volume, are used
for evaluating the performance of our model with different baselines. WMH dataset(Flair)
consists of 100 subjects with MRI volume, and the BraTS21 dataset (T1, T2) are used for
evaluating the generalizability of the model.

Pre and Post Processing: In order to standardize the images over geometric varia-
tions, we perform skull-stripping using HD-Bet (Isensee et al., 2019) and rigid body regis-
tration with SRI24 (Rohlfing et al., 2010) atlas, effectively resulting the volume to be of 240
× 240 × 155 dimensions. Additionally, to mitigate photometric variations, we perform bias
field correction and normalization to the [0,1] intensity range. For post-processing, mor-
phological filters are applied to the coarse anomaly map given by the aggregated residual
output of our model to eliminate smaller objects, followed by a connected component-based
analysis. This analysis isolates the significant residual components. A Gaussian mixture
model-based approach is employed on the original image through Atropos 1 to generate a
segmentation mask. Integrating this Atropos segmentation information refines the anomaly
map, creating precise segmentation boundaries of the pathologies.

Evaluation Metrics: For quantifying the segmentation performance of different mod-
els, we have considered the standard definitions of Dice coefficient and Area Under the
Precision Recall curve (AUPRC). For analyzing the latent representations of our model,
we have projected the high dimensional vectors in a 2d space by using Umap projections
(McInnes et al., 2018). In order to further analyze the spatial relationship of the data,
we have performed k-means clustering of the 2d points and extracted the eigenvectors and
eigenvalues of the covariance matrix of each cluster. These eigen-components are used to
draw an ellipse to represent the spread and orientation of each cluster.

Implementation Details and Baselines: Models are implemented in PyTorch 2.0.1
version on an 80GB NVIDIA A100 GPU and CUDA Version: 12.1. For every step mentioned
in the training algorithm, models are trained for 400 epochs using the Adam optimizer, with
a learning rate of 1e−3. We have compared our model performance with several existing
baselines, such as VAE (Baur et al., 2021b), f-AnoGAN (Schlegl et al., 2019), MAE (He
et al., 2022) and autoDDPM (Bercea et al., 2023).We have evaluated on all the baseline
methods by adopting the existing implementations. The details of the parameters used in
post-processing are mentioned in Appendix A.1. The code for our proposed method will be
available at Ano-swinMAE repository 2.

1. https://antspyx.readthedocs.io/en/latest/segmentation.html
2. https://github.com/rashmi05pathak/Ano-swinMAE

5



Rashmi Das Gayathri Ram

4.2. Results and discussion

4.2.1. Quantitative And Qualitative Analysis

The quantitative evaluations of our method against baselines are summarized in Table 1.
Our model, Ano-swinMAE, shows an increment in performance compared to the other base-
lines. The effectiveness of different mask sizes in our model varies depending on the dataset:
a mask size of 32X32 performs better for MSLUB, whereas a mask size of 64X64 yields su-
perior results in BraTS21. The performance drop of autoDDPM compared to our method
could be due to the noising strategy employed by autoDDPM to map pathological distri-
butions to healthy ones. This strategy might not consistently prevent the reconstruction of
pathological regions, such as hyper-intense large high-grade gliomas found in the BraTS21
dataset. MAE could not achieve performance increments because of its reliance on a large
amount of data, leading to lesser image fidelity compared to Ano-swinMAE. GAN-based ap-
proaches often lack one-to-one mappings in healthy brain regions due to modeling challenges
like mode collapse. Similarly, VAEs suffer from posterior collapse, resulting in low-fidelity
images and an increased occurrence of false positives. Furthermore, Table 1 highlights that
our model exhibits better inference time when compared with baselines that have relatively
good Dice and AUPRC.

Table 1: Comparison of Ano-swinMAE with other baseline models which are used for
unsupervised pathology detection in brain MRI.Ano-swinMAE(32x32) uses a 32x32 mask
size in brain MRI and shifts by 32 pixels.Ano-swinMAE(64x64) uses a 64x64 mask size in
brain MRI and shifts by 64 pixels.

BraTS21 MSLUB

Model Dice[%] AUPRC[%] Dice[%] AUPRC[%] Parameters(M)
Inference Time(s)
(per MRI slice)

VAE(Baur et al., 2021b) 31.11 28.80 6.89 5.00 4.96 0.02
f-AnoGAN(Schlegl et al., 2019) 24.16 22.05 4.18 4.01 5.56 0.04

MAE(He et al., 2022) 31.97 25.44 15.46 10.56 329 90
autoDDPM(Bercea et al., 2023) 35.80 29.07 19.35 11.79 18.50 16.32

Ano-swinMAE(32x32) 42.55 30.44 19.78 12.78 26.10 52
Ano-swinMAE(64x64) 42.92 30.24 18.52 12.50 26.10 14.38

The pathology segmentation masks produced by autoDDPM, MAE, and our method for
BraTS21 T2 data are illustrated in Figure 2. We present results across three distinct inten-
sities in pathological regions relative to those in the ventricles and sulci (hyper, medium,
and low). Our method and MAE exhibit a consistent trend in performance across these
intensity levels, with metrics decreasing in the order of hyper, medium, and low-intensity
cases. In contrast, autoDDPM shows a reverse performance trend. Our model demonstrates
improved anomaly capture compared to MAE, due to the blurrier reconstruction of MAE
that generates more false positives. The autoDDPM model tends to reconstruct traces
of pathologies in hyper-intense regions, leading to more false negatives. Additionally, the
integration of Atropos-based segmentation information enhances the precision of anomaly
boundaries.
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Figure 2: (a) represents original BraTS21 (T2) brain MRI, (b) represents the pathology
segmentation from the autoDDPM method, (c) represents pathology segmentation from
the MAE method, and (d) represents the pathology segmentation from our Ano-swinMAE
method

Table 2: Generalization study of Ano-swinMAE (64X64) and AutDDPM models. We have
utilized WMH flair brain MRI slices for this study along with BraTS21. Our model Ano-
swinMAE(64X64) and the autoDDPM models trained with IXI dataset are used here

Model
Training

on IXI Data
Inference Data Dice[%] AUPRC[%]

AutoDDPM T1 BraTS21 T2 30.87 25.67
T2 BraTS21 T1 29.77 25.88
T1 WMH Flair 35.97 32.91

Ano-swinMAE T1 BraTS21 T2 38.99 27.19
T2 BraTS21 T1 28.62 25.11
T1 WMH Flair 35.92 29.95

4.2.2. Analysing The Effect Of Masking in The Latent Space

In Figure 3, we compare the latent space of masked and unmasked images. From Fig-
ure 3 (a), it is evident that the 2d UMAP projections of the latent representations of
Ano-swinMAE tend to separate into two clusters when healthy data slices from IXI and
pathological ones from BraTS21 are sent to the model without masking. Each of the ellipses
formed from the covariance matrix of each cluster approximately contains projected points
from one of the datasets (IXI or BraTS21). Figure 3 (b) indicates that the projections of
both datasets tend to collapse within a single cluster. This indicates that since the encoding
capability of the model did not explicitly enforce any constraint to map pathological data
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into a learnt healthy distribution but the masking strategy has enabled the mapping. Con-
sequently, this allows the latent representational space to encode diverse semantics, unlike
modeling capabilities like GAN and VAE, which constrain the latent space to follow a prior
standard Gaussian distribution.

Figure 3: Two-dimensional UMAP-based projection of the latent space vectors of the Ano-
swinMAE model. From left to right: (a) displays the UMAP projection of latent vectors
of both IXI and BraTS slices without masking, and (b) displays the projection of BraTS
slices, with masking applied to pathological locations alongside unmasked IXI slices.

4.2.3. Generalization Across Modalities

From Table 2, it is evident that our model Ano-swinMAE shows incremental performance
when evaluated on a cross-data setup. When the model is trained on IXI T1 data and
evaluated on BraTS21 T2 data, it can perform better than the baseline under a similar
setup. Similarly, when IXI T2 is used for training and BraTS21 T2 data for inference, the
quantitative metrics are better for our method. In the case of WMH Flair data, our model
has slightly inferior results to the baseline. Figure 3 (a), also supports that our model
has better Generalization capability since the representational space encodes meaningful
semantics tending to form separable clusters for anomaly and healthy data. Ano-swinMAE
exhibits better performance when trained on T1 and evaluated on T2 since T2 enhances
the pathological appearances in the images and it is easily discriminative. Whereas in the
case of autoDDPM if the pathological information is evident, then it is present after the
noising process. Further details are discussed in A.3.

5. Conclusion

In this work, we have proposed Ano-swinMAE, a transformer-based system for unsuper-
vised anomaly detection, which further extends the scope of transformer usage in the field of
medical imaging. Our method has outperformed the baselines as well as has shown promis-
ing results for generalizable capability. Through latent space analysis, we have observed
that masking is quite effective for pseudo-healthy reconstruction of brain MRI.
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Appendix A.

A.1. Inference and Post-Processing Details

During inference on pathological data, the non-overlapping sliding mask (64 × 64) moves
across 6 unique positions to cover all brain regions within the image. We have used L1
normalization on the residual images, obtained by subtracting the reconstructed images
from the unmasked original image for each of the 6 positions. All the reconstructed images
are normalized (0 to 1 normalization) and added to form a combined coarse anomaly map.
The results of the post-processing steps are given in Figure 4. The combined map is eroded
with kernel size (k × k) to remove very small false positives and then it is thresholded to
retain pixel values greater than 0.5. For BraTS21 k = 3 and for MSLUB & WMH k = 1. To
extract the unique objects in the binary map, we perform connected component analysis.
Each of the unique objects is assigned a mean intensity value acquired from the combined
map before thresholding. Depending on the higher mean intensity of the entire object area,
a certain number of objects are retained. The number of objects that have given the best
result for BraTS21 is 2, and for MSLUB & WMH, it is 7 since BraTS21 primarily has a
few larger appearing pathologies and the other two sets have multiple smaller pathologies.
The obtained map is dilated with kernel size (3× 3) to obtain a filtered combined map.

We have performed Atropos-based multi-class segmentation (the number of classes is
5) on the original image. We also obtain the unique objects from these segmentation
masks and look for objects that share maximal area overlap with the filtered combined
map. This gives us the final segmentation map, maintaining the same number of objects as
the filtered combined map while refining the precise object boundaries obtained from the
Atropos segmentation.

A.2. Visualisation of Attention maps

To compute the attention map across the encoder layers of Ano-swinMAE, we extracted
the feature vector outputs from each encoder layer and then computed the mean across
channels for each feature vector output. For instance, the feature vector output dimension
from encoder layer 1 is 56x56x96; after averaging across 96 channels, a 56x56 attention map
is obtained.

In Figure 5, Rows (ii) and (iv) reveal that the attention (yellow region i.e. more intensity
region), is concentrated within the masked and pathological regions of the input image, as
indicated by (ii)a and (iv)a. As we progress through the encoder layers, attention becomes
more dissipated. A similar pattern is seen when analyzing the attention map in a 64x64
masking setup, as depicted in Figure 6. This model behavior can be attributed to the train-
ing data consisting of healthy MRI slices; when presented with unhealthy slices, the model
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Figure 4: Post-processing steps Rows (i) and (iii): column-wise a. Original Image b. At-
ropos Segmentation c. Ground Truth d. Combined map after Morphological operations.
Rows (ii) and (iv): column-wise a. Combined map after Connected Component Analysis
b. Filtered Combined map c. Filtered Combined map with Atropos d. Overlay of Ground
Truth and Prediction.
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Figure 5: Visual Results of attention map of 32x32 mask setup. Row(i) and Row(iii)
column-wise a. Original Image b. Masked/Unmasked Input Image c. Reconstructed Image
d. Residual Image. Row(ii) and (iii) are the layer-wise Attention Maps for Masked and
Unmasked Input Images respectively.

attempts to reconstruct their healthy counterparts. Furthermore, the model demonstrates
increased attention when the pathological region is masked.

A.3. Generalization Across Modalities

T2-weighted MRI highlights pathologies like tumors with high water content or those sur-
rounding edema. Hence pathologies mostly become more visually discriminable in T2
modality. Visual results of cross-modality setup are shown in Figure 7. When, we are
assessing the metrics for T2 while being trained on T1, we observe that the performance
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Figure 6: Visual Results of attention map of 64x64 mask setup. Row(i) and (iii) column-wise
a. Original Image b. Masked/Unmasked Input Image c. Reconstructed Image d. Residual
Image. Row(ii) and (iii) are the layer-wise Attention Maps for Masked and Unmasked Input
Images respectively

of Ano-swinMAE is better since the model is able to easily differentiate between healthy
and pathological content. When the modalities are reversed (inferring on T1 while trained
on T2) due to the lesser discriminative appearance of the pathology, the performance of
the model drops. There is an analogy between the appearance of the pathology and the
performance of the model since it attempts to fill the masked regions with contextual neigh-
borhood information. Whereas in the case of autoDDPM the trend is reversed since having
a more evident appearance of pathology (as in T2), the chances to pass the pathological
information through the noising process is higher. This degrades the performance scores.
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Figure 7: Visual Results of cross-modality setup. Row-wise (i) and (ii) have the result
of T2 and T1 images, while the models were trained on T1 and T2 images respectively.
Column-wise a. Original Images b. Masked Images c. Reconstructed Images d. Residual
Images
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