
OptRot: Mitigating Weight Outliers via Data-Free
Rotations for Post-Training Quantization

Advait Gadhikar∗
CISPA

Saarbrücken, Germany

Riccardo Grazzi
Microsoft Research

Cambridge, UK

James Hensman
Microsoft Research

Cambridge, UK

Abstract

We introduce OptRot, a data-free preprocessing method to learn fusible rotations
for post-training quantization of language models. OptRot reduces weight outliers
by finding rotations which minimize the element-wise fourth power of the rotated
weights. We show how reducing weight outliers can provably improve weight
quantization performance and how OptRot rotations can outperform both Hadamard
rotations and rotations learned by the data-dependent method SpinQuant.

1 Introduction

Increasing model size has enabled LLMs to perform a range of tasks [1, 2], encouraging practitioners
to design huge models with billions of parameters. Post Training Quantization (PTQ) is a widely
adapted strategy for compressing these models by lowering their precision, while limiting the drop in
performance [3] to enable efficient inference. Scalar quantization is the most popular PTQ approach
and relies on mapping each parameter value to a point on a finite precision grid, determined by
the bit-width. Outliers prevent the finite grid from uniformly covering all values and can lead to
large quantization errors. Hence, outlier reduction has increasingly received attention as a crucial
pre-processing step [4, 5] for PTQ which uses a uniform quantization grid with algorithms like simple
Round-to-Nearest (RTN) or the more powerful GPTQ [6].

Recent work has applied rotations to weight matrices to mitigate outliers in weights and activations
while keeping the network functionally equivalent. Hadamard rotations have shown to significantly
improve the performance of GPTQ [4, 7]. To minimize overhead, these rotations can be materialized
online efficiently with the Walsh-Hadamard transform, and in some cases they can also be fused with
model weights. Fused rotations can be learned without increasing inference cost. SpinQuant [8]
and Kurtail [9] learn fused rotations to improve mainly activation quantization, while FlatQuant
[10] learns invertible linear maps which cannot be fused, instead of rotations, to reduce outliers.
ButterflyQuant [11] learns orthogonal transforms parameterized by Givens rotations. SpinQuant
and FlatQuant are tailored for quantization via RTN, while learning transformations that improve
quantization with GPTQ when compared to Hadamard rotations remains challenging.

In this work we introduce OptRot, a method that can learn rotations which can provably improve
weight quantization performance for both RTN and GPTQ. We leverage the theoretical framework on
incoherence processing introduced by QuIP [5] to highlight the connection between rotations and
the weight quantization error. The quantization error is bounded by the incoherence of the weights
and that of the covariance or Hessian of the input activations. The presence of outliers increases
incoherence, worsening the bound. Hadamard rotations improve this incoherence as shown by [7],
but this bound can be further improved by explicitly optimizing the incoherence objective.

OptRot learns rotations by minimizing a smooth proxy for the weight incoherence of the model: the
element-wise fourth power of the rotated weights. We show that OptRot achieves better incoherence

∗Work done during an internship at Microsoft.

ML For Systems workshop at Neural Information Processing Systems (NeurIPS 2025).

R
oP
E

R
oP
E

Figure 1: Rotations applied by QuaRot, SpinQuant and OptRot to improve PTQ. R1, R
⊤
1 , R2, R

⊤
2

and R⊤
4 (yellow) are fusible rotations. R3 (red) and R4 (orange) are online rotations. R1 is shared

across layers. In OptRot and SpinQuant R1 and R2 are learned without increasing inference cost.

and weight quantization performance than QuaRot, SpinQuant and QuIP#. Differently from prior
work, OptRot is data-free and (except for Kurtail) quantization-agnostic: it does not require a
calibration set or the quantization scheme to learn rotations. Additionally, OptRot can learn rotations
by optimizing a subset of the weights, without loading the entire model on GPU. We find that OptRot
is also competitive with SpinQuant with activation quantization in the W4A8 regime. Yet, for the
more extreme W4A4 case, we find that optimizing weight incoherence with OptRot introduces a
trade-off which lowers activation quantization performance in comparison to SpinQuant.

2 OptRot
Let W ∈ Rm×n be one original weight matrix of the LLM receiving input x ∈ Rn from the
previous layer, and H = E[xx⊤] ∈ Rn×n be the uncentered input covariance or Hessian with SVD
H = QΛQT . Let also tr(A) and ||A||, ||A||F be the trace, spectral norm and Frobenius norm of the
matrix A respectively. Following [5], we define the incoherence of W and H as
µW := wmax

√
mn/||W ||F , µH := qmax

√
n, wmax = max

ij
|Wij |, qmax = max

i,j
|Qij | . (1)

The weight incoherence, µW , measures how heavy-tailed the distribution of weights is. It has
minimum µW = 1, which is achieved when all weights are constant (Wi,j = c ∈ R), while outlier
weights can greatly increase this value. The Hessian incoherence µH has a similar role and also has
minimum 1.

QuIP# [7] exploits incoherence processing, which decreases µW and µH by transforming W̃ ←
UWV T and H̃ ← V HV T before quantization, where U , V are random Hadamard matrices. This
approach introduces overhead during inference since the activations must be rotated prior to matrix
multiply. QuaRot also uses Hadamard rotations, but exploits the rotational invariance of LLMs to
reduce the overhead by fusing some of the rotations with the weights. These rotations can, in part, be
learned without additional overhead during inference, as done in SpinQuant. We provide a schematic
of the rotations used in Figure 1. Our method, OptRot, learns two fusible rotations (R1 and R2

in Figure 1) to minimize the weight incoherence. This offers a simple data-free method to learn
rotations, while minimizing also the Hessian incoherence would require a calibration dataset. Instead
of directly minimizing

∑
W̃ µW̃ where W̃ is a rotated weight matrix, we replace the non-smooth

incoherence µW̃ with ∥Vec(W̃)∥pp =
∑

i,j |W̃i,j |p where Vec flattens matrices into vectors, since
high p-norm provides a smooth approximation to the infinity norm. Concretely, for an LLM of the
Llama family with L layers we solve the following problem over our smooth incoherence loss:

min
R1,R2,1,...,R2,L

L∑
i=1

∑
s

∥Vec(W̃ (l,s))∥pp , (2)

where W̃ (l,s) = R⊤
1 W

(l,s)for s ∈ {q, k, gate, up} and W̃ (l,v) = R⊤
1 W

(l,v)R2,l, W̃
(l,o) =

R⊤
2,lW

(l,o)R2,l, W̃
(l,down) = R⊤

4 W
(l,down)R1. To minimize the objective over the space of rota-

tions, we use Cayley Gradient Descent [12] (same as SpinQuant). We set p = 4 in our experiments.
Preliminary results showed no improvement with larger p.

2.1 Improving the Quantization Error by Reducing Incoherence

The quality of a quantized weight Ŵ in isolation can be measured by the following objective, which
measures how well we can recover the outputs of the original layer.

L(Ŵ ,H) = tr
(
(Ŵ −W)H(Ŵ −W)T

)
= E

[
||(Ŵ −W)x||2

]
, (3)

2

RTN. A simple strategy to quantize a weight matrix is b-bits round-to-nearest (RTN). First, each
element of the weight matrix is scaled by applying the function g(x; s) = 2b−1

2

(
x
s + 1

)
(assuming

symmetric quantization), where s > 0 is a scale parameter. Second, it is mapped to the nearest
value of the quantization grid via the function f(x) = argminc∈{0,...,2b−1} |x − c|. The resulting
values are then stored and during inference g−1 is applied to retrieve the approximate weights
Ŵ . Combining all steps we obtain ŴRTN = Q(W ; s) = g−1(f(g(W ; s)); s), where we extended
g, g−1, f to element-wise functions applied to the entire matrix. The scale s can be set to wmax so
that all weights are inside the quantization grid, but the max is usually computed and applied over a
small contiguous group of weights to mitigate outliers with a small increase in memory (as scales
have to be stored). We show (Theorem 1) that if s = wmax the RTN error can be bounded as

L(ŴRTN, H) ≤ µ2
W

(2b − 1)2
λmax(H)||W ||2F . (4)

GPTQ. The GPTQ algorithm finds the quantized weight which approximately minimizes L by
exploiting the LDL decomposition of the matrix H . In particular, as shown by [7], it finds ŴGPTQ =

Q(W+(W−ŴGPTQ)U) where U is the strictly upper triangular matrix from the LDL decomposition
of the hessian H = (U + I)D(U + I)⊤. Obtaining a proper worst-case bound for GPTQ is more
challenging than for RTN since the corrections applied before discretization via Q can push some
values far outside the quantization grid. Despite this, with some changes to the GPTQ algorithm (not
used in practice) which include the use of stochastic rounding, the worst-case error can be bounded
with probability at least 1− δ as shown in Theorem 14 in [5]:

L(ŴGPTQ, H) ≤ µ2
Hµ2

W

n2(2b − 3)2
tr
(
H1/2

)2||W ||2F log
(4mn

δ

)2
. (5)

Improving error bounds with rotations. Applying rotations to W or H only affects the error upper
bounds via two terms: the weight incoherence µW , affecting both GPTQ and RTN, and the Hessian
incoherence µH , affecting only GPTQ. Rotations can modify wmax, qmax, while ∥W∥F , tr(H) and
tr(H1/2) are rotation-invariant. OptRot learns rotations that aim at minimizing µW .

10
1

W

self_attn.k_proj

10
1

self_attn.o_proj

10
1

mlp.up_proj

10
1

mlp.down_proj

2 × 10
1

3 × 10
1

4 × 10
1

H

2 × 10
1

3 × 10
1

4 × 10
1

2 × 10
1

3 × 10
1

4 × 10
1

10
2

3 × 10
1

4 × 10
1

6 × 10
1

0 5 10 15 20 25 30
Layer Index

10
2

10
3

H
×

W

0 5 10 15 20 25 30
Layer Index

10
2

10
3

0 5 10 15 20 25 30
Layer Index

10
3

0 5 10 15 20 25 30
Layer Index

10
2

10
3

OptRot QUIP# No Rotation SpinQuant QuaRot

Figure 2: Weight incoherence µW optimized by OptRot (top row), Hessian incoherence µH (middle
row) and their product µHµW (bottom row) for Llama-3.1-8B. Note that µH is identical for QuaRot
and QuIP#, and QuIP# has a higher inference cost due to the additional online Hadamard rotations.

3

3 Experiments

We conduct experiments on the Llama-3 series of models, for weight and activation quantization.
Weights are quantized with GPTQ, calibrated on the C4 [13] dataset, and activations are quantized
with RTN. We report results on Wikitext [14] and six zero-shot commonsense reasoning benchmarks:
Piqa [15], Hellaswag [16], Arc-E and Arc-C [17], Lambada [18] and Winogrande [19]. We also
report the KL divergence, on the C4 dataset, between the quantized and original model. We present
two versions of our method, OptRot (all) learns rotations by optimizing incoherence over all weights.
OptRot (top-50) is a cheaper variant which chooses the top 50 weights with the largest incoherence
loss to learn rotations. Due to space constraints we defer some results to the appendix.

Table 1: Results for weight-only quantization at 4-bits with GPTQ.

Method Llama-3.2-1B Llama-3.2-3B Llama-3.1-8B

Acc ↑ Wiki ↓ KL ↓ Acc ↑ Wiki ↓ KL ↓ Acc ↑ Wiki ↓ KL ↓
FP16 56.77 9.76 0 64.72 7.81 0 70.29 6.24 0

No Rotation 49.43 13.86 0.36 56.28 11.78 0.35 67.39 7.47 0.23
QuaRot 55.26 10.79 0.136 63.48 8.36 0.097 69.17 6.72 0.0926
SpinQuant 54.9 10.73 0.137 63.05 8.37 0.096 69.46 6.71 0.0925

OptRot (top-50) 55.53 10.68 0.123 63.48 8.32 0.093 69.5 6.65 0.0849
OptRot (all) 55.65 10.62 0.125 63.41 8.28 0.093 69.5 6.64 0.0866

OptRot improves the RTN and GPTQ error bounds. Figure 2 (top row) plots the weight incoher-
ence µW . SpinQuant and QuaRot achieve similar incoherences upon rotation as seen by the almost
overlapping curves. QuIP# can further improve the incoherence on key, out and up-projection layers
but it employs additional online rotations and hence is costlier to run. OptRot generally finds the
smallest weight incoherence and hence the lowest RTN error bound (see Equation 4), with the most
notable improvements in out, key and down-projection layers. The down-projection layer in particular
is known to be affected by outliers [20], here OptRot consistently achieves lower weight incoherence.

Minimizing weight incoherence also affects the Hessian incoherence (Figure 2 middle row), as both
the weights and their inputs are rotated. In comparison to Hadamard rotations with QuaRot or QuIP#,
OptRot increases µH in key and out-projection layers. This suggests a trade-off between µW and µH :
decreasing µW seems to worsen µH . Interestingly, SpinQuant, which learns rotations that minimize
the activation quantization error, does not improve µH in comparison to Hadamard rotations.

The GPTQ quantization error bound in Equation 5 is controlled by the product µHµW plotted in
Figure 2 (bottom row). OptRot obtains a smaller product in all layers, except a few up-projection
layers. This suggests that optimizing the weight incoherence with OptRot should improve the error in
majority of the layers, leading to better downstream performance.

OptRot improves weight-only quantization. Results with GPTQ in Table 1 (4-bits) show that
OptRot consistently outperforms other methods, even with the cheaper top-50 version. This result
also holds for in the absence of online rotations (see Table 4) and at 3-bits (see Table 7). With the
underperforming RTN quantization, SpinQuant still outperforms OptRot (see Appendix G).

Activation Quantization. OptRot matches or outperforms SpinQuant in the A8W4 setting (see
Table 5), which can efficiently serve large models without a significant drop in performance [21].
In contrast, in the A4W4 setting, which sees a significant drop in performance compared to the full
precision model, OptRot performs worse than SpinQuant and often even QuaRot. We hypothesize
that this can be related to the increased Hessian incoherence (Figure 2 middle row).

Conclusion. We introduce OptRot, a method to learn rotations in a data-free manner for post-training
weight quantization. Building on [7], we leverage the fact that rotations control the weight and
Hessian incoherence which in turn bound the weight quantization error for RTN and GPTQ. OptRot
optimizes the weight incoherence to improve these bounds, which translates to improved downstream
performance for weight-only quantization. When including activation quantization, while OptRot is
competitive with SpinQuant in the A8W4 regime, it underperforms in the A4W4 one.

4

References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni

Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

[2] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,
Ahmad Al-Dahle, , et al. The llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

[3] Zifei Xu, Alexander Lan, Wanzin Yazar, Tristan Webb, Sayeh Sharify, and Xin Wang. Scaling
laws for post-training quantized large language models. CoRR, 2024.

[4] Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L Croci, Bo Li, Pashmina Cameron,
Martin Jaggi, Dan Alistarh, Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit
inference in rotated llms. Advances in Neural Information Processing Systems, 37:100213–
100240, 2024.

[5] Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher M De Sa. Quip: 2-bit quantiza-
tion of large language models with guarantees. Advances in Neural Information Processing
Systems, 36:4396–4429, 2023.

[6] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

[7] Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. Quip#:
Even better llm quantization with hadamard incoherence and lattice codebooks. arXiv preprint
arXiv:2402.04396, 2024.

[8] Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge Soran, Dhruv Choudhary, Raghuraman
Krishnamoorthi, Vikas Chandra, Yuandong Tian, and Tijmen Blankevoort. Spinquant: Llm
quantization with learned rotations. arXiv preprint arXiv:2405.16406, 2024.

[9] Mohammad Sadegh Akhondzadeh, Aleksandar Bojchevski, Evangelos Eleftheriou, and Martino
Dazzi. Kurtail: Kurtosis-based llm quantization. arXiv preprint arXiv:2503.01483, 2025.

[10] Yuxuan Sun, Ruikang Liu, Haoli Bai, Han Bao, Kang Zhao, Yuening Li, Jiaxin Hu, Xianzhi
Yu, Lu Hou, Chun Yuan, et al. Flatquant: Flatness matters for llm quantization. arXiv preprint
arXiv:2410.09426, 2024.

[11] Bingxin Xu, Zhen Dong, Oussama Elachqar, and Yuzhang Shang. Butterflyquant: Ultra-
low-bit llm quantization through learnable orthogonal butterfly transforms. arXiv preprint
arXiv:2509.09679, 2025.

[12] Jun Li, Li Fuxin, and Sinisa Todorovic. Efficient riemannian optimization on the stiefel manifold
via the cayley transform. arXiv preprint arXiv:2002.01113, 2020.

[13] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. arXiv e-prints, 2019.

[14] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In International Conference on Learning Representations, 2017.

[15] Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. PIQA: Reasoning
about physical commonsense in natural language. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 7432–7439, 2020.

[16] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can
a machine really finish your sentence? In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages 4791–4800, 2019.

[17] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
and Oyvind Tafjord. Think you have solved question answering? try ARC, the AI2 reasoning
challenge. arXiv preprint arXiv:1803.05457, 2018.

5

[18] Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The LAMBADA
dataset: Word prediction requiring a broad discourse context. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
1525–1534, 2016.

[19] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. WinoGrande: An
adversarial winograd schema challenge at scale. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 8732–8740, 2020.

[20] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
multiplication for transformers at scale. Advances in neural information processing systems,
35:30318–30332, 2022.

[21] Yujun Lin, Haotian Tang, Shang Yang, Zhekai Zhang, Guangxuan Xiao, Chuang Gan, and Song
Han. Qserve: W4a8kv4 quantization and system co-design for efficient llm serving. arXiv
preprint arXiv:2405.04532, 2024.

6

A Round to Nearest Error Bound

Round-to-Nearest (RTN) is a simple quantization method which simply rounds every weight element
to its nearest discrete value on the quantization grid. For a bit-width b, the weight values must be
scaled such that 0 ≤Wij ≤ 2b − 1 assuming symmetric quantization.

Each element is rescaled as Wij → 2b−1
2

(
Wij

wmax
+ 1
)

with wmax = maxi,j |Wi,j | followed by
rounding to the nearest integer. The error achieved by the RTN procedure can be upper bounded by
the extreme case where each element is exactly in the middle of a quantization interval and incurs an
error of ∆

2 where ∆ = 2wmax

(2b−1)
. The following theorem derives this bound.

Theorem 1 (Worst Case Error Bound for RTN). Let W ∈ Rm×n be a weight matrix and H ∈ Rn×n

be a symmetric positive semi-definite (PSD) matrix. Let Ŵ be the matrix obtained by applying uniform
b-bit Round-to-Nearest (RTN) quantization to each element of W . The quadratic quantization error
is bounded as follows:

tr((Ŵ −W)H(Ŵ −W)⊤) ≤ µ2
W

(2b − 1)2
λmax(H)||W ||2F

where µW is the weight incoherence defined in Equation 1 and λmax(H) is the maximum eigenvalue
of the matrix H .

Proof. Let η := Ŵ −W be the quantization error matrix. The objective function is tr(ηHη⊤). By
the cyclic property of the trace, we can rearrange the terms:

tr(ηHη⊤) = tr(Hη⊤η) .

We apply the Von Neumann’s trace inequality tr(AB) ≤
∑n

i=1 λi(A)λi(B), where (λi(A))ni=1,
(λi(B))ni=1 are the eigenvalues of A and B, which holds if A,B are PSD. In our case A = H ,
B = η⊤η

tr(Hη⊤η) ≤
n∑

i=1

λi(H)λi(η
⊤η) ≤ λmax(H) tr(η⊤η) = λmax(H)∥η∥2F .

Next, we bound the Frobenius norm of the error matrix η. For a uniform b-bit quantization scheme,
the width of each quantization interval is ∆ = 2wmax

(2b−1)
. For Round-to-Nearest, the maximum error for

any single element is half of this interval width:

|ηij | ≤
∆

2
=

wmax

2b − 1

Using this per-element bound, we can bound the squared Frobenius norm, which is the sum of the
squared magnitudes of all elements:

∥η∥2F =

m∑
i=1

n∑
j=1

|ηij |2 ≤
m∑
i=1

n∑
j=1

(
wmax

2b − 1

)2

= mn

(
wmax

2b − 1

)2

Finally, substituting the bound for η yields

tr(ηHη⊤) ≤ mn

(
wmax

2b − 1

)2

λmax(H) .

We conclude the proof by using the definition of µW .

B Experimental Setup

OptRot. We learn the rotations by optimizing the weight incoherence objective described in Equa-
tion 2 with Cayley SGD [12] (as in SpinQuant) with a learning rate of 1 for 1000 steps. For the
cheaper top-50 version of OptRot, we learn the rotations by optimizing only over the 50 weight
matrices with the largest loss.

7

SpinQuant/QuaRot. We use the implementation at https://github.com/facebookresearch/SpinQuant
with default parameters. In the case of SpinQuant, to learn rotations, we use 800 samples of length
2048 from C4, and we only use activation quantization to 8-bit (as recommended when using GPTQ)
if not otherwise specified. Activation quantization to 4-bits did not improve the result of SpinQuant.
Rotations are optimized with 800 steps of Cayley SGD with learning rate 1.5 and batch size 1. To
implement QuaRot, we use the same implementation (as SpinQuant) with initial rotations. Hence, we
do not include the online Hadamard rotations before the out-projection, which would add inference
cost and are less relevant for weight-only quantization.

Quantization. After rotating the model, we quantize it using GPTQ if not otherwise specified. For
GPTQ, we use 512 samples of length 256 from the C4 dataset as the calibration set and we set the
group-size parameter to 256 and the damping parameter to 0.01.

C Learning SpinQuant Rotations

By default, SpinQuant learns rotations by quantizing only the activations to 8-bits using RTN and
a straight-through estimator to backpropagate the gradients to minimize the KL divergence. Since
our focus is on weight quantization, while SpinQuant focuses more on activation quantizaton, we
measure the effect of learning the SpinQuant rotations by quantizing only the weights (SpinQuant
W4) or activations to 4-bits (SpinQuant A4) on Wikitext perplexity.

As we can see in Table 2, there are not significant improvements for both the A4 and W4 variants
when quantizing weights with GPTQ.

Since SpinQuant uses RTN to learn the rotations, choosing weight or activation quantization has an
effect on the downstream performance when quantizing weights with RTN (Table 3), i.e., when the
quantization method is aligned for both rotation learning and quantization. We observe that when
the rotations are learnt with weight quantization, weight-only quantization with SpinQuant performs
significantly better than the baseline which learns rotations with activation quantization. This version
of SpinQuant (W4) also outperforms OptRot (Table 8). See Appendix G for an in-depth discussion.

Table 2: WikiText perplexity for learning SpinQuant rotations with weight or activation quantization
followed by weight-only quantization to 4-bits with GPTQ.

Method Llama-3.2-1B Llama-3.2-3B Llama-3.1-8B

SpinQuant (Baseline) 10.73 8.37 6.71
SpinQuant (A4) 10.73 8.36 6.7
SpinQuant (W4) 10.79 8.35 6.69

Table 3: WikiText perplexity for learning SpinQuant rotations with weight or activation quantization
followed by weight-only quantization to 4-bits with RTN.

Method Llama-3.2-1B Llama-3.2-3B Llama-3.1-8B

SpinQuant (Baseline) 13.56 10.03 7.57
SpinQuant (W4) 11.75 8.97 7.14

D Complete Incoherence Plots

We report weight incoherence µW and Hessian incoherence µH plots for the 1B, 3B and 8B models
across all layers for completeness in Figures 3 4 and 5. OptRot almost always finds the lowest weight
incoherence, corresponding to the best RTN error bound in Equation 4. It also obtains the lowest
product µHµW , which yields the best GPTQ error bound in Equation 5, in a majority of the layers
for all three models.

E Weight Quantization

In addtion to Table 2 in the main paper, we report additional results for weight-only quantization.

8

https://github.com/facebookresearch/SpinQuant

Without online rotations. Table 4 reports the performance of OptRot in the absence of the online
rotations R3, R4. Even without these online rotations, OptRot outperforms SpinQuant and QuaRot.

3-bit quantization. Table 7 reports performance of OptRot for 3-bit weight-only quantization.
OptRot achieves a larger gain over SpinQuant in this regime, further reducing the gap between the
3-bit model and the full-precision baseline.

F Activation Quantization

We show that OptRot can provably improve the error for weight-only quantization. While OptRot
does not directly optimize for activation quantization, we empirically validate its performance. We
quantize the weights with GPTQ and the activations with Round-to-Nearest (RTN). We hypothesize
that a lower Hessian incoherence benefits activation quantization. As shown in Figure 2, OptRot
improves the weight incoherence at the cost of increasing the Hessian incoherence, yet still improving
the overall weight quantization bound. Hence, we would expect OptRot to not perform as well as
SpinQuant for activation quantization.

A8W4. In this regime, OptRot is still competetive with SpinQuant with lower perplexity across
all three models, although the gain is smaller. Quantizing the activations to 8-bits still achieves an
acceptable overall performance for serving models [21]. Results are reported in Table 5.

A4W4. Quantizing activations to 4-bits is a hard problem [21] and the overall model performance
drops significantly in this regime, making the model unusable in practice. Here, we observe that
OptRot performs worse than SpinQuant. This is likely due to the higher Hessian incoherence achieved
by OptRot. Results are reported in Table 6.

G RTN Results

Learning rotations with OptRot improves the error bound with Round-to-Nearest shown in Equation
4. In case of RTN, Equation (4) shows that the error is bounded only by the weight incoherence.
Figure 7 shows that OptRot achieves the lowest incoherence. This translates to lower error (higher
SNR) as shown in Figure 8. Table 8 reports results for weight-only quantization with RTN, where
OptRot outperforms QuaRot (Hadamard rotations).

SpinQuant W4. Table 8 also shows that SpinQuant (W4) performs significantly better than both
SpinQuant and OptRot on downstream tasks. However, the weight incoherence (Figure 7) and
more importantly the SNR (Figure 8) plots show that OptRot usually achieves a lower error bound
(Equation 4) and layerwise objective (Equation 3) than SpinQuant. This difference can be explained
by the fact that SpinQuant (W4) optimizes an end-to-end quantization-aware objective: the KL
divergence between the original and quantized model. Thus, SpinQuant, differently from OptRot, can
exploit interactions between weights: the rotations can be learnt in a manner where certain weights
compensate for quantization errors in other weights, both within and between layers.

This effect benefits downstream quantization when the quantization method used for rotation learning
and quantization are the same (RTN in this case). In contrast, while using RTN for rotation learning
and quantizing with GPTQ, these improvements are not observed (see Table 2). These results suggest
that for SpinQuant, aligning the quantization method for both rotation learning and quantization yields
the best downstream results. However, performing this alignment for GPTQ is not straightforward: for
each step of rotation learning we would have to quantize each row of each weight matrix sequentially
and update the Hessian matrix, making rotation learning more costly. Our approach, provides a way
to more efficiently improve the performance of GPTQ by minimizing an upper bound to the layerwise
objective. We note that GPTQ consistently outperforms RTN, and OptRot + GPTQ achieves the best
overall results for weight-only quantization.

9

H SNR

We also report the Signal-to-Noise Ratio (SNR) in dB to measure the quality of the quantization with
GPTQ. The SNR is computed for GPTQ as:

SNR := 10 ∗ log10

(
E∥Wx∥2

E∥(Ŵ −W)x∥2

)
= 10 ∗ log10

(
tr(WHW⊤)

tr((W − Ŵ)H(W − Ŵ)⊤)

)
, (6)

where H = E[xx⊤] and the Expectation is computed over the calibration set. Note that any upper
bound on the incoherence can be used to lower bound the SNR.

Figure 6 shows the SNR for each method across models. A high SNR means small quantization error.
According to the bound in Equation 5 lowering the weight incoherence should improve the error and
increase the SNR. Our results confirm this observation, the lower weight incoherence achieved by
OptRot translates to a higher SNR for weight quantization.

Table 4: Results without online (R3, R4) rotations for weight-only quantization at 4-bits with GPTQ.

Method Llama-3.2-1B Llama-3.2-3B Llama-3.1-8B

Acc ↑ Wiki ↓ KL ↓ Acc ↑ Wiki ↓ KL ↓ Acc ↑ Wiki ↓ KL ↓
FP16 56.77 9.76 0 64.72 7.81 0 70.29 6.24 0

No Rotation 49.43 13.86 0.362 56.28 11.78 0.355 67.39 7.47 0.233
Quarot 54.6 11.27 0.208 62.52 8.64 0.183 68.7 6.81 0.154
SpinQuant 54.19 11.21 0.211 62.3 8.69 0.181 68.66 6.79 0.152

OptRot (top-50) 54.4 11.06 0.189 63.3 8.51 0.153 69.28 6.74 0.133
OptRot (all) 54.42 10.98 0.185 62.29 8.48 0.163 69.1 6.71 0.133

Table 5: Results for A8W4 quantization, where activations are quantized with RTN and weights with
GPTQ.

Method Llama-3.2-1B Llama-3.2-3B Llama-3.1-8B

Acc ↑ Wiki ↓ KL ↓ Acc ↑ Wiki ↓ KL ↓ Acc ↑ Wiki ↓ KL ↓
FP16 56.77 9.76 0 64.72 7.81 0 70.29 6.24 0

No Rotation 48.9 14.49 0.367 54.93 13.03 0.367 66.38 7.65 0.249
Quarot 55.2 10.8 0.137 63.23 8.37 0.099 69.17 6.72 0.094
SpinQuant 55.21 10.75 0.133 63.95 8.34 0.098 69.5 6.72 0.096

OptRot (top-50) 55.1 10.68 0.124 63.28 8.32 0.092 69.4 6.66 0.082
OptRot (all) 55.55 10.63 0.126 63.33 8.29 0.094 69.32 6.65 0.087

Table 6: Results for A4W4 quantization, where activations are quantized with RTN and weights with
GPTQ.

Method Llama-3.2-1B Llama-3.2-3B Llama-3.1-8B

Acc ↑ Wiki ↓ KL ↓ Acc ↑ Wiki ↓ KL ↓ Acc ↑ Wiki ↓ KL ↓
FP16 56.77 9.76 0 64.72 7.81 0 70.29 6.24 0

No Rotation 32.22 204 2.88 34.67 367 2.01 37.7 75.68 2.07
Quarot 49.85 13.67 0.392 57.64 9.96 0.297 65.05 7.81 0.275
SpinQuant 49.63 13.56 0.393 58.69 9.88 0.308 65.7 7.8 0.273
OptRot (top-50) 50.47 14.05 0.429 56.92 10.97 0.417 64.05 8.29 0.325
OptRot (all) 50.11 13.97 0.43 57.67 10.34 0.362 65.27 8.38 0.348

10

Table 7: Results for 3-bit weight-only quantization with GPTQ.

Method Llama-3.2-1B Llama-3.2-3B Llama-3.1-8B

Acc ↑ Wiki ↓ KL ↓ Acc ↑ Wiki ↓ KL ↓ Acc ↑ Wiki ↓ KL ↓
FP16 56.77 9.76 0 64.72 7.81 0 70.29 6.24 0

No Rotation 40.23 77.32 1.62 50.55 15.58 0.75 58.13 11.82 0.64
Quarot 51.25 14.47 0.427 60.68 10.24 0.322 66.36 8 0.275
SpinQuant 50.8 14.38 0.415 59.83 10.28 0.327 66.81 7.99 0.275

OptRot (top-50) 51.77 14 0.407 60.68 10.1 0.32 66.8 7.86 0.263
OptRot (all) 51.37 13.78 0.384 60.36 10.17 0.313 67.31 7.85 0.257

Table 8: Results for 4-bit weight-only quantization with RTN.

Method Llama-3.2-1B Llama-3.2-3B Llama-3.1-8B

Acc ↑ Wiki ↓ KL ↓ Acc ↑ Wiki ↓ KL ↓ Acc ↑ Wiki ↓ KL ↓
FP16 56.77 9.76 0 64.72 7.81 0 70.29 6.24 0

No Rotation 48.14 15.13 0.451 54.84 16.2 0.416 64.38 8.23 0.279
Quarot 51.27 13.7 0.4 59.41 10.1 0.327 67.2 7.57 0.244
SpinQuant 51.18 13.56 0.399 59.54 10.03 0.324 67.14 7.57 0.242
OptRot (all) 52.26 12.81 0.331 60.46 9.64 0.273 67.65 7.4 0.224
SpinQuant (W4) 54.65 11.75 0.241 61.75 8.97 0.198 67.79 7.14 0.171

10
1

W

self_attn.q_proj

10
1

self_attn.k_proj

10
1

6 × 10
0

2 × 10
1

self_attn.v_proj

10
1

self_attn.o_proj

10
1

10
2

mlp.gate_proj

10
1

10
2

mlp.up_proj

10
1

mlp.down_proj

2 × 10
1

3 × 10
1

H

2 × 10
1

3 × 10
1

2 × 10
1

3 × 10
1

2 × 10
1

3 × 10
1

4 × 10
1

2 × 10
1

3 × 10
1

2 × 10
1

3 × 10
1

3 × 10
1

4 × 10
1

6 × 10
1

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Layer Index

10
2

10
3

H
×

W

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Layer Index

10
2

10
3

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Layer Index

10
2

2 × 10
2

3 × 10
2

4 × 10
2

6 × 10
2

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Layer Index

10
2

10
3

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Layer Index

10
3

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Layer Index

10
2

10
3

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Layer Index

10
2

10
3

OptRot SpinQuant QUIP# QuaRot No Rotation

Figure 3: Weight Incoherence µW (top row), Hessian Incoherence µH (middle row) and µHµW

(bottom row) on Llama-3.2-1B.

11

10
1

10
2

W

self_attn.q_proj

10
1

10
2

self_attn.k_proj

10
1

6 × 10
0

2 × 10
1

3 × 10
1

self_attn.v_proj

10
1

self_attn.o_proj

10
1

mlp.gate_proj

10
1

10
2

mlp.up_proj

10
1

mlp.down_proj

2 × 10
1

3 × 10
1

4 × 10
1

H

2 × 10
1

3 × 10
1

4 × 10
1

2 × 10
1

3 × 10
1

4 × 10
1

2 × 10
1

3 × 10
1

4 × 10
1

2 × 10
1

3 × 10
1

4 × 10
1

2 × 10
1

3 × 10
1

4 × 10
1

3 × 10
1

4 × 10
1

6 × 10
1

0 5 10 15 20 25
Layer Index

10
3

H
×

W

0 5 10 15 20 25
Layer Index

10
2

10
3

0 5 10 15 20 25
Layer Index

10
2

10
3

0 5 10 15 20 25
Layer Index

10
2

10
3

0 5 10 15 20 25
Layer Index

10
3

0 5 10 15 20 25
Layer Index

10
2

10
3

0 5 10 15 20 25
Layer Index

10
2

10
3

OptRot QUIP# No Rotation SpinQuant QuaRot

Figure 4: Weight Incoherence µW (top row), Hessian Incoherence µH (middle row) and µHµW

(bottom row) on Llama-3.2-3B.

10
1

10
2

W

self_attn.q_proj

10
1

self_attn.k_proj

10
1

self_attn.v_proj

10
1

self_attn.o_proj

10
1

mlp.gate_proj

10
1

mlp.up_proj

10
1

mlp.down_proj

2 × 10
1

3 × 10
1

4 × 10
1

H

2 × 10
1

3 × 10
1

4 × 10
1

2 × 10
1

3 × 10
1

4 × 10
1

2 × 10
1

3 × 10
1

4 × 10
1

2 × 10
1

3 × 10
1

4 × 10
1

2 × 10
1

3 × 10
1

4 × 10
1

10
2

3 × 10
1

4 × 10
1

6 × 10
1

0 5 10 15 20 25 30
Layer Index

10
3

H
×

W

0 5 10 15 20 25 30
Layer Index

10
2

10
3

0 5 10 15 20 25 30
Layer Index

10
3

0 5 10 15 20 25 30
Layer Index

10
2

10
3

0 5 10 15 20 25 30
Layer Index

10
3

0 5 10 15 20 25 30
Layer Index

10
3

0 5 10 15 20 25 30
Layer Index

10
2

10
3

OptRot QUIP# No Rotation SpinQuant QuaRot

Figure 5: Weight Incoherence µW (top row), Hessian Incoherence µH (middle row) and µHµW

(bottom row) on Llama-3.1-8B.

Figure 6: SNR for weight-only quantization with GPTQ at 4-bits for Llama-3.2-1B (top row), Llama-
3.2-3B (middle row) and Llama-3.1-8B (bottom row).

12

0 5 10 15
Layer Index

10
1

10
2

W

self_attn.q_proj

0 5 10 15
Layer Index

self_attn.k_proj

0 5 10 15
Layer Index

self_attn.v_proj

0 5 10 15
Layer Index

self_attn.o_proj

0 5 10 15
Layer Index

mlp.gate_proj

0 5 10 15
Layer Index

mlp.up_proj

0 5 10 15
Layer Index

mlp.down_proj

SpinQuant(W4) OptRot(all) No Rotation

0 10 20
Layer Index

10
1

10
2

W

self_attn.q_proj

0 10 20
Layer Index

self_attn.k_proj

0 10 20
Layer Index

self_attn.v_proj

0 10 20
Layer Index

self_attn.o_proj

0 10 20
Layer Index

mlp.gate_proj

0 10 20
Layer Index

mlp.up_proj

0 10 20
Layer Index

mlp.down_proj

SpinQuant(W4) OptRot(all) No Rotation

0 10 20 30
Layer Index

10
1

10
2

W

self_attn.q_proj

0 10 20 30
Layer Index

self_attn.k_proj

0 10 20 30
Layer Index

self_attn.v_proj

0 10 20 30
Layer Index

self_attn.o_proj

0 10 20 30
Layer Index

mlp.gate_proj

0 10 20 30
Layer Index

mlp.up_proj

0 10 20 30
Layer Index

mlp.down_proj

SpinQuant(W4) OptRot(all) No Rotation

Figure 7: Weight incoherence µW comparison for SpinQuant (W4) and OptRot on Llama-3.2-1B
(top row), Llama-3.2-3B (middle row) and Llama-3.1-8B (bottom row).

Figure 8: SNR for weight-only quantization with RTN at 4-bits for Llama-3.2-1B (top row), Llama-
3.2-3B (middle row) and Llama-3.1-8B (bottom row).

13

	Introduction
	OptRot
	Improving the Quantization Error by Reducing Incoherence

	Experiments
	Round to Nearest Error Bound
	Experimental Setup
	Learning SpinQuant Rotations
	Complete Incoherence Plots
	Weight Quantization
	Activation Quantization
	RTN Results
	SNR

