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Abstract

Large language models (LLMs) achieve remarkable performance in code genera-
tion tasks. However, a significant performance disparity persists between popular
programming languages (e.g., Python, C++) and others. To address this capability
gap, we leverage the code translation task to train LLMs, thereby facilitating the
transfer of coding proficiency across diverse programming languages. Moreover,
we introduce OORL for training, a novel reinforcement learning (RL) framework
that integrates on-policy and off-policy strategies. Within OORL, on-policy RL
is applied during code translation, guided by a rule-based reward signal derived
from unit tests. Complementing this coarse-grained rule-based reward, we propose
Group Equivalent Preference Optimization (GEPO), a novel preference optimiza-
tion method. Specifically, GEPO trains the LLM using intermediate representations
(IRs) groups. LLMs can be guided to discern IRs equivalent to the source code from
inequivalent ones, while also utilizing signals about the mutual equivalence be-
tween IRs within the group. This process allows LLMs to capture nuanced aspects
of code functionality. By employing OORL for training with code translation tasks,
LLMs improve their recognition of code functionality and their understanding of
the relationships between code implemented in different languages. Extensive
experiments demonstrate that our OORL for LLMs training with code translation
tasks achieves significant performance improvements on code benchmarks across
multiple programming languages.

1 Introduction

With the rapid advancement of LLMs [2], code-specific language models have garnered significant
attention within the research community. Building upon pre-trained LLMs, code LLMs such as the
StarCoder series [12, 16], CodeLlama series [23], DeepSeekCoder series [27], QwenCoder [20] series,
and CodeStral [18] have demonstrated superior performance in code generation tasks. However,
although current state-of-the-art code generation LLMs excel at generating code using popular
programming languages (e.g., Python, C++), their performance diminishes when applied to solving
the same problems using other programming languages [19]. This capability gap limits the universal
applicability of these powerful LLMs and hinders developers working in diverse programming
language ecosystems.

Consequently, it is crucial to enhance LLMs’ proficiency across a wider range of programming
languages to match their performance in widely used ones [26, 19]. We address this challenge by
training LLMs on code translation tasks, requiring them to translate code from one programming
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language to another accurately. Intuitively, if LLMs can accurately translate Python code into other
programming languages, they can achieve comparable performance in Python code generation tasks
in those programming languages. Moreover, focusing on code translation facilitates the LLM’s
understanding of inter-language similarities and differences and allows it to learn from exemplary
code structures.

Recently, on-policy RL algorithms [24, 1, 25, 14, 9] utilizing rule-based rewards have demonstrated
significant performance in code generation tasks [7, 6]. However, the inherent coarse-grained nature
of these rule-based rewards, lacking process-level supervision, limits their effectiveness in guiding
LLMs to recognize the functional equivalence of intermediate code components during training.
Implementing fine-grained process-level rewards is challenging, particularly given that multiple valid
implementations may exist for the same code functionality. Given that leveraging preference data can
guide LLM behavior towards desired outcomes, preference optimization [21, 3] offers an opportunity
to incorporate process-level constraints during training.

Functional equivalence is crucial during the training process for code translation tasks. High-
level programming languages can be too abstract for effective functional understanding by LLMs,
especially for less common ones [26]. Consequently, interlingual intermediate representations (IRs)
can be leveraged to facilitate cross-language transfer from high- to low(er)-resource programming
languages [19, 10, 26]. Compiler IRs are agnostic to the source programming language and target
execution platform, providing a method to align constructs from different programming languages
semantically [5]. Therefore, we construct groups of IRs for the preference optimization process.
By guiding the LLM to distinguish IRs equivalent to the source code from inequivalent ones and
utilizing signals about the mutual equivalence between IRs within the group, the LLM can capture
fine-grained information regarding code functionality.

This study introduces OORL, a novel RL framework integrating on-policy and off-policy strategies
for training. First, we employ on-policy RL with a binary, rule-based reward signal. This component
ensures the fundamental correctness of the code translation, verifying that the generated code adheres
to formatting requirements, compiles successfully, and passes predefined unit tests. This provides a
strong, unambiguous signal for task completion. Second, we introduce group equivalent preference
optimization (GEPO) to incorporate finer-grained quality distinctions and address the unique nature
of code generation, where multiple equivalences can exist. GEPO is a novel preference optimization
method that extends beyond traditional pairwise comparisons. It leverages preference data comparing
groups of “winner” (equivalent IRs) and “loser” (inequivalent IRs) responses. Crucially, GEPO
explicitly models the concept of functional equivalence within the winner group, guiding the model
to recognize that multiple distinct IRs can be equally valid. This allows the model to learn nuanced
aspects of code functionality across multiple programming languages.

Our contributions can be summarized as follows:

• Introduce OORL, a novel RL framework for training with code translation tasks to enhance
LLMs’ understanding across multiple programming languages.

• Develop GEPO, a novel preference optimization method that extends beyond pairwise
comparisons by explicitly modeling equivalence within IRs groups.

• Conduct extensive evaluations demonstrating the superior performance of our methods
across various code benchmarks using multiple programming languages.

2 Preliminaries

2.1 RL with an Explicit Reward Function

RL [24, 7] has been widely used in preference optimization for LLMs. Let πref denote an LLM
obtained after supervised fine-tuning (SFT). RL optimizes the policy model πθ, typically initialized
from πref with parameters θ, by maximizing an expected reward signal. This requires defining a
reward function R(x, y) that assigns a scalar score to a complete response y given the prompt x. This
score reflects the accuracy, quality, or alignment of the response with human preferences.

Once the reward function R(x, y) is established, an RL algorithm can be employed to optimize the
policy model πθ. The objective is typically to maximize the expected reward, often incorporating
a KL divergence penalty term to prevent πθ from deviating too far from the initial reference policy
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Figure 1: Overview of the OORL integrating on-policy RL with the rule-based reward and on-policy
preference optimization (GEPO).

model πref , thereby maintaining generative capabilities and diversity:

max
θ

Ex∼DpromptEy∼πθ(·|x)[R(x, y)− βDKL(πθ(·|x)||πref(·|x))], (1)

where Dprompt is a dataset of prompts and β is a hyperparameter controlling the KL penalty.

2.2 Direct Preference Optimization

Direct Preference Optimization (DPO) [21] is an alternative approach that leverages the preference
dataset Dpref to directly optimize the policy model πθ without the need for explicitly training a
separate reward model. DPO establishes a direct link between preference probabilities and policy
probabilities, deriving an objective equivalent to optimizing against a learned reward model within
the RLHF framework. Specifically, DPO assumes an implicit reward function rϕ(x, y) exists such
that the human preference data can be modeled via the Bradley-Terry model:

P (yw ≻ yl|x) = σ(rϕ(x, yw)− rϕ(x, yl)), (2)

where ≻ denotes “is preferred over”. Theoretical derivation shows that the RL objective of aligning
with this implicit reward (including the KL penalty) can be transformed into a maximum likelihood
objective computed directly on the preference data. The DPO loss function is defined as:

LDPO(θ;πref) = −E(x,yw,yl)∼Dpref [log σ(β log
πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)], (3)

where πθ is the policy model being optimized, πref is the reference policy model, and β is a scaling
factor for the implicit reward.

3 Methods

Integrating on-policy (Section 3.1) and off-policy (Section 3.2) strategies, as illustrated in Fig-
ure 1, we introduce OORL (Section 3.3), a novel RL framework for multi-programming language
understanding.

3.1 On-policy RL for Code Translation

Although LLMs achieve remarkable performance in code generation tasks, a significant performance
disparity persists between high-resource programming languages (e.g., Python, C++) and others. To
address this capability gap, we leverage the code translation task to train LLMs, thereby facilitating
the transfer of coding proficiency across diverse programming languages. For example, if LLMs can
accurately translate Python code into other programming languages, they can achieve comparable
performance in Python code generation tasks while using those programming languages.

RL with Binary Code Translation Reward. Recently, on-policy RL algorithms utilizing rule-based
rewards have demonstrated significant performance in code generation tasks [7, 6]. Consequently,
we apply on-policy RL to training with code translation tasks. Let’s first define the RL setup for the
code translation task: (1) State (s): The state typically consists of the input q with source code and
potentially the sequence of tokens generated so far o<t with translated code; (2) Action (a): The
action corresponds to the generation of the next token ot by the policy model; (3) Policy (πθ): The
policy model πθ(a|s) is the LLM being optimized, parameterized by θ. It’s typically initialized from
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int sum_sequential_integers(int count) {
    int current_sum = 0;
    for (int i = 0; i < count; ++i) {
        current_sum += i;
    }
    return current_sum;
}

define dso_local i32 @sum_sequential_integers(i32 noundef 
%count) local_unnamed_addr {
entry:
  %cmp4 = icmp sgt i32 %count, 0
  br i1 %cmp4, label %for.body.preheader, label 
%for.cond.cleanup
for.body.preheader:
  %0 = add nsw i32 %count, -1
  %1 = zext nneg i32 %0 to i33
  %2 = add nsw i32 %count, -2
  %3 = zext i32 %2 to i33
  %4 = mul i33 %1, %3
  %5 = lshr i33 %4, 1
  %6 = trunc nuw i33 %5 to i32
  %7 = add i32 %count, %6
  %8 = add i32 %7, -1
  br label %for.cond.cleanup
for.cond.cleanup:
  %current_sum.0.lcssa = phi i32 [ 0, %entry ], [ %8, 
%for.body.preheader ]
  ret i32 %current_sum.0.lcssa
}

define dso_local i32 @sum_sequential_integers(i32 noundef 
%count) local_unnamed_addr {
entry:
  %smax = tail call i32 @llvm.smax.i32(i32 %count, i32 0)
  %0 = zext nneg i32 %smax to i33
  %1 = add nsw i32 %smax, -1
  %2 = zext i32 %1 to i33
  %3 = mul i33 %0, %2
  %4 = lshr i33 %3, 1
  %5 = trunc nuw i33 %4 to i32
  ret i32 %5
}
declare i32 @llvm.smax.i32(i32, i32) #1

define dso_local i32 @sum_sequential_integers(i32 noundef 
%count) local_unnamed_addr {
entry:
  %smax = tail call i32 @llvm.smax.i32(i32 %count, i32 0)
  %0 = zext nneg i32 %smax to i33
  %1 = add nsw i32 %smax, -1
  %2 = zext i32 %1 to i33
  %3 = mul i33 %0, %2
  %4 = lshr i33 %3, 1
  ret i32 %4
}
declare i32 @llvm.smax.i32(i32, i32) #1

define dso_local i32 @sum_sequential_integers(i32 noundef 
%count) local_unnamed_addr {
entry:
  %smax = tail call i32 @llvm.smax.i32(i32 %count, i32 0)
  %0 = add nsw i32 %smax, -1
  %1 = zext i32 %0 to i33
  %2 = mul i33 %0, %1
  %3 = lshr i33 %2, 1
  %4 = trunc nuw i33 %3 to i32
  ret i32 %4
}
declare i32 @llvm.smax.i32(i32, i32) #1

and corresponding function equivalenct IRs group

 Inequivalenct IRs group

Source code   

, augmented from equivalenct IRs group 

Figure 2: Overview of the equivalent and equivalent IRs groups for the training process with GEPO.
The equivalent IRs group is constructed from different LLVM optimization levels (e.g., -Oz, -O3) of
the source code. The inequivalent IRs group is augmented from the equivalent IRs group.

the SFT reference model πref. During the on-policy RL process, given the query q and the trajectory
o, we employ a binary reward function, Rrule(q, o), assigned upon completion of the generation o:

Rrule(q, o) =

{
1, if o represents a successful code translation from q,

0, otherwise.
(4)

Specifically, successful translation demonstrates that o must adhere to the standard format specified in
q and the translated code extracted from o can be successfully compiled and pass unit tests. The policy
model πθ is optimized using an on-policy RL algorithm (e.g., PPO, GRPO) to optimize Equation (1).
The on-policy RL algorithm operates by iteratively sampling trajectories (q, o) from the current policy
model πθ. For each action in each sampled trajectory, it estimates the advantage At, which quantifies
how much better the received reward Rt is compared to an expected baseline. The policy parameters
θ are then updated using a clipped objective function designed to maximize the expected advantage
while limiting the change in the πθ at each step. The on-policy RL loss can be defined as:

LOnP = −E(q,o)∼πθ
[min(rt(πθ)At, clip(rt(πθ), 1− ϵ, 1 + ϵ)At)], (5)

where rt(πθ) =
πθ(a|s)
πθold (a|s)

is the probability ratio between new and old policies. ϵ is a hyperparameter
defining the clipping range. This rule-based RL component, focused on maximizing the binary
success signal defined in Equation (4). It provides a strong, unambiguous signal for task completion,
which is complemented by the finer-grained preference information incorporated through the GEPO
loss, as described in the subsequent section.

3.2 Group Equivalent Preference Optimization with IRs

The inherent coarse-grained nature of rule-based rewards, which lack process-level supervision, limits
their effectiveness in guiding LLMs to recognize the functional equivalence of intermediate code
components. Implementing fine-grained process-level rewards is challenging, particularly as multiple
valid implementations can exist for the same code functionality. Given that leveraging preference
data can effectively guide LLM behavior towards desired outcomes, preference optimization [21, 3]
offers a promising avenue to incorporate process-level constraints during training.

Functional equivalence is crucial in code generation scenarios. However, the functions implemented
with high-level programming languages can be too abstract for LLMs to understand, especially
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for less common ones. In contrast, compiler IRs expose detailed and low-level operators that are
significantly easier for LLMs to understand [26]. Consequently, we propose performing preference
optimization using IR translation tasks, which require LLMs to translate code written in high-level
programming languages into IRs. This process facilitates the LLM’s understanding of the code
functionality expressed in the high-level languages. Furthermore, equivalent IRs resulting from
different compiler optimization stages can guide LLMs in discerning the equivalent functionality of
different code implementations.

However, traditional preference optimization methods [21, 3] typically rely on pairwise comparisons,
which are insufficient in this context. Specifically, methods like DPO [21] do not account for the
equivalence among IRs. Therefore, we introduce Group Equivalent Preference Optimization (GEPO)
and construct groups Dgpref with equivalent and inequivalent IRs for the preference optimization
process. GEPO compares groups of IR responses and specifically incorporates the concept of
equivalence within the group of preferred (“winner”) IR responses. By guiding the LLM to distinguish
IRs equivalent to the source code from inequivalent ones and utilizing signals about the mutual
equivalence between IRs within a group, GEPO enables the LLM to capture detailed information
regarding code functionality.

For each prompt xg with source code in Dgpref for GEPO, there exists a group of “winner” responses
Yw = {y1w, y2w, · · · , ynw}, a group of “loser” responses Yl = {y1l , y2l , · · · , yml } and yg ∈ (Yw ∪ Yl).
Specifically, Yw represents n functionally equivalent IRs while Yl represents m inequivalent IRs.
Following [21], we assume an implicit reward function rϕ(xg, yg) underlies the preferences. Instead
of comparing the individual winner IR response and the loser IR response, GEPO compares the
average reward of Yw to the average reward of Yl. Furthermore, it explicitly enforces equivalence
within Yw by constraining the variance of their rewards. The initial optimization problem for GEPO,
formulated in terms of the implicit reward rϕ, can be defined as:

min
ϕ

LGEPO = −E(xg,Yw,Yl)∼Dgpref [log σ(
1

n

n∑
i=1

rϕ(xg, y
i
w)−

1

m

m∑
k=1

rϕ(xg, y
k
l ))]

s.t. E(xg,Yw)∼Dgpref [Var(rϕ(xg, Yw))] < ϵ,

Var(rϕ(xg, Yw)) =
1

n− 1

n∑
i=1

(rϕ(xg, y
i
w)−

1

n

n∑
j=1

rϕ(xg, y
j
w))

2. (6)

The primary objective term maximizes the probability that the average winner reward exceeds the
average loser reward, modeled using the sigmoid function. The constraint bounds the variance of
rewards within the winner group Yw by a small threshold ϵ, encouraging rϕ(xg, y

i
w) ≈ rϕ(xg, y

j
w)

for all yiw, y
j
w ∈ Yw.

According to Appendix A, we can establish a direct relationship between the implicit reward
function rϕ and the optimal policy πθ being optimized, relative to the reference policy model
πref. Accordingly, the optimal policy model π∗ that maximizes Equation (1) can be given by
π∗(yg|xg) ∝ πref(yg|xg) exp(

1
β rϕ(xg, yg)). This implies that the reward function can be expressed

in terms of the policy probabilities, up to a partition function Z(xg), as follows:

rϕ(xg, yg) = β log
πθ(yg|xg)

πref (yg|xg)
+ β logZ(xg), (7)

where πθ is the policy model to be optimized. Substituting this expression for rϕ(xg, yg) into
Equation (6), the partition function terms β logZ(xg) cancel out within the reward differences and
the variance calculation. This yields an objective function that depends on the policy model πθ, the
reference policy model πref, and the preference data (xg, Yw, Yl), which can be formulated as follows:

min
θ

L′
GEPO = −E(xg,Yw,Yl)∼Dgpref [log σ(

β

n

n∑
i=1

r̂θ(xg, y
i
w)−

β

m

m∑
k=1

r̂θ(xg, y
k
l ))]

s.t. E(xg,Yw)∼Dgpref [
β2

n− 1

n∑
i=1

(r̂θ(xg, y
i
w)−

1

n

n∑
j=1

r̂θ(xg, y
j
w))

2] < ϵ′,

r̂θ(xg, yg) = log
πθ(yg|xg)

πref(yg|xg)
. (8)
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Here, r̂θ(xg, yg) represents the log-probability ratio proportional to the implicit reward score. The
constraint now applies to the variance of these log-probability ratios within the winner group. To solve
this constrained optimization problem, we introduce a Lagrange multiplier λ ≥ 0 for the variance
constraint, transforming it into an unconstrained objective. The GEPO loss can be formulated as:

LGEPO =− E(xg,Yw,Yl)∼Dgpref [log σ(β(
1

n

n∑
i=1

r̂θ(xg, y
i
w)−

1

m

m∑
k=1

r̂θ(xg, y
k
l )))]

+ λE(xg,Yw)∼Dgpref [
β2

n− 1

n∑
i=1

(r̂θ(xg, y
i
w)−

1

n

n∑
j=1

r̂θ(xg, y
j
w))

2]. (9)

Finally, LGEPO consists of two terms. The first term is analogous to the DPO loss but operates on the
average log-probability ratios of the winner and loser groups, pushing the model to prefer winners
over losers on average. The second term, weighted by the hyperparameter λ, explicitly penalizes the
variance of the log-probability ratios within the winner group Yw. Minimizing this term encourages
rϕ(xg, yg) to be similar for all winners yw ∈ Yw, thereby enforcing the desired equivalence. The
hyperparameter λ = 1 controls the strength of this equivalence regularization relative to the main
preference objective. By minimizing LGEPO, we directly optimize the policy model πθ to enhance the
likelihood of high-quality, functionally equivalent code translation (Yw) compared to undesired ones
(Yl), while simultaneously promoting diversity and consistency among the preferred solutions.

3.3 OORL

Building upon the on-policy RL strategy and GEPO, we develop OORL, a novel RL framework
for training with code translation tasks, as shown in Figure 1. Specifically, following the on-policy
nature used for the RL part, we periodically sample trajectories (q, o) using the current policy model
πθ and compute the binary reward Rrule(q, o). This allows the estimation of advantages At and the
computation of the on-policy RL objective LOnP(θ), which drives the policy model towards successful
task completion according to the defined rules. In parallel, we utilize the static preference dataset
Dgrefs = {(xg, Yw, Yl)} containing groups of winner and loser responses to calculate LGEPO(πθ;πref),
which guides the policy model to align with fine-grained function equivalences among desirable IRs.

The parameters θ of πθ are updated using a combined signal derived from both objectives. A
conceptual representation of the combined objective to be minimized during policy updates can be
expressed as:

L = wrl · LOnP + wgepo · LGEPO, (10)

where the non-negative wrl and wgepo serve as weights that balance the contribution of the rule-based
task completion signal from RL against the nuanced quality and equivalence signal from GEPO.
Specifically, we set wrl = 1 and wgepo = 0.01 for the training process with OORL.

4 Experiments

4.1 Experiment Settings

Training Data. The training dataset for OORL is constructed separately. For on-policy RL, we
construct 2400 code translation problems with unit tests from the SYNTHETIC-1 [17] and APPS [8]
datasets. Specifically, this batch of training data includes translation from Python and C++ as source
codes to Python, C++, Java, PHP, Bash, and JavaScript as target codes. Meanwhile, GEPO is
performed with 9600 curated C-to-IR groups from the SLTrans dataset [19].

Implementation Details. In this paper, we implement our OORL framework based on Qwen3-
8B [20]. Specifically, we employ REINFORECE++ [1, 9] as the on-policy RL algorithm with
OORL. The training process entailed using a cosine learning rate schedule with a warm-up ratio of
0.03, and the AdamW [15] optimizer with a learning rate of 5× 10−7, no weight decay, a batch size
of 8, and a sequence length of 8192 tokens. The models underwent instruction tuning for one epoch
using DeepSpeed-Zero stage2 with offload [22] on 4 A100 GPUs, each with 80G memory.

Baselines. Our Qwen3-8B-OORL, trained with the OORL framework, is compared against existing
LLMs with comparable parameters. These include DS-Coder-V2-Lite-Inst [27], Qwen2.5-Coder-7B-
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Figure 3: Code Translation Performance of LLMs on CrossPLEval.

Table 1: Statistics in the CrossPLEval Benchmark.

Programming Language # Solution Files Avg. Lines of Code (LoC) Proportion of Files (%)

MultiPL-E(Python) – 7.81 –

Python 119×10 19.94 30.36
C++ 92×10 35.49 23.47
Go 92×10 47.60 23.47
Java 89×10 39.72 22.70

Total / Weighted Avg. 392×10 34.57 100.00
Avg. LoC for the total is a weighted average. Proportions are based on the total of 3920 files.

Inst [11], and Qwen3-8B [20]. Specifically, the experiments with Qwen3-8B are conducted using its
non-thinking mode.

Evaluation Benchmarks. To comprehensively evaluate proficiency in multi-programming languages
understanding, we utilize the MultiPL-E [4] benchmark and select eight mainstream languages for
evaluation, including Python, C++, Java, PHP, TypeScript, C#, Bash, and JavaScript. In addition,
we develop CrossPLEval, a new multilingual code translation benchmark, for further evaluation.
CrossPLEval comprises 119 programming problems carefully selected from the TACO dataset [13],
with details illustrated in Section 4.2. For evaluation, we use the pass@1 rate as the metric for
MultiPL-E and CrossPLEval benchmarks.

4.2 CrossPLEval

CrossPLEval is designed to assess the ability of models to translate a canonical solution of a problem
from a source language to a target language. Specifically, the model receives the function declaration
and the canonical solution in the source language (e.g., Python) as input and is tasked with generating
the corresponding solution in the target language. To facilitate evaluation, the target language function
declaration is also provided, which helps constrain function names and variable types.

The 119 core problems in CrossPLEval originate from the TACO dataset [13], initially defined in
Python. Recognizing the non-trivial nature of developing high-quality, semantically aligned test
data across languages, we undertook meticulous manual processing for these problems to ensure
data diversity and quality. This process involved two main efforts. First, concerning canonical
solutions, while reference Python solutions were available for all 119 problems, we manually rewrote
these into equivalent implementations in other mainstream programming languages. This yielded
89 solutions for Java, 92 for Go, and 92 for C++, resulting in 273 high-quality translation task
instances from Python to these three target languages. Second, to ensure rigorous evaluation of
functional correctness, we manually rewrote the original test cases for each problem into ten different
programming languages, including C++, Java, PHP, JavaScript, Bash, Scala, Go, TypeScript, C#,
and Haskell. These multilingual test cases enable verification of translation accuracy across a broad
linguistic spectrum. Through this construction process, the CrossPLEval benchmark comprises 3920
independent coding problems, each of which includes at least 5 unit tests, thereby providing a solid
foundation for evaluation. The details are described in Table 1.
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Table 2: Performance of different LLMs on MultiPL-E [4].
Python C++ Java PHP Bash JS TS C# Avg.

DS-Coder-V2-Lite-Inst 81.10 32.91 68.35 72.67 19.62 81.36 83.33 41.13 60.06
Qwen2.5-Coder-7B-Inst 88.40 57.14 70.88 73.91 43.67 78.88 84.27 52.53 68.71

Qwen3-8B 82.60 71.42 70.25 50.31 36.07 83.22 84.27 42.41 65.07

Qwen3-8B-OORL 90.06 83.23 83.54 78.26 46.20 89.44 85.53 54.22 76.31

Table 3: Results of code translation compared with other LLMs on CrossPLEval.

Model
Target Language

Python C++ Java PHP JS Bash Scala Go TS C# Haskell Avg.

Py

DS-Coder-V2-Lite-Inst - 41.17 46.21 46.21 57.14 27.73 32.77 34.45 53.78 21.00 11.76 37.22
Qwen2.5-Coder-7B-Inst - 36.13 33.61 47.89 52.94 18.54 20.16 29.41 54.62 32.77 15.12 34.12

Qwen3-8B - 44.53 41.17 50.42 75.54 24.36 22.68 37.25 59.66 35.29 15.13 40.60

Qwen3-8B-OORL - 54.62 52.94 63.94 75.63 35.29 35.29 59.32 71.42 52.94 28.48 52.99

C++

DS-Coder-V2-Lite-Inst 73.91 - 71.73 75.00 72.82 33.69 42.39 45.65 69.56 20.65 20.65 52.61
Qwen2.5-Coder-7B-Inst 69.56 - 56.52 66.30 71.73 34.78 33.69 43.47 65.21 45.65 17.39 50.43

Qwen3-8B 85.86 - 63.04 69.56 78.26 31.52 40.65 54.71 80.43 47.82 20.65 57.25

Qwen3-8B-OORL 91.30 - 72.82 78.15 85.86 41.30 46.73 74.02 80.43 65.65 38.91 67.52

Java

DS-Coder-V2-Lite-Inst 75.28 66.29 - 64.04 65.16 25.84 50.56 43.82 65.82 25.84 17.97 50.06
Qwen2.5-Coder-7B-Inst 75.28 46.06 - 66.29 73.03 22.47 32.58 42.69 70.78 40.44 19.10 48.87

Qwen3-8B 84.64 50.56 - 68.53 74.15 32.58 48.31 47.19 71.91 52.80 22.47 55.31

Qwen3-8B-OORL 92.13 71.91 - 75.28 78.65 41.34 58.42 68.53 76.40 76.40 28.53 66.76

Go

DS-Coder-V2-Lite-Inst 78.26 40.21 57.60 53.26 71.73 32.60 32.60 - 61.95 20.65 17.39 46.63
Qwen2.5-Coder-7B-Inst 71.73 41.30 40.21 56.52 77.17 25.00 26.08 - 68.47 43.47 14.13 46.41

Qwen3-8B 81.52 43.47 50.00 67.39 76.08 31.52 26.08 - 75.00 39.13 16.30 50.65

Qwen3-8B-OORL 90.21 72.06 71.73 74.45 82.39 35.86 48.26 - 81.08 68.47 28.80 65.33

To illustrate the difficulty of CrossPLEval across different languages, we visualize the code translation
performance in Figure 3. Current SOTA code LLMs with around 8B parameters achieve a low score
on average performance across multiple programming languages.

4.3 Excellent Multi-Programming Language Understanding

To evaluate proficiency in understanding and generating code across multiple programming languages,
we conduct evaluations using the established MultiPL-E [4] benchmark and our newly introduced
CrossPLEval benchmark. Besides Python, C++, Java, PHP, Bash, and JavaScript, we also include
Scala, Go, TypeScript, C#, and Haskell in our evaluation, noting that the latter five languages are not
included in the training dataset. Moreover, Bash, Scala, and Haskell are particularly noteworthy as
low-resource programming languages.

Table 2 presents the code generation performance on MultiPL-E, while Table 3 and Figure 3 show
code translation results on CrossPLEval. Across both benchmarks and all tested models, our Qwen3-
8B-OORL model consistently demonstrates superior performance. On MultiPL-E, it achieves the
highest average score of 76.31, significantly outperforming the second highest Qwen2.5-Coder-7B-
Inst with a significant margin. This strong performance extends across all eight languages evaluated in
MultiPL-E, which are generally well-represented in large code corpora. This highlights the excellent
ability to generate correct code from natural language instructions in these programming languages.

Furthermore, the CrossPLEval results demonstrate the code translation capabilities and, critically,
its generalization ability. Qwen3-8B-OORL achieves the highest average translation scores across
all source languages evaluated. The CrossPLEval benchmark is particularly valuable for evaluating
performance on languages potentially less represented in training data, such as Scala, Go, TypeScript,
C#, and the low-resource Haskell. Although absolute translation scores into target languages like
Bash, Scala, and Haskell are lower compared to more common targets, our Qwen3-8B-OORL exhibits
significant relative improvements over the baselines on these more challenging targets. For instance,
when translating from Python to Haskell, Qwen3-8B-OORL scores 28.48, representing a substantial
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Table 4: Ablation studies on various benchmarks using OORL.

On-Policy
RL Strategy

Off-Policy
RL Strategy MultiPL-E

CrossPLEval

Python C++ Java Go Avg.

Qwen3-8B

- - 65.06 40.60 57.25 55.32 50.65 50.96
REINFORCE++ - 73.60 47.56 63.26 62.13 60.87 58.46
REINFORCE++ DPO 73.48 50.93 62.93 62.80 58.15 58.70

REINFORCE++ GEPO 76.31 52.99 67.52 66.76 65.33 63.15

gain over the Qwen3-8B. These results underscore the effective generalization beyond its direct
training data and its ability to provide significant performance boosts for tasks involving low-resource
programming languages.

The evaluation results demonstrate that Qwen3-8B-OORL not only excels in core code generation
tasks on well-represented languages but also effectively translates and generalizes to improve perfor-
mance on untrained and low-resource programming languages, marking a notable advancement in
multilingual code understanding and generation.

4.4 Ablation Studies

To evaluate the individual contribution of each key component within our OORL framework, we
conducted thorough ablation studies. The results of these studies are detailed in Table 4. The investi-
gation systematically deconstructed OORL by starting with the Qwen3-8B model and incrementally
adding the on-policy RL strategy (REINFORCE++), followed by a comparison of different off-policy
preference optimization strategies, specifically DPO [21] and our proposed GEPO.

On-Policy RL Strategy. As illustrated in Table 4, training with code translation tasks using the
REINFORCE++ [9, 1] algorithm increases the MultiPL-E score to 73.60 and the average CrossPL-
Eval score to 58.46, demonstrating a significant performance improvement. This substantial gain
demonstrates the effectiveness of on-policy RL, which directly refines multi-programming language
understanding of LLMs through the rule-based reward derived from unit tests.

Off-Policy RL Strategy. As shown in Table 4, the combination of REINFORCE++ [9, 1] and
DPO [21] only offers a marginal improvement on CrossPLEval. The effectiveness of DPO in code
understanding is found to be limited. This limitation stems from the difficulty standard preference
optimization methods face in fully understanding the functional equivalence between different
code implementations. In contrast, our GEPO strategy is specifically designed to utilize functional
equivalence information from IRs. It’s worth noting that integrating GEPO with REINFORCE++
achieved significantly higher performance, reaching 76.31 on MultiPL-E and a notable average of
63.15 on CrossPLEval. This demonstrates the ability of our GEPO to leverage functional equivalence,
providing substantial additional performance gains over standard off-policy methods in the context of
multi-programming language understanding.

5 Related Works

5.1 RL for LLMs

RL [24, 25, 21, 3] has emerged as a prominent paradigm for aligning LLMs with desired behaviors
and preferences. Investigations in this area have explored both on-policy and off-policy RL algorithms.
On-policy methods [24, 1, 25, 14, 9] have received considerable attention due to their inherent stability
and effectiveness in directly optimizing the policy using data collected under the current policy. For
instance, PPO [24] has been widely adopted for fine-tuning LLMs based on human preference data.
Similarly, REINFORCE-based methods, such as ReMax [14], RLOO [1], and GRPO [25], have
been extensively employed in extending mathematical and general reasoning abilities, often utilizing
rule-based rewards exclusively. Concurrently, off-policy algorithms offer potential advantages in
terms of sample efficiency by allowing the agent to learn from prior experiences or data generated
by different policies. DPO [21] and IPO [3] have been proposed as more stable and efficient RL
techniques that implicitly learn a reward function from preference data and directly optimize the
policy. These methods can be conceptualized as implicitly performing off-policy evaluation and
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optimization. Building upon the successes of both on-policy and off-policy RL, we introduce OORL,
a novel RL framework that integrates on-policy and off-policy strategies for training. We also
incorporate GEPO, a novel off-policy method that leverages the concept of functional equivalence, to
provide a more nuanced and effective approach for training LLMs in code translation tasks.

5.2 Code Understanding with IRs

Intermediate Representations (IRs) have been increasingly leveraged in recent work to enhance LLMs
for code generation tasks. The language-agnostic nature of IRs allows LLMs to abstract away from
specific syntax and focus more effectively on program logic. For instance, to improve multilingual
code generation and cross-lingual transfer, IRCoder [19] employs continued pre-training of LLMs
on SLTrans, a parallel dataset of source code and its corresponding LLVM IR, thereby aligning
code and IR semantics. Similarly, Transcoder-IR[26] also utilizes LLVM IR, augmenting LLM
training by exploring it as a pivot language. Acknowledging the potential complexities of standard
compiler IRs for translation tasks, CoDist [10] proposes a custom, distilled code as a simplified
intermediate representation and translation pivot. Furthermore, for compiler-specific applications,
LLM Compiler [5] is specialized through extensive further pre-training of Code LLMs directly on
large corpora of LLVM IR and assembly code. This specialization aims to enhance performance
on tasks such as code optimization and disassembly. In this paper, we adopt a unique approach by
leveraging LLVM IRs within our GEPO preference optimization process. We construct and compare
groups of IRs derived from translated code. This method guides the LLM to discern fine-grained
functional equivalence, which is crucial for effective cross-lingual code understanding.

6 Conclusion

In this paper, we introduce OORL, a novel RL framework that integrates both on-policy and off-policy
strategies for training LLMs. Within the OORL framework, on-policy RL is applied during the code
translation process, guided by a rule-based reward signal derived from unit tests. Complementing this
coarse-grained rule-based reward, we propose Group Equivalent Preference Optimization (GEPO),
a novel preference optimization method. GEPO specifically extends beyond traditional pairwise
comparisons by explicitly modeling equivalence within groups of IRs. Extensive experiments
demonstrate that our OORL framework achieves significant performance improvements on code
benchmarks across multiple programming languages, highlighting its effectiveness for enhancing
multilingual code understanding and generation. In general, this work presents a novel integrated RL
approach that leverages functional equivalence and offers a new perspective for advancing LLMs’
understanding capabilities across diverse programming languages.

Limitations

A primary limitation of OORL stems from the group-based optimization mechanism in GEPO, which
processes grouped preference responses for each source prompt. Compared to previous preference
optimization methods [21, 3] that handle a pair of responses per step, GEPO manages larger groups
of preference data, necessitating more GPU memory resources. This increased memory can be
particularly pronounced with larger group sizes or longer response sequences. One potential strategy
to mitigate this issue is to serialize the processing of individual responses within each preference group,
which can reduce the number of padding tokens and thereby lower memory overhead. Although the
serialization is beneficial for memory efficiency, it introduces an increase in training latency due to
the sequential handling of responses previously processed in parallel within the group.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction reflect the paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discusses the limitations of the work.
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Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: For each theoretical result, the paper provides the full set of assumptions and a
complete (and correct) proof.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper discloses all the information needed to reproduce the main experi-
mental results.
Guidelines:

• The answer NA means that the paper does not include experiments.

13



• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We will open-source our code and data after publication.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specifies all the training and test details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The paper does not need to provide the experiment statistical significance.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides sufficient information on the computation resources.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research is conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

16

https://neurips.cc/public/EthicsGuidelines


• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The original owners of assets, used in the paper, are properly credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
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Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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A Derivation of the Implicit Reward

This section details the derivation of the relationship between an implicit reward function rϕ(xg, yg)
and the optimal policy πθ(yg|xg), under the standard reinforcement learning objective with a KL-
divergence penalty against a reference policy πref(yg|xg). This formulation is foundational to
methods like Direct Preference Optimization (DPO) and our proposed Group Equivalent Preference
Optimization (GEPO).

Following [21], the objective is to find a policy πθ that maximizes the expected reward rϕ(xg, yg)
while remaining close to a reference policy πref, controlled by a coefficient β:

max
πθ

Exg∼D,yg∼πθ(yg|xg)[rϕ(xg, yg)]− βDKL[πθ(yg|xg)||πref(yg|xg)]

= min
πθ

Exg∼DEyg∼πθ(yg|xg)[log
πθ(yg|xg)

1
Z(xg)

πref(yg|xg) exp(
1
β rϕ(xg, yg))

− logZ(xg)]

= min
πθ

Exg∼D[DKL(πθ(yg|xg)||π∗(yg|xg))− logZ(xg)]. (11)

Here, D represents the distribution of prompts xg, and π∗(yg|xg) is defined as the optimal policy
distribution:

π∗(yg|xg) =
1

Z(xg)
πref(yg|xg) exp(

1

β
rϕ(xg, yg)). (12)

The term Z(xg) is the partition function, ensuring that π∗(yg|xg) normalizes to a valid probability
distribution over all possible responses yg:

Z(xg) =
∑
yg

πref(yg|xg) exp(
1

β
rϕ(xg, yg)). (13)

The KL divergence term DKL(πθ(yg|xg)||π∗(yg|xg)) in Equation 11 is minimized (becomes zero)
when the policy πθ(yg|xg) is identical to π∗(yg|xg). Therefore, the optimal policy πθ that solves the
optimization problem is:

πθ(yg|xg) = π∗(yg|xg) =
1

Z(xg)
πref(yg|xg) exp(

1

β
rϕ(xg, yg)). (14)

To derive the expression for the implicit reward rϕ(xg, yg), we can rearrange Equation 14:

πθ(yg|xg)Z(xg)

πref(yg|xg)
= exp(

1

β
rϕ(xg, yg))

log(
πθ(yg|xg)Z(xg)

πref(yg|xg)
) =

1

β
rϕ(xg, yg)

β(log
πθ(yg|xg)

πref(yg|xg)
+ logZ(xg)) = rϕ(xg, yg).

This gives us the final form for the implicit reward function:

rϕ(xg, yg) = β log
πθ(yg|xg)

πref(yg|xg)
+ β logZ(xg). (15)

This relationship (Equation 15) demonstrates that the implicit reward rϕ(xg, yg) is proportional to
the log-probability ratio of the policy πθ(yg|xg) with respect to the reference policy πref(yg|xg), plus
a term related to the partition function. This expression is leveraged in Section 3.2 (specifically,
Equation 7) to transform the GEPO objective, which is initially defined in terms of rϕ(xg, yg), into
an objective that directly depends on the policy probabilities πθ(yg|xg) and πref(yg|xg).
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