
Data Factors for Better Compositional Generalization

Xiang Zhou Yichen Jiang Mohit Bansal
UNC Chapel Hill

{xzh, yichenj, mbansal}@cs.unc.edu

Abstract

Recent diagnostic datasets on compositional
generalization, such as SCAN (Lake and Ba-
roni, 2018) and COGS (Kim and Linzen, 2020),
expose severe problems in models trained from
scratch on these datasets. However, in contrast
to this poor performance, state-of-the-art mod-
els trained on larger and more general datasets
show better generalization ability. In this work,
to reconcile this inconsistency, we conduct
an empirical analysis by training Transformer
models on a variety of training sets with dif-
ferent data factors, including dataset scale, pat-
tern complexity, example difficulty, etc. First,
we show that increased dataset complexity can
lead to better generalization behavior on mul-
tiple different generalization challenges. To
further understand this improvement, we show
two axes of the benefit from more complex
datasets: they provide more diverse examples
so compositional understanding becomes more
effective, and they also prevent ungeneraliz-
able memorization of the examples due to re-
duced example repetition frequency. Finally,
we explore how training examples of differ-
ent difficulty levels influence generalization
differently. On synthetic datasets, simple exam-
ples invoke stronger compositionality than hard
examples do. On larger-scale real language
datasets, while hard examples become more
important potentially to ensure decent data cov-
erage, a balanced mixture of simple and hard
examples manages to induce the strongest gen-
eralizability.1

1 Introduction

Many recent diagnostic datasets, e.g., SCAN (Lake
and Baroni, 2018), COGS (Kim and Linzen, 2020),
etc., have exposed the compositional generalization
problem of neural sequence-to-sequence (seq2seq)
models. They show that seq2seq models that are
trained from scratch fail miserably when tested on

1The code and data for this work are available at https:
//github.com/owenzx/data4comp.

examples containing novel combinations of seen el-
ements. However, in contrast to these results, mod-
els trained (or pretrained) on larger datasets, (in-
cluding T5 (Raffel et al., 2020), PaLM (Chowdhery
et al., 2022), etc.) show substantially better perfor-
mance (Furrer et al., 2020; Drozdov et al., 2023) for
compositional generalization. While some factors
behind many of these improvements are the emer-
gent abilities from scaling up (Wei et al., 2022),
we explore an alternative and complementary an-
gle: how and why does training on more complex
datasets help a general Transformer model, with
limited size and capacity, generalize composition-
ally to unseen natural language queries?

To answer this question, we empirically study
how changes in data factors (e.g., scale, diversity,
difficulty, etc.) influence the generalization abil-
ity of models trained from scratch. Our first anal-
ysis is inspired by Patel et al. (2022) and Jiang
et al. (2022), who make the model generalize sig-
nificantly better on SCAN simply by increasing
the number of unique primitives. We extend this
observation in several directions and further ex-
plore where this gain comes from. Our experi-
ments show that this is not a special observation
on SCAN for the Jump and Around Right split.
Instead, the same effect can be observed on mul-
tiple different types of generalization challenges
(e.g., primitive-level generalization, length-level
extrapolation, etc.), and on both synthetic and real-
language datasets. To summarize our first direction
of analysis, there is a strong connection between
increased dataset complexity and better composi-
tional generalization.

Second, we try to understand why more complex
datasets lead to better generalization. We build up
our analysis by comparing two potentially compet-
ing behaviors of the models: surface memorization
(i.e., memorizing the direct mapping from inputs
to outputs without understanding the underlying
composition), and compositional understanding

https://github.com/owenzx/data4comp
https://github.com/owenzx/data4comp

... ...
turn left LTURN

walk left and walk twice LTURN WALK WALK WALK

WALKwalk
Keys Values

... ...
look LOOK

WALKwalk
Keys Values

Row
1

2

...

10

Row
1

2

...

Memorization

sprint left and jog twice LTURN SPRINT JOG JOG99998

pull left and run twice LTURN PULL RUN RUN99999

I can't memorize
all of them!

O
rig

in
al

 D
at

a
M

or
e

C
om

pl
ex

 D
at

a

walk left and walk twice

Composition

WALKLTURN WALK WALK

walk walkleft twice

sprint left and jog twice

SPRINTLTURN JOG JOG

sprint jogleft twice

Now I'd rather
compose.

Dataset Complexity Example Difficulty

Difficult (4 unique primitives per example)

Easy (2 unique primitives per example)

walk left and jog twice and sprint right and look

LTURN WALK JOG JOG SPRINTRTURN LOOK

walk left and jog twice and jog left and walk

walk left jog twice jog left walk

LTURN WALK JOG JOG LTURN JOG WALK

jog = JOG
walk = WALK

? = WALK ? = LOOK
? = SPRINT ? = JOG

Memorizing
them is easy!

look left and push twice LTURN LOOK PUSH PUSH99998

Figure 1: Model’s compositional generalization ability is affected by the complexity of the dataset (left) and the
difficulty of training examples (right).

(i.e., first discovering a set of compositional rules
from examples and then applying the rules for pre-
dictions). Please also refer to the left part in Fig-
ure 1 for an illustration. While both behaviors
can lead to near-perfect training-set performance,
only the latter guarantees good generalization per-
formance. We argue that more complex datasets
improve compositional generalization as they pro-
vide substantial obstacles to surface memorization.
Specifically, we make two hypotheses: (1) diver-
sity: more diverse patterns (e.g., more unique prim-
itives) exemplified in complex datasets increase the
difficulty of surface memorization; (2) frequency:
the larger dataset size causes a decrease in the fre-
quency of seeing similar examples, thus preventing
their memorization. To empirically confirm these
hypotheses, we provide detailed ablations showing
how both factors contribute to empirical gains in
data augmentation. To further isolate the effect
of frequently recurring examples, we show that
deliberately encouraging example repetition even
in a large dataset brings substantial detriment to
the generalization performance. Furthermore, as a
corollary to our hypotheses, we provide a simple
yet effective data augmentation method AugZero
that satisfies both contributing factors without uti-
lizing any dataset-specific knowledge.

Finally, we provide a more fine-grained analy-
sis to study how examples of different difficulties
inside a dataset affect generalization. Our anal-
ysis covers both smaller, synthetic datasets and
larger-scale, real-language datasets. On synthetic
datasets (e.g., SCAN), we create multiple versions
of the datasets strictly controlling the difficulty of
the examples in each version, and show that sim-
pler examples facilitate compositional generaliza-
tion more than difficult examples. On sub-sampling
experiments in real-language datasets (e.g., ATIS,
SMCalFlow), we observe similar but more compli-
cated trends. Potentially due to the need to cover

all the diverse natural language phenomena, sim-
ple examples alone are not enough for achieving
good performance, however mixing difficult exam-
ples with simple examples is still beneficial on the
compositional dataset SMCalFlow-CS.

In conclusion, we present an empirical study on
how data factors influence compositional general-
ization behavior. We notice: (1) increased dataset
complexity can improve the model’s generaliza-
tion ability; (2) increased complexity creates obsta-
cles for surface memorization by having a higher
cost of memorization and less recurring frequency
of examples; (3) example difficulty can influence
generalization substantially with simpler examples
benefiting compositional generalization more.

2 Tasks and Setup

2.1 Datasets

In this work, we focus on semantic parsing datasets.
We use both datasets with synthetic examples and
datasets with natural examples. We experiment
with synthetic datasets to have fine-grained con-
trol and experiment with flexible natural language
datasets to demonstrate the generalizability of our
findings. For synthetic datasets, we use both the
original version of SCAN (Lake and Baroni, 2018)
as well as an expanded version with increased com-
plexity, denoted as SCAN* in this work. We intro-
duce SCAN* to control the overall complexity of
the SCAN-like dataset.2 Compared to SCAN, we
make two major changes: (1) We remove the con-
straint that at most one conjunction (and or after)
is allowed for every example. Instead, in SCAN*,
every sentence can have an unlimited number of
conjunctions. To avoid adding ambiguity brought
by multiple conjunctions, we assign higher opera-
tion priority to after than and. (2) We use a larger

2The original grammar in SCAN does not allow examples
with more complexity.

Jump Around Right GeoQuery (query) GeoQuery (question)

baseline 3.49±1.65 19.86±10.41 42.37±3.26 64.52±1.44

2x Augmentation 77.37±17.74 73.02±20.12 45.92±3.17 69.10±0.85

20x Augmentation 99.68±0.32 99.38±0.68 47.85±3.89 68.17±2.13

200x Augmentation 99.93±0.04 99.01±0.95 45.70±1.66 65.45±2.43

Table 1: Datasets with increased complexity via data augmentation lead to better compositional generalization. We
use logic form outputs for GeoQuery in this table. For SQL results with similar trends, see Table 7 in the Appendix.

set of verb-type primitives (i.e., run, walk, etc.).
The first change allows us to increase the number
of possible example structures and lengths, and
the second allows the increased lexicon-level com-
plexity. For natural language datasets, we use
three English datasets with human-written queries:
GeoQuery (Zelle and Mooney, 1996), ATIS (Price,
1990; Dahl et al., 1994) and SMCalFlow (Andreas
et al., 2020; Yin et al., 2021). For GeoQuery, we
use both the query split and the question split fol-
lowing Andreas (2020). And for SMCalFlow, we
include the 32-shot version in Yin et al. (2021) as
a compositional split and denote it as SMCalFlow-
CS. For fair comparison across splits, we prepro-
cess SMCalFlow and SMCalFlow-CS in the same
way. More details are in Appendix A.

2.2 Implementation Details
We focus on seq2seq Transformers as they are the
most prevalent choices for most semantic parsing
datasets. For our main experiments, we train the
Transformer from scratch so that our analysis is
not influenced by the existing knowledge from pre-
training. Our model configuration mainly follows
Csordás et al. (2021) to use a 3-layer Transformer
which works well in most compositional tasks. We
provide additional results on models with other
configurations in Appendix H. We decode using a
beam size of 5 and select the best model based on
their dev-set exact-match accuracy. For any exper-
iments in the same table or figure, we train every
model using the same amount of total steps even
though the training dataset size may vary. Unless
otherwise mentioned, all the results are the mean
of 5 runs. More implementation details are in Ap-
pendix B.

3 Increased Training Set Complexity
Leads to Better Generalization.

On the SCAN (Lake and Baroni, 2018) dataset,
models trained from scratch show very poor per-
formance, especially on the Jump split. However,
recent works (Patel et al., 2022; Jiang et al., 2022)
use data augmentation methods to significantly im-

prove the performances. Notably, the main effect
of these methods is to increase the number of prim-
itives. They neither provide any structure-level
change nor create any overlapping between the
training and the testing set. Therefore, the improve-
ment seems to be solely from a more complex train-
ing set. In this section, we replicate and extend
their findings, showing this phenomenon is in fact
consistent on multiple generalization challenges.

3.1 Experiment Design

We first follow the same setup as Jiang et al. (2022)
to conduct data augmentation experiments on the
SCAN Jump and Around Right split, creating aug-
mented training sets with more primitives. We also
extend this process to GeoQuery dataset (Zelle and
Mooney, 1996) to investigate the effect on datasets
with more natural and realistic language. Please
refer to Appendix C for details of our replication.

Additionally, we include the SCAN* Length
split to investigate the effect of data complexity
on a different type of generalization: length ex-
trapolation. To allow more flexible control of
length, we use the expanded SCAN* dataset de-
scribed in Sec. 2.1. Specifically, we train the model
on training sets containing examples with length
0 < l ≤ L, and challenge it on test examples
with length L < l ≤ 2L. To control the com-
plexity, we create four splits with different values
of L ∈ {31, 62, 125, 250}. For all four splits, we
make sure they have similar dataset statistics when-
ever possible. See Appendix A.2 for more details.

3.2 Results

In Table 1, we show the generalization perfor-
mances when trained with different complexities
(i.e., different numbers of total primitives). On
both SCAN and GeoQuery, increasing the training-
set complexity substantially improves the general-
ization performance. On SCAN, the models ob-
tain huge improvements with 2x augmentation and
reach a near-perfect accuracy with 20x or more
primitives. Similarly, on GeoQuery, the augmented
performance substantially outperforms the base-

jump walk look run

1x -0.84, 0.57 0.02, 0.59 0.75, 0.15 0.20, -0.13
20x 0.41, 0.11 0.49, -0.01 0.45, 0.50 0.75, -0.10

Table 2: The projections of “jump, walk, run, look” onto
the two most principal components of the embedding
space, when trained on Jump 1x or Jump 20x.

62 125 250 500
Length (L)

25

50

75

Ex
ac

t-M
at

ch
 A

cc

Figure 2: Different generalization performances on
SCAN* Length. The challenge is always to train on
examples with length 0 < l ≤ L and test on examples
with length L < l ≤ 2L.

line, reaching around 5% accuracy improvement
with the best augmentation.3 Interestingly, there is
a difference in the optimal augmentation between
SCAN and GeoQuery. On SCAN, larger datasets
always lead to better results until the model reaches
near-perfect accuracy. However, on GeoQuery,
the best augmentation is not the most complex
200x data, though a larger amount of augmenta-
tion still leads to improvements. We suspect this
phenomenon is related to the frequency of primi-
tives, and please see Sec. 4.3 for more discussion.

Besides primitive-level generalization, increased
complexity is also beneficial for simple structure-
level challenges such as length generalization. In
Figure 2, we see steadily increasing performance
when both the training set contains longer exam-
ples. For the same generalization challenge (i.e.,
generalizing to twice the length seen during train-
ing), the same model can reach over 80% accu-
racy when the training set contains sentences with
250-token length, but only reaching around 15%
if the training sentences are all within a length of
62. These results demonstrate that across multiple
different generalization challenges, more complex
training sets seem to bring a consistent gain.

Analysis on learned primitive embeddings. To
better understand how training on a more complex
dataset (e.g., Jump 20x) changes the model’s be-
havior, we conduct an analysis on the word embed-
dings of four primitives: “jump, walk, run, look”.
First, we perform a linear Principal Component

3Note that unlike SCAN, primitive-level generalization
is not the only challenge in GeoQuery, so the scale of the
improvement is noticeably smaller. Nonetheless, the improve-
ments shown in Table 1 are consistent across different splits,
output formats, and augmentation sizes.

Analysis on the entire embedding matrix and then
project these four embeddings to the first two prin-
cipal components. In Table 2, we show the projec-
tion of the embeddings trained on Jump 1x versus
the embeddings trained on the larger Jump 20x. We
observe that the four primitives trained on Jump
20x are closer together in the first principal compo-
nent, ranging from 0.41 to 0.75 (0.53±0.13), com-
pared to -0.84 to 0.75 for the baseline (0.13±0.57).
This suggests that compositionality arises because
the model can better represent the syntactic simi-
larity between the rare primitive “jump” and other
common primitives, which appear in very different
contexts during most of the training.

4 Understanding the Advantages Brought
by Increased Complexity

We further explore how increased complexity im-
prove generalization. We will first provide a discus-
sion on dataset complexity and model behaviors.
Then, we will state our hypotheses on how data
complexity impacts generalization by influencing
the model behaviors. Finally, we provide support-
ing experiments.

4.1 Preliminaries
Two types of data complexity. For simplicity,
we provide an informal discussion of “data com-
plexity” for semantic parsing tasks. Data complex-
ity can be measured from many different angles.
In this study, we only consider the training set
and mainly focus on two types of data complex-
ity: (1) Pattern complexity: a training set with
larger pattern complexity will contain more unique
patterns (e.g., more unique primitives, more di-
verse example length, etc.) in the examples. (2)
Scale complexity: a training set with larger scale
complexity will contain more different examples.
Note that these two properties are usually positively
correlated in most datasets as a larger training set
usually contains more diverse patterns. In this sec-
tion, we aim to explain how increments in these
complexities influence the model’s generalization.

Two competitive model behaviors. One way to
understand the different generalization behaviors is
to focus on how models achieve good training per-
formance. We argue the difference in how models
achieve good training performances heavily influ-
ences the generalization performance. Intuitively,
for a seq2seq task, there are two extremes of be-
haviors that models could adopt: (1) surface mem-

orization: the model only establishes one-to-one
maps from the inputs and the outputs and does
not correctly infer the composition;4 (2) compo-
sitional understanding: the model makes predic-
tions based on a correct understanding of how the
semantics are composed by smaller sub-structures.5

An illustration of these two behaviors is shown in
Figure 6 in the Appendix. In practice, the model’s
behavior is not a binary choice between these two
extremes, but oftentimes a complicated combina-
tion depending on the inputs. Nonetheless, here
we use these two concepts to denote two trends of
behaviors, and we will show that increased data
complexity biases the model toward the second
behavior, and hence leads to better compositional
generalization.

4.2 Hypotheses

We elaborate on our hypotheses of the connec-
tion between data complexity and model behaviors.
Note that our two hypotheses are interrelated and
not contradictory to each other. They are just two
different perspectives on how this connection.

(1) Pattern complexity (i.e., more diverse exam-
ples) increases the difficulty of surface mem-
orization. For surface memorization, the mod-
els need to memorize all the individual mappings
from each example input to each example output.
The difficulty of achieving a specific training loss
through surface memorization is proportional to
the total sum of the complexity of every unique
example in the dataset. With a larger training set
containing more diverse examples, the difficulty
of surface memorization increases substantially.
However, with correct compositional understand-
ing, the difficulty will remain roughly the same as
the previously-learned composition remains cor-
rect. Hence, with more complex datasets contain-
ing more different examples, the difficulty of sur-
face memorization increases much faster than the

4This may remind readers of classic overfitting behaviors.
Indeed, traditional loss regularization methods (Li et al., 2019;
Yin et al., 2023) can improve compositional generalization to
an extent. However, finding the best regularization method
is not trivial, and we also need to understand methods (e.g.,
LLMs) free of explicit regularization. Our work aims to pro-
vide related insights from the dataset angle.

5Depending on the actual dataset properties, compositional
understanding may not always be the correct behavior (e.g.,
in translation as shown in Dankers et al. (2022)). However,
for the scope of this study, we focus on how more complex
datasets encourage compositional generalization, so we as-
sume compositional understanding as the ideal behavior.

Dataset SCAN (Around Right) GeoQuery (query)

Origin Dataset 19.86±10.41 42.37±3.26

2x Augmentation 73.02±20.12 45.92±3.17

+ More primitives 96.09±4.33 43.55±1.82

+ More prim. & larger size 99.38±0.68 47.85±3.89

+ AugZero 95.50±7.48 43.55±1.01

Table 3: Both dataset size and the number of primitives
contribute to the performance improvement.

difficulty of compositional understanding, leading
to a preference for the latter.

(2) Scale complexity (i.e., larger datasets) avoids
memorization by reducing frequently recurring
examples. Another effect usually brought by in-
creased dataset complexity is more training exam-
ples. This naturally leads to a decreased frequency
with which similar examples occur during the train-
ing. As is shown by Hernandez et al. (2022), even
a small portion of recurring data can bring substan-
tial damage to the copying performance and the
scaling law of a language model. We argue that
similar to this finding, reduced example recurring
frequency will make surface memorization harder
and thus encourage compositional understanding.

4.3 Supporting Experiments

In this section, we provide empirical evidence sup-
porting our previous two hypotheses.

Two sources of empirical improvements. First,
we try to separate the benefits of data augmenta-
tion shown in Sec 3 into two parts: benefits from
increasing pattern complexity and from increasing
scale complexity. In Table 3, we present models
trained with data of three different level of com-
plexities. The “+ More prim. & larger size” row is
the model trained with the full x20 data augmenta-
tion with more primitives and a larger dataset size.
For the “+ More primitives” row, we down-sample
the augmented part of the x20 data6 so that the total
size is the same as the x2 augmented dataset.7 On
both SCAN and GeoQuery, by comparing ‘Origin
Dataset’ and ‘+ More primitives’ rows, we find
that increasing pattern complexity can encourage
stronger compositional generalization. Addition-
ally, by comparing the ‘2x Augmentation’ and the
‘+ More primitives’ row, we notice that the trade-
off of having more primitives but fewer examples

6We do not down-sample the whole dataset as it will create
an unwanted side-effect of removing a large portion of the
original data compared to the x2 data.

7Note that there is no ablation only with larger sizes, since
if we keep the original examples unchanged, increasing dataset
size will inevitably require new primitives.

Data Size Repetition GeoQuery (query) GeoQuery (question)

Original / 42.37±3.26 64.52±1.44

Original Example 24.84±3.64 55.48±4.51

Original Primitive 1.65±1.69 43.08±0.93

20x / 47.85±3.89 68.17±2.13

20x Example 44.95±3.20 68.46±1.13

20x Primitive 31.40±4.82 49.11±0.84

Table 4: The performance of models trained with differ-
ent types of example repetition curriculum.

for each primitive is not always beneficial, leading
to improvement on SCAN, but not on GeoQuery.
Finally, by comparing ‘+ More primitives’ and ‘+
More prim. & larger size’, we can further conclude
that increasing scale complexity given the same
amount of distinct primitives can provide further
gain in generalization results.

Performance detriment from example repeti-
tion. To further support our second hypothe-
sis, we present experiments to show that highly-
recurring examples can cause a significant perfor-
mance decrease. We compare three training curric-
ula with the same total steps in Table 4. The first
curriculum with no repetition is a normal curricu-
lum where every epoch contains the entire training
set. The other two curricula are specifically de-
signed to aid surface memorization by having more
recurring examples. For the Example Repetition
curriculum, at the first 20% of the training steps,
the model is only trained on a small subset contain-
ing 20% of the examples, then the remaining data
are gradually put back into the training set until the
training set becomes the full dataset at 80% of the
total steps. This curriculum ensures that the model
is repeatedly trained on a small set of examples for
a long period. The Primitive Repetition curriculum
is similar to the Example Repetition curriculum
except that it first clusters the training examples
by the primitives and then starts to train the model
with data containing only 20% of the primitives.
In Table 4, we confirm that example repetition can
bring substantial damage to the generalization per-
formance. On smaller original datasets, repetition
at both the example level and the primitive level
substantially hurt the performance. On GeoQuery,
Example Repetition leads to a 10 to 20 accuracy
drop, and the damage brought by Primitive Repeti-
tion is even larger. With a larger dataset resulting
from data augmentation, the trend is slightly differ-
ent. Repetition at the example level causes a much
smaller drop, possibly because that 20% of the aug-
mented dataset is still relatively large so there is
not much repetition. However, primitive-level repe-

tition still causes substantial damage, showing over
15 points drop. To summarize, earlier in this paper,
we show that increasing the dataset size generally
helps generalization. However, Table 4 show that
naturally increasing the dataset size while still ex-
plicitly adding highly recurring examples actually
leads to worse results. Combining these two ob-
servations, we provide evidence supporting our hy-
pothesis on the importance of reducing frequently
recurring examples.

Simple Data Augmentation with Zero Prior
Knowledge Finally, we provide a data augmen-
tation method as a direct corollary of our hypothe-
ses. We call our method Augmentation with Zero
Prior Knowledge (AugZero) as it brings zero ad-
ditional knowledge but can still be effective as it
satisfies our two previous two hypotheses. The
main idea is to simply copy the entire vocabulary
and use the newly copied vocabulary to re-tokenize
the entire dataset. Figure 3 shows an illustration
for AugZero with k times augmentation. A more
detailed description is in Appendix C.3. The results
with k = 200 are in Table 3. Despite how simple
the algorithm is, AugZero can still substantially
improve the performance, reaching close to per-
fect performance on the SCAN Around Right split
and achieving decent improvement on GeoQuery.
While the gain is smaller than the primitive-aware
augmentation result (+ More prim. & larger size
row), its success further supports our hypotheses.

5 Which Examples Benefit Generalization
the Most: A Difficulty Perspective

Previously, we demonstrate and explain that in-
creasing the complexity of the whole dataset can
improve compositional generalization. In practice,
examples inside a dataset have different properties
(e.g., difficulty, topic, etc.) and thus may influ-
ence generalization differently. In this section, we
present a study from the difficulty perspective. We
will start with a discussion on the definition of dif-
ficulty, and then show how example-level difficulty
can substantially influence compositional general-
ization on both synthetic and real datasets. For this
section, we report results with three runs as the
dataset sizes are substantially larger.

5.1 Example-Level Difficulty Metrics
Complexity-based difficulty. For synthetic
datasets like SCAN, we can intuitively define the
difficulty of an example by the complexity of the

 walk2 left2 and2 jump2 twice2
...

 walkk leftk andk jumpk twicek LTURNk WALKk JUMPk JUMPk
 jump opposite right RTURN RTURN JUMP
 jump2 opposite2 right2

...
 jumpk oppositek rightk

...

 walk left and jump twice

...

LTURN2 WALK2 JUMP2 JUMP2

 LTURN WALK JUMP JUMP

 RTURN2 RTURN2 JUMP2
...

 RTURNk RTURNk JUMPk
...

Original Dataset

AugZero-augmented Dataset

 jump opposite right
 walk left and jump twice

 RTURN RTURN JUMP
 LTURN WALK JUMP JUMP

Figure 3: The AugZero data augmentation process.

example itself, for example (1) the length of the
input instruction, or (2) the number of unique
primitives, both reflecting the pattern complexity
of the example. These metrics are the most reliable
as they directly reflect the complexity of correctly
generating the target output examples. However,
these metrics can be hard to measure on real
natural language datasets.

Prototype-based difficulty. Another limitation
of the complex-based difficulty is that it treats each
example independently, while in practice the learn-
ing is conducted on an entire dataset instead of
individual examples. One metric addressing this
issue is to see how prototypical (i.e., if there are
other similar examples in the dataset) one exam-
ple is. To measure this, we follow the process in
Sorscher et al. (2022). We use SimCSE (Gao et al.,
2021) to encode all the input of the examples, then
cluster the encoded vectors using K-means, and
use the L2 distance to the centroid as the difficulty
measure. An outlier that is far from any cluster
is deemed difficult. See Appendix G.1 for cluster-
ing examples for this method. In our experiments,
we will use this difficulty as the metric when the
ground truth complexity metric is not available.8

5.2 Experiments
We show how models behave differently with dif-
ferent distributions of example difficulties.

Simpler examples make generalization easier
on SCAN*. First, as we have full control over
SCAN*, we directly use example complexity (in-
cluding both length-based and primitive-based

8Another way to measure difficulty is to directly use the
model’s performance (e.g., accuracy). Using these metrics,
models will perform very poorly when trained on the hardest
subset as they fail to learn from most examples, making the
analysis results less interesting. See Appendix G.2 for more
discussion on these metrics and detailed results.

Datasets Simple Hard Mix

ATIS 40.86±0.43 52.26±1.05 48.11±0.94

SMCalFlow 37.35±0.26 46.38±0.55 43.69±0.35

SMCalFlow-CS 36.72±0.70 38.43±1.03 39.41±1.11

Table 5: Different performance when trained subsets
with different difficulty. Simple and Hard denotes the
simplest and hardest subset as in Figure 4. Mix is a
mixture of both subsets.

complexity) as the difficulty metric. For evaluation,
we use the Jump split as its difficulty is substantially
influenced by both types of complexity. For length-
based complexity, we generate training sets with
different maximum lengths, the same as described
in Sec. 3. For primitive-based complexity, we keep
the number of total possible primitives in the vocab-
ulary fixed but generate multiple different training
sets only varying the maximum number of unique
primitives per example. Intuitively, it will be eas-
ier to infer the correct composition from shorter
examples or examples containing fewer primitives.
The results are shown in Fig. 5. All the models are
tested on the same testing set similar to the origi-
nal SCAN Jump testing set. For both settings, we
can see a steadily decreasing trend when the exam-
ples become harder. When the maximum length
is reduced from 500 to 62, the performance is in-
creased from 16.65% to 47.31%.9 With only 2
unique primitives per example, the performance is
also increased to 49.14%. These results demon-
strate that easier examples can make the correct
composition easier to learn.

Mix of simple and hard examples needed on real
language datasets. We next examine the impact
of example difficulty on more complex larger-scale
natural language datasets. Due to the flexible and
diverse nature of natural language in real datasets,
models now not only need to understand the cor-
rect composition but also need to capture other lan-
guage uses through potentially non-compositional
ways. Therefore, the trends in natural language
datasets can be different from the previous obser-
vation. For this study, we conduct experiments
on ATIS (Price, 1990; Dahl et al., 1994), SM-
CalFlow (Andreas et al., 2020) and the compo-
sitional version SMCalFlow-CS (Yin et al., 2021).
For all three datasets, we train models on multi-
ple subsets with different difficulties but all con-

9Note that the results here and the results in Fig. 2 are
not contradictory. Here we show more examples with longer
lengths make primitive-level generalization worse, while in
Fig. 2 we show such data make length generalization better.

25% 50% 75% 100%
40

50

Ex
ac

t-M
at

ch
 A

cc
ATIS

25% 50% 75% 100%
Difficulty

40

45

50
SMCalFlow

25% 50% 75% 100%

37.5

40.0

42.5

SMCalFlow-CS

Figure 4: Results on ATIS and SMCalFlow with training sets of different difficulties. The X-axis represents the
quantiles of example difficulty, the smaller the easier.

50025012562
Length

20

40

60

Ex
ac

t-M
at

ch
 A

cc

2001283282
unique primitives per example

20

40

60

Ex
ac

t-M
at

ch
 A

cc

Figure 5: On SCAN* Jump split, simpler examples
facilitate better compositional generalization.

tain 25% of the training examples. Since on these
datasets, we no longer have access to the ground
truth example complexity, so we present results
with prototype-based difficulty in Figure 4.

We observe similar but more complicated trends
on larger-scale natural language datasets. First,
we observe that difficult examples become impor-
tant on these datasets. On all three datasets, us-
ing only the easiest examples leads to the worst
results. We suspect that only using the simplest
examples does not provide enough coverage for
all the diverse linguistic phenomena in the dataset.
However, the best performance is also not achieved
with the most difficult examples, but at the medium
level. Additionally, we notice that even in larger-
scale natural language datasets, simpler examples
are still important for compositional generalization.
Here we specifically focus on the trend difference
between the results on SMCalFlow-CS (a composi-
tional split), and the other two non-compositional-
split datasets. In Figure 4, we see SMCalFlow-
CS achieves the best performance with the second
easiest split, different from the other two datasets.
Additionally, in Table 5, we show the performance
by mixing the hardest examples with the easiest
examples with a 50%/50% ratio, and we also ob-
serve a unique trend on SMCalFlow-CS. Only on
SMCalFlow-CS, the mixed performance outper-
forms the performance by only using the difficult
data, showing the advantage of having simpler ex-

amples for compositional challenges still persists.

6 Related Work

Compositional generalization. Earlier related
works in compositional generalization study the
systematic behavior of neural networks in lan-
guage learning (Wong and Wang, 2007; Brakel and
Frank, 2009), compositional counting (Wiles, 1998;
Weiss et al., 2018), syntax learning (Linzen et al.,
2016), etc. Recently, many recent datasets (Lake
and Baroni, 2018; Kim and Linzen, 2020; Loula
et al., 2018; Bastings et al., 2018; Keysers et al.,
2020; Tsarkov et al., 2021; Hupkes et al., 2020)
substantially facilitates the development and eval-
uation of related method improvements. Since
then, many different methods have been proposed,
including architecture improvements (Dessì and
Baroni, 2019; Gordon et al., 2020; Oren et al.,
2020; Zheng and Lapata, 2021), grammar-based
approaches (Shaw et al., 2021; Kim, 2021), task
decomposition (Herzig et al., 2021), data aug-
mentation (Andreas, 2020; Akyürek et al., 2021;
Akyurek and Andreas, 2023), and novel learning
methods (Jiang and Bansal, 2021; Lake, 2019; Con-
klin et al., 2021; Jiang et al., 2022). Of all these
methods, the biggest breakthrough (Drozdov et al.,
2023; Qiu et al., 2022) still mainly comes from us-
ing large language models (Chowdhery et al., 2022;
Raffel et al., 2020). Our work aims to provide in-
sight into how (pre-) training on a large corpus is
beneficial for compositional generalization. Be-
sides data factors, the generalization behavior of
models can also be studied from many different
angles, including architecture (Li et al., 2019), reg-
ularization (Yin et al., 2023), representation geom-
etry (Montero et al., 2021; Ito et al., 2022; Murty
et al., 2023), etc. All these directions are comple-
mentary towards the same goal of understanding
the mechanism of generalization.

Dataset influence on generalization. Prior to the
development of LLMs, most dataset quality-related
research focuses on dataset artifacts (Gururangan
et al., 2018), or label quality (Maynez et al., 2020;

Pavlick and Kwiatkowski, 2019). After the recent
success of LLMs, a number of works pointed out
that large-scale datasets can be a major contribut-
ing factor to the success. Chan et al. (2022) shows
that the scale of datasets is as important as the scale
of the model. Hoffmann et al. (2022) show how
example distribution can significantly impact the
emergence of in-context few-shot learning. Her-
nandez et al. (2022) notice that even a small portion
of repeated data can have a significant impact on
the generalization performance.

7 Discussion

Advantage of large-scale pretraining. In this
work, we have demonstrated how different data
factors (e.g., scale, diversity, example difficulty,
etc.) can substantially improve the model’s ability
to generalize compositionally. While our experi-
ments are done on a smaller scale, these results also
hint at why models pretrained on larger datasets
show better generalization ability. We argue that do-
ing large-scale pretraining implicitly satisfies many
beneficial data factors studied in this work. During
pretraining, models are exposed to a large set of
different structures and primitives. Additionally,
pretraining datasets have a large size that prevents
frequent repetition and contains a diverse set of
simple and difficult examples. All these conditions
incentives the emergence of compositional general-
ization ability.

How about fine-tuning models? In our main ex-
periments, we choose to not use pretrained models
as they already possess a substantial amount of
knowledge, which makes it very difficult to evalu-
ate how models initially acquire compositionality.
Nonetheless, as fine-tuning models are of great
practical importance, here we discuss related is-
sues about fine-tuning models and summarize our
preliminary findings with T5 models (more details
are in Appendix H.2). The behaviors of fine-tuning
models are slightly different. We notice that the
size and the diversity of the dataset can still be
important as repetitive training on similar exam-
ples (e.g., with the same primitive) will cause sub-
stantial overfitting and hurt the pretrained model.
However, as pretrained models already have a good
understanding of basic language compositionality,
they may need less assistance from the data, so
maintaining a large number of different primitives
or simple examples may be less important. Over-
all, our results suggest that when fine-tuning on

small datasets, data augmentation methods increas-
ing the size and diversity may help the model’s
compositional generalization performance.

8 Conclusion

We empirically study how dataset factors influ-
ence compositional generalization. We show that
increased dataset complexity facilitates composi-
tional generalization, with dataset size and pattern
complexity as two important factors behind the
gain. We also provide an analysis of example dif-
ficulty and discuss the implication of our work on
pertaining and fine-tuning models.

Limitations

The analyses in this study focused on relatively
small-scale Transformer seq2seq models. While
such architectural choice has been shown to be ef-
fective on compositional generalization datasets
when trained from scratch (Csordás et al., 2021),
very large models may demonstrate different be-
haviors due to their emergence abilities (Wei et al.,
2022). The data factor analysis is not meant to be a
complete investigation about all possible data fac-
tors. In this paper, we focus on scale, difficulty, and
data complexity, which are all shown to be impor-
tant factors for compositional generalization. How-
ever, there are other factors also being important
for compositional generalization. The specific eval-
uation setup of compositional generalization also
varies in different works. In this work, we focus on
synthetic diagnostic datasets ensuring sufficient su-
pervision and larger-scale natural language datasets
with minimal manual control of the data distribu-
tion. Additionally, compositional generalization
challenges include both lexicon-level generaliza-
tion and structure-level generalization. This work
mainly focuses on lexicon-level generalization and
relatively simple structure-level generalization as
in our length-related and SMCalFlow-CS experi-
ments. We assume these results will also generalize
to more complicated structure-level generalization
problems. For example, some more challenging se-
tups may involve splits maximizing the compound
divergence (MCD) (Keysers et al., 2020). MCD
complexity does not naturally change when collect-
ing larger datasets. To test a related hypothesis, one
may check if increasing the number of unique local
structures improves performance. However, such
dataset modification is non-trivial and we leave the
exploration as future work.

Acknowledgements

We thank Dipanjan Das, Colin Raffel, and the re-
viewers for their helpful comments. This work
was supported by ONR Grant N00014-18-1-2871,
NSF-CAREER Award 1846185, and DARPA MCS
Grant N66001-19-2-4031, and an Apple PhD Fel-
lowship. The views are those of the authors and
not of the funding agency.

References
Ekin Akyürek, Afra Feyza Akyürek, and Jacob An-

dreas. 2021. Learning to recombine and resample
data for compositional generalization. In 9th Inter-
national Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net.

Ekin Akyurek and Jacob Andreas. 2023. LexSym: Com-
positionality as lexical symmetry. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 639–657, Toronto, Canada. Association for
Computational Linguistics.

Jacob Andreas. 2020. Good-enough compositional data
augmentation. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7556–7566, Online. Association for
Computational Linguistics.

Jacob Andreas, John Bufe, David Burkett, Charles
Chen, Josh Clausman, Jean Crawford, Kate Crim,
Jordan DeLoach, Leah Dorner, Jason Eisner, Hao
Fang, Alan Guo, David Hall, Kristin Hayes, Kellie
Hill, Diana Ho, Wendy Iwaszuk, Smriti Jha, Dan
Klein, Jayant Krishnamurthy, Theo Lanman, Percy
Liang, Christopher H. Lin, Ilya Lintsbakh, Andy Mc-
Govern, Aleksandr Nisnevich, Adam Pauls, Dmitrij
Petters, Brent Read, Dan Roth, Subhro Roy, Jesse
Rusak, Beth Short, Div Slomin, Ben Snyder, Stephon
Striplin, Yu Su, Zachary Tellman, Sam Thomson, An-
drei Vorobev, Izabela Witoszko, Jason Wolfe, Abby
Wray, Yuchen Zhang, and Alexander Zotov. 2020.
Task-oriented dialogue as dataflow synthesis. Trans-
actions of the Association for Computational Linguis-
tics, 8:556–571.

Jasmijn Bastings, Marco Baroni, Jason Weston,
Kyunghyun Cho, and Douwe Kiela. 2018. Jump
to better conclusions: SCAN both left and right. In
Proceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 47–55, Brussels, Belgium. As-
sociation for Computational Linguistics.

Philémon Brakel and Stefan Frank. 2009. Strong sys-
tematicity in sentence processing by simple recurrent
networks. In Proceedings of the Annual Meeting of
the Cognitive Science Society, volume 31.

Stephanie C. Y. Chan, Adam Santoro, Andrew K.
Lampinen, Jane X. Wang, Aaditya Singh, Pierre H.
Richemond, Jay McClelland, and Felix Hill. 2022.
Data distributional properties drive emergent in-
context learning in transformers.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. ArXiv preprint,
abs/2204.02311.

Henry Conklin, Bailin Wang, Kenny Smith, and Ivan
Titov. 2021. Meta-learning to compositionally gen-
eralize. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 3322–3335, Online. Association for Computa-
tional Linguistics.

Róbert Csordás, Kazuki Irie, and Juergen Schmidhuber.
2021. The devil is in the detail: Simple tricks im-
prove systematic generalization of transformers. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pages 619–
634, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Deborah A. Dahl, Madeleine Bates, Michael Brown,
William Fisher, Kate Hunicke-Smith, David Pallett,
Christine Pao, Alexander Rudnicky, and Elizabeth
Shriberg. 1994. Expanding the scope of the ATIS
task: The ATIS-3 corpus. In Human Language Tech-
nology: Proceedings of a Workshop held at Plains-
boro, New Jersey, March 8-11, 1994.

Verna Dankers, Elia Bruni, and Dieuwke Hupkes. 2022.
The paradox of the compositionality of natural lan-
guage: A neural machine translation case study. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 4154–4175, Dublin, Ireland. As-
sociation for Computational Linguistics.

Roberto Dessì and Marco Baroni. 2019. CNNs found
to jump around more skillfully than RNNs: Com-
positional generalization in seq2seq convolutional
networks. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3919–3923, Florence, Italy. Association for
Computational Linguistics.

Andrew Drozdov, Nathanael Schärli, Ekin Akyürek,
Nathan Scales, Xinying Song, Xinyun Chen, Olivier
Bousquet, and Denny Zhou. 2023. Compositional
semantic parsing with large language models. In
The Eleventh International Conference on Learning
Representations.

Catherine Finegan-Dollak, Jonathan K. Kummerfeld,
Li Zhang, Karthik Ramanathan, Sesh Sadasivam, Rui
Zhang, and Dragomir Radev. 2018. Improving text-
to-SQL evaluation methodology. In Proceedings

https://openreview.net/forum?id=PS3IMnScugk
https://openreview.net/forum?id=PS3IMnScugk
https://doi.org/10.18653/v1/2023.acl-long.38
https://doi.org/10.18653/v1/2023.acl-long.38
https://doi.org/10.18653/v1/2020.acl-main.676
https://doi.org/10.18653/v1/2020.acl-main.676
https://doi.org/10.1162/tacl_a_00333
https://doi.org/10.18653/v1/W18-5407
https://doi.org/10.18653/v1/W18-5407
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2204.02311
https://doi.org/10.18653/v1/2021.acl-long.258
https://doi.org/10.18653/v1/2021.acl-long.258
https://doi.org/10.18653/v1/2021.emnlp-main.49
https://doi.org/10.18653/v1/2021.emnlp-main.49
https://aclanthology.org/H94-1010
https://aclanthology.org/H94-1010
https://doi.org/10.18653/v1/2022.acl-long.286
https://doi.org/10.18653/v1/2022.acl-long.286
https://doi.org/10.18653/v1/P19-1381
https://doi.org/10.18653/v1/P19-1381
https://doi.org/10.18653/v1/P19-1381
https://doi.org/10.18653/v1/P19-1381
https://openreview.net/forum?id=gJW8hSGBys8
https://openreview.net/forum?id=gJW8hSGBys8
https://doi.org/10.18653/v1/P18-1033
https://doi.org/10.18653/v1/P18-1033

of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 351–360, Melbourne, Australia. Association
for Computational Linguistics.

Daniel Furrer, Marc van Zee, Nathan Scales, and
Nathanael Schärli. 2020. Compositional generaliza-
tion in semantic parsing: Pre-training vs. specialized
architectures. ArXiv preprint, abs/2007.08970.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
SimCSE: Simple contrastive learning of sentence em-
beddings. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 6894–6910, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Jonathan Gordon, David Lopez-Paz, Marco Baroni, and
Diane Bouchacourt. 2020. Permutation equivariant
models for compositional generalization in language.
In 8th International Conference on Learning Repre-
sentations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net.

Suchin Gururangan, Swabha Swayamdipta, Omer Levy,
Roy Schwartz, Samuel Bowman, and Noah A. Smith.
2018. Annotation artifacts in natural language infer-
ence data. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 107–112,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Danny Hernandez, Tom Brown, Tom Conerly, Nova
DasSarma, Dawn Drain, Sheer El-Showk, Nelson
Elhage, Zac Hatfield-Dodds, Tom Henighan, Tristan
Hume, et al. 2022. Scaling laws and interpretabil-
ity of learning from repeated data. ArXiv preprint,
abs/2205.10487.

Jonathan Herzig, Peter Shaw, Ming-Wei Chang, Kelvin
Guu, Panupong Pasupat, and Yuan Zhang. 2021. Un-
locking compositional generalization in pre-trained
models using intermediate representations. ArXiv
preprint, abs/2104.07478.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,
Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de las Casas, Lisa Anne Hendricks, Johannes
Welbl, Aidan Clark, Tom Hennigan, Eric Noland,
Katherine Millican, George van den Driessche, Bog-
dan Damoc, Aurelia Guy, Simon Osindero, Karen
Simonyan, Erich Elsen, Oriol Vinyals, Jack William
Rae, and Laurent Sifre. 2022. An empirical analysis
of compute-optimal large language model training.
In Advances in Neural Information Processing Sys-
tems.

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia
Bruni. 2020. Compositionality decomposed: How
do neural networks generalise? Journal of Artificial
Intelligence Research, 67:757–795.

Takuya Ito, Tim Klinger, Doug Schultz, John Murray,
Michael Cole, and Mattia Rigotti. 2022. Composi-
tional generalization through abstract representations
in human and artificial neural networks. Advances in
Neural Information Processing Systems, 35:32225–
32239.

Yichen Jiang and Mohit Bansal. 2021. Inducing trans-
former’s compositional generalization ability via aux-
iliary sequence prediction tasks. In Proceedings of
the 2021 Conference on Empirical Methods in Natu-
ral Language Processing, pages 6253–6265, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Yichen Jiang, Xiang Zhou, and Mohit Bansal. 2022.
Mutual exclusivity training and primitive augmen-
tation to induce compositionality. In Proceedings
of the 2022 Conference on Empirical Methods in
Natural Language Processing, pages 11778–11793,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Daniel Keysers, Nathanael Schärli, Nathan Scales,
Hylke Buisman, Daniel Furrer, Sergii Kashubin,
Nikola Momchev, Danila Sinopalnikov, Lukasz
Stafiniak, Tibor Tihon, Dmitry Tsarkov, Xiao Wang,
Marc van Zee, and Olivier Bousquet. 2020. Measur-
ing compositional generalization: A comprehensive
method on realistic data. In 8th International Confer-
ence on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020. OpenReview.net.

Najoung Kim and Tal Linzen. 2020. COGS: A compo-
sitional generalization challenge based on semantic
interpretation. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 9087–9105, Online. As-
sociation for Computational Linguistics.

Yoon Kim. 2021. Sequence-to-sequence learning with
latent neural grammars. In Advances in Neural In-
formation Processing Systems 34: Annual Confer-
ence on Neural Information Processing Systems 2021,
NeurIPS 2021, December 6-14, 2021, virtual, pages
26302–26317.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Brenden M. Lake. 2019. Compositional generalization
through meta sequence-to-sequence learning. In Ad-
vances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Process-
ing Systems 2019, NeurIPS 2019, December 8-14,
2019, Vancouver, BC, Canada, pages 9788–9798.

Brenden M. Lake and Marco Baroni. 2018. General-
ization without systematicity: On the compositional
skills of sequence-to-sequence recurrent networks. In
Proceedings of the 35th International Conference on
Machine Learning, ICML 2018, Stockholmsmässan,

https://arxiv.org/abs/2007.08970
https://arxiv.org/abs/2007.08970
https://arxiv.org/abs/2007.08970
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://openreview.net/forum?id=SylVNerFvr
https://openreview.net/forum?id=SylVNerFvr
https://doi.org/10.18653/v1/N18-2017
https://doi.org/10.18653/v1/N18-2017
https://arxiv.org/abs/2205.10487
https://arxiv.org/abs/2205.10487
https://arxiv.org/abs/2104.07478
https://arxiv.org/abs/2104.07478
https://arxiv.org/abs/2104.07478
https://openreview.net/forum?id=iBBcRUlOAPR
https://openreview.net/forum?id=iBBcRUlOAPR
https://doi.org/10.18653/v1/2021.emnlp-main.505
https://doi.org/10.18653/v1/2021.emnlp-main.505
https://doi.org/10.18653/v1/2021.emnlp-main.505
https://doi.org/10.18653/v1/2022.emnlp-main.808
https://doi.org/10.18653/v1/2022.emnlp-main.808
https://openreview.net/forum?id=SygcCnNKwr
https://openreview.net/forum?id=SygcCnNKwr
https://openreview.net/forum?id=SygcCnNKwr
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://proceedings.neurips.cc/paper/2021/hash/dd17e652cd2a08fdb8bf7f68e2ad3814-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/dd17e652cd2a08fdb8bf7f68e2ad3814-Abstract.html
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://proceedings.neurips.cc/paper/2019/hash/f4d0e2e7fc057a58f7ca4a391f01940a-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/f4d0e2e7fc057a58f7ca4a391f01940a-Abstract.html
http://proceedings.mlr.press/v80/lake18a.html
http://proceedings.mlr.press/v80/lake18a.html
http://proceedings.mlr.press/v80/lake18a.html

Stockholm, Sweden, July 10-15, 2018, volume 80 of
Proceedings of Machine Learning Research, pages
2879–2888. PMLR.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Yuanpeng Li, Liang Zhao, Jianyu Wang, and Joel Hest-
ness. 2019. Compositional generalization for primi-
tive substitutions. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 4293–4302, Hong Kong, China. Association
for Computational Linguistics.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg.
2016. Assessing the ability of LSTMs to learn syntax-
sensitive dependencies. Transactions of the Associa-
tion for Computational Linguistics, 4:521–535.

João Loula, Marco Baroni, and Brenden Lake. 2018.
Rearranging the familiar: Testing compositional gen-
eralization in recurrent networks. In Proceedings
of the 2018 EMNLP Workshop BlackboxNLP: An-
alyzing and Interpreting Neural Networks for NLP,
pages 108–114, Brussels, Belgium. Association for
Computational Linguistics.

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and
Ryan McDonald. 2020. On faithfulness and factu-
ality in abstractive summarization. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 1906–1919, On-
line. Association for Computational Linguistics.

Milton Llera Montero, Casimir J. H. Ludwig, Rui Ponte
Costa, Gaurav Malhotra, and Jeffrey Bowers. 2021.
The role of disentanglement in generalisation. In 9th
International Conference on Learning Representa-
tions, ICLR 2021, Virtual Event, Austria, May 3-7,
2021. OpenReview.net.

Shikhar Murty, Pratyusha Sharma, Jacob Andreas, and
Christopher D Manning. 2023. Characterizing intrin-
sic compositionality in transformers with tree projec-
tions. In The Eleventh International Conference on
Learning Representations.

Inbar Oren, Jonathan Herzig, Nitish Gupta, Matt Gard-
ner, and Jonathan Berant. 2020. Improving compo-
sitional generalization in semantic parsing. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2020, pages 2482–2495, Online. Association
for Computational Linguistics.

Arkil Patel, Satwik Bhattamishra, Phil Blunsom, and
Navin Goyal. 2022. Revisiting the compositional

generalization abilities of neural sequence models.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
2: Short Papers), pages 424–434, Dublin, Ireland.
Association for Computational Linguistics.

Ellie Pavlick and Tom Kwiatkowski. 2019. Inherent
disagreements in human textual inferences. Transac-
tions of the Association for Computational Linguis-
tics, 7:677–694.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

P. J. Price. 1990. Evaluation of spoken language sys-
tems: the ATIS domain. In Speech and Natural Lan-
guage: Proceedings of a Workshop Held at Hidden
Valley, Pennsylvania, June 24-27,1990.

Linlu Qiu, Peter Shaw, Panupong Pasupat, Tianze Shi,
Jonathan Herzig, Emily Pitler, Fei Sha, and Kristina
Toutanova. 2022. Evaluating the impact of model
scale for compositional generalization in semantic
parsing. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 9157–9179, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1–140:67.

Peter Shaw, Ming-Wei Chang, Panupong Pasupat, and
Kristina Toutanova. 2021. Compositional generaliza-
tion and natural language variation: Can a semantic
parsing approach handle both? In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 922–938, Online. Asso-
ciation for Computational Linguistics.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. 2018.
Self-attention with relative position representations.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 2 (Short Papers), pages 464–468, New Or-
leans, Louisiana. Association for Computational Lin-
guistics.

Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya
Ganguli, and Ari Morcos. 2022. Beyond neural scal-
ing laws: beating power law scaling via data pruning.
Advances in Neural Information Processing Systems,
35:19523–19536.

https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/D19-1438
https://doi.org/10.18653/v1/D19-1438
https://doi.org/10.1162/tacl_a_00115
https://doi.org/10.1162/tacl_a_00115
https://doi.org/10.18653/v1/W18-5413
https://doi.org/10.18653/v1/W18-5413
https://doi.org/10.18653/v1/2020.acl-main.173
https://doi.org/10.18653/v1/2020.acl-main.173
https://openreview.net/forum?id=qbH974jKUVy
https://openreview.net/forum?id=sAOOeI878Ns
https://openreview.net/forum?id=sAOOeI878Ns
https://openreview.net/forum?id=sAOOeI878Ns
https://doi.org/10.18653/v1/2020.findings-emnlp.225
https://doi.org/10.18653/v1/2020.findings-emnlp.225
https://doi.org/10.18653/v1/2022.acl-short.46
https://doi.org/10.18653/v1/2022.acl-short.46
https://doi.org/10.1162/tacl_a_00293
https://doi.org/10.1162/tacl_a_00293
https://aclanthology.org/H90-1020
https://aclanthology.org/H90-1020
https://doi.org/10.18653/v1/2022.emnlp-main.624
https://doi.org/10.18653/v1/2022.emnlp-main.624
https://doi.org/10.18653/v1/2022.emnlp-main.624
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/2021.acl-long.75
https://doi.org/10.18653/v1/2021.acl-long.75
https://doi.org/10.18653/v1/2021.acl-long.75
https://doi.org/10.18653/v1/N18-2074

Swabha Swayamdipta, Roy Schwartz, Nicholas Lourie,
Yizhong Wang, Hannaneh Hajishirzi, Noah A. Smith,
and Yejin Choi. 2020. Dataset cartography: Mapping
and diagnosing datasets with training dynamics. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 9275–9293, Online. Association for Computa-
tional Linguistics.

Dmitry Tsarkov, Tibor Tihon, Nathan Scales, Nikola
Momchev, Danila Sinopalnikov, and Nathanael
Schärli. 2021. *-cfq: Analyzing the scalability
of machine learning on a compositional task. In
Thirty-Fifth AAAI Conference on Artificial Intelli-
gence, AAAI 2021, Thirty-Third Conference on In-
novative Applications of Artificial Intelligence, IAAI
2021, The Eleventh Symposium on Educational Ad-
vances in Artificial Intelligence, EAAI 2021, Virtual
Event, February 2-9, 2021, pages 9949–9957. AAAI
Press.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al.
2022. Emergent abilities of large language models.
Transactions on Machine Learning Research.

Gail Weiss, Yoav Goldberg, and Eran Yahav. 2018. On
the practical computational power of finite precision
RNNs for language recognition. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers),
pages 740–745, Melbourne, Australia. Association
for Computational Linguistics.

Paul Rodriguez Janet Wiles. 1998. Recurrent neural
networks can learn to implement symbolsensitive
counting. Advances in Neural Information Process-
ing Systems, 10:87.

Francis CK Wong and William SY Wang. 2007. Gener-
alisation towards combinatorial productivity in lan-
guage acquisition by simple recurrent networks. In
2007 International Conference on Integration of
Knowledge Intensive Multi-Agent Systems, pages
139–144. IEEE.

Pengcheng Yin, Hao Fang, Graham Neubig, Adam
Pauls, Emmanouil Antonios Platanios, Yu Su, Sam
Thomson, and Jacob Andreas. 2021. Compositional
generalization for neural semantic parsing via span-
level supervised attention. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2810–2823, Online.
Association for Computational Linguistics.

Yongjing Yin, Jiali Zeng, Yafu Li, Fandong Meng, Jie
Zhou, and Yue Zhang. 2023. Consistency regular-
ization training for compositional generalization. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1294–1308, Toronto, Canada.
Association for Computational Linguistics.

John M Zelle and Raymond J Mooney. 1996. Learning
to parse database queries using inductive logic pro-
gramming. In Proceedings of the national conference
on artificial intelligence, pages 1050–1055.

Hao Zheng and Mirella Lapata. 2021. Compositional
generalization via semantic tagging. In Findings
of the Association for Computational Linguistics:
EMNLP 2021, pages 1022–1032, Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Appendix

A Dataset Details

A.1 Natural Dataset Details
We use three English datasets with human-written
queries: GeoQuery (Zelle and Mooney, 1996),
ATIS (Price, 1990; Dahl et al., 1994) and SM-
CalFlow (Andreas et al., 2020; Yin et al., 2021).

GeoQuery (Zelle and Mooney, 1996) dataset
contains 880 questions about US geography with
the corresponding SQL queries or logical expres-
sions of the question. Following Andreas (2020),
we report performance on both the query split and
the question split. The question split is the original
split proposed in the dataset, while the query is a
more compositionally challenging split proposed
in Finegan-Dollak et al. (2018) ensuring no over-
lapping logical forms between the splits. We also
use the standard dev-test split for GeoQuery.

ATIS (Price, 1990; Dahl et al., 1994) is a larger-
scale semantic parsing dataset with 3809 examples.
Each example contains a flight-related query as
well as the corresponding SQL query. Due to the
nesting format difference between the train/dev set
and the test set of ATIS, we simplify our experi-
ment setting to report dev set results only for the
ATIS dataset.

SMCalFlow (Andreas et al., 2020) is a large-
scale dialog dataset. All the examples in the dataset
are from natural conversations and they are anno-
tated with an executable dataflow program. Yin
et al. (2021) proposed a modified version of this
dataset focusing on compositional generalization.
We use the 32-shot version in Yin et al. (2021)
and denote it as SMCalFlow-CS in later experi-
ments. As our experiments also aim to provide a
fair comparison between the original version and
the compositional version of SMCalFlow, we pre-
process both versions using the same way as the
preprocessing steps for the compositional version

https://doi.org/10.18653/v1/2020.emnlp-main.746
https://doi.org/10.18653/v1/2020.emnlp-main.746
https://ojs.aaai.org/index.php/AAAI/article/view/17195
https://ojs.aaai.org/index.php/AAAI/article/view/17195
https://doi.org/10.18653/v1/P18-2117
https://doi.org/10.18653/v1/P18-2117
https://doi.org/10.18653/v1/P18-2117
https://doi.org/10.18653/v1/2021.naacl-main.225
https://doi.org/10.18653/v1/2021.naacl-main.225
https://doi.org/10.18653/v1/2021.naacl-main.225
https://doi.org/10.18653/v1/2023.acl-long.72
https://doi.org/10.18653/v1/2023.acl-long.72
https://doi.org/10.18653/v1/2021.findings-emnlp.88
https://doi.org/10.18653/v1/2021.findings-emnlp.88

described in Yin et al. (2021). Due to this prepro-
cessing detail, our result on the non-compositional
split of SMCalFlow may not be comparable to other
works.

A.2 Dataset Construction Details for SCAN*
Length Generalization Experiment

SCAN* is an extended version of SCAN created
in this work so that we can analyze how dataset
complexity (especially length-related complexity)
influences the model’s generalization ability. This
is an essential design choice as the complexity of
the original SCAN is bounded. For all SCAN*
related experiments, we apply two changes: first,
every dataset will contain 200 different primitives;
second, every sentence can have an unlimited num-
ber of and and after as long as the total length is
within the limit for the length generalization exper-
iments. To avoid ambiguity, we assign different
orders of priority to and and after, with after hav-
ing the higher priority and will be executed first.
Additionally, we make two minor simplifications
to the SCAN grammar that do not influence the
trends substantially. We removed the verb turn and
we unify the grammar for around and opposite10.
To generate the data for the length generalization
experiment in Sec. 3, and the length ablation ex-
periment in Sec. 5, we try to ensure similar dataset
statistics across datasets with different lengths as
much as possible. To achieve this, we always
first generate the dataset with the maximum length.
Then, to create all the other shorter experiments,
we repeatedly create a half-length truncated ver-
sion of the longer original dataset. Specifically, for
every example with length l in the longer dataset,
we first split each example by its conjunctions (and
or after), then we keep the most amount of the split
parts so that the total length is under the half-length
l/2 of the original example. For our experiments,
we use the length of the input as the length measure.

B Implementation Details

B.1 Models and Training Details

In this study, we focus on seq2seq Transformers
as they are the most prevalent choices for most
compositional generalization (and more broadly,
semantic parsing) datasets. For our main experi-
ments, we focus on models trained from scratch so
that our analysis is not influenced by the existing

10In Appendix E, we show this simplification does not in-
fluence the trends shown in this paper

knowledge from pretraining. For the experiments
in the main paper, we follow Csordás et al. (2021)
to use 3 layers in both encoder and decoder, and use
relative positional embeddings (Shaw et al., 2018).
In Appendix H, we provide additional results on
models with other configurations. We set both the
hidden size and the embedding size to 256, and the
dimension of the feed-forward layer to 512. We
use a dropout rate of 0.1 and 4 self-attention heads.
For the optimizer, we use Adam (Kingma and Ba,
2015) and a batch size of 128 examples. We use
the Noam Learning rate scheduling with a peak
learning rate of 2.0, 50000 total steps, and 5000
warmup steps. We use a beam size of 5 to get all
the results in our experiments.

B.2 Implementation of Difficulty Metrics

For the prototype-based difficulty metric, we follow
the process in Sorscher et al. (2022). For every ex-
ample, we feed the input side to the SimCSE (Gao
et al., 2021) model to get an example embedding.
We choose to use the input side instead of the out-
put side to compute the embedding since the inputs
are natural language so they are more suitable for
off-the-shelf models like SimCSE. Then, we run
k-means to get the distance between each example
embedding and its corresponding cluster centroid.
Our k-means implementation is from (Pedregosa
et al., 2011). We set k to 100 in our experiments,
and use the best clustering result from 10 different
initializations.

For the learning learning-based difficulty metric,
we follow our standard setup to evaluate our model
on the training set for every 500 steps. We then
log the performance of each example. Then for
every example, we find the earliest step when the
model has predicted the example correctly for 10
consecutive steps. The earlier this step is, the sim-
pler this example is. If the model can never predict
the example correctly, this step number is set to
the final step. In our experiment, we compute this
metric on multiple random seeds. Therefore, for
every example, the final step number is the average
over all the different seeds.

C Data Augmentation Details

C.1 Data Augmentation Details of SCAN
Jump and Around Right

We first follow the exact same setup in Jiang et al.
(2022) to conduct data augmentation experiments
on the SCAN Jump and Around Right split to create

training sets with different numbers of primitives.
The augmentation follows a two-stage procedure,
which we explain here.

Building a Dictionary. In the first stage, we use
a dataset-agnostic, rule-based algorithm to build a
dictionary that maps certain input tokens to their
output forms (e.g., “look 7→ LOOK” and “jump 7→
JUMP”). Given the source vocabulary as V and
the target vocabulary as W , the algorithm iterates
through the training set to identify pairs (v, w), v ∈
V,w ∈ W such that the presence of v in the input
is both necessary and sufficient for the presence of
w in the output.

suff(v, w) = ∀(x, y), (v ∈ x) −→ (w ∈ y)

ness(v, w) = ∀(x, y), (w ∈ y) −→ (v ∈ x)
(1)

This algorithm ignores those functional words (e.g.,
“around” and “twice”) that only decide the syntactic
structure of the outputs but cannot be translated to
a specific target token.

Mutating Primitives. In stage two, we iterate
through every example in the training set and ran-
domly select some primitive pairs that exist in the
previously built lexicon for mutation. In mutating
them, we simply add a suffix to their source and
target forms. Given an original example “walk left
twice”, we select a primitive “walk” and mutate it
to a new example “walk1 left twice 7→ TL WALK1
TL WALK1”. For our experiments in Sec. 3, we
create three different augmented training sets (2x,
20x, 200x) with increasing complexities. Specifi-
cally, for a training example in the SCAN Jump
or Around Right, we first identify all primitive
pairs in the example. Then, in Kx augmentation
(K=2,20,200), for each primitive pair (e.g., “(walk,
WALK)”), we randomly replace the source token in
the input with one of its K+1 mutated form (walk,
walk1, walk2, ..., walkK) and the target token in
the output with the corresponding form. We repeat
this process 2K times or until we collect K distinct
augmented examples.

C.2 Data Augmentation Details for GeoQuery
Here we describe the detailed data augmentation
process for the GeoQuery dataset as used in Sec. 3
and Sec. 4. As one crucial part of the questions
in GeoQuery are geography entities (e.g., Oregon,
Springfield, etc.), our augmentation focuses on in-
creasing the diversity of these entities similar to the
primitive-based augmentation method in Patel et al.
(2022) and Jiang et al. (2022). Specifically, we first

get all the geography entities in the dataset by pars-
ing the output predictions. Then, for each entity,
we create multiple copies (e.g., 19 new copies for
the x20 experiments) for the entity. Then, for every
example, we identify the entities contained in every
example, and then augment new examples contain-
ing the new copies of these entities. We augment
the same amount of new examples for every exam-
ple. The final size of the x20 augmented dataset
will be 20 times of the original dataset.

C.3 AugZero Augmentation Details

Below we describe Augmentation with Zero Prior
Knowledge (AugZero). The general idea is just
to satisfy our hypotheses by providing multiple
copies of the training set using different copies
of the vocabulary. Interestingly, this process re-
quires zero knowledge about the actual data. Specif-
ically, assume the original vocabulary is V 1 =
{w1

j |mj=1}, where w1
1 . . . w

1
m are all the m possi-

ble tokens. AugZero increases the vocabulary
by k times. The augmented vocabulary will be
V ADV = V 1 ∪ V 2 ∪ . . . ∪ V k = {wi

j : |mj=1
k
i=1},

where each wi
j is a corresponding new token for

w1
j . Given a tokenized example with length l in

the original dataset: x = w1
u1
, w1

u2
, . . . , w1

ul
, where

u1, . . . , ul are the token indexes in V 1. In AugZero,
we create k − 1 additional copies of this example,
from w2

u1
, . . . , w2

ul
to wk

u1
, . . . , wk

ul
. See Figure 3

for an illustration. One crucial difference between
AugZero and the data augmentation described in
Sec. 3 is that AugZero no longer distinguishes the
primitive and non-primitive tokens, hence requiring
zero knowledge about the actual task.

Other variants of AugZero. In AugZero, we se-
lect a different set of vocabulary for each example.
For example, the original “walk left and jump” may
become “walk2 left2 and2 jump2”. If we combine
this idea and syntax induction methods, we can get
additional augmentation examples such as "walk
left2 and2 jump2". This can further improve the
performance (as shown by the prim2primX results
using very similar ideas). However, doing such aug-
mentation requires inducing the syntax mapping
beforehand, which is not trivial on natural language
datasets and loses the advantage of simplicity. Ad-
ditionally, we explored another variant that maps
each original token in the dataset randomly into
all the corresponding words in the augmented vo-
cabulary. This makes the one-to-one map “walk
7→ WALK” becomes a many-to-many map “{walk,

Dataset Size Repetition GeoQuery (query) GeoQuery (question)

baseline / 29.67±5.31 60.79±1.69

baseline Example 8.68±4.17 56.63±2.50

baseline Primitive 13.87±2.70 36.77±1.90

20x / 32.97±2.60 62.44±1.80

20x Example 30.00±1.85 62.65±1.38

20x Primitive 6.48±2.21 40.05±1.07

Table 6: The effect of examples repetition on different datasets with SQL outputs. We use SQL outputs for the
GeoQuery dataset in this table.

jump JUMP

walk left and walk twice LTURN WALK WALK WALK

WALKwalk
Keys ValuesRow

1

2

...

128

walk left and walk twice

WALKLTURN WALK WALK

walk walkleft twice

... ...

...

jump JUMP

walk left and walk twice LTURN WALK WALK WALK

WALKwalk
Keys ValuesRow

1

2

...

128

... ...

...

jump left and jump twice

JUMPLTURN JUMP JUMP

jump jumpleft twice

Train: walk left and walk twice

Test: jump left and jump twice

LTURN WALK WALK WALK LTURN WALK WALK WALK

LTURN JUMP JUMP JUMP?

Figure 6: Two different ways to achieve low training
losses: surface memorization (left) and compositional
understanding (right).

50025012562
Length (L)

0

50

Ex
ac

t-M
at

ch
 A

cc

Figure 7: Different generalization performances on with-
out the grammar simplification of around and opposite.
Same to Figure 2, the challenge is always to train on
examples with length 0 < l ≤ L and test on examples
with length L < l ≤ 2L.

walk1, walk2, . . .} 7→ {WALK, WALK1, WALK2,
. . .}”, but do not show further improvements.

D Illustration for the Two Model
Behaviors

In Figure 6, we provide an illustration for the two
model behaviors mentioned in Sec. 4.1. Both be-
haviors can lead to good performance on the train-
ing set (as shown in the upper half of the figure).
However, given a new example with a novel com-
bination of seen structures and primitives, only
models with correct compositional understanding
can provide the correct prediction (as shown in the
lower half of the figure).

GeoQuery (query) GeoQuery (question)

baseline 29.67±5.31 60.79±1.69

2x Augmentation 26.05±4.34 61.72±2.35

20x Augmentation 32.97±2.60 62.44±1.80

200x Augmentation 32.64±1.00 61.08±2.11

Table 7: Datasets with increased complexity via data
augmentation are easier for compositional generaliza-
tion. We use SQL outputs for the GeoQuery dataset in
this table.

E Additional Length Generalization
Results

In Figure 7, we show length generalization results
without the grammar unification of around and
opposite. We can see the trend is very similar to
Figure 2. As the maximum length becomes larger
in the dataset, generalization performance becomes
better. In our preliminary experiments, we have
verified that our other findings on SCAN* are also
robust against minor grammar changes.

F Additional GeoQuery Results

In the main paper, due to space constraints, we re-
port on the GeoQuery dataset with logical forms as
output. In Table 6 and Table 7, we show the cor-
responding results using SQL as the output. Both
tables demonstrate similar trends to the results in
the main paper.

G Additional Example Difficulty Results

G.1 Examples of Prototype-Based Difficulty

In Table 8, we show examples of simple and diffi-
cult data in the SMCalFlow-CS dataset according
to the prototype-based difficulty. In the table, the
simple examples are randomly sampled from the
simplest 25% of the dataset, while difficult exam-
ples come from the hardest 25%. We can see that
the simple examples usually refer to common gen-
eral instructions, while difficult examples tend to
be more complex in the language and specify more

Simple Examples Difficult Examples

Can you create an Meeting for Saturday 1 : 00 pm I had a meeting with Jesse last week

Schedule a lunch after the meeting on Thursday. I need my free day on April 7, to be turned to my All out
gallery opening.

create a new appointment tomorrow Add a beer festival in Denver to be for all weekend next
week.

Table 8: Simple and difficult data examples in the SMCalFlow-CS dataset according to the prototype-based difficulty
metric. In this table, the simple examples are randomly sampled from the simplest 25% of the dataset, while difficult
examples come from the hardest 25% of the dataset.

35

40

45

50

55

Ex
ac

t-M
at

ch
 A

cc
ur

ac
y

ATIS

20

30

40

50

Ex
ac

t-M
at

ch
 A

cc
ur

ac
y

SMCalFlow

0 1 2 3
Difficulty

35

40

45

Ex
ac

t-M
at

ch
 A

cc
ur

ac
y

SMCalFlow-CS

Figure 8: Results on ATIS and SMCalFlow with train-
ing sets of different difficulties with learning-based dif-
ficulty.

details (e.g., the name Jesse, the place Denver, etc.).
Additionally, we want to point out that while

this prototype-based difficulty measure alters the
general complexity of the data, it does not change
the compositional difficulty of the SMCalFlow-CS
dataset. This is because the dataset of SMCalFlow-
CS is constructed to test the ability to combine
multiple instructions in the training set under a few-
shot setting (Yin et al., 2021), and the difficulty is
controlled by altering the number of few-shot exam-
ples. As we always keep the few-shot examples the
same in all these training sets and only change the
difficulty of the remaining single-skill examples,
the clustering step will not introduce other con-
founding factors to the compositional challenge.

G.2 Learning-Based Difficulty
We can use an empirical metric based on how soon
the model predicts an example correctly during
training. This is similar to the popular correctness-
based metric (Swayamdipta et al., 2020). Since

the model could reach perfect training accuracy on
many of the datasets in this work, we choose to
use the dedicated metric of how soon the model
predicts the example correctly instead of the plain
accuracy, so that we can differentiate between ex-
amples. Specifically, during training, we evaluate
the model on the entire training set for every check-
point. Then for every example, we log the earliest
step when the model has predicted the example cor-
rectly for 10 straight checkpoints. See Appendix B
for details.

We report additional results of our difficulty-
based sub-sampling results in Sec. 5. In Sec 5
in the main paper, we use prototype-based diffi-
culty metrics to conduct the sub-sampling experi-
ments. We make this design choice as if we use the
learning-based difficulty metric, then the models
perform extremely badly on the most difficult split,
which makes it unsuitable for our experiments. The
corresponding results are shown in Figure 8.

H Results with Other Model
Configurations

H.1 Data Augmentation Results with Larger
Trained-From-Scratch Transformers

For the main results in the main paper, we use 3-
layer Transformers as it is suggested as the best
choice for many popular compositional generaliza-
tion datasets (Csordás et al., 2021). In Table 9, we
report the data augmentation number for a larger
6-layer model. We see similar trends on all the
datasets, confirming that the advantage brought by
increased data complexity is not sensitive to the
underlying model scale.

H.2 Results with Pre-trained Transformers

As the main motivation of this work is to examine
how data factors influence model generalization
performance, we mainly experiment with models
trained from scratch so that we can have clean con-

Jump Around Right GeoQuery (query) GeoQuery (question)

baseline 4.14±4.71 52.42±21.41 37.63±5.57 58.42±1.56

2x Augmentation 31.79±26.23 79.26±7.78 37.42±1.55 60.57±2.96

20x Augmentation 92.13±4.56 77.50±22.34 41.20±2.68 66.95±1.17

200x Augmentation 99.90±0.09 99.55±0.85 39.68±5.08 62.20±1.89

Table 9: Datasets with increased complexity via data augmentation are easier for compositional generalization. We
use 6-layer Transformers and logic form outputs for the GeoQuery dataset in this table.

Dataset Size Repetition GeoQuery (query) GeoQuery (question)

baseline / 67.74±5.61 80.05±1.97

20x / 72.04±10.80 79.69±0.20

20x Example 65.41±2.54 81.72±1.99

20x Primitive 51.08±7.27 61.65±4.66

Table 10: The effect of examples repetition on different datasets for pre-trained Transformers.

trol over all the influencing factors and avoid the
interference of pretraining data and testing data.
Nonetheless, when we actually deploy models in
practical applications, the more common choice
is to use pretrained models (e.g., T5 (Raffel et al.,
2020), BART (Lewis et al., 2020), etc.). Below
we reproduce some of our main results in this pa-
per with T5-base models and summarize the take-
aways. For the hyper-parameters, we mostly follow
the same setting described in Sec. 2.2. The only
change is that we use a learning rate of 0.001 and
a linear learning rate scheduler. For the T5 exper-
iments, we report mean and standard deviations
from 3 runs.

Preventing repetition in data is still important.
In Table 10, we reproduce the experiments in Ta-
ble 4 where we test the effect of repeating examples
during the training process. From the results, we
can see that similar to the results in the main pa-
per. When the model is repetitively trained on a
randomly sampled small set (i.e., the 3rd row in the
table), we can only see a small drop in the query
split. However, the damage is more substantial
when the repeated subset contains few primitives,
showing a drop from 72.04 to 51.08 on the query
split and a drop from 79.69 to 61.65 on the ques-
tion split. To summarize, example frequency is still
very important during finetuning. Highly repetitive
examples can cause substantial damage to the gen-
eralization performance, which may also be linked
with overfitting on the small subset.

Pretrained Transformers need less assistance
for simple cases. One crucial difference between
the pretrained models and the models trained from
scratch is that pretrained models already have a

basic understanding of natural language. For ex-
ample, by pretraining on a large corpus, it already
knows that run and jump are both verbs; Texas
and California are both location entities, and these
words in the same category should be treated sim-
ilarly. Therefore, it gets a ‘jump-start’ on these
compositional generalization datasets, and may not
need a large number of unique primitives to infer
the equivalence of run and jump. As a result, we
do not observe consistent improvement by using
data augmentation in Table 10.

