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Abstract

We study the privacy implications of fine-tuning large language models (LLMs)
on user-stratified (i.e. federated) data. We define a realistic threat model, called
user inference, wherein an attacker infers whether or not a user’s data was used for
fine-tuning. We implement attacks for this threat model that require only a small
set of samples from a user (possibly different from the samples used for training)
and black-box access to the fine-tuned LLM. We find that LLMs are suscepti-
ble to user inference attacks across a variety of fine-tuning datasets with outlier
users (i.e. those with data distributions sufficiently different from other users) and
users who contribute large quantities of data being most susceptible. Finally, we
find that mitigation interventions in the training algorithm, such as batch or per-
example gradient clipping and early stopping fail to prevent user inference while
limiting the number of fine-tuning samples from a single user can reduce attack
effectiveness (albeit at the cost of reducing the total amount of fine-tuning data).

1 Introduction

Successfully applying large language models (LLMs) to real-world problems is often best achieved
by fine-tuning on domain-specific data [30, 36], including commercial applications e.g., GitHub
Copilot [10], Gmail Smart Compose [13], and GBoard [50]. This training/fine-tuning of LMs on
domain-specific data collected from users—particularly on sensitive data like emails, texts, or source
code—comes with privacy concerns, as LMs have been shown to leak information from their training
data [5], especially as models are scaled larger [7].

In the context of foundation models, Charles et al. [9] proposed to broaden the definition of federated
learning [22] to learning with group-structured (e.g. user-stratified) data, while de-emphasizing
the location of the data. However, standard fine-tuning pipelines, including the Copilot and Smart
Compose examples above treat a dataset as a “flat” collection of examples, with no differentiation
based on the user who contributed them. In this paper, we study the privacy risks posed to users
whose data are leveraged to fine-tune LLMs in this user-agnostic fine-tuning setting.

Most existing privacy attacks on LLMs can be grouped into two categories: membership inference,
in which the attacker obtains access to a sample and must determine if it was trained on [32, 35, 37];
and extraction attacks, in which the attacker tries to reconstruct the training data by prompting the
model with different prefixes [5, 31]. These threat models make no assumptions about the training
data and thus cannot estimate the privacy risk to a user when that user contributes many, likely
correlated, training samples. To this end, we introduce the novel threat model of user inference, a
relevant and realistic privacy attack vector for LLMs fine-tuned on user data, depicted in Figure 1.

In user inference, the attacker’s goal is to determine if a particular user participated in LLM fine-
tuning using only black-box access to the fine-tuned model and a small set of i.i.d. samples from
the user. Importantly, these samples need not be part of the fine-tuning set. This threat model lifts
the concept of membership inference from privacy of individual samples to privacy of users who
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Figure 1: Overview of user inference threat model. An LLM model is fine-tuned on user-stratified data.
The adversary can query text samples on the fine-tuned model and compute likelihoods. The adversary has
knowledge of several samples from a user’s distribution (different than the user training samples) and computes
a likelihood score to determine if the user participated in training.

contribute multiple samples, while also relaxing the unrealistic assumption that the attacker has
access to samples from the fine-tuning dataset. By itself, user inference could be a privacy threat if
the fine-tuning task reveals sensitive information about participating users (for instance, if a model
is fine-tuned only on users with a rare disease). Moreover, user inference may also enable other
attacks such as sensitive information extraction, similarly to how membership inference is used as a
subroutine in training data extraction attacks [5].

In this paper, we formally define the user inference threat model and propose a practical attack
(Section 2). We then empirically study the effectiveness of this attack on LLMs fine-tuned on diverse
domains (Section 3.1), quantifying the effect of various factors on the attack, e.g. the uniqueness
of a user’s data distribution, the amount of fine-tuning data contributed by a user, and amount of
attacker knowledge about a user. User inference attacks for text have been studied for recurrent
neural networks [45] and text classification [43], but both of these attacks leverage knowledge of
the users’ training samples and their methodology is not applicable to LLMs. We are the first the
formalize and evaluate user inference attacks on LLMs fine-tuned on sensitive user data.

Finally, we evaluate several methods for mitigating privacy attacks (Section 3.2). We find that
interventions like gradient clipping and early stopping fail to mitigate user inference, but limiting
user contribution reduces the attack impact on both real and synthetically generated users. Based on
these results, we highlight the importance of future work on user-level differential privacy training
and user-aware federated learning techniques to mitigate user inference [28, 33]. Overall, our work
is the first to study user inference attacks against LLMs and provides key insights to inform future
deployments of language models fine-tuned on user data.

2 User Inference Attacks

Consider an autoregressive language model pθ that defines a distribution pθ(xt|x<t) over the next
token xt in continuation of a prefix x<t = (x1, . . . , xt−1). We are interested in a setting where
a pretrained LLM pθ0 with initial parameters θ0 is fine-tuned on some task with a datataset DFT

sampled i.i.d. from a distributionDtask. The most common objective is to minimize the cross entropy
of predicting each next token xt given the context x<t for finetuning data x over all x ∈ DFT.

Fine-tuning with user-stratified data. Much of the data used to fine-tune LLMs has a user-level
structure. For example, emails, messages, and blog posts can reflect the specific characteristics of
the user who wrote them. Two text samples from the same user are more likely to be similar to each
other than samples across users in terms of language use, vocabulary, context, and topics. To capture
the user-stratification, we model the fine-tuning distributionDtask as a mixtureDtask =

∑n
u=1 αuDu
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of n user data distributions D1, . . . ,Dn with non-negative weights α1, . . . , αn that sum to one. We
note that the fine-tuning process of the LLM is oblivious to user-stratification of the data.

The user inference threat model. The task of membership inference assumes that an attacker has
full access to a text sample x in order to determine whether x was a part of the training or fine-tuning
data [6, 44, 52]. We relax this assumption on the knowledge of an attacker by introducing a new
realistic threat model called user inference.

Given access to m i.i.d. samples x(1), . . . ,x(m) ∼ Du from user u’s distribution, the task of
the adversary is to determine if any data from user u was involved in fine-tuning the model pθ.
Crucially, we allow x(i) /∈ DFT. For instance, if an LLM is fine-tuned on user emails, the attacker
can reasonably be assumed to have access to some emails from a user, but not necessarily the ones
used to fine-tune the model. We assume that the attacker has black-box access to the LLM pθ, and
can query the model’s likelihood on a text sequence. Following standard practice in membership
inference [35], the attacker can access a reference model pref that is similar to pθ but has not been
trained on user u’s data (e.g. pre-trained model pθ0 or another LLM).

Attack strategy. The attacker’s task can be formulated as a statistical hypothesis test. Letting Pu
denote the set of models trained on user u’s data, the attacker’s goal is to decide between:

H0 : pθ /∈ Pu, H1 : pθ ∈ Pu . (1)

There is generally no prescribed recipe to test for a composite hypothesis corresponding to a set of
models. Our insight for designing an efficient attack strategy is to formalize the attacker’s task with
simpler surrogate hypotheses that are easier to test:

H ′0 : x(1), . . . ,x(m) ∼ pref , H ′1 : x(1), . . . ,x(m) ∼ pθ . (2)

By construction, H ′0 is always false since pref is not fine-tuned on user u’s data. However, H ′1 is
more likely to be true if the user u participates in training and the samples contributed by u to the
finetuning dataset DFT are similar to the samples known to the attacker, x(1), . . . ,x(m) , even if
they are not identical. In this case, the attacker rejects H ′0. Conversely, if user u did not participate
in finetuning and no samples from DFT are similar to x(1), . . . ,x(m), then the attacker finds both
H ′0 and H ′1 to be equally (im)plausible, and fails to reject H ′0. Intuitively, to faithfully test H0 vs.
H1 using H ′0 vs. H ′1, we require the user distributions to be separable on average, i.e., a sample
x ∼ Du is more similar on average to any other sample from the same user x′ ∼ Du than to a
sample from another user x′′ ∼ Du′ for any other u′ 6= u.

The Neyman-Pearson lemma tells us that the likelihood ratio test is the most powerful for testing
H ′0 vs. H ′1, i.e., it achieves the best true positive rate at any given false positive rate [e.g., 27, Thm.
3.2.1]. This involves constructing a test statistic using the log-likelihood ratio

T (x(1), . . . ,x(m)) := log

(
pθ(x

(1), . . . ,x(m))

pref(x(1), . . . ,x(m))

)
=

m∑
i=1

log

(
pθ(x

(i))

pref(x(i))

)
, (3)

where the last equality follows from the independence of each x(i), which is a mild and common
assumption. This attack statistic has the desirable property that it is already calibrated against a
reference model [35, 49].

Given a threshold τ , the attacker rejects the null hypothesis and declares that u has participated in
finetuning if T (x(1), . . . ,x(m)) > τ . In practice, the number of samples m available to the attacker
might vary for each user, so we normalize the statistic by m. Thus, our final attack statistic is the
empirical mean T̂ (x(1), . . . ,x(m)) = 1

m T (x(1), . . . ,x(m)).

3 Experiments

In this section, we empirically study the susceptibility of models to user inference attacks, the factors
that affect their success, and potential mitigation strategies.

Setup. We evaluate user inference attacks on three user-stratified text datasets: ArXiv Abstracts
[12] for scientific paper abstracts, CC News [9, 17] for news articles, and Enron Emails [25] for
real-world emails. These datasets provide a diverse test bench not only in their domain, but also
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Figure 2: Our attack can achieve significant AUROC, e.g., on the Enron emails dataset. We show two
metrics of attack performance. (Left three): histograms of the test statistics for held-in and held-out users for
the three attack evaluation datasets. (Rightmost): Their corresponding ROC curves.

in the notion of a user, the number of distinct users, and the amount of data contributed per user;
see Table 1 in Appendix C for a summary.

To make these datasets suitable for evaluating user inference attacks, we split them into a held-in set
of users, that we use to fine-tune models, and a held-out set of users that we use to evaluate attacks.
We set aside 10% of a user’s sample as the attacker’s knowledge to run user inference attacks; these
samples are not used for fine-tuning. We evaluate user inference attacks on the GPT-Neo [4] 125M
and 1.3B parameter decoder-only LMs. For more details on the setup, see §C.

We implement the user inference attack described in Section 2 using the pre-trained GPT-Neo mod-
els as our reference models pref . We evaluate the aggregate attack success using the Receiver Oper-
ating Characteristic (ROC) curve across held-in and held-out users; this is a plot of the true positive
and false positive rates of the attack across all possible thresholds. We use the area under this curve
(AUROC) as a scalar summary. It is also commonly used to evaluate membership inference [6].

3.1 User Inference: Results and Properties

We experimentally examine how user inference is impacted by factors such as the amount of user
data and attacker knowledge, the model scale, as well as the connection to overfitting.

Attack Performance. We begin by attacking GPT-Neo 125M trained on each of the three fine-
tuning datasets and evaluating the attack performance. We see from Figure 2 that the user inference
attacks on all three datasets achieve non-trivial performance, with the attack AUROC varying be-
tween 92% (Enron Emails) to 66% (CC News) and 57% (ArXiv Abstracts). The Enron dataset has
fewer users, each contributing large amounts of data, making user inference easier. In contrast, the
ArXiv dataset has a large number of users, each with few data, making user inference more difficult.
This intuition is also formalized analytically in Proposition 1 of Appendix B.

The Effect of the Attacker Knowledge. We examine the effect of the attacker knowledge, i.e.,
the amount of user data used by the attacker to compute the test statistic, in Figure 3. First, we
find that greater attacker knowledge leads to higher attack AUROC and lower variance on the attack
success. For CC News, the AUROCs increase from 62.0±3.3% at 1 document to 68.1±0.6% at 50
documents. We also observe that the user inference attack already leads to non-trivial results with
an attacker knowledge of one document per user for CC News (AUROC 62.0%) and Enron Emails
(AUROC 73.2%). This performance for ArXiv Abstracts is, however, not much better than random
(AUROC 53.6%). Overall, the results show that an attacker does not need too much user data to
mount a strong attack, but more data only helps.

User Inference and User-level Overfitting. It is well-established that overfitting to the training data
is sufficient for successful membership inference [52]. We find that a similar phenomenon holds for
user inference, which is enabled by user-level overfitting, i.e., the model overfits not to the training
samples themselves, but rather the distributions of the training users.

We see from Figure 4 that the validation loss of held-in users continues to decrease for CC News and
Enron Emails, while the loss of held-out users increases. These curves display a textbook example
of overfitting, not to the training data (since both curves are computed using validation data), but
to the distributions of the training users. We can see that the attack AUROC improves with the
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Figure 4: Attack performance over fine-tuning: User inference attack AUROC as well as the validation
perplexity on held-in and held-out users over the course of a fine-tuning run.

widening generalization gap between these two curves. Indeed, the Spearman correlation between
the generalization gap and the attack AUROC is at least 99.4% for all three datasets including
ArXiv, where the trend is not as clear visually. This demonstrates the close relation between user-
level overfitting and user inference.

Effect of Model Scale. We investigate the role of model scale in user inference. We fine-tune
GPT-Neo 125M and 1.3B on CC News and evaluate attack performance.

We see from Figure 5, that the attack performance is nearly identical on both models with AUROCs
of 65.3% for the 1.3B model and 65.8% for the 125M model. While the 1.3B parameter model
achieves better validation loss on both held-in users (2.24 vs. 2.64) and held-out users (2.81 vs.
3.20), the generalization gap is nearly the same for both models (0.57 vs. 0.53). This shows a
qualitative difference between user inference and membership inference, where in the latter threat
model attack performance reliably increases with model size [7, 23, 35, 47].
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Figure 6: Mitigation strategies. Left two: Attack effectiveness with clipping-based strategies for different
“shared substring length” of canary users (see §D.1) and histograms of per-example gradients from real users
and canaries. Right two: Enforcing data-limits as a mitigation strategy on canary users and real users. On all
plots, we shade the AUROC standard deviation over 100 bootstrap samples of held-in and held-out users.

3.2 Mitigation Strategies

Finally, we investigate existing techniques for limiting the influence of individual examples or users
on model fine-tuning to mitigate user inference. Owing to the disproportionately large downside to
privacy leakage, we also consider worst-case canary users. Such users are constructed by inserting
a contiguous substring of a certain length (sampled from the user data) in all of their examples. See
Appendix D.1 for details, where we also find that canary users make user inference easier.

Gradient Clipping. Since we consider a fine-tuning setup that is agnostic to the user-stratification
of the data, a natural method to limit the model’s sensitivity to a small number of examples is to
clip the gradients at the batch [39] or example level [1]. We show the results for the 125M model
on the CC News dataset in Figure 6 (leftmost). We find that both batch and per-example gradient
clipping have no effect on mitigating user inference. The reason behind this is immediately clear
from Figure 6 (center-left): canary user examples do not have outlying large gradients and thus
clipping affects real data and canary data similarly.

Early Stopping. The connection between user inference and user-level overfitting from Section 3.1
suggests that early stopping, a common heuristic used to prevent overfitting [8], could potentially
mitigate the privacy risk due to user inference. Unfortunately, we find that 95% of the final AUROC
is obtained quite early in training: 15K steps (5% of the fine-tuning) for CC News and 90K steps
(27% of the fine-tuning) for ArXiv. Typically, the overall validation loss still decreases far after this
point. This suggests to an explicit tradeoff between overall model utility (e.g., in terms of validation
loss) and privacy risks from user inference.

Data Limits Per User. Since we cannot change the fine-tuning procedure, we consider limiting the
amount of data per user. The right two plots of Figure 6 show that this can be effective for both
real and canary users. For ArXiv, these AUROCs reduce from 88% and 66% at 100 fine-tuning
documents per user to random chance at 10 documents per user. This also holds for CC News.

Summary. Our results show that user inference attacks can be quite effective and hard to mitigate
with common heuristics. Enforcing data limits per users can be effective but this only works for
data-rich applications with numerous users. However, developing an effective mitigation strategy
that also works in data-poor applications remains an open problem.

4 Discussion and Conclusion

When collecting fine-tuning data for specializing an LLM, data from a company’s users is often
the natural choice since it closely resembles the types of inputs a deployed LLM will encounter in
production. However user structure in fine-tuning data also exposes new opportunities for privacy
leakage. Up until now, most studies investigating privacy of LLMs have ignored any structure in the
training data, but as the field shifts towards collecting data from new, potentially sensitive, sources,
it is important to adapt our privacy threat models accordingly. Our work introduces a novel privacy
attack exposing user participation in fine-tuned LLMs, and future work should explore other LLM
privacy violations in the wide spectrum between membership inference and data extraction attacks.

Furthermore, our work demonstrates the effectiveness of user inference attacks across a diverse
variety of fine-tuning distributions, but, beyond simply limiting the amount of data per user, none of
the mitigation heuristics we explored were effective. This motivates future work on user inference
defenses — both heuristic defenses based on new understanding of the threat model, as well as
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methods for efficiently applying defenses with rigorous guarantees, such as user-level Differential
Privacy (DP). User-level DP has been deployed in production settings for federated learning models
of a much smaller size [40, 50], but existing techniques are challenging to scale to LLMs.
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A Related Work

Over the years, a range of ML privacy attacks with different objectives have been studied [38]:
membership inference attacks determine if a particular data sample was part of the model’s training
set [6, 11, 21, 44, 49, 51, 52]; data reconstruction aims to reconstruct exactly the training data of a
model (typically for a discriminative model) [16]; and extraction attacks aim to extract training data
from generative models like LLMs [2, 5, 19, 26, 31].

Most membership inference attacks have studied classifiers [6, 11, 21, 44, 52], but recently mem-
bership inference attacks on LLMs have been proposed [5, 14, 32, 35]. Mireshghallah et al. [35]
introduce a likelihood ratio-based attack on LLMs, designed for masked language models, such as
BERT. Mattern et al. [32] compare the likelihood of a sample against the average likelihood of a set
of neighboring samples, and eliminate the assumption of attacker knowledge of the training distri-
bution used in other membership inference attacks. Debenedetti et al. [14] study how systems built
on LLMs may amplify membership inference. Carlini et al. [5] use a perplexity-based membership
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inference attack to extract training data from GPT-2. Their attack prompts the LLM to generate se-
quences of text, and then uses membership inference to identify which were copied from the training
set.

After Carlini et al. [5] discovered GPT-2 memorized thousands of samples, the phenomenon of
memorization in LLMs has been studied numerous times [2, 3, 47, 53], finding that memorization
scales with model size [7] and data repetition [23], may eventually be forgotten [20], and can exist
even on models trained for specific restricted use-cases like translation [26]. Lukas et al. [31] de-
velop techniques to extract PII information on models finetuned on GPT-2 and estimate the amount
of PII leakage. The user inference threat model we introduce is different: compared to member-
ship inference, user inference does not require access to exact training samples; and compared to
extraction, user inference does not require leakage of exact training samples. Thus, user inference
demonstrates a novel attack vector in the space of LLM privacy attacks.

There are several papers that study the risk of user inference attacks, but they either have a different
threat model, or are not applicable to LLMs. Song & Shmatikov [45] propose methods for inferring
whether a user’s data was part of the training set of a language model, under the assumption that the
attacker has access to the user’s training set. For their attack, they train multiple shadow models on
subsets of multiple users’ training data and a meta-classifier to distinguish users who participating
in training from those who did not. This meta-classifier based methodology is not feasible for
LLMs due to its high computational complexity. Shejwalkar et al. [43] also assume that the attacker
knows the user’s training set and perform user-level inference for NLP classification models by
aggregating the results of membership inference for each sample of the target user. In the context
of classification and regression, Hartmann et al. [18] define distributional membership inference,
with the goal of identifying if a user participated in the training set of a model without knowledge
of the exact training samples. Hartmann et al. [18] use existing shadow model-based attacks for
distribution (or property) inference [15], as their main goal is to analyze sources of leakage and
evaluate defenses. User inference attacks have been also studied in other applications domains, such
as embedding learning for vision [29] and speech recognition for IoT devices [34]. In federated
learning, Wang et al. [48] and Song et al. [46] analyze the risk of user inference by a malicious
server.

B Theoretical Analysis of the Attack Statistic

Analysis of the attack statistic. We analyze this attack statistic in a simplified setting to gain some
intuition on when we can infer the participation of user u. In the large sample limit m → ∞, the
mean statistic T̂ approximates the population average

T̄ (Du) := Ex∼Du

[
log

(
pθ(x)

pref(x)

)]
. (4)

We will analyze this test statistic for the choice pref = D−u ∝
∑
u′ 6=u αu′Du′ , which is the fine-

tuning mixture distribution excluding the data of user u. This is motivated by the results of Watson
et al. [49] and Sablayrolles et al. [41], who show that using a reference model trained on the whole
dataset excluding a single sample approximates the optimal membership inference classifier.

Let KL(·‖·) and χ2(·‖·) denote the Kullback–Leibler and chi-squared divergences respectively. We
establish the following bound, assuming pθ and pref perfectly capture their target distributions.

Proposition 1. Assume pθ = Dtask and pref = D−u for some user u ∈ [n]. Then, we have

log (αu) + KL(Du ‖ D−u) < T̄ (Du) ≤ αu χ2(Du‖D−u) .

The upper and lower bounds, proved below, provide two intuitive insights. Two types of users are
susceptible to user inference:
(a) users who contribute more data to to fine-tuning (such that αu is large), or
(b) users who contribute unique data (such that KL(Du‖D−u) and χ2(Du‖D−u) are large).
Conversely, if neither condition holds, then a user’s participation in fine-tuning cannot be reliably
detected. Our experiments later corroborate these observations; we use them to design mitigation
strategies.
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We now prove Proposition 1.

Recall of definitions. The KL and χ2 divergences are defined respectively as

KL(P‖Q) =
∑
x

P (x) log

(
P (x)

Q(x)

)
and χ2(P‖Q) =

∑
x

P (x)2

Q(x)
− 1 .

Recall that we also defined

pref(x) = D−u(x) =

∑
u′ 6=u αu′Du′∑
u′ 6=u αu′

=

∑
u′ 6=u αu′Du′
1− αu

, and

pθ(x) =

n∑
u′=1

αu′Du′(x) = αuDu(x) + (1− αu)D−u(x) .

Proof of the upper bound. Using the inequality log(1 + t) ≤ t we get,

T̄ (Du) = Ex∼Du

[
log

(
pθ(x)

pref(x)

)]
= Ex∼Du

[
log

(
αuDu(x) + (1− αu)D−u(x)

D−u(x)

)]
= Ex∼Du

[
log
(

1 + αu

(
Du(x)
D−u(x)

− 1
))]

≤ αu Ex∼Du

[ Du(x)

D−u(x)
− 1

]
= αu χ

2 (Du‖D−u) .

Proof of the lower bound. Using log(1 + t) > log(t), we get

T̄ (Du) = Ex∼Du

[
log

(
pθ(x)

pref(x)

)]
= Ex∼Du

[
log

(
αuDu(x) + (1− αu)D−u(x)

D−u(x)

)]
= log(1− αu) + Ex∼Du

[
log

(
αuDu(x)

(1− αu)D−u(x)
+ 1

)]
> log(1− αu) + Ex∼Du

[
log

(
αuDu(x)

(1− αu)D−u(x)

)]
= log(αu) + Ex∼Du

[
log

( Du(x)

D−u(x)

)]
= log(αu) + KL(Du‖D−u) .

C Experimental Setup

Dataset User Field #Users #Examples Percentiles of Examples/User

P0 P25 P50 P75 P100

ArXiv Abstracts Submitter 16511 625K 20 24 30 41 3204

CC News Domain Name 2839 660K 30 50 87 192 24480

Enron Emails Email Address 150 491K 150 968 1632 3355 28229

Table 1: Evaluation dataset summary statistics: The three evaluation datasets vary in their notion of “user”
(i.e. an ArXiv abstract belongs to the user who submitted it to ArXiv whereas a CC News article belongs to the
web domain where the article was published). Additionally, these datasets span multiple orders of magnitude
in terms of number of users and number of examples contributed per user.

Datasets. We evaluate user inference attacks on three user-stratified datasets: ArXiv Abstracts [12],
CC News [9, 17], and Enron Emails [25]. Before fine-tuning models on these datasets we perform
the following preprocessing steps to make them suitable for evaluating user inference.
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1. We filter out users with fewer than a minimum number of samples (20, 30, and 150 samples
for ArXiv, CC News, and Enron respectively). These thresholds were selected prior to any
experiments to balance the following considerations: (1) each user must have enough data
to provide the attacker with enough samples to make user inference feasible and (2) the
filtering should not remove so many users that the fine-tuning dataset becomes too small.
The summary statistics of each dataset after filtering are shown in Table 1.

2. We reserve 10% of the data for validation and test sets
3. We split the remaining 90% of samples into a held-in set and held-out set, each containing

half of the users. The held-in set is used for fine-tuning models and the held-out set is used
for attack evaluation.

4. For each user in the held-in and held-out sets, we reserve 10% of the samples as the at-
tacker’s knowledge about each user. These samples are never used for fine-tuning.

Target Models. We evaluate user inference attacks on the 125M and 1.3B parameter models from
the GPT-Neo [4] model suite. For each experiment, we fine-tune all parameters of these models for
10 epochs. We use the the Adam optimizer [24] with a learning rate of 5e−5, a linearly decaying
learning rate schedule with a warmup period of 200 steps, and a batch size of 8. After training,
we select the checkpoint achieving the minimum loss on validation data from the users held in to
training, and use this checkpoint to evaluate user inference attacks.

We train models on servers with one NVIDIA A100 GPU and 256 GB of memory. Each fine-tuning
run took approximately 16 hours to complete for GPT-Neo 125M and 100 hours for GPT-Neo 1.3B.

Caveat to the experiments. Due to the size of The Pile, we found it challenging to find user-
stratified datasets that were not part of model pre-training; this is a problem with LLMs in gen-
eral [42]. However, we believe that our setup still faithfully evaluates the fine-tuning setting for two
main reasons. First, the overlapping fine-tuning data constitutes only a small fraction of all the data
in The Pile. Second, our attacks are likely only weakened (and thus, underestimate the true risk)
by this setup. This is because inclusion of the held-out users in pre-training should only reduce
the model’s loss on these samples, making the loss difference smaller and thus our attack harder to
employ.

Attack Evaluation. We evaluate attacks by computing the attack statistic from Section 2 for each
held-in user that contributed data to the fine-tuning dataset, as well as the remaining held-out set of
users. With these user-level statistics, we compute a Receiver Operating Characteristic (ROC) curve
and report the area under this curve (AUROC) as our metric of attack performance. This metric has
been used recently to evaluate the performance of membership inference attacks Carlini et al. [6],
and it provides a full spectrum of the attack effectiveness (True Positive Rates at fixed False Positive
Rates). By reporting the AUROC, we do not need to select a threshold τ for our attack statistic, but
rather we report the aggregate performance of the attack across all possible thresholds.

Canary User Construction. We evaluate worst-case risk of user inference by injecting synthetic
canary users into the fine-tuning data from CC News and ArXiv Abstracts. These canaries were
constructed by taking real users and replicating a shared substring in all of that user’s examples.
This construction is meant to create canary users that are both realistic (i.e. not substantially outlying
compared to the true user population) but also easy to perform user inference on. The algorithm used
to construct canaries is shown in Algorithm 1.

Mitigation Definitions. In Section 3.1 we explore heuristics for mitigating privacy attacks.

Batch gradient clipping restricts the norm of a single batch gradient to be at most C.

ĝt =
min(C, ‖∇θt l(x)‖)
‖∇θt l(x)‖ ∇θt l(x)

Per-example gradient clipping restricts the norm of a single example’s gradient to be at most C
before aggregating the gradients into a batch gradient.

ĝt =

n∑
i=1

min(C, ‖∇θt l(x(i))‖)
‖∇θt l(x(i))‖ ∇θt l(x(i))
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Algorithm 1 Synthetic canary user construction

Input: Substring lengths L = [l1, . . . ln], canaries per substring length N , set of real users UR
Output: Set of canary users UC
UC ← ∅
for l in L do

for i up to N do
Uniformly sample user u from UR
Uniformly sample example x from u’s data
Uniformly sample l-token substring s from x
uc ← ∅ . Initialize canary user with no data
for x in u do

xc ← InsertSubstringAtRandomLocation(x, s)
Add example xc to user uc

Add user uc to UC
Remove user u from UR
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Figure 7: Canary experiments. Left two: Attack performance for canaries with different shared substring
lengths. Right two: Attack performance on canary users and real users with different amounts of fine-tuning
data per user. On all plots, we shade the AUROC standard deviation over 100 bootstrap samples of held-in and
held-out users.

The batch or per-example clipped gradient ĝt, is then passed to the optimizer as if it were the true
gradient.

For all experiments involving gradient clipping, we selected the clipping norm, C, by recording
the gradient norms during a standard training run and setting C to the minimum gradient norm. In
practice this resulted in clipping nearly all batch/per-example gradients during training.

D Additional Experimental Results

D.1 User Inference in the Worst-Case

The disproportionately large downside to privacy leakage necessitates looking beyond the average-
case privacy risk to worst-case settings. To this end, we analyze attack performance on datasets
containing synthetically generated users, known as canaries. There is usually a trade-off between
making the canary users realistic and worsening their privacy risk. We intentionally err on the side
of making them realistic to illustrate the potential risks of user inference.

To construct a canary user, we first sample a real user from the dataset and insert a particular sub-
string into each of that user’s examples. The substring shared between all of the user’s examples
is a contiguous substring randomly sampled from one of their documents (for more details, see
Appendix C). We construct 180 canary users with shared substrings ranging from 1-100 tokens in
length and inject these users into the ArXiv Abstracts and CC News datasets. We do not experiment
with synthetic canaries in Enron Emails, as the attack AUROC already exceeds 92% for real users.

As expected, Figure 7 (left) shows that the attack effectiveness is significantly higher on canary users
than real users, and increases monotonically with the length of the shared substring. However, we
find that canaries with a short substring (5 tokens or smaller) is enough to significantly increase the
attack AUROC from 57% to 72% for ArXiv and from 63% to 69% for CC News.
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This increase of attack performance raises a question if canary gradients can be filtered out easily
(e.g., using the `2 norm). However, Figure 6 (center-left) shows that the gradient norm distribution of
the canary gradients and those of real users are nearly indistinguishable. This shows that our canaries
are close to real users from the model’s perspective, and thus hard to filter out. This experiment also
demonstrates the increased privacy risk for users who use, for instance, a short and unique signature
in emails or characteristic phrases in documents.

D.2 Ablations

We run additional ablations on the attack strategy and the reference model.

The user inference attacks implemented in the main paper use the pre-trained LLM as a reference
model and compute the attack statistic as a mean of log-likelihood ratios described in Section 2.
In this section, we study different choices of reference model and different methods of aggregating
example-level log-likelihood ratios. For each of the attack evaluation datasets, we test different
choices of reference model and aggregation function for performing user inference on a fine-tuned
GPT-Neo 125M model.

In Table 2 we test three methods of aggregating example-level statistics and find that averaging
taking the average log-likelihood ratio outperforms using the minimum or maximum example. Ad-
ditionally, in Table 3 we find that using the pre-trained GPT-Neo model as the reference model
outperforms using an independently trained model of equivalent size. However, in the case that an
attacker does not know or have access to the pre-trained model, using an independently trained LLM
as a reference still yields strong attack performance.

Attack Statistic
Aggregation

ArXiv Abstracts CC News Enron Emails

Mean 57.2± 0.4 65.7± 1.1 92.7± 2.0

Max 56.7± 0.4 62.1± 1.1 79.7± 3.3

Min 55.3± 0.4 63.3± 1.0 86.8± 2.9

Table 2: Attack statistic design: We compare the default mean aggregation of per-document statistics
log(pθ(x

(i))/pref(x
(i))) in the attack statistic (§2) with the min/max over documents i = 1, . . . ,m. We

show the mean and std AUROC over 100 bootstrap samples of the held-in and held-out users.

Reference Model ArXiv Abstracts CC News Enron Emails
GPT-Neo 125M∗ 57.2± 0.4 65.8± 1.1 93.1± 1.9

GPT-2 124M 53.1± 0.5 65.7± 1.2 87.2± 2.7

OPT 125M 53.7± 0.5 62.0± 1.2 87.6± 3.2

Table 3: Effect of the reference model: We show the user inference attack AUROC (%) for different choices
of the reference model pref , including the pretrained model pθ0 (GPT-Neo 125M, denoted by ∗). We show the
mean and std AUROC over 100 bootstrap samples of the held-in and held-out users.
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