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Abstract—We introduce a tool for sampling bimanual grasps
with humanoid hands, as well as the study of quality metrics
for bimanual grasps. The grasp sampler has three stages: (i)
generating single hand grasps for left and right hand grasps, (ii)
selecting pairs of right and left hand grasps to build bimanual
grasps and, (iii) computing the bimanual grasp quality metrics.
Our dataset includes 8363 humanoid bimanual grasps, using 48
object? from Shapenet. The dataset and the software is available
online

I. INTRODUCTION

Work has already been done to create tools to generate data
sets of grasps on objects, such as: bimanual grip dataset [1].
In addition, some heuristics have been proposed to sample
bimanual grasps [2], and single-hand grasps [3]. However, but
none of the tools/methods developed have bimanual grasps
performed by humanoid hands for different types of hands.

In this work we introduce a tool for generating a dataset of
bimanual grasps for humanoid hands, which has the potential
of being applied to any pair of humanoid hands. Our method
relies on the generation of grasps for each hand in a separate
manner, then we develop a heuristic that joins pairs of single-
hand grasps to build the bimanual ones. Finally, we compute a
set of bimanual grasp quality metrics, which are essential for
learning models that aim to evaluate grasps on new objects.

The evaluation of bimanual grasps is done using four met-
rics: (i) Shape Complementarity metric [3], which evaluates
the similarity between the shape of the hand and the surface
of the object. It is calculated for each hand individually and
then summed to get the bimanual grasp evaluation. (ii) Force
Closure metric [4], [5], which checks the ability of the grasp
to resist external forces applied to the object. It is based on the
normals of the contact points. (iii) Dexterity metric [1], which
represents the ability of the grasp to manipulate the object.
It is calculated using the singular values of the grasp matrix.
(iv) Torque Optimization metric [1], which evaluates the force
required to hold the object. It is based on the direction of
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the force applied by the hand. Our dataset includes over 8K
humanoid bimanual grasps, using 48 objects from Shapenet[6].

II. BACKGROUND AND RELATED WORK
A. Matrix representation of a two-hand grasp

A bimanual grasp is characterised by all their contact points
[1], represented as follows:

P= {(pr,hpr,...7pr,m7pl,1apl,‘.vpl,n)‘pr}ivpl,i S R3}7 (1)

where p,./; ; represents the ith contact point of the left (/)/right
(r) hand, and m/n, represents the number of right/left hand
contact points. The Grasp matrix [7] of a two-handed grip can
then be represented by

G = [Gr,hGr,...7Gr,nuGl,lle,...aGl,n]v (2)

where, .
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and |p;/y;]x is the antisymmetric matrix of p; /. ;.

B. DA? Dataset: Dexterity-Aware Dual-Arm Grasping

The DAZ Dataset [1] that inspired this work, is created using
a heuristic for sampling bimanual antipodal grasps[8], [9], [10]
and a grasp evaluation model with four metrics. It includes 9
million bimanual grips from 6000 objects, from the work [6].
Although the antipodal grasp selection is fast, it reduces by
a large margin the available grips. To ensure a large number
of grips, the space around the object is divided into blocks,
generating grip poses in each block, followed by collision
tests. Individual grips are randomly paired and evaluated based
on: (i) force closure, (ii) the minimum singular value of matrix
G, and (iii) the orientation of the major axis of the force
ellipsoid relative to gravity. The Force Closure metric reflects
the hand’s ability to resist to external forces in any direction
[4], [5]. We follow the approximation from [11]:
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where f = f; + fn [flﬁﬁfl%v 3:17 1?:2] e R, is
the set of forces exerted by the robotic hands, where f;



and f, are the tangent and normal components, respectively.
c=[cf), ¢l g ¢, ch5]" € R s the collective vector of all
the friction cones. G = [G 1, G},2, Gy 1, Gy 2], represents the
matrix that characterises the grip (2). w represents the angle
between the axis of the friction cone and the applied force.
This value can be used as a metric of grip stability, with low
values indicating greater grip stability.

The second metric used is the minimum singular value (
Omin) Of the matrix G, which is directly related to the grasp’s
ability to withstand external disturbances [12]. The higher the
minimum singular value, the better the grip’s performance.

The last metric considers the force that the end-effector
needs to exert on the object. This is modeled by the Force
Ellipsoide [13] that is computed from G. The major axis of
the matrix indicates the direction in which the grasp resists
to disturbances. The metric is given by the angle between the
major axis of the ellipsoid and the gravity vector, 0.

The three metrics are normalised to the interval [0, 1] and
combined to obtain a final assessment as follows:

Q’}OT =1-wk, Qgex = U,kn/ max o, foor = coseg , (®
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where k represents the kth grasp and a + 8+ v = 1.

Since we aim to generate bimanual grasps with multifin-
gered hands, the antipodal sampling method does not work.
However, we use the evaluation metrics to compute the grasp
quality. In the following we describe previous works that
develop heuristics for sampling multifingered grasps [3].

C. Geometric Approach for Grasping Unknown Objects with
Multifingered Hands

Conventional grasp sampling algorithms require CAD mod-
els of both the objects and the robotic hand, such as Grasplt!
[14], which relies on eigengrasps for pregrasp selection. More
recent methods employ other heuristics that aim to gener-
ate more diverse grasps, such as differentiable force closure
[15], DexGraspNet [16], MutiGripperGrasp Toolkit [17] and
Energy-based heuristic [18]. To tackle the computational com-
plexity, these methods either: (i) sample randomly points to
perform collision tests, (ii) using convex approximation of
objects, and (iii) using Grasplt as initialization. Our aim is
to: (i) avoid the bias from Grasplt! initialization, (ii) have
diverse grasps as well and (iii) compute fast collisions by using
an approximation of the shape of the hand. The work of [3]
follows these premises while simplifying the hand shape with
a C-shaped cylinder (as illustrated in Fig. 1).

The grasp sampling heuristic starts by randomly selecting a
point on the object’s point cloud. A collision test is performed
with various orientations and finger positions. The test checks
for object points inside the C-Shape. The hand configuration
with the most closed fingers is chosen, and the hand moves
towards the object until collision. If the C-Shape covers over
1000 points, the grasp proceeds to the optimization phase,
which aims to enhance the shape complementarity metric,
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Fig. 1. (a) Wireframe representation of the C-Shape. (b) Overlay of the
multifingered hand and its corrsponding C-Shape. (c) visual representation
of the Shape Complementarity metric. The contact points of the hand and
their normals are shown in blue and the contact points of the object and their
normals are shown in red.

approximating the hand to a set of contact points. Each point is
composed of its coordinate and associated normal, represented
in blue in Figure 1(c). In this work we use the left and right
RHS8DR robotic hands?.

The shape complementarity computes the distance between
each contact point and the nearest point on the object, as well
as the alignment between the respective normals:

ep(Ci) =1 = |[epi = me (@)l s en(@i) = (=Cnisne(@)) (1)

where 7 (¢;) is the Point Cloud point closest to the contact
point ¢; and is defined as

o () = argmin||,; — pll, st [[Eps — 0l <7, (8)

peC
where 7 is the maximum radius allowed to find the nearest
point, nc(¢;) is the normal associated with the nearest point
and (-, -) is the scalar product. Finally, the Shape Complemen-
tarity metric is defined as

1
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where s represents the hand pose and joint configuration, M.,
is the number of contact points that have a closest point in
the Point Cloud and w is a weight of the contribution of the
normals to the final calculation of the metric.

The Particle Swarm Optimization algorithm [19] moves a
set of possible solutions, called particles, around the search
space of an optimization problem. Each particle’s position rep-
resents the palm’s pose and finger joint values. The algorithm
iteratively adjusts the particles based on their best positions.
It operates in two phases: first, adjusting the palm’s position
with fixed joint values, and second, optimizing the joint values
while keeping the palm position fixed. This method is used to
find single-hand grasps for left and right hands.

III. BIMANUAL GRASP DATASET GENERATION

The method for creating the dataset consists of three stages:
(1) Selection of individual grasps for the left hand and the
right hand, (ii) finding pairs of left-right grasps, and (iii)

Zhttps://www.seedrobotics.com/rh8d-adult-robot-hand
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(a) Example of a two hand poses for the same same random (b) Each configuration of the C-shape is associated with a (c) On the left-hand side, the initial C-shape pose. In the

point that collide with the C-shape.

value for the angles of the finger joints. The values are middle, when the object is reached. All points that are inside

chosen to use the full potential of the hand (using the the C-shape, i.e., the points that are between the two faces
maximum opening angle - O rad), but also representing the of the cylinder and have a radius smaller than the outer

ability to perform grasps on small objects.

radius of the same, are saved.

Fig. 3. On the left, collision examples. On the middle, various C-shape configurations. On the right-hand side, object approach example

computation of the evaluation metrics for the bimanual grasps.
We explain each stage in the following subsections.

A. One hand grasp sampling and selection

This heuristic includes searching for hand and finger poses
that do not collide with the object, while simultaneously
maximizing the number of points of the object involved and
the similarity between the shape of the robotic hand and the
surface of the object. The sequence of steps is as follows:

1) Random Point Selection: The selection of a random
point on the object for each hand starts by dividing the object
in two parts, one for left hand and the other for the right
hand. Since the position of the object is aligned with the center
of the robot’s base, the object’s reference frame was used to
distinguish the points on the right side from the points on the
left side. Fig. 2 illustrates the idea.

Fig. 2. Division of a couch into two parts. Left-hand side is used to sample
randomly points for the left hand and right-hand side for the right hand.

2) Orientation Definition: The orientation of the grasp is
then defined as the symmetric of the normal to the object at
the selected point. Next, a collision test based on the C-shape
is established between the hand and the object. If a collision
is detected, a 45° rotation is applied to the C-shape around the
normal to the object at the randomly chosen point, and a new
collision test is performed. Up to three rotations are performed
in the same direction. The images in figure 3a represent two
examples of possible orientations taken by the C-Shape for
the same random point, marked in red. Note that the collision
with the object is detected in all orientations of the C-shape.

3) C-Shape parameter adjustment: If collisions are de-
tected for all four orientations of the C-shape, its configuration
is altered to represent a more open hand position. We follow
[3], considering four different parametrizations of the C-shape,
as illustrated in Fig. 3b.

4) Hand Movement: For each randomly chosen point, the
C-shape with the smallest opening that does not cause colli-
sions with the object is chosen and stored. Then, the robotic

hand is moved in the opposite direction to the normal of the
chosen point, approaching the object until it collides with the
object. This procedure is illustrated in Fig. 3c.

5) Fingers pose optimization: The optimization process
samples full hand poses with the Particle Swarm Optimization,
which spread hand poses (i.e. particles) close to the current
hand pose. If one of the particles improves the Shape Comple-
mentarity metric (9), the centroid of the particles is updated.
The procedure is executed until collision occurs.

B. Constructing bimanual grasps

Each right hand grasp is associated with all the left hand
grasps. The distance between the hands of each pair of hands is
checked to see if there are collisions between them and if they
are within the robot’s range. The limits of the distance between
the hands are set according to the size of the robotic hands
and the robot’s reach. More elaborated heuristics that consider
other factors such as the orientation of the robotic hands
were evaluated. However, these heuristics reduced highly the
number of bimanual grasps. For this reason, only the distance
between the hands factor was used.

C. Evaluation metrics

The contact points of the grasps are calculated during the
optimization phase of the single-hand grasps, and are defined
as the points on the object that lie inside the collision geometry
of each link of the robotic hand at the moment the fingers are
closing and reach the object. The contact points of both hands
are joined into a single vector P, as expressed in (1), and its
corresponding grasp Matrix G in (2). The four metrics are
described as follows:

1) Shape Complementarity Bimanual: The Shape Comple-
mentarity metric is calculated for each of the hands individu-
ally in (9), and bimanual version is:

Ehimanual = Eshape(SR) + Eshape(sL)> (10)

where Epape(sgr/r) is obtained from (9).

2) Force Closure: We follow the Force Closure approxima-
tion by [11] and applied in the work [1]. (4a) and (4b) replace
the use of forces with the normals of the contact points. In
our case, since there are lots of contact points, we normalize
the Force Closure value of (4b) is then normalised so that the
values are in the range [0, 1]:

Gl
max([[Gell)
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(a) Histograms associated with the Shape (b) Force Closure metric historgram for bi- (c) Dexterity metric histogram for bimanual (d) Torque Optimisation metric histogram for

Complementarity bimanual metric. manual grasps.

grasps.

bimanual grasps

Fig. 4. From left to right, histograms of Shape Complementarity, Force Closure, Dexterity and Torque Optimization.

3) Dexterity: This metric reflects the grasp’s ability to exert
force on the object in the weakest direction. This characteristic
is obtained by decomposing the Grasp matrix, G, into min-
imum singular values by factorising it: G = UXVT, where
U € R%6 and V € R3V*3N are real orthogonal matrices
and X is a diagonal matrix of size 6 x 3N with the singular
values of the matrix {01,032, ...,0.,}. The Dexterity metric,
d, is given by dividing the smallest singular value of the G
matrix by the largest eigenvalue obtained:

g = Tmin_ (12)
max(c)’
where ¥ . is the minimum eigenvalue relative to the handle
k, and o is the set of singular values of all objects.

4) Torque Optimization: This metric aims to assess how
much force each grasp needs to apply, considering the gravity
orientation. This indication is given by the angle between
the gravity vector direction and the direction in which the
bimanual grasp can exert the most force. This direction is
obtained from the eigenvector of the GGT matrix, which
corresponds to the smallest eigenvalue. Since gravity takes
the opposite direction of the z-axis, the cosine of the angle is
given by dividing the y component by the z component of the
selected eigenvector. The value is then transformed to ensure
that it is in the range [0, 1]:

v,
|[ol]’

where v, € v, are the components of y and z, respectively, of
the eigenvector corresponding to the smallest eigenvalue.

t=0,5+0,5x (13)

D. Recorded data

The recorded data includes: (i) Grasp information from
Grasp matrix G, as well as the joint values for all the fingers
of both hands, (ii) The four evaluation metrics; bimanual
shape complementarity Fpimanuar from (10), force closure wy
from (11), dexterity from (12), and torque optimization ¢
from (13), (iii) the valid contact points, P from (1) and their
corresponding normals, and (iv) the object points enclosed by
the C-shape after the swarm particle optimization. A dataset
of bimanual grasps with 8,363 bimanual grasps and their
evaluation metrics.

IV. RESULTS

1) Shape Complementarity Bimanual: Figure 3a shows the
histogram of the Bimanual Shape Complementarity metric
(10), where the bins are in the [0, 0.2] interval, approximately,

and a higher frequency in the [0.04,0.1] interval. The shape
of the histogram is similar to the single-hand grasps of [3].

2) Force Closure: Fig. 4b shows the distribution of results
of the Force Closure metric, where it is observed that our
results are in a much wider range than the range of values
obtained in [1], which is restricted to the interval [0, 1]. We
note that the increase in the Force Closure metric values is
associated with the larger number of contact points and the
shape of the robotic hand, since the Force Closure metric
shows reduced values when the contact point normals have
symmetrical orientations that cancel each other out.

3) Dexterity: The histogram shape and range of the biman-
ual dexterity are different from the ones obtained in [1]. In [1],
the majority of values are higher than 0.8, but in our case vary
mostly between 0.325 and 0.530, as can be seen in Figure 4c.
The relationship between the dexterity metric values and the
images of the bimanual grasps was also analyzed. However,
it was not possible to establish a relationship between the
dexterity values and the images of the bimanual grasps, in
terms of the ability of the grasps to manipulate the object.

4) Torque Optimization: The Torque Optimisation metric
takes values between 0 and 1, with a distribution illustrated
in the Figure 4d. The histogram shape and range of values
are similar to those of the [1], so our dataset has a good
distribution for a learning model.

V. CONCLUSIONS

We present a new tool for generating bimanual grasps
with multifingered hands. Our tool has three main blocks:
(1) a heuristic for sampling individual grasps, (ii) creation of
bimanual grasps, and (iii) bimanual grasp metrics computation.

The sampling process selects a set of individual grasp poses,
checking the collisions with a simplyfied version of the hands.
A set of bimanual grasps is created by combining the grasps
sampled for the right hand with the grasps from the left hand.
Finally, the bimanual grasps are evaluated according to four
different evaluation metrics. On the one hand, of the metrics
studied, it was concluded that Force Closure, Bimanual Shape
Complementarity and Torque Optimisation are able to provide
consistent values of the grasp quality, which can be used to
train learning models that predict the quality of bimanual
grasps. On the other hand, the Dexterity metric should not
be considered yet, because the images of the grasps show that
there is no explicit relationship between the quality of the grips
and the value of the Dexterity metric.
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SUPPLEMENTARY MATERIAL

We present the visualization of the bimanual grasps that
provide a qualitative support of the metrics’ values.

A. Evaluation metrics

1) Shape Complementarity Bimanual: The Bimanual Shape
Complementarity metric, obtained from the sum of the results
obtained for both hands, shows a distribution of values in the
[0, 0.2] interval, approximately, and a higher frequency in the
[0.04,0.1] interval, as shown in the histogram of the image .
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Fig. 5. Histograms associated with the Shape Complementarity bimanual
metric

Looking at the images of some bimanual grasps with
different Shape Complementarity values, you can see that the
lower values correspond to low quality grasps, while the higher
values correspond to better bimanual grasps. Figure 6 shows a
set of two-handed grasps with a low Shape Complementarity
value. Finally, the set of images in figure 7 shows a group of

() (b)

Fig. 6. Bimanual grasps with low Shape Complementarity, namely (a) 0.008
and (b) 0.013.

bimanual grasps with high Shape Complementarity.

2) Force Closure: The results of the Force Closure metric
include values between 0.6 and 4000 approximately, with a
decreasing trend as the Force Closure value increases. Fig. 8
shows the distribution of results of the Force Closure metric.



Fig. 7. Bimanual grasps with high Shape Complementarity, namely (a) 0.173
and (b) 0.197.

Histogram of Force Closure normalized
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Fig. 8. Histogram associated with the Force Closure metric for two-handed
grips.

It can be seen that the results obtained are in a much
wider range than the range of values obtained in [1], which is
restricted to the interval [0, 1]. From analysing the results, it
was concluded that the increase in the Force Closure metric
values is associated with the complexity introduced by the
significant increase in the number of contact points and the
shape of the robotic hand, since the Force Closure metric
shows reduced values when the contact point normals have
symmetrical orientations that cancel each other out.

Figure 9 shows a bimanual grasp with a Force Closure value
of 0.58. From the set of images shown, you can see how the
number of normals in one direction is similar to the number
of normals in the opposite direction.

. ¥
(a) (b) (c)

Fig. 9. (a) Example of a bimanual grasp with a Force Closure value of 0.58.
Detailed view of the contact points of (b) the right hand and (c) the left hand.

In contrast to the grasps in the previous figures, in figure 10
we see a set of normals with a similar orientation. Therefore,
the associated Force Closure value is high.

B a2m W '

(@) (b)

Fig. 10. (a) Representation of a bimanual grasp with a high Force Closure
value of 2999. Detailed view of the contact points of (b) the right hand and
(c) the left hand.

()

We can therefore see that calculating the Force Closure
metric makes it possible to assess the ability of handles to
resist forces from outside the object.

3) Dexterity: The results of the Dexterity metric for bi-
manual grasps show a different distribution of values to those
obtained in [1] work. While in [1] show an upward trend, with
the majority of values being higher than 0.8, in this work the
values vary mostly between 0.325 and 0.530, as can be seen
when analysing the histogram in Figure 11.

Histogram of the Dexterity metric for two-handed grasps
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Fig. 11. Dexterity metric histogram for bimanual grasps

The relationship between the dexterity metric values and the
images of the bimanual grasps was also analyzed. However,
it was not possible to establish a relationship between the
dexterity values and the images of the bimanual grasps, in
terms of the ability of the handles to manipulate the object.

As an example, Figures 12a and 12b display two bimanual
grasps with different Dexterity values, namely 0.1 and 0.370.
Despite the difference in values, the distinction between each
grip’s ability to manipulate the object in all directions is
unclear.



(a) (b)

Fig. 12. Representation of a two bimanual grasps, with Dexterity values of
(a) 0.1 and (b) 0.370.

4) Torque Optimization: The Torque Optimisation metric
takes values between O and 1, with a distribution illustrated in
the Figure 13.

Histogram of the Torque Optimisation metric for two-handed grasps

Frequéncia

800
600
435 416

364 362
400 277 334 327 324
= I . [ .

0
A
¢ ¢ P

o $ N $
§ & &8
< o 5

&
S
$ $
S ~

N o

o 3 & o

FE&ES
& ° N N

Torque Optimization

Fig. 13. Histograms associated with the Torque Optimisation metric for
bimanual grasps.

The results obtained are similar to those of the [1] study
in terms of the range of values covered and the distribution
of values. In Figure 14 you can see a grasp whose Torque
Optimisation metric value is 1 and the v vector has a direction
similar to the positive direction of the z axis (blue).

On the other hand, the bimanual grasp shown in Figure 15
has a value for the Torque Optimisation metric of 0.003, and
the v vector has a direction similar to the negative direction
of the z axis (blue).

—

(b)

Fig. 14. (a) Representation of a bimanual grasp with a Torque Optimisation
value of 1. (b) Representation of the vector showing the direction of the
longest axis of the Force Ellipsoid in yellow.

(@)

(a) (b)

Fig. 15. (a) Representation of a bimanual grasp with a Torque Optimisation
value of 0,003. (b) Representation of the vector showing the direction of the
longest axis of the Force Ellipsoid in yellow.
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