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Abstract

Universal Dependencies (UD) is a global initia-
tive to create a standard annotation for the de-
pendency syntax of human languages. Address-
ing its deviation from typological principles,
this study presents an empirical investigation
of a typologically motivated transformation of
UD proposed by William Croft. Our findings
underscore the significance of the transforma-
tions across diverse languages and highlight
their advantages and limitations.

1 Introduction

Universal Dependencies (UD) (Nivre et al., 2016;
de Marneffe et al., 2021) is widely used as a stan-
dard for morphosyntactic annotations. Ever since
its initial release in October 2014, however, the
scheme has been criticized with respect to its ad-
herence to typological principles (Choi et al., 2021;
Kanayama and Iwamoto, 2020). Croft et al. (2017)
cite Nivre (2015)’s argument that the NLP commu-
nity has traditionally had little concern for language
typology and linguistic universals. They maintain
that the UD initiative, akin to prior parsing and tag-
ging scheme proposals aimed at a universal descrip-
tion of the world’s languages, fails to refer explic-
itly to the extensive typological literature on uni-
versals, which accounts for the language-specific
annotations that it provides besides those that are
actually universal in typological terms. Therefore,
they continue to propose their own dependency
annotation scheme, claiming to represent cross-
linguistic variations more comprehensively based
on the following four design principles.

The first principle distinguishes universal con-
structions from language-specific strategies and fa-
vors classification based on the former. For exam-
ple, a copula strategy, used in English to realize
a predicate nominal construction, may be repre-
sented by a different strategy in another language,
so the separate relation in UD for copulas is ab-
sent in Croft et al. (2017)’s revision. The second

principle emphasizes the use of the same labels
for the same functions realized syntactically and
morphologically.! The third principle prioritizes
information packaging over lexical semantics and
contributes significantly to the provision of a more
economic tag set, as in the substitution of the UD
relations for different nominal modifiers with a sin-
gle label, detailed in Section 3. The fourth principle
emphasizes consideration of dependency structure
ranks, including predicates, arguments, modifiers,
and adverbs qualifying modifiers, as instantiated
by Croft et al. (2017)’s different treatments of com-
plex sentences, complex predicates, and arguments
although they are all dependent on the predicate.
Croft et al. (2017) emphasize that the advan-
tages brought about by their scheme may sacrifice
the practical purposes pursued by UD, including
achieving high parsing accuracy. This concern has
restricted the scheme’s application to instructional
purposes despite its theoretical potential to address
UD typological gaps. This paper investigates the
empirical impact of the scheme on parsing accu-
racy, aiming to enable its future use in UD revisions.
We hypothesize that it is more straightforward to
parse treebanks with typologically informed UD
annotation (referred to as TUD henceforth) than
to parse ones with standard UD annotation. We
expect significant but not necessarily fundamen-
tal improvement, as Croft et al. (2017)’s proposals
address only the classification of dependency rela-
tions without affecting the overall tree structure.

2 Related Work

Some proposals address the typological limitations
of UD through parsing architecture. Basirat and
Nivre (2021) integrate the notion of syntactic nu-
clei into the UD parsing framework to cope with
the typological differences of languages. Their

'In UD, the ’case’ label replaces earlier dependency rela-
tions for marking prepositional phrases, indicating a syntactic
strategy, similar to how it represents a morphological strategy.



experimentation demonstrates that nucleus compo-
sition consistently improves parsing accuracy. This
idea is further explored by Nivre et al. (2022), who
find that the observed parsing improvement results
from the greater capability of the enriched models
of analyzing main predicates, nominal dependents,
clausal dependents, and coordination structures.
Other proposals present alternative annotation
schemes or revisions to UD. Gerdes et al. (2018)
propose the Surface-Syntactic Universal Depen-
dencies (SUD), claimed to be a richer and easier
variant of UD. They argue that SUD treebanks en-
able cross-linguistic typological measures thanks to
their distributional and functional criteria. Gerdes
et al. (2019) recall the SUD’s general principles,
update its relation set, address annotation issues,
and present an orthogonal layer of syntactic fea-
tures. Gerdes et al. (2021) further suggest that a
new treebank should initially be developed in SUD,
even if a UD treebank is intended. The 2021 In-
ternational Conference on Parsing Technologies
(Oepen et al., 2021) was dedicated to the additional
structural layer of UD, known as Enhanced Univer-
sal Dependencies (EUD), to encode grammatical
relations that can be represented more adequately
using graphical rather than purely rooted trees.
This paper examines a typologically revised
annotation scheme for UD, called TUD based
on Croft et al. (2017)’s proposal. Unlike SUD
and EUD, which modify dependencies structurally,
TUD affects only the dependency labels while pre-
serving the dependency tree topology. Furthermore,
it involves less radical dependency relation map-
pings and retains the majority of original UD labels
regardless of the corresponding POS tags.

3 Transformation

We devise a set of transformation rules in the form
x—y to map a UD relation x to a TUD relation
y. Croft et al. (2017) distinguish the subject re-
lation from object and oblique. They label this
relation ’sbj’ regardless of its categorization as a
noun phrase or a relative clause, in line with their
third principle. This is realized in our script via
the consolidation rules nsubj—sbj and csubj—sbj.
Furthermore, they find it redundant under the same
principle to tag direct and indirect objects differ-
ently, so we consider consolidation iobj—obj* and
obj—obj* to exclude ’iobj’.

Croft et al. (2017) challenge the distinction made
in UD between complements in terms of grammat-

ical role, including obligatory and nonobligatory
control. Our consolidation rules ccomp—comp
and xcomp—comp serve to neutralize the distinc-
tion, conforming to the third principle. Moreover,
they assert that UD treats resultatives as controlled
complements, which it labels xcomp.” They sug-
gest that these complex predicate elements be la-
beled similarly to other secondary predicates and
adverbs of manner, which are tagged ’sec.” The
rule xcomp— sec is included to realize this, com-
plying with the fourth principle. Thus, the frag-
mentation rules xcomp—comp and xcomp—>sec
have the same UD relation on their left-hand sides.
xcomp—rcomp is set to apply where the POS tag
of the token with the *xcomp’ dependency relation
is VERB, which is assumed not to be the case for
resultatives, where xcomp—>sec is to apply instead.

UD treebanks optionally set the morphological
feature AdvType with different values for adverbs
of manner, location, time, quantity or degree, cause,
and modal nature. On the other hand, Croft et al.
(2017) propose in line with their fourth principle
that the diversity of adverbs in semantics, syntac-
tic distribution, and morphological form needs to
be captured and suggest that adverbs of manner
should be labeled ’sec,” and ones expressing de-
gree or hedging, aspect or modality, and location
or time should be tagged ’qlfy,” "aux,” and ’obl,
respectively. Therefore, the fragmentation rules
advmod—sec | glfy | aux* | obl* are there to convert
advmod’ to each of the above relations if AdvType
is set to the corresponding value. Where a different
or no setting exists, advmod—obl* will apply by
default, as Croft et al. (2017) assert that the UD
advmod’ relation should be excluded altogether.

Croft et al. (2017) analyze light verbs as com-
plex predicates, tagged "cxp,” unlike in UD, where
they are treated similarly to nominal compounds.
Therefore, the rule compound—cxp is included in
our script, in accordance with the fourth principle,
to transform the UD compound relation to ’cxp’
where the token’s parent is POS-tagged VERB, as-
sumed to signal a light verb construction alongside
the token’s own compound dependency relation
label. They also suggest that copulas should be
treated as light verbs, hence the consolidation rule
cop—cxp in our script, which conforms to the first
principle. Furthermore, they suggest that *num-
mod,” ’amod,” and ’det’ should all be tagged *mod,’
as they involve the same type of information in
general, conforming to the third principle. The con-



Figure 1: A summary of the transformation rules.

solidation rules nummod—mod, amod—mod, and
det—mod are there to realize this simplification.
Figure 1 summarizes the transformations.

It should be noted that the eventual aim of this
paper is to pave the way for the presentation of
a totally typologically-based version of UD. The
intended scheme will be applicable as a basis for an-
notation of text from scratch, involving all the con-
siderations made in Croft et al. (2017). Since that
would be a costly transformation, we need to ensure
beforehand that it merits the cost. Therefore, we
attempt a preliminary transformation phase, where
we apply changes to the available UD treebanks un-
der the limitations imposed by the UD guidelines.
In other words, the treebanks resulting from the
conversion procedure are intermediary means that
enable empirical investigation rather than finalized
corpora prepared for use by a corpus linguist.

4 Experiments and Results

We evaluate the impact of the typological transfor-
mations based on their contribution to parsing per-
formance. Our test benchmark consists of 20 tree-
banks from UD 2.12 belonging to diverse language
families, inspired by Nivre et al. (2022). In addi-
tion to language diversity, we consider the presence
of labels needed for the maximal application of the
transformation rules. For this purpose, we incorpo-
rate treebanks that include the annotations required
for the transformation. As stated in Section 3, for
instance, the morphological feature annotation on
adverb types, required for our transformation of
the advmod’ relation, is optional according to the
UD guidelines. Therefore, we add some of the few
languages that have included this information in
order to cover that specific transformation. Table 1
outlines the selected treebanks with statistics about
their sizes and transformed token ratios (Col. IR).

To address Croft et al. (2017)’s concerns about
TUD?’s practical as well as theoretical advantage,
we base our analysis on the Labeled Attach-
ment Score (LAS) obtained from two primary de-
pendency parsing architectures: transition-based

(Nivre, 2004) and graph-based parsing (McDonald
et al., 2005). We use the UUParesr (de Lhoneux
et al., 2017) for the former and the Biaffine parser
(Dozat and Manning, 2017) for the latter with the
settings outlined in Appendix A. We apply the
transformation rules on each treebank and indepen-
dently train three parsing models, each with distinct
random seeds, using both the original (UD) and
transformed treebanks (TUD). The average LASs
on the development sets are reported in Cols. UD
and TUD. Additionally, Col. Ora(cle) represents
the upper bound for parsing performance, achiev-
able if the dependency relations of the transformed
tokens are predicted correctly.

It might be argued that any improvement in ac-
curacy resulting from the transformation lies in the
simplifying nature of the proposed scheme, which
involves plenty of consolidation rules. We main-
tain that the rise in parsing accuracy brought about
by our typologically-motivated rules could not be
achieved through a random set of merging rules. To
demonstrate this, we conduct a randomization ex-
periment, explained in Appendix C with the results
reported in the Cols. RND. To assess the signifi-
cance of the differences between TUD and other
baselines, we utilize McNemar'’s test, as detailed in
Appendix B, and mark the significant differences
(p-value < .05) with an asterisk.

The IR values indicate the importance of the ty-
pological transformation, applicable to almost 28%
of the tokens, and that, if predicted correctly (Col.
Ora), it can improve the performance by 2.1 and 3.0
points for the transition and graph-based parsing,
respectively. However, the parsers can only har-
ness a small but statistically significant portion of
this potential improvement, with transition-based
achieving 0.21 points and graph-based achieving
0.48 points. Figure 2 visualizes the absolute LAS
improvement (or degradation) caused by the ty-
pological transformations. We can observe that,
on most treebanks, the parsing models result in a
better performance on typologically transformed
treebanks and that, except for Latin, the negative



Transition-based Graph-based

Language Treebank  Family Genus Size IR | UD RND TUD Orac | UD RND TUD  Orac
Arabic padt Afro-Asiatic Semitic 254K 20% | 77.83%x 7812 7810 79.28 | 7849 7853 7850 80.22
Armenian  armtdp Indo-European  Indo-Iranian 47K 25% | 73.13 7299 7291 7574 | 66.72 6636  66.86 71.48
Basque bdt Isolate 97K  26% | 7494 7505 7490 76.87 | 67.54x 67.63x 69.35 71.42
Chinese gsd Sino-Tibetan Sinitic 111K 23% | 70.05 70.46% 69.90 71.78 | 66.77x 67.07 67.11 69.26
Cl-Chinese  kyoto Sino-Tibetan Sinitic 406K  31% | 75.33  75.66  75.51 77.40 | 74.81 74.84 75.00 77.09
English ewt Indo-European ~ Germanic 230K 33% | 82.75  82.65« 8291 83.85 | 81.60x 81.58x 81.81 83.21
Finnish tdt Uralic Finno-Ugric 181K 29% | 78.15 78.19  78.10 79.54 | 72.04x 72.02x 72.81 74.59
Hindi hdtb Indo-European  Indo-Iranian 316K 22% | 87.58« 87.55« 87.79 89.05 | 89.06x 88.91x 89.30 90.67
Italian isdt Indo-European Romance 288K  34% | 87.24« 87.11x 87.43 88.26 | 87.15 87.07 87.28 88.39
Korean gsd Koreanic Altaic 69K 23% | 72.53  72.19x 72.88 73.88 | 67.49 67.10 6721 69.98
Latin ittb Indo-European Italic 421K 33% | 83.26% 83.01 8295 84.64 | 8553 8552 8554 87.13
Latvian Ivtb Indo-European  Baltic 253K 29% | 79.81 7991  79.83 81.48 | 78.06x 77.99x 78.30 80.59
Marathi ufal Indo-European  Indo-Iranian 3K 30% | 48.71 49.85 49.01 57.31 | 4886 4932 50.68 58.98
Persian seraji Indo-European Indo-Iranian 137K 26% | 81.26  81.66% 81.27 82.63 | 78.76  78.63  78.66 80.76
Russian taiga Indo-European  Slavic 187K  28% | 64.95x 64.75x 6550 67.18 | 62.64x 62.18x 63.35 65.57
Swedish talbanken Indo-European Germanic 76K 34% | 76.02  75.83% 7640 7821 | 70.79  70.46% 71.05 74.24
Turkish imst Turkic Altaic 48K  28% | 54.74% 54.61% 5556 59.39 | 48.52« 4935« 5032 55.90
Urdu udtb Indo-European  Indo-Iranian 123K 24% | 76.19x  7591x 76.87 78.34 | 75.76x 75.92x 76.69 78.55
Vietnamese  vtb Austroasiatic ~ Vietic 46K 31% | 48.62x 4877 49.04 5275 | 47.34  47.10 47.12 51.62
Wolof wtb Niger-Congo Atlantic-Congo 34K 28% | 72.02  72.12 7242 7393 | 67.16x 67.08«x 67.69 70.38

Average 166K  28% ‘ 73.26% 73.32x 73.47 7558 ‘ 70.75« 70.73% 71.23 74.00

Table 1: Average parsing accuracy (LAS) before (UD) and after (TUD) typological transformation.
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Figure 2: Absolute LAS improvement (or degradation).
Significant results with p-value < 0.05 are marked.

[ B Transition-based [| [1Graph-based n

0.1~

5.107% -

o zo of ol il 6 DD :.D DD DU U

" i g = e 5t =
0 o o
—5-1072 =2 g T s o 5 o 3 T T
& O R K8 D K Q & F
}“‘6 .\7‘% ;F:\'6 St /‘o\i\ /@“" .\7‘% (9& }‘&c b;ﬁ’o )&ob :9& 260\ 7§° e ]50\.
L X g Y RV A I 2 G X/ ¢
S O Ny & S S o RO
& %g: qu Qo\\‘ 469 >§ "@, Q&Q & 8‘& b&o 0552 S ,‘}é@ S
LR F &P FaTeE ¥R <
e et e

Figure 3: The transformation rules’ contribution (or de-
traction). The results with p-value < 0.05 are marked.

results are statistically insignificant. These findings
highlight the transformation’s constructive role in
enhancing parsing accuracy without introducing
significant adverse effects.

Earlier in this section, we emphasized the typo-
logical motivation behind the applied consolidation
rules, hence their preference over random merging
rules. In other words, we raise parsing performance
while adhering to well-established typological prin-
ciples. Following the third principle, for example,
we merge all the dependency relations that package
the same grammatical information into a single tag,

thereby gaining both theoretical and practical bene-
fits. Empirical evidence, summarized in Figure 3,
demonstrates that the third principle is by far the
most contributive to the rise in parsing accuracy,
while the fourth principle, mainly corresponding to
fragmentation rules, is the most detrimental. More-
over, the first principle, represented by only one
rule, is rather neutral in this respect, and the second
principle is not reflected in the transformations, as
UD fully conforms to this principle already. For a
detailed discussion of the contribution of the indi-
vidual transformation rules, see Appendix D.

5 Conclusion

The typological transformation of Universal De-
pendencies presents an advantage in terms of pars-
ing performance. This benefit is observable across
the two primary parsing approaches, namely the
transition-based and the graph-based parsing, and
in many languages. The positive impact on parsing
performance can be attributed to the consolidation
rules, which merge the dependency relation with
similar typological properties. On the contrary, the
parsing performance is slightly hindered by frag-
mentation rules, indicating their detrimental effect
in the context of Universal Dependencies.

Our empirical results demonstrate that an annota-
tion scheme resulting from the typological transfor-
mation does not sacrifice the practical aims of UD.
Therefore, we suggest establishing such a scheme
as an alternative basis for treebanking.



Limitations

A limitation of this study is that not all of Croft
et al. (2017)’s suggested transformation rules are
considered due to a lack of annotation in the bench-
mark. Besides the labels on the right-hand sides
of the rules in Section 3, Croft et al. (2017) name
two tags for independent elements indicating in-
dexation or agreement and linkers: ’idx’ and ’Ink.’
They categorize the above relations as common
strategies, implying that they are not regarded as
universal constructions. We have decided to ignore
the above phenomena at this stage in the absence
of clear clues as to how they are marked in each
of the treebanks that contain them as independent
tokens. We make the same decision for cases where
it would be extremely difficult to identify the condi-
tions for applying a rule, as in the case of depictives
that are closely similar in structure to adverbial
clauses. While these are both marked in UD as
“advcl,” Croft et al. (2017) suggest that the former
should be labeled ’sec,” similarly to resultatives and
manner adverbs, transformed via the consolidation
rules xcomp—sec and advmod—sec, respectively.
Our script, however, leaves advcl’ tags unchanged,
as one could hardly set proper conditions for an
“advcl’-to-"sec’ transformation to apply, given the
clues available on UD treebanks. In addition to
these, our benchmark lacks any application for the
rules advmod—sec and advmod—aux* due to the
absence of optional morphological annotation in
UD.
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A Parsing Setup

Our transition-based parsing experiments utilize
the implementation from Basirat and Nivre (2021),
with the nucleus composition disabled.> For the
graph-based experiments, we rely on the Biaffine
module integrated into the SuPar parser.> In both
parsers, we refrain from employing pre-trained
embeddings, including both static and contextual-
ized models, due to their inconsistent performance
across different languages, which could potentially
impact the research outcomes. Instead, we opt for
a BiLSTM encoder in both scenarios to mitigate
external influences and maintain result consistency.
Neither do we employ any morphosyntactic fea-
tures such as part-of-speech tags or morphological
features to train the parsing models.

Both parsers are trained for 30 epochs with the
word embedding size of 100 and the character em-
bedding dimension of 100 for UUParser and 50 for
SuPar. The UUParesr parameters are set to their
default values as suggested by Nivre et al. (2022).
The arc and relation MLP projection sizes of Su-
Par are set to 500 and 300, respectively, and the
other parameters are set to their default values. We
disable the projective parsing in both parsers.

The computational resource we use to train one
transition-based model is a node of three CPUs and
5-10 GB memory in an HPC—however, the graph-
based models, each consisting of 12M trainable

Zhttps://github.com/abasirat/uuparser
3https://github.com/yzhangcs/parser

Transformation zixfter (TéJD)
1] A B
Before (UD) T c =

Table 2: The contingency table for McNemar’s test.

parameters, are trained on NVIDIA Tesla V100
GPU.

B Hypothesis Testing

We utilize McNemar’s test to evaluate the signif-
icance of the parsing difference between the two
schemes. McNemar’s test is a paired-sample t-test
for a dichotomous variable that takes two values.
In our study, the dichotomous dependent variable
of the test indicates whether a token is correctly
classified in a scheme or not. The variable takes
a value of 1 if the dependency head and label of
a token are predicted accurately and a value of O
otherwise. The categorical independent variable
of the test refers to the two dependency schemes,
UD and TUD. We collect the value of the depen-
dent variable for all tokens across the two schemes,
resulting in two lists of the size of the number of
tokens, with the values in each list determining
whether the token is classified correctly in the cor-
responding scheme or not. From these lists, we
build a contingency table, shown in Table 2, with
the following description:

* A: the number of tokens predicted correctly in
both schemes

* B: the number of tokens predicted correctly in
UD but incorrectly in TUD

* C: the number of tokens mispredicted in UD
but predicted correctly in TUD

* D: the number of mispredicted tokens in both
schemes.

With this setting, we estimate the p-value to reject
the null hypothesis that the typological transforma-
tion does not impact parsing accuracy (pp = pc).
We estimate the p-value based on the binomial dis-
tribution. To address the effect of randomness in
the parsing models, we collect the statistics from
the concatenation of the three runs with different
random seeds.
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C Random Transformation

To ensure that the parsing gain made by the ty-
pological transformation are not only due to the
consolidation and fragmentation of the rules but
also to the linguistic motivations behind them, we
design a random transformation setup where the
elements of a subset of dependency labels are ran-
domly merged or expanded. To this aim, we search
among all possible sets of consolidation and frag-
mentation rules and select one with an impact rate
close to the average impact rate of the typological
transformations (28%), explained in Section 4.

In a minimal setup, the number of possible rule
sets is proportionate to the number of partitions of
the dependency labels set. In this setup, consolida-
tion rules are formed by merging the subsets with
at least two labels, and the fragmentation rules can
be over some of the singleton subsets. Therefore,
the size of the search space with n dependency la-
bels is in the scale of % Yoo %, which is the nthe
element of the Bell series and it is approximately
5.3E + 31 for n = 37 UD base dependency labels.

To make the problem more tractable and com-
parable with the Croft et al. (2017)’s typological
transformation rules, we restrict the partitioning to
subsets with at most two elements. In this setup, the
consolidation rules in each partitioning are formed
by merging the elements of subsets that include two
elements (i.e., each subset {/;,[;} of dependency
labels introduces two rules [;—1;;, and [;—1;;) and
the singleton subsets like {/;} either form identity
rules with no impact (I;—1;) or expand into three
sub-labels (li—>l7’f k = 1,2,3). When expanding,
one of the l,~—>léC k = 1,2, 3 rules are randomly
applied with a uniform probability. The impact rate
of a consolidation rule /;—1[;; is % and the impact
rate of an expansion rule is li—>1§c is ;1](, where n;
is the frequency of the occurrence of the label I;
and NV is the total number of tokens in the corpus.
The total impact rate of a rule set is then the sum
of the impact rate of its rules.

Even with these simplifications, the search space
is fairly large, and a complete search requires sig-
nificant computing resources to find a rule set with
a desired impact rate. Therefore, we formulate it
as a simulated annealing search that searches for
a rule set with a total impact rate of 0.28, an ini-
tial temperature of 1.0, and a cooling rate of 0.99.
To address the randomness effect, we perform the
random transformation three times on each tree-
bank, train a parsing model on the transformed

treebanks, and report the average LAS in Table 1,
Column RND.

D Rule Contribution

We present some statistics about the distribution of
the transformation rules and numerical results of
each rule’s contribution to the tokens’ dependency
label prediction. For each rule, we gather all tokens
that can undergo the transformation and calculate
their LAS (Labeled Attachment Score) both before
and after applying the rule. Table 3 shows the abso-
lute improvement or degradation in LAS after ap-
plying the transformation rules (Column A), along
with the p-values from McNemar’s significance
test. It also represents the relative contribution of
the rules with respect to the rules distribution, i.e.,
A x P, where P is the relative frequency of the
tokens undergoing each rule.

In summary, the results in Table 3 (Row SUM)
show that the transformation rules contribute posi-
tively to the prediction of the dependency relations
with both the transition-based and graph-based
parsers. Further investigation of the results reveals
the varying contribution of the rules to the per-
formance gain. The relative contribution of the
rules represented in Column A x P (and Figure 3)
illustrates the enhancement achieved by each trans-
formation in classifying tokens that underwent the
respective transformation. We can see that most
rules constructively impact parsing with similar
ranks for both parsers and that untransformed to-
kens (x—x) are not influenced.

The most significant contribution arises from the
consolidation rules. A crucial factor influencing
their effectiveness is the inherent difficulty in dis-
tinguishing between source relations, often being
misclassified as one another in UD, which is no
longer an issue once they are merged in TUD. In
particular, the effectiveness of the iobj—obj* rule
is highlighted by the common misclassification sce-
nario, where indirect objects (’iobj’) are mistakenly
identified as direct objects (obj’). Therefore, the
unification of ’iobj’ and ’obj’ prevents the parser
from misclassifying them as each other. We found
an analogous explanation for other consolidation
rules that unify the clausal complements ’ccomp’
and “xcomp’ into ‘’comp,” combine the subject rela-
tions 'nsubj’ and ’csubj’ into ’sbj,” and merge the
determiner ’det’ with modifiers ’amod’ and "num-
mod’ into 'mod.” The small improvement made by
cop—cxp in the transition-based parser can also



be attributed to the misclassification of copula as
the compound, which is unified with copula in the
typological scheme.

However, the fragmentation rules such as
xcomp—rsec and advmod—qlfy exhibit a neg-
ative influence. = The detrimental impact of
advmod—qlfy stems from the frequent mutual mis-
classification of adverbial and adjectival modifiers
in UD, which persists even after typological trans-
formation, manifested as mislabeling qualifying
adverbs (’qlfy’) as modifiers ("'mod’) in TUD, al-
beit at a higher rate, which is in turn because *mod’
in TUD has a broader scope than ’amod’ in UD.
In addition to the erroneous items present in both
schemes, the rule introduces multiple frequent er-
rors in TUD for tokens accurately classified in UD.
The top four recurring errors include the misclassifi-
cation of "qlfy” as ’sbj’ (13%), *obl*’ (12%), *mod’
(4%), and ’aux*’ (4%) for tokens correctly classi-
fied in UD as ’advmod.” Similarly, the xcomp—sec
rule negatively impacts parsing accuracy by mis-
classifying open clausal complements ("’xcomp’)
and objects (Cobj’) in UD. This misclassification is
due to their ambiguities and syntactic similarities,
which persist between ’sec’ and ’obj’ in TUD, en-
compassing a large number of tokens, leading to in-
creased errors. Putting it all together, we conclude
that the fragmentation rules detract from parsing
performance and that their degradation levels are
proportional to the scales of their target relations.



Transition-based Graph-based
Rule n P=4 A AxP p-value A AxP p-value
advmod—qlfy 32 0.01% | -14.14 -0.0016 .00 | -9.09 -0.0010 .01
Xxcomp—sec 1,108 0.40% | -7.70 -0.0306 .00 | -9.90 -0.0393 .00
nsubj—sbj 20,510  7.34% | -0.20 -0.0146 .08 | -0.46 -0.0335 .00
cop—CXp 3,777 1.35% | -0.02 -0.0003 94 | -0.32 -0.0044 15
compound—cxp 3,195  1.14% 0.25 0.0029 32| -0.56 -0.0064 .01
aux—aux* 8,568 3.07% | -0.18 -0.0056 10| 011  0.0034 32
X—X 181,148 64.85% 0.05 0.0319 A7 | 0.08  0.0490 .03
advmod—obl 11,853  4.24% 0.49  0.0208 00| 059 0.0252 .00
amod—mod 12,923  4.63% 0.51 0.0235 00| 0.68 0.0314 .00
obj—obj* 14,427  5.17% 0.19  0.0098 A8 | 112 0.0580 .00
det—mod 9,810  3.51% 0.76  0.0267 .00 | 1.30 0.0458 .00
nummod—mod 4485 1.61% 042  0.0068 .04 | 222 0.0357 .00
Xxcomp—-comp 2,391  0.86% 0.72  0.0061 08 | 229 0.0196 .00
csubj—sbj 485  0.17% 2.63  0.0046 00| 2.79 0.0048 .00
ccomp—rcomp 2,965 1.06% 292 0.0310 .00 | 346 0.0367 .00
iobj—obj* 1,643  0.59% 8.39 0.0493 .00 | 21.40 0.1259 .00
SUM 279,320 100% | -4.93 0.1605 .00 ‘ 15.72  0.3509 .00

Table 3: Rules contributions. A: Absolute improvement (degradation) to tokens’ dependency label prediction
undergone each transformation rule. n: total frequency. P: relative frequency.



