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Abstract
Universal Dependencies (UD) is a global initia-001
tive to create a standard annotation for the de-002
pendency syntax of human languages. Address-003
ing its deviation from typological principles,004
this study presents an empirical investigation005
of a typologically motivated transformation of006
UD proposed by William Croft. Our findings007
underscore the significance of the transforma-008
tions across diverse languages and highlight009
their advantages and limitations.010

1 Introduction011

Universal Dependencies (UD) (Nivre et al., 2016;012

de Marneffe et al., 2021) is widely used as a stan-013

dard for morphosyntactic annotations. Ever since014

its initial release in October 2014, however, the015

scheme has been criticized with respect to its ad-016

herence to typological principles (Choi et al., 2021;017

Kanayama and Iwamoto, 2020). Croft et al. (2017)018

cite Nivre (2015)’s argument that the NLP commu-019

nity has traditionally had little concern for language020

typology and linguistic universals. They maintain021

that the UD initiative, akin to prior parsing and tag-022

ging scheme proposals aimed at a universal descrip-023

tion of the world’s languages, fails to refer explic-024

itly to the extensive typological literature on uni-025

versals, which accounts for the language-specific026

annotations that it provides besides those that are027

actually universal in typological terms. Therefore,028

they continue to propose their own dependency029

annotation scheme, claiming to represent cross-030

linguistic variations more comprehensively based031

on the following four design principles.032

The first principle distinguishes universal con-033

structions from language-specific strategies and fa-034

vors classification based on the former. For exam-035

ple, a copula strategy, used in English to realize036

a predicate nominal construction, may be repre-037

sented by a different strategy in another language,038

so the separate relation in UD for copulas is ab-039

sent in Croft et al. (2017)’s revision. The second040

principle emphasizes the use of the same labels 041

for the same functions realized syntactically and 042

morphologically.1 The third principle prioritizes 043

information packaging over lexical semantics and 044

contributes significantly to the provision of a more 045

economic tag set, as in the substitution of the UD 046

relations for different nominal modifiers with a sin- 047

gle label, detailed in Section 3. The fourth principle 048

emphasizes consideration of dependency structure 049

ranks, including predicates, arguments, modifiers, 050

and adverbs qualifying modifiers, as instantiated 051

by Croft et al. (2017)’s different treatments of com- 052

plex sentences, complex predicates, and arguments 053

although they are all dependent on the predicate. 054

Croft et al. (2017) emphasize that the advan- 055

tages brought about by their scheme may sacrifice 056

the practical purposes pursued by UD, including 057

achieving high parsing accuracy. This concern has 058

restricted the scheme’s application to instructional 059

purposes despite its theoretical potential to address 060

UD typological gaps. This paper investigates the 061

empirical impact of the scheme on parsing accu- 062

racy, aiming to enable its future use in UD revisions. 063

We hypothesize that it is more straightforward to 064

parse treebanks with typologically informed UD 065

annotation (referred to as TUD henceforth) than 066

to parse ones with standard UD annotation. We 067

expect significant but not necessarily fundamen- 068

tal improvement, as Croft et al. (2017)’s proposals 069

address only the classification of dependency rela- 070

tions without affecting the overall tree structure. 071

2 Related Work 072

Some proposals address the typological limitations 073

of UD through parsing architecture. Basirat and 074

Nivre (2021) integrate the notion of syntactic nu- 075

clei into the UD parsing framework to cope with 076

the typological differences of languages. Their 077

1In UD, the ’case’ label replaces earlier dependency rela-
tions for marking prepositional phrases, indicating a syntactic
strategy, similar to how it represents a morphological strategy.
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experimentation demonstrates that nucleus compo-078

sition consistently improves parsing accuracy. This079

idea is further explored by Nivre et al. (2022), who080

find that the observed parsing improvement results081

from the greater capability of the enriched models082

of analyzing main predicates, nominal dependents,083

clausal dependents, and coordination structures.084

Other proposals present alternative annotation085

schemes or revisions to UD. Gerdes et al. (2018)086

propose the Surface-Syntactic Universal Depen-087

dencies (SUD), claimed to be a richer and easier088

variant of UD. They argue that SUD treebanks en-089

able cross-linguistic typological measures thanks to090

their distributional and functional criteria. Gerdes091

et al. (2019) recall the SUD’s general principles,092

update its relation set, address annotation issues,093

and present an orthogonal layer of syntactic fea-094

tures. Gerdes et al. (2021) further suggest that a095

new treebank should initially be developed in SUD,096

even if a UD treebank is intended. The 2021 In-097

ternational Conference on Parsing Technologies098

(Oepen et al., 2021) was dedicated to the additional099

structural layer of UD, known as Enhanced Univer-100

sal Dependencies (EUD), to encode grammatical101

relations that can be represented more adequately102

using graphical rather than purely rooted trees.103

This paper examines a typologically revised104

annotation scheme for UD, called TUD based105

on Croft et al. (2017)’s proposal. Unlike SUD106

and EUD, which modify dependencies structurally,107

TUD affects only the dependency labels while pre-108

serving the dependency tree topology. Furthermore,109

it involves less radical dependency relation map-110

pings and retains the majority of original UD labels111

regardless of the corresponding POS tags.112

3 Transformation113

We devise a set of transformation rules in the form114

x→y to map a UD relation x to a TUD relation115

y. Croft et al. (2017) distinguish the subject re-116

lation from object and oblique. They label this117

relation ’sbj’ regardless of its categorization as a118

noun phrase or a relative clause, in line with their119

third principle. This is realized in our script via120

the consolidation rules nsubj→sbj and csubj→sbj.121

Furthermore, they find it redundant under the same122

principle to tag direct and indirect objects differ-123

ently, so we consider consolidation iobj→obj* and124

obj→obj* to exclude ’iobj’.125

Croft et al. (2017) challenge the distinction made126

in UD between complements in terms of grammat-127

ical role, including obligatory and nonobligatory 128

control. Our consolidation rules ccomp→comp 129

and xcomp→comp serve to neutralize the distinc- 130

tion, conforming to the third principle. Moreover, 131

they assert that UD treats resultatives as controlled 132

complements, which it labels ’xcomp.’ They sug- 133

gest that these complex predicate elements be la- 134

beled similarly to other secondary predicates and 135

adverbs of manner, which are tagged ’sec.’ The 136

rule xcomp→sec is included to realize this, com- 137

plying with the fourth principle. Thus, the frag- 138

mentation rules xcomp→comp and xcomp→sec 139

have the same UD relation on their left-hand sides. 140

xcomp→comp is set to apply where the POS tag 141

of the token with the ’xcomp’ dependency relation 142

is VERB, which is assumed not to be the case for 143

resultatives, where xcomp→sec is to apply instead. 144

UD treebanks optionally set the morphological 145

feature AdvType with different values for adverbs 146

of manner, location, time, quantity or degree, cause, 147

and modal nature. On the other hand, Croft et al. 148

(2017) propose in line with their fourth principle 149

that the diversity of adverbs in semantics, syntac- 150

tic distribution, and morphological form needs to 151

be captured and suggest that adverbs of manner 152

should be labeled ’sec,’ and ones expressing de- 153

gree or hedging, aspect or modality, and location 154

or time should be tagged ’qlfy,’ ’aux,’ and ’obl,’ 155

respectively. Therefore, the fragmentation rules 156

advmod→sec | qlfy | aux* | obl* are there to convert 157

’advmod’ to each of the above relations if AdvType 158

is set to the corresponding value. Where a different 159

or no setting exists, advmod→obl* will apply by 160

default, as Croft et al. (2017) assert that the UD 161

’advmod’ relation should be excluded altogether. 162

Croft et al. (2017) analyze light verbs as com- 163

plex predicates, tagged ’cxp,’ unlike in UD, where 164

they are treated similarly to nominal compounds. 165

Therefore, the rule compound→cxp is included in 166

our script, in accordance with the fourth principle, 167

to transform the UD compound relation to ’cxp’ 168

where the token’s parent is POS-tagged VERB, as- 169

sumed to signal a light verb construction alongside 170

the token’s own compound dependency relation 171

label. They also suggest that copulas should be 172

treated as light verbs, hence the consolidation rule 173

cop→cxp in our script, which conforms to the first 174

principle. Furthermore, they suggest that ’num- 175

mod,’ ’amod,’ and ’det’ should all be tagged ’mod,’ 176

as they involve the same type of information in 177

general, conforming to the third principle. The con- 178
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Figure 1: A summary of the transformation rules.

solidation rules nummod→mod, amod→mod, and179

det→mod are there to realize this simplification.180

Figure 1 summarizes the transformations.181

It should be noted that the eventual aim of this182

paper is to pave the way for the presentation of183

a totally typologically-based version of UD. The184

intended scheme will be applicable as a basis for an-185

notation of text from scratch, involving all the con-186

siderations made in Croft et al. (2017). Since that187

would be a costly transformation, we need to ensure188

beforehand that it merits the cost. Therefore, we189

attempt a preliminary transformation phase, where190

we apply changes to the available UD treebanks un-191

der the limitations imposed by the UD guidelines.192

In other words, the treebanks resulting from the193

conversion procedure are intermediary means that194

enable empirical investigation rather than finalized195

corpora prepared for use by a corpus linguist.196

4 Experiments and Results197

We evaluate the impact of the typological transfor-198

mations based on their contribution to parsing per-199

formance. Our test benchmark consists of 20 tree-200

banks from UD 2.12 belonging to diverse language201

families, inspired by Nivre et al. (2022). In addi-202

tion to language diversity, we consider the presence203

of labels needed for the maximal application of the204

transformation rules. For this purpose, we incorpo-205

rate treebanks that include the annotations required206

for the transformation. As stated in Section 3, for207

instance, the morphological feature annotation on208

adverb types, required for our transformation of209

the ’advmod’ relation, is optional according to the210

UD guidelines. Therefore, we add some of the few211

languages that have included this information in212

order to cover that specific transformation. Table 1213

outlines the selected treebanks with statistics about214

their sizes and transformed token ratios (Col. IR).215

To address Croft et al. (2017)’s concerns about216

TUD’s practical as well as theoretical advantage,217

we base our analysis on the Labeled Attach-218

ment Score (LAS) obtained from two primary de-219

pendency parsing architectures: transition-based220

(Nivre, 2004) and graph-based parsing (McDonald 221

et al., 2005). We use the UUParesr (de Lhoneux 222

et al., 2017) for the former and the Biaffine parser 223

(Dozat and Manning, 2017) for the latter with the 224

settings outlined in Appendix A. We apply the 225

transformation rules on each treebank and indepen- 226

dently train three parsing models, each with distinct 227

random seeds, using both the original (UD) and 228

transformed treebanks (TUD). The average LASs 229

on the development sets are reported in Cols. UD 230

and TUD. Additionally, Col. Ora(cle) represents 231

the upper bound for parsing performance, achiev- 232

able if the dependency relations of the transformed 233

tokens are predicted correctly. 234

It might be argued that any improvement in ac- 235

curacy resulting from the transformation lies in the 236

simplifying nature of the proposed scheme, which 237

involves plenty of consolidation rules. We main- 238

tain that the rise in parsing accuracy brought about 239

by our typologically-motivated rules could not be 240

achieved through a random set of merging rules. To 241

demonstrate this, we conduct a randomization ex- 242

periment, explained in Appendix C with the results 243

reported in the Cols. RND. To assess the signifi- 244

cance of the differences between TUD and other 245

baselines, we utilize McNemar’s test, as detailed in 246

Appendix B, and mark the significant differences 247

(p-value < .05) with an asterisk. 248

The IR values indicate the importance of the ty- 249

pological transformation, applicable to almost 28% 250

of the tokens, and that, if predicted correctly (Col. 251

Ora), it can improve the performance by 2.1 and 3.0 252

points for the transition and graph-based parsing, 253

respectively. However, the parsers can only har- 254

ness a small but statistically significant portion of 255

this potential improvement, with transition-based 256

achieving 0.21 points and graph-based achieving 257

0.48 points. Figure 2 visualizes the absolute LAS 258

improvement (or degradation) caused by the ty- 259

pological transformations. We can observe that, 260

on most treebanks, the parsing models result in a 261

better performance on typologically transformed 262

treebanks and that, except for Latin, the negative 263
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Transition-based Graph-based
Language Treebank Family Genus Size IR UD RND TUD Orac UD RND TUD Orac

Arabic padt Afro-Asiatic Semitic 254K 20% 77.83⋆ 78.12 78.10 79.28 78.49 78.53 78.50 80.22
Armenian armtdp Indo-European Indo-Iranian 47K 25% 73.13 72.99 72.91 75.74 66.72 66.36 66.86 71.48
Basque bdt Isolate 97K 26% 74.94 75.05 74.90 76.87 67.54⋆ 67.63⋆ 69.35 71.42
Chinese gsd Sino-Tibetan Sinitic 111K 23% 70.05 70.46⋆ 69.90 71.78 66.77⋆ 67.07 67.11 69.26
Cl-Chinese kyoto Sino-Tibetan Sinitic 406K 31% 75.33 75.66 75.51 77.40 74.81 74.84 75.00 77.09
English ewt Indo-European Germanic 230K 33% 82.75 82.65⋆ 82.91 83.85 81.60⋆ 81.58⋆ 81.81 83.21
Finnish tdt Uralic Finno-Ugric 181K 29% 78.15 78.19 78.10 79.54 72.04⋆ 72.02⋆ 72.81 74.59
Hindi hdtb Indo-European Indo-Iranian 316K 22% 87.58⋆ 87.55⋆ 87.79 89.05 89.06⋆ 88.91⋆ 89.30 90.67
Italian isdt Indo-European Romance 288K 34% 87.24⋆ 87.11⋆ 87.43 88.26 87.15 87.07 87.28 88.39
Korean gsd Koreanic Altaic 69K 23% 72.53 72.19⋆ 72.88 73.88 67.49 67.10 67.21 69.98
Latin ittb Indo-European Italic 421K 33% 83.26⋆ 83.01 82.95 84.64 85.53 85.52 85.54 87.13
Latvian lvtb Indo-European Baltic 253K 29% 79.81 79.91 79.83 81.48 78.06⋆ 77.99⋆ 78.30 80.59
Marathi ufal Indo-European Indo-Iranian 3K 30% 48.71 49.85 49.01 57.31 48.86 49.32 50.68 58.98
Persian seraji Indo-European Indo-Iranian 137K 26% 81.26 81.66⋆ 81.27 82.63 78.76 78.63 78.66 80.76
Russian taiga Indo-European Slavic 187K 28% 64.95⋆ 64.75⋆ 65.50 67.18 62.64⋆ 62.18⋆ 63.35 65.57
Swedish talbanken Indo-European Germanic 76K 34% 76.02 75.83⋆ 76.40 78.21 70.79 70.46⋆ 71.05 74.24
Turkish imst Turkic Altaic 48K 28% 54.74⋆ 54.61⋆ 55.56 59.39 48.52⋆ 49.35⋆ 50.32 55.90
Urdu udtb Indo-European Indo-Iranian 123K 24% 76.19⋆ 75.91⋆ 76.87 78.34 75.76⋆ 75.92⋆ 76.69 78.55
Vietnamese vtb Austroasiatic Vietic 46K 31% 48.62⋆ 48.77 49.04 52.75 47.34 47.10 47.12 51.62
Wolof wtb Niger-Congo Atlantic-Congo 34K 28% 72.02 72.12 72.42 73.93 67.16⋆ 67.08⋆ 67.69 70.38

Average 166K 28% 73.26⋆ 73.32⋆ 73.47 75.58 70.75⋆ 70.73⋆ 71.23 74.00

Table 1: Average parsing accuracy (LAS) before (UD) and after (TUD) typological transformation.
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Figure 2: Absolute LAS improvement (or degradation).
Significant results with p-value < 0.05 are marked.

P4 xc
om

p→
sec

P3 ns
ub

j→
sb

j

P1 co
p→

cx
p

P4 co
mpo

un
d→

cx
p

P4 ad
vm

od
→

qlf
y

P4 au
x→

au
x*

P3 csu
bj→

sb
j

P3 xc
om

p→
co

mp

P3 nu
mmod

→
mod

P4 ad
vm

od
→

ob
l

P3 am
od
→

mod

P3 cc
om

p→
co

mp

P3 ob
j→

ob
j*

P3 de
t→

mod
x→

x

P3 iob
j→

ob
j*

−5 · 10−2

0

5 · 10−2

0.1

⋆ ⋆ ⋆⋆ ⋆ ⋆ ⋆ ⋆ ⋆⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

−.03

−.01

.00

.00

.00 −.01

.00 .01 .01

.02 .02
.03

.01

.03
.03

.05

−.04
−.03

.00 −.01
.00

.00 .00

.02

.04
.03

.03
.04

.06
.05 .05

.13

Transition-based Graph-based

Figure 3: The transformation rules’ contribution (or de-
traction). The results with p-value < 0.05 are marked.

results are statistically insignificant. These findings264

highlight the transformation’s constructive role in265

enhancing parsing accuracy without introducing266

significant adverse effects.267

Earlier in this section, we emphasized the typo-268

logical motivation behind the applied consolidation269

rules, hence their preference over random merging270

rules. In other words, we raise parsing performance271

while adhering to well-established typological prin-272

ciples. Following the third principle, for example,273

we merge all the dependency relations that package274

the same grammatical information into a single tag,275

thereby gaining both theoretical and practical bene- 276

fits. Empirical evidence, summarized in Figure 3, 277

demonstrates that the third principle is by far the 278

most contributive to the rise in parsing accuracy, 279

while the fourth principle, mainly corresponding to 280

fragmentation rules, is the most detrimental. More- 281

over, the first principle, represented by only one 282

rule, is rather neutral in this respect, and the second 283

principle is not reflected in the transformations, as 284

UD fully conforms to this principle already. For a 285

detailed discussion of the contribution of the indi- 286

vidual transformation rules, see Appendix D. 287

5 Conclusion 288

The typological transformation of Universal De- 289

pendencies presents an advantage in terms of pars- 290

ing performance. This benefit is observable across 291

the two primary parsing approaches, namely the 292

transition-based and the graph-based parsing, and 293

in many languages. The positive impact on parsing 294

performance can be attributed to the consolidation 295

rules, which merge the dependency relation with 296

similar typological properties. On the contrary, the 297

parsing performance is slightly hindered by frag- 298

mentation rules, indicating their detrimental effect 299

in the context of Universal Dependencies. 300

Our empirical results demonstrate that an annota- 301

tion scheme resulting from the typological transfor- 302

mation does not sacrifice the practical aims of UD. 303

Therefore, we suggest establishing such a scheme 304

as an alternative basis for treebanking. 305
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Limitations306

A limitation of this study is that not all of Croft307

et al. (2017)’s suggested transformation rules are308

considered due to a lack of annotation in the bench-309

mark. Besides the labels on the right-hand sides310

of the rules in Section 3, Croft et al. (2017) name311

two tags for independent elements indicating in-312

dexation or agreement and linkers: ’idx’ and ’lnk.’313

They categorize the above relations as common314

strategies, implying that they are not regarded as315

universal constructions. We have decided to ignore316

the above phenomena at this stage in the absence317

of clear clues as to how they are marked in each318

of the treebanks that contain them as independent319

tokens. We make the same decision for cases where320

it would be extremely difficult to identify the condi-321

tions for applying a rule, as in the case of depictives322

that are closely similar in structure to adverbial323

clauses. While these are both marked in UD as324

’advcl,’ Croft et al. (2017) suggest that the former325

should be labeled ’sec,’ similarly to resultatives and326

manner adverbs, transformed via the consolidation327

rules xcomp→sec and advmod→sec, respectively.328

Our script, however, leaves ’advcl’ tags unchanged,329

as one could hardly set proper conditions for an330

’advcl’-to-’sec’ transformation to apply, given the331

clues available on UD treebanks. In addition to332

these, our benchmark lacks any application for the333

rules advmod→sec and advmod→aux* due to the334

absence of optional morphological annotation in335

UD.336
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A Parsing Setup435

Our transition-based parsing experiments utilize436

the implementation from Basirat and Nivre (2021),437

with the nucleus composition disabled.2 For the438

graph-based experiments, we rely on the Biaffine439

module integrated into the SuPar parser.3 In both440

parsers, we refrain from employing pre-trained441

embeddings, including both static and contextual-442

ized models, due to their inconsistent performance443

across different languages, which could potentially444

impact the research outcomes. Instead, we opt for445

a BiLSTM encoder in both scenarios to mitigate446

external influences and maintain result consistency.447

Neither do we employ any morphosyntactic fea-448

tures such as part-of-speech tags or morphological449

features to train the parsing models.450

Both parsers are trained for 30 epochs with the451

word embedding size of 100 and the character em-452

bedding dimension of 100 for UUParser and 50 for453

SuPar. The UUParesr parameters are set to their454

default values as suggested by Nivre et al. (2022).455

The arc and relation MLP projection sizes of Su-456

Par are set to 500 and 300, respectively, and the457

other parameters are set to their default values. We458

disable the projective parsing in both parsers.459

The computational resource we use to train one460

transition-based model is a node of three CPUs and461

5-10 GB memory in an HPC—however, the graph-462

based models, each consisting of 12M trainable463

2https://github.com/abasirat/uuparser
3https://github.com/yzhangcs/parser

Transformation
After (TUD)
1 0

Before (UD)
1 A B
0 C D

Table 2: The contingency table for McNemar’s test.

parameters, are trained on NVIDIA Tesla V100 464

GPU. 465

B Hypothesis Testing 466

We utilize McNemar’s test to evaluate the signif- 467

icance of the parsing difference between the two 468

schemes. McNemar’s test is a paired-sample t-test 469

for a dichotomous variable that takes two values. 470

In our study, the dichotomous dependent variable 471

of the test indicates whether a token is correctly 472

classified in a scheme or not. The variable takes 473

a value of 1 if the dependency head and label of 474

a token are predicted accurately and a value of 0 475

otherwise. The categorical independent variable 476

of the test refers to the two dependency schemes, 477

UD and TUD. We collect the value of the depen- 478

dent variable for all tokens across the two schemes, 479

resulting in two lists of the size of the number of 480

tokens, with the values in each list determining 481

whether the token is classified correctly in the cor- 482

responding scheme or not. From these lists, we 483

build a contingency table, shown in Table 2, with 484

the following description: 485

• A: the number of tokens predicted correctly in 486

both schemes 487

• B: the number of tokens predicted correctly in 488

UD but incorrectly in TUD 489

• C: the number of tokens mispredicted in UD 490

but predicted correctly in TUD 491

• D: the number of mispredicted tokens in both 492

schemes. 493

With this setting, we estimate the p-value to reject 494

the null hypothesis that the typological transforma- 495

tion does not impact parsing accuracy (pb = pc). 496

We estimate the p-value based on the binomial dis- 497

tribution. To address the effect of randomness in 498

the parsing models, we collect the statistics from 499

the concatenation of the three runs with different 500

random seeds. 501
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C Random Transformation502

To ensure that the parsing gain made by the ty-503

pological transformation are not only due to the504

consolidation and fragmentation of the rules but505

also to the linguistic motivations behind them, we506

design a random transformation setup where the507

elements of a subset of dependency labels are ran-508

domly merged or expanded. To this aim, we search509

among all possible sets of consolidation and frag-510

mentation rules and select one with an impact rate511

close to the average impact rate of the typological512

transformations (28%), explained in Section 4.513

In a minimal setup, the number of possible rule514

sets is proportionate to the number of partitions of515

the dependency labels set. In this setup, consolida-516

tion rules are formed by merging the subsets with517

at least two labels, and the fragmentation rules can518

be over some of the singleton subsets. Therefore,519

the size of the search space with n dependency la-520

bels is in the scale of 1
e

∑∞
k=0

kn

k! , which is the nthe521

element of the Bell series and it is approximately522

5.3E + 31 for n = 37 UD base dependency labels.523

To make the problem more tractable and com-524

parable with the Croft et al. (2017)’s typological525

transformation rules, we restrict the partitioning to526

subsets with at most two elements. In this setup, the527

consolidation rules in each partitioning are formed528

by merging the elements of subsets that include two529

elements (i.e., each subset {li, li} of dependency530

labels introduces two rules li→lij , and lj→lij) and531

the singleton subsets like {li} either form identity532

rules with no impact (li→li) or expand into three533

sub-labels (li→lki k = 1, 2, 3). When expanding,534

one of the li→lki k = 1, 2, 3 rules are randomly535

applied with a uniform probability. The impact rate536

of a consolidation rule li→lij is ni
N and the impact537

rate of an expansion rule is li→lki is ni
3N where ni538

is the frequency of the occurrence of the label li539

and N is the total number of tokens in the corpus.540

The total impact rate of a rule set is then the sum541

of the impact rate of its rules.542

Even with these simplifications, the search space543

is fairly large, and a complete search requires sig-544

nificant computing resources to find a rule set with545

a desired impact rate. Therefore, we formulate it546

as a simulated annealing search that searches for547

a rule set with a total impact rate of 0.28, an ini-548

tial temperature of 1.0, and a cooling rate of 0.99.549

To address the randomness effect, we perform the550

random transformation three times on each tree-551

bank, train a parsing model on the transformed552

treebanks, and report the average LAS in Table 1, 553

Column RND. 554

D Rule Contribution 555

We present some statistics about the distribution of 556

the transformation rules and numerical results of 557

each rule’s contribution to the tokens’ dependency 558

label prediction. For each rule, we gather all tokens 559

that can undergo the transformation and calculate 560

their LAS (Labeled Attachment Score) both before 561

and after applying the rule. Table 3 shows the abso- 562

lute improvement or degradation in LAS after ap- 563

plying the transformation rules (Column ∆), along 564

with the p-values from McNemar’s significance 565

test. It also represents the relative contribution of 566

the rules with respect to the rules distribution, i.e., 567

∆ × P , where P is the relative frequency of the 568

tokens undergoing each rule. 569

In summary, the results in Table 3 (Row SUM) 570

show that the transformation rules contribute posi- 571

tively to the prediction of the dependency relations 572

with both the transition-based and graph-based 573

parsers. Further investigation of the results reveals 574

the varying contribution of the rules to the per- 575

formance gain. The relative contribution of the 576

rules represented in Column ∆× P (and Figure 3) 577

illustrates the enhancement achieved by each trans- 578

formation in classifying tokens that underwent the 579

respective transformation. We can see that most 580

rules constructively impact parsing with similar 581

ranks for both parsers and that untransformed to- 582

kens (x→x) are not influenced. 583

The most significant contribution arises from the 584

consolidation rules. A crucial factor influencing 585

their effectiveness is the inherent difficulty in dis- 586

tinguishing between source relations, often being 587

misclassified as one another in UD, which is no 588

longer an issue once they are merged in TUD. In 589

particular, the effectiveness of the iobj→obj* rule 590

is highlighted by the common misclassification sce- 591

nario, where indirect objects (’iobj’) are mistakenly 592

identified as direct objects (’obj’). Therefore, the 593

unification of ’iobj’ and ’obj’ prevents the parser 594

from misclassifying them as each other. We found 595

an analogous explanation for other consolidation 596

rules that unify the clausal complements ’ccomp’ 597

and ’xcomp’ into ’comp,’ combine the subject rela- 598

tions ’nsubj’ and ’csubj’ into ’sbj,’ and merge the 599

determiner ’det’ with modifiers ’amod’ and ’num- 600

mod’ into ’mod.’ The small improvement made by 601

cop→cxp in the transition-based parser can also 602

7



be attributed to the misclassification of copula as603

the compound, which is unified with copula in the604

typological scheme.605

However, the fragmentation rules such as606

xcomp→sec and advmod→qlfy exhibit a neg-607

ative influence. The detrimental impact of608

advmod→qlfy stems from the frequent mutual mis-609

classification of adverbial and adjectival modifiers610

in UD, which persists even after typological trans-611

formation, manifested as mislabeling qualifying612

adverbs (’qlfy’) as modifiers (’mod’) in TUD, al-613

beit at a higher rate, which is in turn because ’mod’614

in TUD has a broader scope than ’amod’ in UD.615

In addition to the erroneous items present in both616

schemes, the rule introduces multiple frequent er-617

rors in TUD for tokens accurately classified in UD.618

The top four recurring errors include the misclassifi-619

cation of ’qlfy’ as ’sbj’ (13%), ’obl*’ (12%), ’mod’620

(4%), and ’aux*’ (4%) for tokens correctly classi-621

fied in UD as ’advmod.’ Similarly, the xcomp→sec622

rule negatively impacts parsing accuracy by mis-623

classifying open clausal complements (’xcomp’)624

and objects (’obj’) in UD. This misclassification is625

due to their ambiguities and syntactic similarities,626

which persist between ’sec’ and ’obj’ in TUD, en-627

compassing a large number of tokens, leading to in-628

creased errors. Putting it all together, we conclude629

that the fragmentation rules detract from parsing630

performance and that their degradation levels are631

proportional to the scales of their target relations.632
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Transition-based Graph-based
Rule n P = n

N ∆ ∆× P p-value ∆ ∆× P p-value

advmod→qlfy 32 0.01% -14.14 -0.0016 .00 -9.09 -0.0010 .01
xcomp→sec 1,108 0.40% -7.70 -0.0306 .00 -9.90 -0.0393 .00
nsubj→sbj 20,510 7.34% -0.20 -0.0146 .08 -0.46 -0.0335 .00
cop→cxp 3,777 1.35% -0.02 -0.0003 .94 -0.32 -0.0044 .15
compound→cxp 3,195 1.14% 0.25 0.0029 .32 -0.56 -0.0064 .01
aux→aux* 8,568 3.07% -0.18 -0.0056 .10 0.11 0.0034 .32
x→x 181,148 64.85% 0.05 0.0319 .17 0.08 0.0490 .03
advmod→obl 11,853 4.24% 0.49 0.0208 .00 0.59 0.0252 .00
amod→mod 12,923 4.63% 0.51 0.0235 .00 0.68 0.0314 .00
obj→obj* 14,427 5.17% 0.19 0.0098 .18 1.12 0.0580 .00
det→mod 9,810 3.51% 0.76 0.0267 .00 1.30 0.0458 .00
nummod→mod 4,485 1.61% 0.42 0.0068 .04 2.22 0.0357 .00
xcomp→comp 2,391 0.86% 0.72 0.0061 .08 2.29 0.0196 .00
csubj→sbj 485 0.17% 2.63 0.0046 .00 2.79 0.0048 .00
ccomp→comp 2,965 1.06% 2.92 0.0310 .00 3.46 0.0367 .00
iobj→obj* 1,643 0.59% 8.39 0.0493 .00 21.40 0.1259 .00

SUM 279,320 100% -4.93 0.1605 .00 15.72 0.3509 .00

Table 3: Rules contributions. ∆: Absolute improvement (degradation) to tokens’ dependency label prediction
undergone each transformation rule. n: total frequency. P : relative frequency.
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