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ABSTRACT

Graph Transformers (GTs), adept at capturing the locality and globality of graphs,
have shown promising potential in node classification tasks. Most state-of-the-art
GTs succeed through integrating local Graph Neural Networks (GNNs) with their
global Self-Attention (SA) modules to enhance structural awareness. Nonetheless,
this architecture faces limitations arising from scalability challenges and the trade-
off between capturing local and global information. On the one hand, the quadratic
complexity associated with the SA modules poses a significant challenge for many
GTs, particularly when scaling them to large-scale graphs. Numerous GTs neces-
sitated a compromise, relinquishing certain aspects of their expressivity to garner
computational efficiency. On the other hand, GTs face challenges in maintaining
detailed local structural information while capturing long-range dependencies. As
a result, they typically require significant computational costs to balance the local
and global expressivity. To address these limitations, this paper introduces a novel
GT architecture, dubbed DUALFormer, featuring a dual-dimensional design of its
GNN and SA modules. Leveraging approximation theory from Linearized Trans-
formers and treating the query as the surrogate representation of node features,
DUALFormer efficiently performs the computationally intensive global SA mod-
ule on feature dimensions. Furthermore, by such a separation of local and global
modules into dual dimensions, DUALFormer achieves a natural balance between
local and global expressivity. In theory, DUALFormer can reduce intra-class vari-
ance, thereby enhancing the discriminability of node representations. Extensive
experiments on eleven real-world datasets demonstrate its effectiveness and effi-
ciency over existing state-of-the-art GTs.

1 INTRODUCTION

Node classification, aimed at accurately predicting the categories or labels of individual nodes based
on the graph topology and node attributes, is an essential task in social networks Bhagat et al. (2011),
citation networks Ju et al. (2024), and biological sciences Yi et al. (2022), among other domains.
Graph Neural Networks (GNNs) Kipf & Welling (2016) have emerged as a dominant architecture
for this task due to their outstanding ability to capture local neighborhood information. Most GNNs,
such as the seminal GCN Kipf & Welling (2016), and subsequent innovations Klicpera et al. (2019);
Velickovic et al. (2017) follow a graph-based message-passing paradigm Gilmer et al. (2017), where
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the representations of each node are updated by aggregating the information from its neighboring
nodes. Although such localizing property has propelled notable success for GNNs, the other side is
that it creates a bottleneck for GNNs to obtain long-range dependencies Dwivedi et al. (2022). As a
result, GNNs often encounter over-smoothing and over-squashing issues Alon & Yahav (2021).

Initially developed for NLP, Transformers Vaswani et al. (2017), known for full-token connectivity
enabled by the Self-Attention (SA) mechanism, have shown significant performance across vari-
ous tasks Gillioz et al. (2020). Recently, Graph Transformers (GTs) with excellent expressivity have
been presented and shown notable potential in addressing the above issues of GNNs Wu et al. (2021);
Chen et al. (2022; 2024a;b). The success of GTs lies in their ability to simultaneously capture long-
range dependencies and structural bias from graph structure. Accordingly, GTs for node-level tasks
can be broadly divided into four categories: 1) Node attribute extension using positional/structural
encoding, including NodeFormer Wu et al. (2022), NAGphormer Chen et al. (2023), Exphormer
Shirzad et al. (2023), and GOAT Kong et al. (2023); 2) Sampling context nodes based on graph, con-
taining GOAT and NAGphormer; 3) GNN block integration, encompassing NAGphormer, GOAT,
SGFormer Wu et al. (2024), Polynormer Deng et al. (2024), and CoBFormer Xing et al. (2024); and
4) Edge rewriting, represented by Exphormer. Their introduction signifies an initial stride.

Nonetheless, existing GTs typically encounter two primary challenges, as illustrated in Fig. 1(a). 1)
Unscalability. In pursuit of global dependencies between nodes, GTs, particularly those built upon
the vanilla SA mechanism Wu et al. (2021); Chen et al. (2022), tend to encounter scalability issues
due to their quadratic time and space complexity, which is prohibitive when dealing with large-scale
graphs. To address this issue, existing approaches tend to compromise the global expressivity (e.g.,
NAGphormer and Exphormer) or increase model complexities (e.g., GOAT, CoBFormer). This re-
sults in models that may fail to generalize well. 2) Tradeoff dilemma of locality and globality. It
is noteworthy that several state-of-the-art GTs (e.g., NAGphormer, GOAT, SGFormer, Polynormer,
and CoBFormer), either explicitly or implicitly, still resort to the GNNs to learn local node repre-
sentations; These representations are then incorporated with Self-Attention (SA) blocks to generate
final node representations. Unfortunately, GTs demonstrate a certain level of information loss, stem-
ming from the necessity to trade off the locality and globality. Specifically, they tend to encounter
challenges in retaining the fine-grained structural details while capturing long-range dependencies,
which could lead to the loss of nuanced information crucial for accurate node classification.

This paper seeks to break the aforementioned limitations by devising a novel GT architecture with
(1) an efficient SA mechanism and (2) a comprehensive fusion mechanism of local and global infor-
mation. To this end, the architectures of existing GTs are systemically investigated, and an intuitive
interpretation of these limitations from a decoupled perspective, as shown in Fig. 1(a). Specifically,
the existing global SA mechanisms default to the value as the agent representation of node features,
essentially performing a global message passing between nodes to capture the global dependencies.
Thus, the common fundamental factor in these two issues is an over-reliance on a single dimension.
Intuitively, through regarding the query as the agent representation and leveraging the established
approximation between (Query×Key)×Value and Query×(Key×Value), the aforementioned global
message passing can be efficiently executed along the feature dimension. Inspired by these insights,
this paper proposes DUALFormer, a simple yet effective GT architecture featuring a dual-dimension
design, as depicted in Fig. 1(b). The idea of DUALFormer is to decouple the GNN and SA modules
from the same dimension to separately model local and global information in the node dimension
and feature dimension, respectively. Therefore, it achieves efficient global SA on the one hand, and
on the other, it naturally integrates locality and globality without compromising the trade-off. The
comparisons between GTs regarding performance, running time, and GPU memory usage demon-
strate the effectiveness and efficiency of DUALFormer, as shown in Fig. 2.

The contributions of this paper can be summarized as follows:

• We investigate two drawbacks of existing Graph Transformers (GTs), that is, unscalability
and tradeoff dilemma between local and global expressivity.

• We introduce DUALFormer, a simple yet comprehensive GT architecture featuring a dual-
dimensional design of its local and global modules.

• Extensive experiments on public benchmark datasets demonstrate the superior performance
and efficiency of DUALFormer over state-of-the-art GNNs and GTs.
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Figure 1: The design motivation of the proposed DUALFormer and its comparison with existing
state-of-the-art GT architectures. (a) Existing GTs suffer from two primary challenges: 1) the scala-
bility issue from Self-Attention (SA) mechanisms, and 2) the tradeoff dilemma of local and global in-
formation. By default, global SA mechanisms serve the value V as the agent representations of node
features, so that by employing attention score matrix sim(Q,K) ∈ Rn×n to capture global depen-
dencies among nodes. Intuitively, by leveraging the approximation sim(Q,K)V ≈ Qsim(K,V),
and treating the query Q as the agent representations, the above global SA mechanism can be effi-
ciently implemented in the feature dimension. (b) DUALFormer is a dual-dimensional GT architec-
ture that seamlessly integrates the local GNN block and global SA block on dual dimensions. Thus,
DUALFormer effectively and comprehensively leverages the advantages of both dimensions.

2 PRELIMINARIES

This section starts with an overview of the notation used in this paper. It then provides an introduc-
tion to the fundamental concepts of Graph Neural Networks (GNNs). Finally, it details the vanilla
Transformer architecture and Graph Transformers (GTs) that extends upon GNNs.

2.1 NOTATIONS

Matrices (e.g., W) are in bold capital letters, vectors (e.g., wi,:, which represents the i-th row vector
of W), are in bold lowercase letters, scalars (e.g., wi,j , which stands for the elements in the i-th row
and j-th column of W), are in lowercase letters, and sets (e.g., V) are in calligraphic letters.

For a general-purpose description, this paper examines an undirected attribute graph G(V, E). The
node set V consists of n node instances {(xv,yv)}v∈V , where X ∈ Rn×f and Y ∈ Rn×c represent
the attributes and labels of node v, respectively, and f is the attribute dimension and c is the label
dimension. E = {(vi, vj} stands for the edge set. Generally, the adjacency matrix A ∈ Rn×n is
utilized to describe the graph topology and ai,j = 1 only if there is the edge (vi, vj) ∈ E , otherwise
ai,j = 0. Its forms of Random-Walk (RW) normalization Â = D−1A and Laplacian normalization
Â = D− 1

2AD− 1
2 are commonly utilized, where D denotes the diagonal degree matrix. Moreover,

the graph G can be expressed in matrix form as G(A,X). Besides, YL ∈ Rnu×c and YU ∈ Rnu×c

stand for the labels of the labeled and unlabeled nodes, respectively.

2.2 GRAPH NEURAL NETWORKS

Propagation-based Graph Neural Networks (GNNs) typically follow the message-passing paradigm
Gilmer et al. (2017) to harness structural biases in graphs. Within each layer, the representations of
center nodes are updated by iteratively aggregating and combining the features from their adjacent
nodes (i.e., one-hop neighbors) in the graph. In specific, for node v in the l-th layer, denoted by hl

v ,
the above representation update can be expressed as

ĥl
v ≜ Aggregationl({hl−1

u |u ∈ NG
v }), hl

v ≜ Combinationl(hl−1
v , ĥl

v), (1)

where Aggregation(·) and Combination(, ) denote the aggregation and combination modules, re-
spectively. NG

v represents the neighbor set of node v. Typical GNNs are detailed in Section B.

Despite their localizing property, GNNs still struggle to effectively capture long-range dependencies
Dwivedi et al. (2022). A trivial approach is to broaden the receptive field of each node by stacking
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Figure 2: Comparisons between GTs regarding accuracy, running time, and GPU memory usage.
The size of circles signifies memory consumption. DUALFormer achieves superior performances in
a shorter runtime (except simple SGFormer) over baselines, showing its effectiveness and efficiency.

multiple layers. However, this approach tends to lose discriminative information of representations
due to over-smoothing and over-squashing Alon & Yahav (2021).

2.3 GRAPH TRANSFORMERS

Unlike the localized GNNs that restrict information aggregation to the neighborhood scope, Trans-
formers facilitate a holistic aggregation across all token pairs through the self-attention mechanism.
Intuitively, the above self-attention mechanism functions similarly to GNNs and can specifically be
considered as instances with the global receptive field of the message-passing paradigm.

Transformer Architecture. The vanilla Transformer Vaswani et al. (2017) consists of two essential
components: Multi-Heads Self-Attention (MHSA) and Feed-Forward Network (FFN). The former
enables the model to capture global dependencies between all tokens within the sequence, while the
latter performs additional non-linear transformation. Given n tokens Z = [zi]

n−1
i=0 ∈ Rn×d at each

head, the self-attention first maps the input features Z to query (Q), key (K), and value (V) vectors.
Then, attention scores from query-key pairs are applied to weight aggregate the value vectors.

Specifically, a general expression of Self-Attention (SA) module can be expressed as
Q = ZWQ, K = ZWK ,V = ZWV , (2)

ẑv ≜
∑
u∈V

SQK
v,u vu =

∑
u∈V

exp(sim(qv,ku))∑
u∈V exp(sim(qv,ku))

vu, (3)

where WQ, WK , and WV ∈ Rd×d denotes trainable projection matrices. sim(, ) terms the sim-
ilarity function, which mainly adopts scaled dot-product attention, i.e., sim(Q,K) = QK⊤/

√
d,

where d is the feature dimensions. Note that the attention score matrix SQK ∈ Rn×n is derived by
computing similarities of all query-key pairs, which leads to the computation complexity of O(n2).

After obtaining the features for each head (Ẑ(i)), MHSA derives the final features by concatenating
the outputs from all t heads and then applying a subsequent linear transformation, namely,

Ẑfinal = Concat(Ẑ(0), Ẑ(1), . . . , Ẑ(t−1))W
O, (4)

where WO ∈ Rtd×d stands for a trainable projection matrix.

Transformers on Graphs. To exploit the structural biases in graphs, current GTs have adopted four
strategies to integrate discriminative topology information into the vanilla Transformer, as outlined
in Section 1. Among these, many SOTA GTs rely on the GNNs to create local representations, such
as SGFormer Wu et al. (2024), Polynormer Deng et al. (2024), and CoBFormer Xing et al. (2024).
The final node representations are typically derived via two schemes: 1⃝ local-and-global fusion and
2⃝ local-to-global fusion, as detailed in Section B.

3 METHODOLOGY

This section first highlights the significance of deploying self-attention in the feature dimension by
examining its linear approximation. Then, it introduces a dual-dimensional GT architecture. Finally,
it compares the proposed GT with existing GTs in terms of scalability, simplicity, and expressivity.
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3.1 ANALYSIS AND MOTIVATIONS

As previously discussed in the Introduction, existing GTs tend to encounter the scalability issue and
the dilemma of trading off global and local information. To overcome the scalability issue, which
arises from the need to compute pairwise similarities between queries and keys in Softmax attention,
linearized attention mechanisms Katharopoulos et al. (2020); Han et al. (2023) have been introduced.
These mechanisms approximate or replace the Softmax attention using separate kernel functions,
allowing for changing computation order from the standard (Query×Key)×Value, as formulated by
Eq. 3, to a more efficient Query×(Key×Value) format.

Given a kernel function with representations ϕ(X), Eq. 3 can be rewritten as

Ẑv =
ϕ(qv)

(∑
u∈V ϕ(ku)

⊤vu

)
ϕ(qv)

(∑
u∈V ϕ(ku)⊤

) (5)

This equation becomes clearer when expressing the numerator in vectorized form, that is

Ẑ = Sim(Q,K)V = ϕ(Q)
(
ϕ(K)⊤V

)
(6)

where the kernel function can be exponential linear unit ϕ(X) = elu(X) + 1. Notably, this mecha-
nism reduces the computation complexity from O(n2) to O(n).

Upon reviewing the above two forms of self-attention mechanisms, two pivotal insights emerge.

• The standard self-attention mechanism (Eq. 3) encapsulates the global dependencies
among samples. The formula leverages the value (V) as a surrogate representation of the
input features Z, with the attention score matrix sim(Q,K) functioning as the dependen-
cies matrix between samples. Thus, this formula can be interpreted as a message-passing
process that propagates the value features (vi,:) on the global dependencies matrix. Mean-
while, this mechanism possesses global expressivity, i.e., capturing global dependencies.

• The above linearized self-attention mechanism (Eq. 6) effectively captures the global
correlations between features. From the message-passing viewpoint, one can regard the
query (ϕ(Q)) as the representation of Z, and the product matrix (ϕ(K)V) as the correlation
matrix between features. In contrast to the original attention (Eq. 3), the linearized attention
can be interpreted as another message-passing process between features, which propagates
the query features (ϕ(q:,j)) with the correlation matrix as the propagation matrix. As a
result, this mechanism can model the correlations between features.

According to the approximation between these two formulas, it is natural to conclude that within the
self-attention mechanism, characterizing the global dependencies between nodes is approximately
equivalent to describing the global correlations between features. Thus, the self-attention mecha-
nism can be implemented in the feature dimension.

3.2 DUALFORMER

Inspired by the analysis in the previous subsection, this subsection presents a novel GT transformer,
which is referred to as DUAL-dimensional TransFormer (DUALFormer). Central to the design of
DUALFormer is an efficient global attention module that captures the implicit dependencies between
nodes from the dimension regarding features. DUALFormer includes three modules, each described
below. Refer to Section A for the pseudocode of these modules.

Input Projection Layer. Considering that the node attributes X in graph G(A,X) are unprocessed
and high-dimensional, a Feed-Forward Network (FFN) f : Rn×f → Rn×d is deployed to project
these attributes into a low-dimensional hidden space, thus producing informative node features. By
opting for Multi-Layer Perceptron (MLP) Rumelhart et al. (1986) as the network architecture, these
node features can be represented as

H0 = MLP (X) . (7)

The obtained feature H0 serves as the input to the subsequent SA and GNN modules.

To efficiently capture global dependencies between nodes while sidestepping the trade-off dilemma
between local and global expressivity, DUALFormer introduces a dual-dimensional architecture, as
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shown in Fig. 1. Unlike existing GTs, which typically integrate local and global interactions between
nodes only in the node dimension, DUALFormer designs an innovative approach by modeling these
interactions across two distinct dimensions. The details are as follows.

Global Attention Module. This attention module is designed to efficiently capture global depen-
dencies between nodes. It accomplishes this by introducing a computation unit that captures full-pair
correlations among features, thereby enabling the implicit capture of global node interactions. More-
over, the module leverages a comprehensive set of established techniques from the Transformers for
each layer, which include the Query-Key-Value computations (Eq. 2), the residual connections He
et al. (2016), and the scaled dot-product attention (Eq. 3).

Given the initial node features Ẑ(0) = H0, this module can be expressed as

Q(l) = Ẑ(l−1)W
(l)
Q ,K(l) = Ẑ(l−1)W

(l)
K ,V(l) = Ẑ(l−1)W

(l)
V ,

Z̃(l) = V(l)M(l) = V(l)σ

(
(Q(l))⊤K(l)

√
n

)
,

Ẑ(l) = αZ̃(l) + (1− α)Ẑ(l−1),

(8)

where Q, K, and V denote the query, key, and value, respectively, and σ(·) represents the nonlinear
activation functions, such as softmax(·), and M terms the attention score matrix, which character-
izes the feature-to-feature correlations. α denotes a hyper-parameter to balance the representations
derived from attention and those from the previous layers. Moreover, to augment the representation
capabilities of DUALFormer, this module can incorporate the Multi-Head Self-Attention (in Eq. 4)
and layer normalization Lei Ba et al. (2016). For clarity, V is still used as the agent representation,
with the order modified accordingly.

Local Graph Convolution Module. After the global representations from the attention module are
obtained, diverse graph convolution blocks from GNNs can be incorporated to further integrate local
information into the learned representations. Thus, an expression for this module is

Ĥ(k) ≜ GNN
(
A, Ĥ(k−1)

)
, (9)

where Ĥ(0) = Ẑ(L), and L represents the number of the attention layers. GNN(, ) denotes the GNN
layers. In DUALFormer, SGC (Eq. 11) is opted for GNN(, ), capitalizing on its streamlined design
and effectiveness. Furthermore, the impact of various GNN layers is analyzed in Section 4.2. Once
the node representations from K layers of graph convolutions are obtained, a prediction layer is used
to yield the final predictions, that is, Ŷ = MLP(Ĥ(K)).

The proposed DUALFormer, although simple in design, possesses three attractive characteristics:

• Efficiency and scalability. The above architecture, leveraging the sparse diffusion matrix
(e.g., adjacency matrices) and low-dimensional attention score matrix M ∈ Rd×d, operates
with a complexity that is linearly related to the scale of the graph. Therefore, DUALFormer
is computationally efficient and potentially scalable to large-scale graphs.

• Comprehensiveness. The above architecture thoroughly accounts for the local inter-node
dependencies and the global inter-feature correlations, which can be regarded as an approx-
imation of the global inter-node dependencies. Furthermore, owing to the dual-dimensional
design, it achieves a natural tradeoff between local and global expressivity. The detailed
explanations of the localizing and globalizing properties of DUALFormer are presented in
Section E.4. Thus, DUALFormer is an informative and comprehensive GT architecture.

Theorem 1. (Discriminability Improvement.) Global attention module (Eq. 8) reduces the intra-
class variance while keeping inter-class variance unchanged.

Theorem 1 indicates that DUALFormer is capable of diminishing class overlap, thus improving the
effectiveness of representation learning. The proof of this theorem can be found in Section C.

To sum up, this innovative dual-dimensional design enables DUALFormer to efficiently and compre-
hensively harness the strengths of both dimensions of the feature matrix within a unified framework.
This emphasizes the simplicity and efficiency of DUALFormer.
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Table 1: Comparison between GTs in terms of three aspects: Time Complexity, Required Compo-
nents, including Positional Encodings (PE), Augmented Training Loss (ATL), Edge Features (EF),
and Additional Parameters (AP), and Global Expressivity. Here, n represents the size of the graphs.
e stands for the number of edges. The notation #Appr. represents approximate.

Model Time Complexity Components Global
Pre-processing Training PE ATL EF AP Expressivity

GraphTrans (NeurIPS 2021) - O(n2 + e) - - - - YES
SAT (ICML 2022) O(n3) O(n2 + e) ✓ - - - YES
GraphGPS (NeurIPS 2022) O(n3) O(n+ e) ✓ - ✓ ✓ YES
NodeFormer (NeurIPS 2022) - O(n+ e) - ✓ - ✓ YES
NAGphormer (ICLR 2023) O(n3 + e) O(n) ✓ - - - NO
Exphormer (ICML 2023) O(n3) O(n+ e) ✓ - - ✓ Appr.
GOAT (ICML 2023) O(n log(n)) O(n+ e) ✓ ✓ - - Appr.
SGFormer (NeurIPS 2023) - O(n+ e) - - - ✓ YES
Polynormer (ICLR 2024) - O(n+ e) - - - ✓ YES
GoBFormer (ICML 2024) O(n log(n)) O(n

4
3 + e) - ✓ - - Appr.

DUALFormer (Ours) - O(n+ e) - - - - YES

3.3 COMPARISON WITH OTHER GTS.

This subsection presents a comparison between the proposed DUALFormer and some state-of-the-
art GTs, aiming to demonstrate the advantages of DUALFormer. As shown in Table 1, DUALFormer
has a more streamlined and efficient architectural design compared to the baselines. Taking this into
account across three aspects, the detailed explanation is as follows.

Scalability. GraphTrans Wu et al. (2021) and SAT Chen et al. (2022) have a complexity of O(n2+e)
due to the computational demands of the self-attention mechanism, which calculates the full-pair at-
tention scores between nodes, and the message-passing mechanism (in Eq. 1). This computational
intensity becomes a bottleneck for scaling to large-scale graphs. In contrast, the proposed DUAL-
Former offloads such computationally intensive self-attention mechanism to the low-dimensional
feature dimension, thus achieving linear time complexity. Besides, the absence of additional param-
eter requirements precludes an increase in spatial complexity. Both aspects ensure its scalability.

Components. To integrate the discriminative information of graph structure into their architectures,
existing GTs often resort to the additional components: positional/structural encoding (e.g., random-
walk structural encoding and Laplacian eigenvectors encodings Rampásek et al. (2022)), augmented
training loss (e.g., edge regularization loss in NodeFormer), and the local GNNs, which necessitates
additional parameters to control its effect (e.g., a hyper-parameter in SGFormer and learnable param-
eters in Polynormer). Compared to them, DUALFormer features a more streamlined and efficient
architectural design, requiring neither positional/structural encoding, augmented loss, nor additional
parameters, and utilizes only simple local graph convolution and global attention.

Expressivity. Due to the limited receptive field of nodes, many existing GTs lack global expressiv-
ity. For example, NAGphormer achieves linear complexity through k-hop neighborhood sampling,
yet this approach, while enhancing computation efficiency, leads to a compromise in the global ex-
pressivity. Additionally, several GTs (e.g., Exphormer, GOAT, GoBFormer) attain linear complexity
through clustering-like techniques; yet, this approach offers only an approximate global expressiv-
ity due to it equips nodes with an indirect global receptive field. In contrast, DUALFormer stands
out by delivering both global expressivity and linear complexity. Section E.4 provides an analysis
that demonstrates the superiority of the proposed self-attention module between features over the
traditional self-attention module between nodes.

4 EXPERIMENTS

This section first evaluates the effectiveness and efficiency of the proposed DUALFormer by com-
paring its performance against various graph representation learning models on tasks of node classi-
fication and property prediction. Subsequently, it performs several additional experiments to provide
a comprehensive understanding of DUALFormer. For details on the utilized benchmark datasets, the
compared baselines, the experimental setups, and the tuned hyperparameters, refer to Section D.
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Table 2: Accuracy in percentage (mean±std) over 10 trials of the node classification task across seven
graphs. Best and runner-up models are bolded and underlined, respectively.

Model Cora CiteSeer PubMed Computers Photo CS Physics

GCN 81.60±0.40 71.60±0.40 78.80±0.60 89.65±0.52 92.70±0.20 92.92±0.12 96.18±0.07

GAT 83.00±0.70 72.10±1.10 79.00±0.40 90.78±0.13 93.87±0.10 93.61±0.14 96.17±0.08

GraphSAGE 82.68±0.47 71.93±0.85 79.41±0.53 91.20±0.29 94.59±0.14 93.91±0.13 96.49±0.06

APPNP 83.30±0.50 71.80±0.50 80.10±0.20 90.18±0.17 94.32±0.14 94.49±0.07 96.54±0.07

SGC 80.10±0.20 71.90±0.14 78.70±0.11 90.11±0.42 91.97±0.19 93.41±0.27 96.35±0.07

GraphGPS 82.84±1.03 72.73±1.23 79.94±0.26 91.19±0.54 95.06±0.13 93.93±0.12 97.12±0.19

NodeFormer 82.20±0.90 72.50±1.10 79.90±1.00 86.98±0.62 93.46±0.35 95.64±0.22 96.24±0.24

NAGphormer 82.12±1.18 71.47±1.30 79.73±0.28 91.22±0.14 95.49±0.11 95.75±0.09 97.34±0.03
Exphormer 82.77±1.38 71.63±1.19 79.46±0.35 91.47±0.17 95.35±0.22 94.93±0.01 96.89±0.09

GOAT 83.18±1.27 71.99±1.26 79.13±0.38 90.96±0.90 92.96±1.48 94.21±0.38 96.45±0.28

SGFormer 84.50±0.80 72.60±0.20 80.30±0.60 91.99±0.76 95.10±0.47 94.78±0.20 96.60±0.18

Polynormer 83.25±0.93 72.31±0.78 79.24±0.43 93.68±0.21 96.46±0.26 95.53±0.16 97.27±0.08

CoBFormer 84.71±0.73 74.29±0.51 81.42±0.53 92.21±0.41 95.46±0.49 94.91±0.07 97.33±0.25

DUALFormer 85.88±0.10 74.45±0.39 83.97±0.43 93.16±0.17 96.74±0.09 95.62±0.05 97.42±0.03

Datasets. In the node classification experiments, seven benchmark datasets are employed, including
Cora Sen et al. (2008), CiteSeer Sen et al. (2008), PubMed Sen et al. (2008), Computers Shchur
et al. (2018), Photo Shchur et al. (2018), CS Shchur et al. (2018), and Physics Shchur et al. (2018).
For the node property prediction, four benchmark datasets are utilized, including ogbn-proteins Hu
et al. (2020), ogbn-arxiv Hu et al. (2020), ogbn-products Hu et al. (2020), and pokec Jure (2014).
For details on the utilized datasets, refer to Section D.1.

Baselines. The baseline models include five typical GNNs: GCN Kipf & Welling (2016), Graph-
SAGE Hamilton et al. (2017), GAT Velickovic et al. (2017), APPNP Klicpera et al. (2019), and SGC
Wu et al. (2019), and eight GTs that represent the cutting-edge in this field: (GraphGPS Rampásek
et al. (2022), NodeFormer Wu et al. (2022), NAGphormer Chen et al. (2023), Exphormer Shirzad
et al. (2023), GOAT Kong et al. (2023), SGFormer Wu et al. (2024), Polynormer Deng et al. (2024),
CoBFormer Xing et al. (2024)). Section D.2 offers an introduction to the compared models.

4.1 EXPERIMENTAL RESULTS

Node Classification. The results of the models on the node classification task are presented in Tab. 2
and Fig. 2. Two observations can be drawn from Tab. 2. The first point is that the proposed DUAL-
Former outperforms the baseline models on five of the seven datasets and delivers near-optimal per-
formances on the remaining two. This demonstrates the superiority of DUALFormer. Moreover, the
second point is that the proposed DUALFormer demonstrates significant performance advantages on
Cora and PubMed datasets, exceeding all baselines by a wide margin. Specifically, the accuracies of
DUALFormer exceed those of the runner-up model (CoBFormer) by 1.17% and 2.55%, on these two
datasets, respectively. Note that some of state-of-the-art baselines, e.g., SGFormer, Polynormer, and
CoBFormer, either explicitly or implicitly, incorporate GNNs, similar to DUALFormer. Thus, the
performance advantages can be attributed to the fact that the proposed dual-dimensional architec-
ture efficiently reduces information redundancy between the GNN and Self-Attention (SA) blocks,
achieving a collaborative propagation of local and global information. Furthermore, as depicted in
Fig. 2, the proposed DUALFormer not only achieves superior performance but also consumes less
computation time compared to the GT baselines except SGFormer. To be specific, the red circles,
representing the proposed DUALFormer, are superior left and above most other circles in the fig-
ure. This implies DUALFormer is lightweight, aligning with conclusions in Section 3.3. Besides,
DUALFormer introduces modest memory usage, which indicates its potential for scalability.

Node Property Prediction. This experiment is designed to evaluate the scalability and effectiveness
of the models by testing them on four large-scale graph datasets. The experiment results for the node
property prediction task on these datasets are presented in Tab. 3. Upon observing this table, two key
conclusions can be drawn. (1) Most GTs consistently show superior performance over the backbone
GNNs across all datasets. This is because most GTs incorporate GNNs as their local module in
architecture. Based on the concept of feature fusion, the integrated architecture typically achieves
performance that is at least on par with its individual components. (2) Compared to the baselines,
the proposed DUALFormer achieves superior performances across three of the four datasets. These
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Table 3: Results (ROC-AUC for the ogbn-proteins and Accuracy for the others) in percentage
(mean±std) over 10 trials of node property prediction across four large-scale graphs. Best and runner-
up models are bolded and underlined, respectively. #OOM means out of memory.

Model ogbn-proteins ogbn-arxiv ogbn-products pokec

GCN 72.51±0.35 71.74±0.29 75.64±0.21 75.45±0.17

GAT 72.02±0.44 71.95±0.36 79.45±0.59 72.23±0.18

GraphSAGE 77.68±0.20 71.49±0.27 78.50±0.14 75.63±0.38

GraphGPS 76.83±0.26 70.97±0.41 75.39±0.17 74.42±0.26

NodeFormer 77.45±1.15 67.19±0.83 72.93±0.13 71.00±1.30

NAGphormer 73.61±0.33 70.13±0.55 73.55±0.21 76.59±0.25

Exphormer 74.58±0.26 72.44±0.28 76.96±0.05 75.62±0.40

SGFormer 79.53±0.38 72.63±0.13 74.16±0.31 73.76±0.24

Polynormer 78.97±0.47 73.46±0.16 83.82±0.11 86.10±0.05

CoBFormer 78.59±0.21 73.17±0.18 78.15±0.07 79.82±0.29

DUALFormer 82.98±0.51 73.71±0.22 83.91±0.23 82.97±0.43

results demonstrate, on one hand, that DUALFormer is scalable to large-scale graphs and, on the
other, illustrate its effectiveness. Notably, DUALFormer achieves a 3.45% higher ROC-AUC over
the second-ranking model SGFormer on the ogbn-proteins dataset, which highlights its superiority.

4.2 ADDITIONAL EXPERIMENTS

Scalability Study. This experiment aims to thoroughly examine the scalability of DUALFormer.
It achieves this by randomly sampling nodes for the training set, gradually increasing the sample
size from 10K to 100K nodes, and monitoring both training time and GPU memory usage as the
dataset size varies. The variations in terms of running time and GPU memory consumption on the
obg-products dataset are reported in Fig. 3(left) and (right), respectively. It is evident that both the
running time and memory consumption of DUALFormer increase linearly with the size of the graph,
indicating that DUALFormer possesses linear time and space complexity. This is consistent with the
conclusion presented in Section 3.3, thereby demonstrating the scalability of DUALFormer.

Figure 3: Training time and GPU memory usage of DUALFormer on the ogbn-products dataset.

Backbone Performance Evaluation. This experiment is designed to evaluate the impact of differ-
ent backbone GNNs (including GCN, APPNP, and SGC) on model performances. Fig. 4 provides
the experiment results, from which one can draw three conclusions. Firstly, all variants of DUAL-
Former perform consistently across three datasets, suggesting that the performance of DUALFormer
is not sensitive to different backbones. In particular, the most significant performance difference is
observed on the CiteSeer dataset, with the original DUALFormer that equips SGC showing just
a 1.29% improvement over its variant that employs GCN. Secondly, DUALFormer and its vari-
ants achieve significantly improved performance over the baseline GNNs. For example, on the Cora
dataset, the DUALFormer enhances the performance of GCN by 3.89%, and the variant with APPNP
boosts the performance of APPNP by 2.83%. This underscores the effectiveness of DUALFormer’s
design. Finally, the performance of variants that pair with top-performing GNNs is generally high,
indicating the potential for further improvements through integration with advanced GNNs.

Parameter Sensitivity Analysis. These experiments are performed to provide an intuitive under-
standing of hyperparameter selection. Firstly, as depicted in Fig. 5, which reports the performance
variance for varying the dimension d, DUALFormer achieve consistently stable performances across
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Figure 4: Comparison of DUALFormer with the employed backbone GNNs and the impact of dif-
ferent backbone GNNs on the model performances. The legend DUALFormer w/ GCN represents
the variant of DUALFormer that incorporates GCN as its GNN block.

{32, 64, 128, 256}. In specific, the performance variation on these datasets remains minimal, staying
within a 2.5% margin. Therefore, DUALFormer has low sensitivity to the parameter d. In addition,
DUALFormer does not always necessitate a high value for the parameter d to function optimally;
even a value as low as 64 is sufficient. Secondly, it can be observed from Fig. 6 that DUALFormer
exhibits a moderate sensitivity to the number of layers for both GNN and SA. To be specific, within
the range of {1, 2, 3, 4, 5, 6, 7}, its performance tends to decline when the number of layers exceeds
3. However, on the Citeseer dataset, where this effect is most pronounced, the performance decrease
did not exceed 3.1%. This illustrates the stability of DUALFormer.

Figure 5: Performance varia-
tions for varying dimension d.

(a) Depth of local GNN layers (b) Depth of global SA layer

Figure 6: Impact of local GNN and global SA layer depths

5 CONCLUSIONS

This paper presents DUALFormer, a straightforward and lightweight Graph Transformer (GT) archi-
tecture that utilizes a dual-dimensional design to enable efficient and effective learning of graph rep-
resentations. DUALFormer addresses two key issues in existing GTs: the scalability issue on large-
scale graphs and the tradeoff dilemma between local and global information. Extensive experiments
across eleven graph benchmark datasets demonstrate the superiority of DUALFormer compared to
existing Graph Neural Networks (GNNs) and GTs. Nonetheless, it still has scope for improvement.
For example, 1) the universal GT architecture for homophilic and heterophilic graphs. Despite their
global expressivity, GTs do not outperform well-designed GNNs on heterophilic graphs. Therefore,
this is a research-worthy topic. 2) designing an edge-level GT architecture for edge-level tasks. Cur-
rently, GTs focus on graph-level and node-level tasks, with limited exploration in edge-level tasks.
This is an open research question that merits further exploration.
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A ALGORITHM DESCRIPTION

The specifics of the DUALFormer architecture are presented in Algorithm 1, whereas the innovative
global attention module is elaborated in Algorithm 2.

Algorithm 1: PyTorch-style Code for DUALFormer

# n: the number of nodes
# m: the number of edges
# f: the dimension of node attributes
# d: the dimension of hidden layers
# l 1: the number of local graph convolution layers
# l 2: the number of global attention layers

# x: input node attribute matrix with shape [n, f]
# edge index: input graph structure with shape [2, m]
# alpha: combine rate of residual and output of each trans layer
# local convs: local graph convolution layers (e.g., SGConv from PyG)
# global trans: global attention layers (implemented in Code 2)

residual trans list = [ ]

# input projection layer
x = intput project(x)
residual trans list.append(x)

# global attention module
for trans layer in enumerate(global trans):

x = trans layer(x)
x = alpha ∗ x + (1-alpha) ∗ residual trans list[-1]
residual trans list.append(x)

# local graph convolution module
residual convs list = [ ]
residual convs list.append(x)
for conv layer in enumerate(local convs):

x = convs(x, edge index)
x = x + residual conv list[-1]
residual conv list.append(x)

output = output project(x)

# negative log-likelihood loss calculation
y pred = F.log softmax(output, dim=1)
loss = criterion(y pred[train mask idx], y true[train mask idx])

B ADDITIONAL PRELIMINARIES

Typical Graph Neural Networks (GNNs). From the mentioned message-passing paradigm, typical
GNNs such as GCN Kipf & Welling (2016), SGC Wu et al. (2019), APPNP Klicpera et al. (2019)
employ the average function to implement the operations AGG(·) and COM(, ), that is,

GCN(A,Hl) : Hl+1 = σ(ÃHlWl), (10)

SGC(A,Hl) : Hl+1 = ÃHl, (11)

APPNP (A,Hl) : Hl+1 = (1− α)× ÃHl + α×H0, (12)
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where σ denotes the non-linear activation function (e.g., ReLU(·)). Ã = (D+In)
− 1

2 (A+In)(D+

In)
− 1

2 represents the normalized adjcency matrix, where D is the diagonal degree matrix with di,i =
1 +

∑
j ai,j . These GNNs are employed in the proposed framework to capture the structure biases.

Graph Transformers (GTs). Given the node representations from the GNN, denoted as H, and the
SA module, denoted as Z, the final representations P are produced according to two strategies: 1⃝
local-and-global fusion and 2⃝ local-to-global fusion. These can be formulated as

1⃝ P ≜ Combination (H,Z) , (13)

2⃝ P ≜ SA (H) , H ≜ GNN(A,X), (14)

where Combination(, ) represents a combination function, such as P = λH + (1 − λ)Z (i.e., the
linear weighting in SGFormer, and λ is a parameter to balance these two terms).

C THEORETICAL PROOFS

To facilitate the proof, the node feature xv ∈ Rf is handled as a column vector. Assume that the
node feature xv and label yv are the observations of random variables X = [X1, . . . ,Xf ]

⊤ and Y
respectively. The node features are assumed to be mean-centered, namely, E[X] = 0. Note that the
variance of random vector is the sum of the variance of each dimension, which can be represented
as the trace of its covariance matrix. According to the law of total variance, the variance of X can
be decomposed into intra-class and inter-class variances, that is,

Var[X] = E[Var[X|Y]]︸ ︷︷ ︸
Intra-class Variance

+ Var[E[X|Y]]︸ ︷︷ ︸
Inter-class Variance

, (15)

where Var[X|Y = k] stands for the variance of class k and E[X|Y = k] denotes the center of class
k. The conditional expectation of node feature Xj w.r.t. the K classes can be represented as

ej = {E[Xj |Y = 1], · · · ,E[Xj |Y = K]} ∈ RK . (16)

The key component of the Global Attention (GA) Module (in Eq. 8) is XM, where the attention
score matrix between features, i.e., M = [mij ] = softmax( (Q)⊤K√

n
), is a learnable stochastic matrix.

The node feature after GA is M⊤xv ∈ Rf , and thus the corresponding random variable is M⊤X.
Then, the conditional expectation of node feature after GA is êj =

∑
i mijei. The quality of this

attention score matrix between features M impacts this conditional expectation. Intuitively, a good
attention score matrix should contain large elements, whose indices correspond to attributes with
similar conditional expectations, i.e., ∥ei − ej∥2 ≤ ε.

Theorem 1 can be divided into the following two lemmas.

Lemma 1. The intra-class variance of M⊤X is less than or equal to that of X, that is,

E[Var[M⊤X|Y]] ≤ E[Var[X|Y]]. (17)

Lemma 2. If the learned attention score matrix is good enough that ∥ei−ej∥2 ≤ ε for any mij ̸= 0,
then the distance of conditional expectations before and after GA is also less than or equal to ε, i.e.,

∥êj − ej∥2 ≤ ε (18)

and ε can be arbitrarily small with a proper M.

The proofs for these lemmas refer to Sections C.1 and C.2, respectively.
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C.1 PROOF FOR LEMMA 1

Proof. By denoting σ ∈ Rm, σi ≜
√
Var[Xi|Y = k] as the vector of intra-class variances, it can be

proved that Var[M⊤X|Y = k] ≤ Var[X|Y = k] as follows.

Var[M⊤X|Y = k] (19)

= Tr(Cov(M⊤X|Y = k)) (20)

= Tr(M⊤Cov(X|Y = k)M) (21)

= Tr(Cov(X|Y = k)MM⊤) (22)

=
∑
ij

Cov(Xi,Xj |Y = k)(MM⊤)ij (23)

≤
∑
ij

√
Var[Xi|Y = k]

√
Var[Xj |Y = k] (MM⊤)ij (24)

=
∑
ij

σiσj(MM⊤)ij (25)

= σ⊤MM⊤σ (26)

≤ ∥σ∥22 (27)

=
∑
i

Var[Xi|Y = k] (28)

= Var[X|Y = k]. (29)

Note that the second inequality holds since the eigenvalues of M are no more than 1. According to
this, Lemma 1 can be obtained as follows.

E[Var[M⊤X|Y]] (30)

=
∑
k

Pr(Y = k)Var[M⊤X|Y = k] (31)

≤
∑
k

Pr(Y = k)Var[X|Y = k] (32)

= E[Var[X|Y]]. (33)

C.2 PROOF FOR LEMMA 2

Proof.

∥ej − êj∥2 =

∥∥∥∥∥ej −∑
i

mijei

∥∥∥∥∥
2

(34)

=

∥∥∥∥∥∑
i

mij(ej − ei)

∥∥∥∥∥
2

(35)

≤
∑
i

mij∥ej − ei∥2 (36)

≤
∑
i

mijε = ε. (37)

The second inequality holds due to the Cauchy-Schwarz inequality. To show that there exists a
matrix M such that ε can be equal to 0, it need that M satisfying

∑
i mijei = ej . Given that the

number of features significantly exceeds the number of classes, the number of variables in the linear
system is larger than that of equations. Thus, there exists an infinite number of solutions. Therefore,
ε can be arbitrarily small with a proper M.
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Algorithm 2: PyTorch-style Code for Global Attention Layer
# n: the number of nodes
# m: the number of edges
# d: the dimension of node features
# x: node features matrix with dimension [n, d]
# h: the number of head

# linear transformations
q = q lins(x).reshape(-1, d, h) # [n, d, h]
k = k lins(x).reshape(-1, d, h) # [n, d, h]
v = v lins(x).reshape(-1, d, h) # [n, d, h]

# calculate attention score matrix with size [d, d]
qk = torch.einsum(”lmh, ldh → mdh”, q, k)
qk = torch.softmax(qk, dim=0)
trans output = torch.einsum(”lmh, mdh → ldh”, v, qk)

# take average of all heads
trans output = trans output.mean(dim=-1) # [n, d]

D EXPERIMENTAL DETAILS

D.1 INTRODUCTION OF DATASETS

Table 4: Statistics for the eleven graph benchmark datasets used in Section 4, with seven employed
for node classification tasks and the remaining four utilized for node property prediction tasks. For
clarity, the ”ogbn-” prefix is omitted for datasets including proteins, arxiv, and products.

Node Classification Node Property Prediction

Cora CiteSeer PubMed Computers Photo CS Physics proteins arxiv products pokec

# Nodes 2,708 3,327 19,717 13,752 7,650 18,333 34,493 132,534 169,343 2,449,029 1,632,803
# Edges 5,278 4,522 44,324 245,861 119,081 81,894 247,962 39,561,252 1,166,243 61,859,140 30,622,564
# Features 1,433 3,703 500 767 745 6,805 8,415 8 128 100 65
# Classes 7 6 3 10 8 15 5 2 40 47 2
# Metric ACC↑ ACC↑ ACC↑ ACC↑ ACC↑ ACC↑ ACC↑ ROC-AUC↑ ACC↑ ACC↑ ACC↑

Tab. 4 presents a compilation of statistical information for the eleven graph datasets (including Cora,
CiteSeer, PubMed, Computers, Photo, CS, Physics, ogbn-proteins, ogbn-arxiv, ogbn-products, and
pokec). Moreover, Tab. 7 offers statistical data for three graph datasets (including Roman-Empire,
Question, and obgn-papers100M). These datasets are described as follows:

Datasets for Node Classification.

• Cora, CiteSeer, and PubMed Sen et al. (2008): They are three citation networks. The nodes
signify scientific publications, characterized by attributes such as abstracts, keywords, full-
text content, and derived features like a 0/1-valued word vector and TF/IDF weighted word
vector. The edges represent citation relationships. The node labels correspond to research
areas or topics.

• CS and Physics Shchur et al. (2018): They are two co-author networks. The nodes represent
authors, with edges representing co-authorship relationships. The node attributes and labels
indicate the keywords of the papers and the most active fields of study, respectively, for each
author.

• Computers and Photo Shchur et al. (2018): They are two co-purchase networks from Ama-
zon. The nodes represent products available for sale, which are characterized by attributes
extracted from product reviews. The edges signify the co-purchase relationships. The node
labels denote product categories or brands.
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• Roman-Empire Platonov et al. (2023): It is a network constructed from the Roman Empire
article on English Wikipedia. The nodes denote words in the article, with edges connect-
ing sequential words or those with syntactic dependencies. The node attributes stand for
FastText word embeddings Grave et al. (2018), and the node labels indicate syntactic roles.

• Question Platonov et al. (2023): This is a question-answering network. The nodes represent
users, and the edges represent answer interactions between them. The node attributes are
the average FastText embeddings Grave et al. (2018) of the user’s description, plus a binary
feature for users without descriptions. The node labels denote whether users are active.

Datasets for Node Property Prediction.

• ogbn-proteins, ogbn-arxiv, ogbn-products, and ogbn-papers100M: The are four large-scale
graphs released recently by the Open Graph Benchmark (OGB) Hu et al. (2020). For the
ogbn-product dataset, nodes represent products available for sale on Amazon; edges sig-
nify that the products are purchased together; node attributes are generated by extracting
bag-of-words features from the product descriptions followed by the Principal Component
Analysis (PCA) to reduce the dimension to 100. For the ogbn-proteins dataset, nodes
denote individual proteins, and edges represent a variety of biologically significant inter-
actions, including physical associations and co-expression patterns. For the ogbn-arxiv
dataset, nodes represent papers on arXiv; edges stand for those papers cite other papers;
the attributes of each node represent a 128-dimensional vector derived from averaging the
embeddings of the words in the title and abstract of each paper. These word embeddings
are generated using the skip-gram model over the MAG corpus Wang et al. (2020). For
the ogbn-papers100M dataset, nodes correspond to academic papers from arXiv, charac-
terized by 128-dimensional word embeddings as node attributes. Edges represent citation
relationships between papers, and labels indicate the subject areas of the papers.

• pokec Jure (2014): This is an online social network in Slovakia. The nodes stand for users,
with edges indicating friendships between users. The node attributes represent personal
information, such as gender, age, hobbies, interests, and education. The node labels denote
the attribute labels of the nodes, such as gender or age.

Dataset Splitting. To ensure the credibility and reproducibility of the experiment, the dataset split-
tings follow widely accepted schemes. To be specific, the split for the Cora, CiteSeer, and PubMed
datasets follows the standard public strategies referenced in Kipf & Welling (2016), which allocate
20 nodes per class for training, 500 nodes for validation, and 1000 nodes for testing purposes. For
the Computers, Photo, CS, and Physics datasets, the training, validation, and testing sets constitute
60%, 20%, and 20% of the data, respectively. For the four datasets sourced from OGB (i.e., ogbn-
arxiv, ogbn-products, ogbn-proteins, and ogbn-papers100M), their standard public splits are utilized
as referenced in Hu et al. (2020). For the pokec dataset, the partitioning follows Deng et al. (2024),
with the training, validation, and testing sets distributed as 50%, 25%, and 25%, respectively. For
the Roman-Empire and Questions datasets, the partitioning follows the scheme from Platonov et al.
(2023), specifically, a 50%/25%/25% split for training, validation, and testing.

D.2 INTRODUCTION OF BASELINES

Graph Neural Networks (GNNs). The following outlines the GNN baselines used for comparison.

• GCN Kipf & Welling (2016): This is a seminal graph convolution network that integrates
node attributes with topology structure through localized, diffusion-based convolutions.

• GAT Velickovic et al. (2017): This is a groundbreaking graph attention network that incor-
porates the popular attention mechanism into the graph convolution networks.

• GraphSAGE Hamilton et al. (2017): This is a scalable variant of GCN, which updates node
features by sampling neighbor nodes and applying a learnable aggregation function.

• APPNP Klicpera et al. (2019): This is a variant of GCN that mitigates over-smoothing by
aggregating node features based on personalized PageRank.

• SGC Wu et al. (2019): This is a simplified version of GCN that iteratively applies multiple
feature aggregations to learn node embeddings.
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• ChebNetII He et al. (2022): This is a spectral graph convolution network that enhances
graph convolution through Chebyshev polynomial interpolation.

• OptBasisGNN Guo & Wei (2023): This is a spectral graph convolution network that com-
putes the optimal polynomial basis for a given graph structure and graph signal.

Graph Transformers (GTs). The description of the GT baseline model is as follows.

• GraphGPS Rampásek et al. (2022): This is a versatile GT architecture, which encompasses
position encoding, local message passing mechanism, and self-attention mechanism.

• NodeFormer Wu et al. (2022): This is a scalable GT architecture that utilizes a kernelized
Gumbel-softmax operator for efficient and differentiable learning of graph structures.

• NAGphormer Chen et al. (2023): This is a scalable GT architecture, which utilizes multi-
hop neighborhood aggregation to construct the token vectors for input sequences.

• Exphormer Shirzad et al. (2023): This is a sparse GT architecture that incorporates local
attention, extended attention, and global attention through virtual nodes.

• GOAT Kong et al. (2023): This is a general GT architecture that utilizes the k-means-based
dimensionality reduction to linearize computational complexity and tackles the challenges
of both homophilic and heterophilic graphs.

• SGFormer Wu et al. (2024): This is a streamlined GT architecture that enables efficient
information aggregation by only utilizing a single-layer global attention and GNN network.

• Polynormer Deng et al. (2024): This is a polynomial expressive GT model with linear com-
plexity, which leverages a local-to-global attention scheme to learn node representations.

• CoBFormer Xing et al. (2024): This is a novel GT architecture that employs self-attention
mechanisms within and across clusters to address the Over-globalizing problem.

For the seven GNN baselines, i.e., GCN, GAT, GraphSAGE, APPNP, SGC, ChebNetII, and OptBa-
sisGNN, we use the public library PyTorch Geometric (PyG) Fey & Lenssen (2019) and source code
for their implementation. For the eight GT baselines, i.e., GraphGPS, NodeFormer, NAGphormer,
Exphormer, GOAT, SGFormer, Polynormer, and CoBFormer, we leverage their source codes. The
sources are outlined as

• GNNs: https://github.com/pyg-team/pytorch geometric/tree/master/torch geometric/nn/conv
• ChebNetII: https://github.com/ivam-he/ChebNetI
• OptBasisGNN: https://github.com/yuziGuo/FarOptBasis
• GraphGPS: https://github.com/rampasek/GraphGPS
• NodeFormer: https://github.com/qitianwu/NodeFormer
• NAGphormer: https://github.com/JHL-HUST/NAGphormer
• Exphormer: https://github.com/hamed1375/Exphormer
• GOAT: https://github.com/devnkong/GOAT
• SGFormer: https://github.com/qitianwu/SGFormer
• Polynormer: https://github.com/cornell-zhang/polynormer
• CoBFormer: https://github.com/null-xyj/CoBFormer

D.3 EXPERIMENTAL SETUP

Hyper-parameters. The model employs a semi-supervised learning framework, in which the model
performances on the validation set are leveraged to tune the hyperparameter selection. By default,
the hyper-parameters are meticulously selected via a grid search strategy. For the node classification
task, DUALFormer is trained utilizing an Adam optimizer with the learning rate from {1e−3, 1e−2}
and the weight decay rate from {1e−5, 1e−4, 1e−3}. The number of the local graph convolution
layers and global attention layers are chosen from {1, 2, 3, 4, 5, 6, 7}, and the optimal results corre-
sponding to these selections are depicted in Fig. 6. The dimensions of hidden layers are selected
from {32, 64, 128, 256} and the impacts are analyzed in Section 4.2. For each layer, the dropout
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rate is among the set {0.1, 0.3, 0.5}. For the parameters unique to the attention layer: the number
of heads is chosen from {2, 4}, and α of residual connection is selected from {0.1, 0.3, 0.5}. In
addition, Batch Normalization and Layer Normalization are utilized as appropriate. For the node
property prediction task on four large-scale graphs, a mini-batch training strategy is adopted. The
value of α for the residual connection is chosen from the set {0.1, 0.2, 0.3, 0.4, 0.5}. The selection
of hyper-parameters follows the compared baselines Chen et al. (2022); Wu et al. (2024); Deng et al.
(2024). Refer to Tab. 5 for the parameter selections associated with the respective outcomes.

Table 5: Selected hyperparameters for DUALFormer.

Dataset GNN Layers SA Layers lr GNN lr SA Hidden Dim α

Cora 2 3 0.001 0.001 256 0.1
CiteSeer 2 3 0.001 0.01 256 0.1
PubMed 3 3 0.001 0.001 256 0.1
Computers 1 1 0.001 0.01 64 0.5
Photo 1 1 0.01 0.001 64 0.1
CS 1 1 0.001 0.001 256 0.1
Physics 1 1 0.001 0.001 256 0.3

ogbn-proteins 2 1 0.001 0.001 32 0.5
ogbn-arxiv 6 1 0.001 0.001 256 0.2
ogbn-products 3 1 0.001 0.001 256 0.5
pokec 6 1 0.0005 0.0005 512 0.1

Configurations. All experiments are conducted on two Linux machines as below.

Table 6: Servers and environment.

Server 1 Server 2
OS Linux 5.15.0-82-generic Linux 5.15.0-78-generic

CPU Intel(R) Core(TM) i7-12700K CPU @ 3.6GHz Intel(R) Xeon(R) Platinum 8360Y CPU @ 2.40GHz

GPU GeForce RTX 4090 NVIDIA A800 80GB PCIe

E ADDITIONAL EXPERIMENT RESULTS

E.1 FURTHER COMPARATIVE PERFORMANCE ANALYSIS

This subsection aims to evaluate the universality and scalability of the proposed DUALFormer. To
this end, we compare DUALFormer with the latest state-of-the-art GNN baselines, including Cheb-
NetII and OptBasisGNN, and GTs with linear complexity, including NodeFormer, NAGphormer,
and SGFormer, on two heterophilic graphs (i.e., Roman-Empire and Question) and three large-scale
graphs (i.e., ogbn-papers100M, ogbn-arxiv, and pokec). The baselines are configured as per their
original descriptions, and DUALFormer settings are consistent with those mentioned in Section D.3.
The experiment results are shown in Tab. 7.

Observing Tab. 7 results in the following two conclusions. Firstly, compared to the state-of-the-art
GNNs, i.e., ChebNetII, and OptBasisGNN, the baseline GTs perform worse in most datasets. This
is primarily attributed to the inadequate integration of the GNN module with the SA module in these
baselines. Secondly, in comparison to these baselines, the proposed DUALFormer achieves consis-
tent performance advantages across all datasets, which demonstrates its universality and scalability.
The performance boost stems from avoiding information redundancy between the two modules and
effectively extracting discriminative information.

E.2 FURTHER ASSESSMENT OF EFFICIENCY AND SCALABILITY.

The running time and GPU memory usage for the three large-scale graphs are detailed in Tab. 8. To
demonstrate the impact of components in their architectures, particularly their self-attention mecha-
nisms, on the scalability, the common hyper-parameters remain uniform across all models. It can be
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Table 7: Accuracy in percentage (mean±std) of node classification or property prediction on two het-
erophilic graphs and three large-scale graphs. Best and runner-up models are bolded and underlined,
respectively. − means out of memory or failing to be finished within an acceptable time budget.

Roman-Empire Question ogbn-papers100M ogbn-arxiv pokec

# Nodes 22,662 48,921 111,059,956 169,343 1,632,803
# Edges 32,927 153,540 1,615,685,872 1,166,243 30,622,564
# Attributes 300 301 128 128 65
# Classes 18 2 172 40 2

ChebNetII 74.64±0.39 74.41±0.58 67.18±0.32 72.32±0.23 82.33±0.28

OptBasisGNN 76.91±0.37 73.82±0.83 67.22±0.15 72.27±0.15 82.83±0.04

NodeFormer 74.29±0.75 74.48±1.32 - 67.19±0.83 71.00±1.30

NAGphormer 74.45±0.48 75.13±0.70 - 70.13±0.55 76.59±0.25

SGFormer 73.91±0.79 77.06±1.20 66.01±0.37 72.63±0.13 73.76±0.24

DUALFormer 77.31±0.17 78.62±0.56 67.59±0.28 73.71±0.22 82.97±0.43

Table 8: Training time and GPU memory usage on three large graphs. The best model is bolded and
the runner-up is underlined, respectively.

ogbn-arxiv ogbn-products pokec

Method Time/Epoch(s) Mem.(GB) Time/Epoch(s) Mem.(GB) Time/Epoch(s) Mem.(GB)

GraphGPS 0.114 8.43 8.13 2.56 2.58 2.43
NodeFormer 0.089 2.88 4.43 0.76 1.46 0.75
NAGphormer 0.349 6.02 13.98 4.13 3.59 1.20
Exphormer 0.123 6.76 7.64 2.27 2.17 2.11
GOAT 2.021 1.42 17.33 1.18 6.76 1.12
SGFormer 0.033 0.98 3.70 0.50 1.25 0.44
Polynormer 0.047 4.08 4.17 1.36 1.54 1.22
CoBFormer 0.103 6.46 5.62 9.28 2.44 3.70

DUALFormer 0.034 1.17 3.03 0.54 1.06 0.46

observed that DUALFormer exhibits the shortest runtime and has the top-2 smallest memory usage
compared to the other GTs. The result highlights the efficiency and scalability of DUALFormer.

In addition to the aforementioned results, we conduct a specific comparison of the proposed DU-
ALFormer with NAGphormer, which boasts the lowest training complexity of O(n), as detailed in
Tab. 1. Note that while the preprocessing steps of NAGphormer, which involve obtaining structural
encodings, are computationally intensive, this cost can be amortized over multiple training epochs.
Therefore, it justifies a comprehensive comparison of overall run times. Specifically, the experiment
in Tab. 9 compares DUALFormer with NAGphormer in terms of performance, total running time,
and GPU usage on three datasets: AMiner-CS Feng et al. (2020), Reddit Hamilton et al. (2017),
and Amazon2M. To ensure a fair comparison, this experiment follows the setup of NAGphormer,
with the exception that the data is divided into the commonly accepted ratio of 50%/25%/25% for
training, validation, and testing, respectively.

Table 9: Accuracy (%), running time (s), and GPU memory usage (MB) on three large graphs. The
best model is highlighted in bolded.

AMiner-CS Reddit Amazon2M

Acc(%) Time(s) Mem.(MB) Acc(%) Time(s) Mem.(MB) Acc(%) Time(s) Mem.(MB)

NAGphormer 69.14±0.12 491.70 1672 95.96±0.02 437.85 1710 90.73±0.24 2, 629.46 1786
DUALFormer 69.30±0.27 223.43 1347 95.71±0.07 328.71 1364 91.17±0.15 11, 772.03 1380

From this table, the following three results can be observed. Firstly, on these three large-scale graphs,
the proposed DUALFormer achieves comparable performance to the baseline NAGphormer, which
emphasizes the scalability and effectiveness of DUALFormer. Secondly, the proposed DUALFormer
has short total running times on these datasets except for Amazon2M and less GPU usage on three
datasets compared to NAGpormer. The advantage of DUALFormer primarily stems from its elimi-
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nation of the need for preprocessing to acquire structural encoding and storage, unlike NAGphormer,
which requires such steps. The reason for the failure of DUALFormer on the Amazon2M is that this
graph has the highest number of edges compared to the other two graphs, leading to extended com-
putation times for the GNN module. Thus, this results in a longer overall processing time compared
to NAGphormer without the GNN module, aligning with the results of the complexity analysis.

E.3 ADDITIONAL PARAMETER ANALYSIS

This experiment is conducted to analyze the parameter sensitivity of the proposed DUALFormer to
hyperparameter α. The search range of this parameter is detailed in Section D.3. The experimental
results for seven small-scale and four large-scale graphs are shown in Tab. 10 and Tab. 11, respec-
tively. Firstly, from Tab. 10, it can be observed that DUALFormer is not sensitive to this parameter.
Specifically, within the search range, the variation of classification accuracy does not exceed 0.8%.
Furthermore, the same conclusion is supported by the data in Tab. 11, as the performance variations
do not exceed 1%. Thus, there is no need to concentrate excessively on the precise value.

Table 10: Performance variations for varying parameter α on six small-scale graphs.

Cora CiteSeer PubMed Computers Photo CS Physics

0.1 85.88±0.10 74.45±0.39 83.97±0.43 93.09±0.14 96.74±0.09 95.62±0.05 97.37±0.02

0.3 85.20±0.12 73.69±0.03 83.91±0.07 93.14±0.15 96.43±0.07 95.38±0.04 97.42±0.03

0.5 85.35±0.08 74.06±0.06 83.89±0.52 93.16±0.17 96.39±0.09 95.52±0.05 97.39±0.02

Table 11: Performance variations for varying parameter α on four large-scale graphs.

ogbn-proteins ogbn-arxiv ogbn-products pokec

0.1 82.25±0.25 73.30±0.06 83.19±0.77 82.97±0.43

0.2 82.26±0.31 73.71±0.22 82.99±0.81 82.50±0.46

0.3 82.20±0.38 73.49±0.13 83.79±0.54 82.68±0.34

0.4 82.32±0.67 73.44±0.17 83.07±0.35 82.81±0.45

0.5 82.98±0.51 73.52±0.22 83.91±0.23 81.98±0.79

E.4 LOCAL AND GLOBAL EXPRESSIVITY

Localizing Property. The following theoretical analysis elucidates that in the proposed DUAL-
Former, although the GNN module is set after the global attention module, it is capable of capturing
the locality of the graph. Firstly, from the perspective of graph learning, many classical GNNs (e.g.,
GCN and SGC) can be induced by optimizing the objective function Yang et al. (2021); Zhu et al.
(2021), namely

argmin
H

tr(H⊤L̃H) =
1

2

∑
v,u

ãv,u∥hv − hu∥22 (38)

where L̃ denotes the Laplacian matrix of the normalized adjacent matrix Ã, and H stands for the
node features such as H = XW in GCN and H = X in SGC. This indicates that GNNs essentially
learn local information through feature updates that are constrained by the graph topology.

From the above perspective, the GNN module in the proposed DUALFormer is equivalent to solving
the above objective function with H = Z, where Z denotes the node features obtained from the self-
attention on the dimension regarding features. Thus, even as a post-processing technique, the GNN
module can ensure localizing property by leveraging graph topology to constrain the feature updates.

Globalizing Property. The capability of capturing global information stems from the approximate
equivalence between softmax(QK⊤)V and ϕ(Q)ϕ(K)⊤V. Note that the global information can
be captured by the attention between nodes, i.e., softmax(QK⊤), in the previous GTs. Thus, ac-
cording to the combination law for matrix multiplication, it holds that (QK⊤)V = Q(K⊤V)
and softmax(QK⊤)V ≈ ϕ(Q)(ϕ(K)⊤V). Therefore, this paper tends to approximate the ex-
pensive node attention (QK⊤) via efficient feature attention (K⊤V) since softmax(QK⊤)V ≈
ϕ(Q)(ϕ(K)⊤V). Therefore, the proposed DUALFormer can capture global information.
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F DISCUSSION ON ATTENTION BETWEEN FEATURES

Feature Attention vs. Node Attention. From the experiment results in Section 4, the proposed
feature attention can lead to better efficiency and performance compared to node attention. This
subsection seeks to offer insights into the efficiency and effectiveness of feature attention by com-
paring it with typical node attention.

Firstly, the high efficiency of the feature attention stems from the fact that the dimension of feature
vectors is significantly smaller than the number of nodes. This has been justified through complexity
analysis in Section 3.3. Secondly, the proposed feature attention can result in better model perfor-
mance than the node attention. This is because it alleviates the conflict between limited training data
and the need to model large-scale, complex relations between entries (nodes). On the one hand, the
node attention in the previous GTs needs the model parameters to be accurately trained to model the
relations of n2 pairs. Unfortunately, the training data on graphs is often too limited to train them
accurately. On the other hand, the feature attention in the proposed DUALFormer only requires to
model the relations of f2 pairs, which is much less than n2 pairs. Hence, the training requirement
of the model parameters is not to be as high as in the node attention, and the training data with the
same scale is sufficient. Therefore, the performance can be improved by easing the conflict between
limited training data and modeling relations.

A specific case. Let us consider a specific case where the feature is one-dimensional. In this sce-
nario, neither the node attention nor the proposed feature attention can gather information. Firstly,
in the case of a one-dimensional feature, Vσ(QK⊤) in Eq. 8 simplifies to V · a, where a is a scalar
and V ∈ Rn. Thus, the proposed feature attention is unable to gather information. Furthermore,
for the one-dimensional feature, ϕ(Q)ϕ(K)⊤ in the node attention module reduces to a rank-1 ma-
trix, whose rows only differ from each other by a scalar factor since ϕ(Q) is a column vector and
ϕ(K)⊤ is a row vector. Thus, the aggregation patterns/coefficients for different nodes, represented
by the rows of ϕ(Q)ϕ(K)⊤, only differ by the scalar factor. As a result, ϕ(Q)ϕ(K)⊤V degrades
to the same aggregation pattern/coefficient for different nodes. Since the essence of aggregation is
the different aggregation patterns/coefficients for different nodes, the node attention loses this char-
acteristic for a one-dimensional feature. Therefore, in this special case, neither the node attention
gathers information, like the feature attention. This case demonstrates the importance of multiple
features for the transformer. Thus, the proposed DUALFormer is further justified by exploring the
correlation among multiple features with an additional transformer.
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