
CoPINN: Cognitive Physics-Informed Neural Networks

Siyuan Duan * 1 Wenyuan Wu * 1 Peng Hu 1 Zhenwen Ren 2 Dezhong Peng 1 3 Yuan Sun 1 3

Abstract

Physics-informed neural networks (PINN) aim to
constrain the outputs and gradients of deep learn-
ing models to satisfy specified governing physics
equations, which have demonstrated significant
potential for solving partial differential equations
(PDEs). Although existing PINN methods have
achieved pleasing performance, they always treat
both easy and hard sample points indiscriminately,
especially ones in the physical boundaries. This
easily causes the PINN model to fall into undesir-
able local minima and unstable learning, thereby
resulting in an Unbalanced Prediction Problem
(UPP). To deal with this daunting problem, we
propose a novel framework named Cognitive
Physics-Informed Neural Networks (CoPINN)
that imitates the human cognitive learning man-
ner from easy to hard. Specifically, we first em-
ploy separable subnetworks to encode indepen-
dent one-dimensional coordinates and apply an ag-
gregation scheme to generate multi-dimensional
predicted physical variables. Then, during the
training phase, we dynamically evaluate the diffi-
culty of each sample according to the gradient of
the PDE residuals. Finally, we propose a cogni-
tive training scheduler to progressively optimize
the entire sampling regions from easy to hard,
thereby embracing robustness and generalization
against predicting physical boundary regions. Ex-
tensive experiments demonstrate that our CoPINN
achieves state-of-the-art performance, particularly
significantly reducing prediction errors in stub-
born regions. The code is available at this reposi-
tory: https://github.com/siyuancncd/CoPINN.

*Equal contribution 1College of Computer Science, Sichuan
University, Chengdu, China. 2Southwest University of Science
and Technology, Mianyang, China. 3National Key Laboratory of
Fundamental Algorithms and Models for Engineering Numerical
Simulation, Sichuan University, Chengdu, China. Correspondence
to: Yuan Sun <sunyuan work@163.com>.

Proceedings of the 42 st International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

SPINN

CoPINN (Ours)

SPINN

CoPINN (Ours)

y=-1

y=-1

y=0

y=0

(a)

(b)

Figure 1. The 2D and 3D visualization of the absolute error be-
tween the predicted and exact values. The left graph illustrates
the absolute error of the entire three-dimensional space. The mid-
dle graph demonstrates the absolute error of the boundary when
y = −1, while the right graph displays the absolute error of
the cross-section when y = 0. (a) The absolute error of SPINN
(SOTA) (Cho et al., 2023) on the Helmholtz equation. These results
indicate that SPINN exhibits significantly larger errors near the
physical boundary region compared to the middle region, which
reveals the Unbalanced Prediction Problem (UPP). (b) The abso-
lute error of our CoPINN on the Helmholtz equation, which shows
that CoPINN maintains consistent small absolute errors both near
the physical boundary and in the middle region.

1. Introduction
As a type of equation in mathematics that describes the re-
lationship between functions of multiple variables (Evans,
2022), partial differential equations (PDEs) usually involve
partial derivatives of unknown functions and describe the
laws of change of natural phenomena in disciplines such as
physics, chemistry, and economics. In recent years, solving
PDEs has a wide range of applications in many fields of
science and engineering (Roubı́ček, 2013; Li et al., 2025),
which are crucial for understanding and uncovering the
underlying physical laws. Therefore, a large number of tra-
ditional numerical methods have been developed to solve
PDEs, such as finite element methods (Jagota et al., 2013),
finite difference methods (Thomas, 2013), and finite volume
methods (Barth et al., 2018). Unfortunately, these methods
are resource-intensive and mesh-dependent, thus often re-
quiring a huge time cost to solve such complex systems, for
example, the Navier-Stokes equations (Zou et al., 2024a).
Thanks to the powerful nonlinear representation capabilities
of deep learning, they are also widely used to solve partial

1

https://github.com/siyuancncd/CoPINN

CoPINN: Cognitive Physics-Informed Neural Networks

differential equations. As a mainstream solution method,
physics-informed neural networks (PINN) (Raissi et al.,
2019; Long et al., 2018; Kim et al., 2021; Wright et al.,
2022) have become a promising and effective alternative
to numerical methods, which aim to embed physical prior
knowledge into neural networks to improve flow field pre-
diction capability.

Compared with traditional data-driven methods, PINN can
not only enhance the generalization ability of the model
but also improve the prediction accuracy of the model in
data-scarce environments. Thus, a large number of PINN
methods have been proposed, which mainly focus on the
four techniques: i.e., neural network architectures, opti-
mization schemes, loss re-weighting, and adaptive sampling.
The first category focuses on designing the architecture of
the neural network part of PINN, such as uncertainty es-
timation (Yang et al., 2021; Wu et al., 2025) and solving
multi-dimensional PDEs (Cho et al., 2023). The second
category, from the optimization perspective, designs the loss
function for PINN, such as predicting evolutionary equa-
tions (Li et al., 2024) and region optimization (Wu et al.,
2024). The third category aims to construct the loss re-
weighting strategy to achieve optimization of specific loss
terms (Wang et al., 2022) or training points (Xiang et al.,
2022). The last category dynamically adjusts the distribu-
tion of training data and gives priority to dense sampling in
areas with large residuals or drastic solution changes (such
as boundary layers, shock waves, etc.), thereby improving
the accuracy of the model in key areas and the overall train-
ing efficiency (Wu et al., 2023; Daw et al., 2023).

Although these methods have achieved promising perfor-
mance, they still face some challenges in solving PDEs.
To be specific, almost all of them implicitly assume that
all training data are equally important while ignoring the
differences between samples. In other words, the existing
PINN methods always treat both easy and hard samples
equally while ignoring the effect of physical boundaries
on the learning difficulty of the data. This easily results in
unstable learning and falls into poor local minima, thereby
leading to an Unbalanced Prediction Problem (UPP). As
shown in Figure 1, for the state-of-the-art PINN method
(i.e., SPINN (Cho et al., 2023)), we visualize the abso-
lute error between the predicted value and the exact value
on the Helmholtz equation. According to their prediction
performance, we can observe that the error values in stub-
born regions (such as physical boundaries) are much larger
than those in the middle smooth regions. This shows that
the biggest challenges in solving PDEs are mainly in hard
physical boundary regions, rather than easy smooth regions.

Inspired by the human cognitive learning process, self-paced
learning (SPL) (Jiang et al., 2015) was proposed to train
these samples in the training set from easy to hard. Thanks

to such a gradual learning paradigm, SPL can enhance the
generalization ability according to the difficulty differences
of these samples. However, although SPL has been explored
in numerous areas such as clustering (Zhou et al., 2023; Bai
et al., 2024), classification (Yuan et al., 2024; Chen et al.,
2024), retrieval (Sun et al., 2024a;b; Pu et al., 2025), and
domain generalization (Zhao et al., 2024), it has never been
touched in the field of PINN. The greatest challenge is
how to evaluate the difficulty of samples from the physical
boundary and ones from the smooth region.

To overcome the above challenge, we propose a novel
Cognitive Physical Informed Neural Network (CoPINN)
that overcomes the problem of difficult optimization of sam-
ples in physical boundary regions. As shown in Figure 2,
our CoPINN effectively emulates human cognitive learning,
beginning with easier regions and progressively advancing
to more challenging ones, thereby endowing the model with
generalization in difficult regions. To be specific, we first
adopt the separable sub-networks to encode independent
one-dimensional coordinates instead of using a single MLP
for all multi-dimensional coordinates, thereby reducing the
computational complexity of solving PDEs. Then, we utilize
an aggregation scheme to obtain the multi-dimensional pre-
dicted physical variables. Afterward, in the training process,
CoPINN dynamically evaluates the difficulty of predicting
each sample by the gradient magnitude of the PDE residuals.
Finally, we present a cognitive training scheduler to adap-
tively optimize the PINN model from easy to hard, thereby
endowing it the robustness and generalization against pre-
dicting physical boundary regions. In summary, the main
contributions of this paper are as follows:

• We reveal and study an untouched yet pervasive signif-
icant problem in PINN, termed the unbalanced predic-
tion problem (UPP). Unlike previous PINN methods
that always treat both easy and hard samples equally,
we propose a novel cognitive PINN framework to alle-
viate the negative effect of the hard samples in stubborn
regions during the learning process.

• We propose a PINN model with SPL that measures
the sample-level difficulty and promotes the neural
network to fit samples from easy to hard in solving
PDEs. To the best of our knowledge, our CoPINN
could be the first work that leverages SPL to enhance
the PINN performance in difficult regions.

• We conduct a series of experiments on multiple widely
used PDE equations. These numerical results demon-
strate that the proposed CoPINN can consistently out-
perform seven state-of-the-art PINN methods by a con-
siderable margin under different numbers of colloca-
tion points.

2

CoPINN: Cognitive Physics-Informed Neural Networks

Difficulty measure

Separable learning Original loss

Total
loss

Cognitive
training
scheduler

Sample points
difficulty

yz x
0.0

0.5

1.0

Sample points weights

yz x
0.0

0.5

1.0

Sample points weights

yz x
0.0

0.5

1.0

Sample points weights

Sample
points
weights

Epoch = 1 Epoch = 25000 Epoch = 50000

Easy Hard

Ground truthPrediction

z y
xz y

xz:
y:
x:

Sample points

Merge

z y
x

z y
x

Figure 2. The frameworks of CoPINN. The separable sub-networks are used to encode independent one-dimensional coordinates. Then,
an aggregation scheme is applied to obtain the multi-dimensional predicted physical variables. During the training process, CoPINN
dynamically evaluates the difficulty of predicting each sample based on the gradient magnitude of the PDE residuals. Finally, a cognitive
training scheduler is employed to adaptively optimize the model from easy to hard.

2. Method
2.1. Notations and Motivation

Without loss of generality, we denote the general partial
differential equation (PDE) as the following formula, i,e.,

ut = N (u), x ∈ Ω, t ∈ Γ,

u(x, 0) = u0(x), x ∈ Ω,

u(x, t) = g(x, t), x ∈ ∂Ω, t ∈ Γ,

(1)

where u(x, t) denotes the hidden solution, t and x represent
temporal and spatial coordinates respectively, Ω represents
an open, bounded domain with smooth boundary ∂Ω, Γ rep-
resents a time domain, N denotes a differential operator, and
g(x, t) is a known boundary condition function. Our goal is
to develop a PINN method to obtain approximate solutions
with reasonable accuracy for Equation (1) through neural
network fitting. Although existing PINN methods achieve
promising solving performance, all of them overlook the
effect of physical boundaries on the learning difficulty of
data, which could easily lead to unstable learning and get
stuck in a poor local minimum. Therefore, this inevitably
leads to the Unbalanced Prediction Problem (UPP) for solv-
ing PDEs, which is shown in Figure 1. To address this, we
propose a novel Cognitive Physics-Informed Neural Net-
works (CoPINN). In this paper, we first introduce separable
learning in Section 2.2, followed by a description of our
learning objective in Section 2.3, and conclude with the
cognitive learning scheduler in Section 2.4 and Section 2.5.

2.2. Separable Learning

Traditional PINN usually utilizes an MLP architecture based
on spatiotemporal coordinates to represent the solution func-
tion, where the input corresponds to spatiotemporal coor-
dinates and the output represents the associated solution
quantity. For each training point, computing the PDE resid-
ual loss necessitates multiple forward and backward prop-
agations. As the number of training points (collocation
points) increases, particularly for higher-dimensional or
more complex solutions, the computational burden escalates.
To address this, we follow SPINN (Cho et al., 2023) and
adopt a separable architecture to handle high-dimensional
PDEs efficiently. Specifically, we construct d independent
sub-networks (MLPs), each of which takes a single one-
dimensional coordinate as input. Each sub-network f (θi)

is a vector-valued function that maps the i-th coordinate
to an r-dimensional feature representation. Afterward, we
aggregate these feature representations to obtain the final
prediction as follows,

û(x1, x2, ..., xd) =

r∑
j=1

d∏
i=1

f
(θi)
j (xi), (2)

where û is the predicted solution function, xi ∈ R is a
coordinate of i-th axis, and f

(θi)
j represents the j-th element

of f (θi). In practice, the input coordinates are provided in
batches during both training and inference. To this end, we
extend Equation (2) to allow the neural network to process

3

CoPINN: Cognitive Physics-Informed Neural Networks

mini-batches for efficient training. Specifically, let N input
coordinates, i.e., training points, be sampled from each
axis. The sampling resolutions for different axes need not
be identical. The input coordinates X ∈ RN×d form a
matrix. Consequently, we could obtain the batchified feature
representation F ∈ RN×r×d. Further, Equation (2) could
be extended as the following formula, i.e.,

Û(X:,1, X:,2, ..., X:,d) =

r∑
j=1

d⊗
i=1

F:,j,i, (3)

where Û ∈ RN×N×,...,×N is the discretized solution vector,⊗
represents outer product, F:,:,i ∈ NN×r denotes the

i-th frontal slice matrix of vector F , and F:,j,i ∈ RN is
the j-th column of the matrix F:,:,i. Note that, because
each coordinate axis is encoded separately by this scheme,
compared with the traditional multi-dimensional coordinate
encoding, the memory and time consumption of calculation
are greatly reduced.

2.3. Problem Formulation

In classical PINN (Raissi et al., 2019), a deep neural net-
work is trained to approximate the solution of a PDE. The
idea behind PINN is to embed the underlying physics infor-
mation (i.e., PDEs) directly into the loss function, alongside
traditional data-driven loss terms like initial/boundary condi-
tions and data points. Mathematically, the objective function
L(ûθ) of the vanilla PINN could be represented as

L(û(θ)) = λpdeLpde + λicLic + λbcLbc,

Lpde =

∫
Γ

∫
Ω

||N
[
û(θ)

]
(x, t)||2 dx dt,

Lic =

∫
Ω

||û(θ)(x, 0)− uic(x)||2 dx,

Lbc =

∫
Γ

∫
Ω

||B
[
û(θ)

]
(x, t)− ubc(x, t)||2 dx dt,

(4)

where û(θ) denotes the predicted solution function, x rep-
resents space coordinates, t represents time coordinates Ω
represents an input domain, Γ represents an time domain,
N and B denote generic differential operators, and ubc and
uic are initial, boundary conditions, respectively. λ∗ are
balancing factors for each loss term.

In Equation (4), the loss function in PINN often includes
terms that ensure the neural network satisfies the initial
conditions and boundary conditions of the physical prob-
lem being modeled. The network’s output at every point
must satisfy the physics (through the PDE residual) and
conform to the known physical constraints (through initial
and boundary conditions). Since there are some mutations
in the samples of the physical boundaries, this undoubtedly
increases the difficulty of learning these stubborn points.

Previous PINN methods often implicitly assume that all
training data is equally important while ignoring their dif-
ferences in learning difficulty. It is unreasonable, which has
been proven in Figure 1. To tackle this UPP, we present
a CoPINN method to predict the solution of PDE, which
imitates human cognitive learning to gradually incorporate
more challenging samples from easy to hard during the
process of training the PDE loss. Therefore, the learning
objective of CoPINN can be formulated as follows:

min
θ

L(û(θ)) = min
θ

(
λpde

∫
Γ

∫
Ω

vi · ||N
[
û(θ)

]
(x, t)||2dxdt

+ λic

∫
Ω

||û(θ)(x, 0)− uic(x)||2dx

+ λbc

∫
Γ

∫
Ω

||B
[
û(θ)

]
(x, t)− ubc(x, t)||2dxdt

)
,

(5)
where vi ∈ [0, 1] represents the weight assigned to sam-
ple point xi, which dynamically changes as the training
proceeds.

2.4. Difficulty Evaluation

In traditional SPL (Wang et al., 2021b; Soviany et al., 2022;
Shrivastava et al., 2016), difficulty-level is often based on
predefined heuristics, like the training loss or certain statisti-
cal properties of the data, which might not fully capture the
complexities of the solution space in the context of PINN.
Utilizing just the training loss (disparity between predictions
and ground truth) could not provide a nuanced enough mea-
sure for difficult regions of the solution space, especially
in PDEs that exhibit phenomena like shock waves, singu-
larities, or boundary layers, which exhibit rapid solution
changes. These regions are physically important, thus, we
should handle them with greater care during training. To this
end, we regard the gradient of the PDE residual as a measure
of sample difficulty. By measuring the spatial or temporal
gradient of the residual, we can identify where these phe-
nomena occur. Areas with high gradients are indicative of
regions where the solution changes rapidly, meaning the
network might need additional effort to approximate the
solution. In addition, flatter regions (low gradient) suggest
simpler behaviors where the network could focus less on
achieving high accuracy. To be specific, we dynamically
adjust the difficulty measure based on the current state of
the model, thereby enabling SPL to be much more flexible
and responsive. Instead of relying on a static, predefined
difficulty metric, the model can continuously adapt the focus
during training, emphasizing the more challenging parts of
the solution. To be specific, the difficulty of k-th sample in
i-th epoch could be expressed as

Di
k =

∥∥∥∥∥∂Li
pde

∂xi
k

∥∥∥∥∥
2

. (6)

4

CoPINN: Cognitive Physics-Informed Neural Networks

2.5. Cognitive Training Scheduler

As shown in Figure 1 (a), samples from regions with smooth
variations in physical quantities are typically easier to handle
by current PINN methods. Overemphasizing these samples
while neglecting those from more challenging regions can
impede the model’s ability to accurately fit regions with
abrupt changes in physical quantities. Effectively learning
from regions with significant variations in physical vari-
ables is crucial for accurately solving partial differential
equations (PDEs). To address this challenge, after identi-
fying where physical phenomena occur, such as shocks or
singularities, through a difficulty evaluation, we propose a
cognitive training scheduler to gradually pay more attention
to those challenging regions. Early in training, when the net-
work has less capability to fit difficult regions, giving it more
weight on easy regions helps the model warm up by learning
the basic structure of the solution. As training continues, the
network becomes more capable, and the scheduler directs
the focus to harder regions. This is essential to prevent the
model from overfitting to the simple regions and underfit-
ting the complex, critical regions. This dynamic scheduling
enables the model to learn progressively, ensuring that it’s
exposed to both simple and complex regions of the solution,
which is vital for accurate and robust generalization.

To this end, we dynamically adjust the weights assigned to
easy and difficult samples. As illustrated in Figure 2, during
the initial epoch, easier samples (e.g., those in the middle
region) are assigned higher weights compared to more diffi-
cult samples (e.g., those in boundary regions). Throughout
the training process, the weight difference between easy
and difficult samples gradually diminishes. By the midpoint
of training, the weights for both easy and difficult samples
equalize. Subsequently, the weights for difficult samples
incrementally exceed those for easy samples. To be specific,
during the training process, from the first epoch to the final
one, the weight assigned to the easiest samples decreases
from one to zero. For a training phase with Ne epochs, we
expect the weight of the easiest sample to be 1 in the first
epoch and 0 in Ne epochs. Then, for the easiest sample, the
magnitude of the weight modifications in each epoch can be
calculated as follows:

τe =
v1e − vNe

e

Ne
=

1

Ne
, (7)

where v1e and vnee are the weights assigned to the easiest
sample in the first and final epoch, respectively, with v1e = 1
and vNe

e = 0. Therefore, the weights assigned to the easiest
and hardest samples in epoch i, denoted as vie and vih, are
computed as follows:

vie = v1e − τe · (i− 1) = 1− i− 1

Ne
, (8)

vih = v1h + τe · (i− 1) = 0 +
i− 1

Ne
. (9)

Once vie and vih are calculated, the weight of the j-th most
easy sample in the i-th epoch can be calculated as follows:

δij = (vie − vih) ·
Di

j −Di
e

Di
h −Di

e

, (10)

where Di
j denotes the difficulty measure of j-th most easy

sample, Di
e represents the difficulty measure of the easiest

sample, and Di
h represents the difficulty measure of the

hardest sample, in i-th epoch. The difficulty value is in
the range [0,+∞]. Afterward, we can calculate the weight
vij , for each sample in the i-th epoch, where j signifies the
sample ranked j-th in terms of difficulty measure. It could
be represented as

vij = v1e − τe · (i− 1)− β · δij , (11)

where β is a hyperparameter to adjust the weight variety for
each sample in each epoch.

Note that δij can be computed either globally or locally.
When computed globally, δij is computed over the entire
dataset at once for each epoch. This approach assigns unique
weights to samples based on their difficulty rank across the
entire dataset, thereby providing precise weight calculation.
However, computing δij globally can be computationally
expensive as it necessitates storing the difficulty measure for
each sample until the end of an epoch, limiting its scalability
for large datasets. To address this limitation, we suggest
computing δij locally, which means computing it in one
batch size.

2.6. Weight Analysis

To further analyze the proposed cognitive training scheduler,
we plot the weight trends for different values of β in Fig-
ure 3. The results clearly show that the weight of the easiest
samples decreases as training progresses and the number
of iterations increases. Moreover, from Figure 3 (a), (b), to
(c), it can be observed that as β decreases, the weight of the
more difficult samples gradually increases. If there is only a
single loss term, the approach illustrated in Figure 3 (a) is
often more efficient. This is because it initially focuses on
learning easy samples, progressively incorporating difficult
samples as the number of iterations increases, thereby even-
tually covering all samples. However, our method includes
three loss terms: Lpde, Lic, and Lbc. Adopting the self-
paced learning strategy shown in Figure 3 (a) may cause
the neural network to forget the easy samples learned in
the early stages and shift its focus entirely to the difficult
samples. To mitigate this issue, we recommend setting β to
less than 0.5. A detailed parameter analysis of this choice is
provided in Section 3.3.

5

CoPINN: Cognitive Physics-Informed Neural Networks

Table 1. Full results of the Helmholtz, (2+1)-d Klein-Gordon and Diffusion equation. Nc is the number of collocation points. Due to the
increase in training points, some methods are out-of-memory (O/M). The best and the second-best results are highlighted in boldface and
underlined, respectively.

Equation
Evaluation Metric RL2 RMSE

Methods
Ref.

Nc
163 323 643 1283 2563 163 323 643 1283 2563

H
el

m
ho

ltz

PINN JCP’2019 0.9819 0.9757 0.9723 O/M O/M 0.3420 0.3398 0.3386 O/M O/M
gPINN CMAME’2022 0.3852 0.3255 0.4008 O/M O/M 0.1342 0.1133 0.1396 O/M O/M

AHD-PINN IJCAI’2024 0.2108 0.1903 0.1871 O/M O/M 0.0734 0.0663 0.0652 O/M O/M
SPINN NeurIPS’2023 0.1177 0.0809 0.0592 0.0449 0.0435 0.0410 0.0282 0.0206 0.0156 0.0151

SPINN (m) NeurIPS’2023 0.1161 0.0595 0.0360 0.0300 0.0311 0.0404 0.0207 0.0125 0.0104 0.0108
RoPINN NeurIPS’2024 0.4059 0.3338 O/M O/M O/M 0.1414 0.1162 O/M O/M O/M
FPINN NN’2025 0.3862 0.3502 0.3097 O/M O/M 0.1345 0.1220 0.1079 O/M O/M

CoPINN Ours 0.0172 0.0050 0.0016 0.0007 0.0006 0.0040 0.0015 0.0004 0.0002 0.0002
IMP. - 85% 92% 96% 98% 98% 90% 93% 97% 98% 98%

(2
+1

)-
d

K
le

in
-G

or
do

n

PINN JCP’2019 0.0343 0.0281 0.0299 O/M O/M 0.0218 0.0178 0.0190 O/M O/M
gPINN CMAME’2022 0.0108 0.0025 O/M O/M O/M 0.0069 0.0016 O/M O/M O/M
SPINN NeurIPS’2023 0.0193 0.0060 0.0045 0.0040 0.0039 0.0123 0.0038 0.0029 0.0025 0.0025

SPINN (m) NeurIPS’2023 0.0062 0.0020 0.0013 0.0008 0.0009 0.0039 0.0013 0.0008 0.0005 0.0006
AHD-PINN IJCAI’2024 0.0133 0.0082 0.0147 O/M O/M 0.0084 0.0052 0.0093 O/M O/M

RoPINN NeurIPS’2024 0.1925 0.1806 0.1740 O/M O/M 0.1223 0.1147 0.1105 O/M O/M
FPINN NN’2025 0.0331 0.0213 O/M O/M O/M 0.0210 0.0136 O/M O/M O/M

CoPINN Ours 0.0016 0.0006 0.0004 0.0003 0.0002 0.0010 0.0005 0.0002 0.0002 0.0002
IMP. - 74% 70% 69% 63% 78% 74% 62% 62% 60% 67%

(3
+1

)-
d

K
le

in
-G

or
do

n

PINN JCP’2019 0.0129 O/M O/M O/M O/M 0.0096 O/M O/M O/M O/M
gPINN CMAME’2022 0.0144 O/M O/M O/M O/M 0.0107 O/M O/M O/M O/M
SPINN NeurIPS’2023 0.0151 0.0086 0.0073 O/M O/M 0.0112 0.0064 0.0054 O/M O/M

SPINN (m) NeurIPS’2023 0.0078 0.0065 0.0077 O/M O/M 0.0058 0.0048 0.0057 O/M O/M
AHD-PINN IJCAI’2024 0.0109 0.0107 O/M O/M O/M 0.0081 0.0080 O/M O/M O/M

RoPINN NeurIPS’2024 0.0135 O/M O/M O/M O/M 0.0100 O/M O/M O/M O/M
FPINN NN’2025 0.0152 O/M O/M O/M O/M 0.0113 O/M O/M O/M O/M

CoPINN Ours 0.0041 0.0027 0.0017 O/M O/M 0.0031 0.0019 0.0012 O/M O/M
IMP. - 47% 58% 78% / / 47% 60% 79% / /

D
iff

us
io

n

PINN JCP’2019 0.0095 0.0082 0.0081 O/M O/M 0.00082 0.00071 0.00070 O/M O/M
gPINN CMAME’2022 0.0099 0.0087 0.0090 O/M O/M 0.00086 0.00076 0.00078 O/M O/M
SPINN NeurIPS’2023 0.0447 0.0115 0.0075 0.0061 0.0061 0.00387 0.00100 0.00065 0.00053 0.00053

SPINN (m) NeurIPS’2023 0.0390 0.0067 0.0041 0.0036 0.0036 0.00338 0.00058 0.00036 0.00031 0.00031
AHD-PINN IJCAI’2024 0.0102 0.0080 0.0074 O/M O/M 0.00088 0.00069 0.00064 O/M O/M

RoPINN NeurIPS’2024 0.0412 0.0308 0.0306 O/M O/M 0.00357 0.00267 0.00265 O/M O/M
FPINN NN’2025 0.0058 0.0048 O/M O/M O/M 0.00050 0.00042 O/M O/M O/M

CoPINN Ours 0.0058 0.0038 0.0035 0.0033 0.0033 0.00047 0.00033 0.00030 0.00028 0.00028
IMP. - 0% 21% 12% 8% 8% 6% 21% 17% 10% 10%

0 10000 20000 30000 40000 50000
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

v

Hardest
Easiest

(a) β = 1

0 10000 20000 30000 40000 50000
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

v

Hardest
Easiest

(b) β = 0.5

0 10000 20000 30000 40000 50000
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

v

Hardest
Easiest

(c) β = 0.1

Figure 3. Different β values in cognitive training scheduler result
in a range of changes in weight v.

3. Experiments
3.1. Experimental Setup

Datasets. To show the performance of solving PDEs, we
carry out experiments on six popular public datasets, includ-
ing 1D Convection Equation, 3D (i.e., Diffusion Equation,

Helmholtz Equation, (2+1)-d Klein-Gordon Equation, and
Flow Mixing Problem) and 4D (i.e., (3+1)-d Klein-Gordon
Equation) PDE systems. During training, we perform all
experiments on different numbers of collocation points Nc,
i.e., 163, 323, 643, 1283, and 2563. Due to space limita-
tions, the experimental results of 1D Convection Equation
and (2+1)-d Flow Mixing Problem are shown in the Ap-
pendix C.4 and Appendix C.5.

Baselines. To verify the effectiveness of our method,
we compare the proposed CoPINN with seven state-of-
the-art PINN methods, including: PINN (Raissi et al.,
2019), gPINN (Yu et al., 2022), SPINN (Cho et al., 2023),
SPINN(m) (Cho et al., 2023), AHD-PINN (Dashtbayaz
et al., 2024), RoPINN (Wu et al., 2024), and FPINN (Wu
et al., 2025).

6

CoPINN: Cognitive Physics-Informed Neural Networks

(h) CoPINN (Ours)

(b) gPINN

Helmholtz (Nc = 32)

(a) PINN

(g) SPINN(m)(c) AHD-PINN

Prediction Absolute error

(d) RoPINN

Prediction Absolute error

(e) FPINN

(f) SPINN

Exact solution Exact solution

Figure 4. Prediction results of CoPINN and the seven baselines on the Helmholtz dataset with Nc = 323. The exact solution, prediction,
and absolute error are shown on the left, middle, and right, respectively.

Evaluation Metrics. To comprehensively evaluate our
CoPINN, we employ two evaluation metrics: Relative L2

error (RL2) and Root Mean Square Error (RMSE). To
highlight the advantages of our method, we report the per-
formance improvement (IMP.).

More details of datasets, baselines, evaluation metrics,
and the details of implementation are summarized in
the Appendix B.1, Appendix B.2, Appendix B.3, and Ap-
pendix B.4, respectively.

3.2. Comparison with State-of-the-Art Methods

To comprehensively evaluate the performance of our
CoPINN, we compare it with seven state-of-the-art baselines.
The experimental results on various numbers of collocation
points are shown in Table 1, from which we can observe
that:

• As the number of collocation points increases, the RL2

and RMSE metrics of most methods gradually de-
crease. From these results, we can improve the predic-
tion precision by increasing the number of collocation
points. In the cases of multiple collocation points (i.e.,
Nc = 1283 and Nc = 2563), some comparison meth-
ods (such as PINN, gPINN, AHD-PINN, RoPINN, and
FPINN) fail to complete training due to out-of-memory
(denoted as O/M). In contrast, by leveraging its sep-
arable architecture, CoPINN mitigates the burden of

representing the entire 3D function and completes train-
ing.

• Under any number of collocation points, CoPINN
consistently achieves the best RL2 and RMSE met-
rics across all datasets. It is worth noting that on
the Helmholtz equation with Nc = 2563, CoPINN
achieves an RL2 of just 0.0006. This represents a 98%
improvement compared to the second-best method, i.e.,
SPINN(m). These results validate the effectiveness of
our easy-to-hard cognitive training scheduler.

• For the Diffusion equation, the RL2 of almost all the
comparison methods can achieve the order of 1e-3.
This suggests that the Diffusion equation is relatively
straightforward to learn. In contrast, on the other three
equations (i.e., Helmholtz, (2+1)-d and (3+1)-d Klein-
Gordon), the RL2 of most comparison methods typ-
ically only reaches the order of 1e-1 or 1e-2. This
discrepancy arises because these three equations fea-
ture numerous mutation regions, making them more
challenging to learn. Our method learns data from
easy to hard through the cognitive training scheduler,
which allows the model to gradually optimize, thereby
avoiding local optimality and achieving higher IMP
for more challenging PDEs. This further illustrates the
effectiveness of CoPINN in learning hard PDEs.

7

CoPINN: Cognitive Physics-Informed Neural Networks

(h) CoPINN (Ours)

(b) gPINN

KG3d (Nc = 32)

(a) PINN

(g) SPINN (m)(c) AHD-PINN

(d) RoPINN

(e) FPINN

(f) SPINN

Prediction Absolute error Prediction Absolute errorExact solution Exact solution

Figure 5. Prediction results of our proposed method and the state-of-the-art baselines method on the (2+1)-d Klein-Gordon dataset with
Nc = 323. The exact solution, prediction, and absolute error are shown on the left, middle, and right, respectively.

Table 2. Ablation study on the (2+1)-d Klein-Gordon equation.
Evaluation metric is RL2.

Methods
Nc 163 323 643 1283 2563

CoPINN-1 0.0062 0.0020 0.0013 0.0008 0.0009
CoPINN-2 0.0037 0.0027 0.0015 0.0013 0.0011
CoPINN-3 0.0016 0.0010 0.0008 0.0008 0.0005

CoPINN (Ours) 0.0016 0.0006 0.0004 0.0003 0.0002

3.3. Ablation Study

The proposed cognitive training scheduler in our CoPINN
consists of two components, i.e., the epoch change compo-
nent (τe ·(i−1)), and the sample change component (β ·δij).
To demonstrate the effectiveness of each component, we con-
duct an ablation study on the (2+1)-d Klein-Gordon equa-
tion with collocation point number Nc = 323. To be spe-
cific, we design the following three variations of CoPINN,
i.e., CoPINN-1, CoPINN-2, and CoPINN-3. Among them,
CoPINN-1 represents using the original loss function, i.e.,
Equation (4). CoPINN-2 represents removing the epoch
change component in Equation (11), i.e., the weights are
calculated by vij = v1e − β · δij . CoPINN-3 represents re-
moving the sample change component in Equation (11), i.e.,
the weights are calculated by vij = v1e − τe · (i − 1). The

10 6 10 5 10 4 10 3 10 2 10 1 100
0.00

0.01

0.02

0.03

0.04

0.05

Va
lu

e

Relative L2 error
RMSE

(a) Helmholtz

10 6 10 5 10 4 10 3 10 2 10 1 100
0.00050

0.00055

0.00060

0.00065

0.00070

0.00075

0.00080

0.00085

Va
lu

e

Relative L2 error
RMSE

(b) (2+1)-d Klein-Gordon

Figure 6. Performance of CoPINN with varying β on the
Helmholtz equation and the (2+1)-d Klein-Gordon equation with
Nc = 323.

results are shown in Table 2. We can draw the following ob-
servations: (1) Both of these two components are essential,
and missing either will result in performance degradation.
(2) The epoch change component is more important than
the sample change component. More detailed ablation study
is provided in Appendix C.1.

3.4. Visualisation Analysis

To more comprehensively compare our CoPINN with base-
lines, we present the exact solution, prediction results, and
absolute errors for each method on the Helmholtz and (2+1)-
d Klein-Gordon equation with collocation points Nc = 323.
The visualization results are shown in Figure 4 and Figure 5.

8

CoPINN: Cognitive Physics-Informed Neural Networks

0 10000 20000 30000 40000 50000
Epochs

10 2

10 1

100

Re
la

tiv
e

L2
 E

rro
r

PINN
gPINN
RoPINN
AHD-PINN
FPINN
SPINN
SPINN(m)
CoPINN

(a) Helmholtz

0 10000 20000 30000 40000 50000
Epochs

10 3

10 2

10 1

100

Re
la

tiv
e

L2
 E

rro
r

PINN
gPINN
RoPINN
AHD-PINN
FPINN
SPINN
SPINN(m)
CoPINN

(b) (2+1)-d Klein-Gordon

Figure 7. Variation curve of RL2 with the increase of epoch under
Nc = 323.

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Difficulty

0

20

40

60

80

100

D
en

si
ty

Epoch=500
Epoch=5000
Epoch=50000

(a) Cognitive training

0.0 0.1 0.2 0.3 0.4 0.5

Difficulty

0

10

20

30

40

50

60

70

D
en

si
ty

Epoch=500
Epoch=5000
Epoch=50000

(b) w/o cognitive training

Figure 8. Difficulty density on different epochs. Experiments are
conducted on the (3+1)-d Klein Gordon equation PDE systems
with 163 collocation points.

We can observe that: (1) All comparison methods exhibit a
significantly poorer fitting performance on the Helmholtz
equation than on the (2+1)-dimensional Klein-Gordon equa-
tion. This suggests that the Helmholtz equation is more
challenging to learn. (2) CoPINN closely aligns with the ex-
act solutions for both the more difficult Helmholtz equation
and the relatively easier (2+1)-dimensional Klein-Gordon
equation, especially in difficult regions such as physical
boundaries, which is attributed to its progressive optimiza-
tion of the entire sampling regions from easy to hard. More
visualisation and analysis on the Diffusion equation are
shown in Appendix C.2.

3.5. Parametric Analysis

To investigate the impact of different β-hyperparameter val-
ues in Equation (11) on the performance of CoPINN, we
plot the performance curves of CoPINN with varying β on
the Helmholtz equation and the (2+1)-d Klein-Gordon equa-
tion with Nc = 323 in Figure 6. On the Helmholtz equation,
the performance of CoPINN initially remains stable as β in-
creases, but then rapidly declines (with a sharp rise in error).
For the (2+1)-d Klein-Gordon equation, the performance of
CoPINN first improves and then deteriorates as β increases,
achieving optimal performance when β = 10−2. Therefore,
we recommend that the value of β be chosen within [10−4,
10−1].

3.6. Error Analysis

To further observe the performance trend of our CoPINN as
the number of iterations increases, we plot the RL2 varia-
tion curves for each method across epochs on the Helmholtz
and (2+1)-d Klein-Gordon equations. As shown in Figure 7,
we can observe that: (1) Although the RL2 curves exhibit
some fluctuations, CoPINN shows an overall downward
trend. This shows that CoPINN is correctly optimized. (2)
CoPINN outperforms all comparison methods for the ma-
jority of the epochs, and as the number of epochs increases,
its final performance consistently surpasses that of the oth-
ers. This improvement is attributed to CoPINN gradually
learning the entire sampling region from easy to difficult,
thus overcoming the UPP. Besides, results and analysis on
the RMSE metric can be found in Appendix C.3.

3.7. Difficulty Analysis

To evaluate the effectiveness of the cognitive training sched-
uler of CoPINN, we visualize the difficulty density of sam-
ples under different iterations. The results are shown in
the Figure 8, from which we can observe that: (1) With
the increase in the number of iterations, the overall dif-
ficulty gradually decreases with or without the cognitive
training scheduler. (2) Compared with without cognitive
training scheduler, our method can reduce the difficulty of
the samples, thanks to gradually increasing the weight of
the difficult samples during the training phase.

4. Conclusion
In this paper, we reveal and address a previously unex-
plored yet pervasive challenge in PINN, referred to as the
Unbalanced Prediction Problem (UPP). To tackle this is-
sue, we propose a novel Cognitive Physics-Informed Neural
Networks (CoPINN) method, which imitates the human
cognitive learning manner from easy to hard. Specifically,
our CoPINN first adopt separable learning to encode each
independent one-dimensional coordinate by each separa-
ble sub-network, thereby reducing computational complex-
ity. Then, an aggregation scheme is applied to produce
multi-dimensional predictions. During the training process,
CoPINN dynamically evaluates the difficulty of each sam-
ple based on the gradient magnitude of the PDE residuals.
Finally, we propose a cognitive training scheduler that adap-
tively optimizes the PINN model from easy to difficult sam-
ples, improving its robustness and generalization, especially
in predicting physical boundary regions. To demonstrate its
versatility, we evaluate CoPINN on multiple widely used
PDEs. Experimental results show that CoPINN consistently
outperforms all comparison methods.

9

CoPINN: Cognitive Physics-Informed Neural Networks

Acknowledgements
This work was supported by the Open Research Project of
the National Key Laboratory of Fundamental Algorithms
and Models for Engineering Numerical Simulation.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

References
Bai, S., Ren, X., Zheng, Q., and Zhu, J. Graph-driven

deep multi-view clustering with self-paced learning.
Knowledge-Based Systems, 296:111871, 2024.

Barth, T., Herbin, R., and Ohlberger, M. Finite volume
methods: foundation and analysis. Encyclopedia of Com-
putational Mechanics Second Edition, pp. 1–60, 2018.

Cai, S., Wang, Z., Wang, S., Perdikaris, P., and Karniadakis,
G. E. Physics-informed neural networks for heat trans-
fer problems. Journal of Heat Transfer, 143(6):060801,
2021.

Chen, J., Zhang, R., Wang, J., Hu, C., and Mao, Y.
Self-paced pairwise representation learning for semi-
supervised text classification. In Proceedings of the ACM
on Web Conference 2024, pp. 4352–4361, 2024.

Cho, J., Nam, S., Yang, H., Yun, S.-B., Hong, Y., and Park,
E. Separable physics-informed neural networks. Ad-
vances in Neural Information Processing Systems, 2023.

Dashtbayaz, N. H., Farhani, G., Wang, B., and Ling, C. X.
Physics-informed neural networks: Minimizing residual
loss with wide networks and effective activations. pp.
5853–5861. ijcai.org, 2024.

Daw, A., Bu, J., Wang, S., Perdikaris, P., and Karpatne, A.
Mitigating propagation failures in physics-informed neu-
ral networks using retain-resample-release (r3) sampling.
In International Conference on Machine Learning, 2023.

Evans, L. C. Partial differential equations, volume 19.
American Mathematical Society, 2022.

Jagota, V., Sethi, A. P. S., and Kumar, K. Finite element
method: an overview. Walailak Journal of Science and
Technology (WJST), 10(1):1–8, 2013.

Jagtap, A. D., Kharazmi, E., and Karniadakis, G. E. Con-
servative physics-informed neural networks on discrete
domains for conservation laws: Applications to forward
and inverse problems. Computer Methods in Applied
Mechanics and Engineering, 365:113028, 2020.

Jiang, L., Meng, D., Zhao, Q., Shan, S., and Hauptmann,
A. Self-paced curriculum learning. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 29,
2015.

Jin, L., Liu, L., Wang, X., Shang, M., and Wang, F.-Y.
Physical-informed neural network for mpc-based trajec-
tory tracking of vehicles with noise considered. IEEE
Transactions on Intelligent Vehicles, 2024.

Kharazmi, E., Zhang, Z., and Karniadakis, G. E. hp-vpinns:
Variational physics-informed neural networks with do-
main decomposition. Computer Methods in Applied Me-
chanics and Engineering, 374:113547, 2021.

Kim, J., Lee, K., Lee, D., Jhin, S. Y., and Park, N. Dpm: A
novel training method for physics-informed neural net-
works in extrapolation. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 35, pp. 8146–
8154, 2021.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. CoRR, abs/1412.6980, 2014.

Krishnapriyan, A., Gholami, A., Zhe, S., Kirby, R., and
Mahoney, M. W. Characterizing possible failure modes
in physics-informed neural networks. Advances in Neural
Information Processing Systems, 34:26548–26560, 2021.

Li, T., Zou, Y., Zou, S., Chang, X., Zhang, L., and Deng,
X. Learning to solve pdes with finite volume-informed
neural networks in a data-free approach. Journal of Com-
putational Physics, 530:113919, 2025.

Li, Y., Chen, S., Shan, B., and Huang, S.-J. Causality-
enhanced discreted physics-informed neural networks for
predicting evolutionary equations. In International Joint
Conferences on Artificial Intelligence Organization, pp.
4497–4505, 2024.

Long, Z., Lu, Y., Ma, X., and Dong, B. Pde-net: Learning
pdes from data. In International conference on machine
learning, pp. 3208–3216. PMLR, 2018.

Pu, R., Sun, Y., Qin, Y., Ren, Z., Song, X., Zheng, H.,
and Peng, D. Robust self-paced hashing for cross-
modal retrieval with noisy labels. arXiv preprint
arXiv:2501.01699, 2025.

Raissi, M., Perdikaris, P., and Karniadakis, G. Physics-
informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear
partial differential equations. Journal of Computational
Physics, 378:686–707, 2019.

Roubı́ček, T. Nonlinear partial differential equations with
applications, volume 153. Springer Science & Business
Media, 2013.

10

CoPINN: Cognitive Physics-Informed Neural Networks

Shrivastava, A., Gupta, A., and Girshick, R. Training region-
based object detectors with online hard example mining.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 761–769, 2016.

Song, C. and Alkhalifah, T. A. Wavefield reconstruction
inversion via physics-informed neural networks. IEEE
Transactions on Geoscience and Remote Sensing, 60:1–
12, 2021.

Soviany, P., Ionescu, R. T., Rota, P., and Sebe, N. Cur-
riculum learning: A survey. International Journal of
Computer Vision, 130(6):1526–1565, 2022.

Sun, Y., Dai, J., Ren, Z., Chen, Y., Peng, D., and Hu, P. Dual
self-paced cross-modal hashing. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 38,
pp. 15184–15192, 2024a.

Sun, Y., Qin, Y., Peng, D., Ren, Z., Yang, C., and Hu,
P. Dual self-paced hashing for image retrieval. IEEE
Transactions on Multimedia, 2024b.

Thomas, J. W. Numerical partial differential equations:
finite difference methods, volume 22. Springer Science &
Business Media, 2013.

Wang, S., Teng, Y., and Perdikaris, P. Understanding and
mitigating gradient flow pathologies in physics-informed
neural networks. SIAM Journal on Scientific Computing,
43(5):A3055–A3081, 2021a.

Wang, S., Yu, X., and Perdikaris, P. When and why pinns
fail to train: A neural tangent kernel perspective. Journal
of Computational Physics, 449:110768, 2022.

Wang, X., Chen, Y., and Zhu, W. A survey on curriculum
learning. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 44(9):4555–4576, 2021b.

Wright, L. G., Onodera, T., Stein, M. M., Wang, T.,
Schachter, D. T., Hu, Z., and McMahon, P. L. Deep
physical neural networks trained with backpropagation.
Nature, 601(7894):549–555, 2022.

Wu, C., Zhu, M., Tan, Q., Kartha, Y., and Lu, L. A compre-
hensive study of non-adaptive and residual-based adaptive
sampling for physics-informed neural networks. Com-
puter Methods in Applied Mechanics and Engineering,
403:115671, 2023.

Wu, H., Luo, H., Ma, Y., Wang, J., and Long, M. Ropinn:
Region optimized physics-informed neural networks. In
Advances in Neural Information Processing Systems,
2024.

Wu, W., Duan, S., Sun, Y., Yu, Y., Liu, D., and Peng, D.
Deep fuzzy physics-informed neural networks for for-
ward and inverse pde problems. Neural Networks, 181:
106750, 2025.

Xiang, Z., Peng, W., Liu, X., and Yao, W. Self-adaptive loss
balanced physics-informed neural networks. Neurocom-
puting, 496:11–34, 2022.

Yang, L., Meng, X., and Karniadakis, G. E. B-pinns:
Bayesian physics-informed neural networks for forward
and inverse pde problems with noisy data. Journal of
Computational Physics, 425:109913, 2021.

Yu, J., Lu, L., Meng, X., and Karniadakis, G. E. Gradient-
enhanced physics-informed neural networks for forward
and inverse pde problems. Computer Methods in Applied
Mechanics and Engineering, 393:114823, 2022.

Yuan, Z., Liu, H., Zhou, H., Zhang, D., Zhang, X., Wang, H.,
and Xiong, H. Self-paced unified representation learning
for hierarchical multi-label classification. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 16623–16632, 2024.

Zhao, D., Koh, Y. S., Dobbie, G., Hu, H., and Fournier-
Viger, P. Symmetric self-paced learning for domain gen-
eralization. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence, volume 38, pp. 16961–16969, 2024.

Zhou, P., Sun, B., Liu, X., Du, L., and Li, X. Active clus-
tering ensemble with self-paced learning. IEEE Transac-
tions on Neural Networks and Learning Systems, 2023.

Zou, Y., Li, T., Lu, L., Wang, J., Zou, S., Zhang, L.,
and Deng, X. Finite-difference-informed graph network
for solving steady-state incompressible flows on block-
structured grids. Physics of Fluids, 36(10):103608, 10
2024a.

Zou, Z., Meng, X., and Karniadakis, G. E. Correcting
model misspecification in physics-informed neural net-
works (pinns). Journal of Computational Physics, 505:
112918, 2024b.

11

CoPINN: Cognitive Physics-Informed Neural Networks

APPENDIX
This document provides additional details, analysis, and experimental results to support the main submission.

• In Appendix A, we provide a detailed flow of CoPINN training algorithm.

• In Appendix B, we provide detailed experimental setup:

– Datasets details in Appendix B.1
– Baselines details in Appendix B.2
– Evaluation metrics details in Appendix B.3
– Implementation details in Appendix B.4

• In Appendix C, we present additional experimental results to highlight the advantages of CoPINN:

– Additional ablation study in Appendix C.1
– Additional visualisation analysis in Appendix C.2
– Additional error analysis in Appendix C.3
– Additional experiments on flow-mixing 3D equation in Appendix C.4
– Additional experiments on Convection equation in Appendix C.5

• In Appendix D, we present related work that is closely connected to this study.

• In Appendix E, we discuss the limitations of CoPINN.

A. CoPINN Training Algorithm
Algorithm 1 describes the training algorithm of Cognitive Physics-Informed Neural Networks (CoPINN). First, the separable
sub-networks are used to encode independent one-dimensional coordinates. Second, an aggregation scheme is applied to
obtain the multi-dimensional predicted physical variables. During the training process, CoPINN dynamically evaluates the
difficulty of predicting each sample based on the gradient magnitude of the PDE residuals. Finally, a cognitive training
scheduler is employed to adaptively optimize the model from easy to hard.

Algorithm 1 CoPINN algorithm

Input: maximal epoch number Ne, initial parameters of sub-networks of CoPINN {f (θj)
j }rj=1, training set D, hyperpa-

rameter β.
Output: optimized network parameters {θj}rj=1.
Compute epoch step size τe by Equation (7).
for i = 1 to Ne do

Calculate the output of each sub-network and merge them by Equation (2).
Calculate original PDE loss Lpde, IC loss Lic, and BC loss Lbc.
Compute the weight assigned to the easiest sample point in epoch i, i.e., vie, by Equation (8).
Compute the weight assigned to the hardest sample point in epoch i, i.e., vih, by Equation (9).
Compute difficulty Di

k for each sample point xi
k by Equation (6).

Compute weights for each sample point according to their difficulty by Equation (11).
Compute weighted loss by Equation (5).
Update {θj}rj=1.

end for

B. Detailed Experimental Setup
B.1. Dataset Details

Details of the five partial differential equations used in the experiment are as follows.

12

CoPINN: Cognitive Physics-Informed Neural Networks

Helmholtz equation. The Helmholtz equation is a second-order partial differential equation that is commonly used
to describe phenomena such as waves and vibrations. It has important applications in physics, engineering, acoustics,
electromagnetism, and quantum mechanics. The form of the Helmholtz equation we selected is as follows:

∆u+ k2u = q, x ∈ Ω, (12)
u(x) = 0, x ∈ ∂Ω, (13)

where Ω is the spatial domain, Ω = [−1, 1]3, q is the given source term, q = −(a1π)
2u− (a2π)

2u− (a3π)
2u+ k2u, u is

the manufactured solution, u = sin(a1πx1) sin(a2πx2) sin(a3πx3), where k = 1, a1 = 4, a2 = 4, a3 = 3.

Diffusion Equation. Diffusion equations are mathematical models used to describe changes in the diffusion or distribution
of matter, energy, or other physical quantities in space. It has a wide range of applications in physics, chemistry, biology,
and engineering, such as heat conduction, pollutant diffusion, gas diffusion, and so on. The form of the Diffusion equation
we selected is as follows:

ut = α(∥∇u∥2 + u∆u), x ∈ Ω, t ∈ Γ, (14)
u(x, 0) = uic(x), x ∈ Ω, (15)
u(x, t) = 0, x ∈ ∂Ω, t ∈ Γ, (16)

where α is the diffusion coefficient, α = 0.05, Ω is the spatial domain, Ω = [−1, 1]2, Γ is the temporary domain, Γ = [0, 1].
uic is the initial condition. Following SPINN (Cho et al., 2023), we use the PDE simulation software FEniCS to obtain the
numerical solution as the reference, with a resolution of 101×101×101. The initial condition uic is a superposition of three
Gaussian functions, as shown below:

uic(x, y) = 0.25 exp[−10{(x− 0.2)2 + (y − 0.3)2}]
+ 0.4 exp[−15{(x+ 0.1)2 + (y + 0.5)2}] (17)

+ 0.3 exp[−20{(x+ 0.5)2 + y2}].

Klein-Gordon Equation. The Klein-Gordon equation is an equation in quantum field theory that describes scalar fields.
It is an important equation for describing particles in relativistic quantum field theory and is a wave equation under the
framework of special relativity, especially for describing massless spin particles (such as scalar particles). The solution of
this equation can be used to describe the quantum states of some quantum fields and can be generalized to describe particles
with spin (such as electrons and photons). The form of the Klein-Gordon equation we selected is as follows:

utt −∆u+ u2 = f, x ∈ Ω, t ∈ Γ, (18)
u(x, 0) = x1 + x2, x ∈ Ω, x ∈ Ω, (19)
u(x, t) = ubc(x), x ∈ ∂Ω, t ∈ Γ, (20)

where Ω is the spatial domain, Ω = [−1, 1]2, Γ is the temporary domain, Γ = [0, 10], u is the manufactured solution,
u = (x1 + x2) cos(2t) + x1x2 sin(2t), f , ubc is extracted from manufactured solution u.

(2+1)-d Flow Mixing Problem. Flow mixing is a crucial topic in fluid mechanics, typically involving the interaction of
multiple fluid components or fluids with varying temperatures and densities during flow. The Flow Mixing equations that
govern this process are derived from the laws of conservation of mass, momentum, and energy, along with the transport
properties of the fluid, such as diffusion, convection, and turbulence. In this paper, we model flow mixing as a time-dependent
partial differential equation that describes the mixing behavior of two fluids at the interface within a two-dimensional
environment, as shown in the following form:

u(t, x, y) = − tanh(
y

2
cos(ωt)− x

2
sin(ωt)), t ∈ [0, 4], x ∈ [−4, 4], y ∈ [−4, 4], (21)

ω =
1

r

vt
vt,max

(22)

ut + αux + βuy = 0, (23)

13

CoPINN: Cognitive Physics-Informed Neural Networks

α(x, y) = − vt
vt,max

y

r
, (24)

β(x, y) = − vt
vt,max

x

r
, (25)

vt = sech2(r) tanh(r), (26)

r =
√

x2 + y2, (27)

vt,max = 0.385. (28)

Convection Equation. In this study, we consider a 1D Convection equation, which is commonly used to model transport
phenomena, described as follows:

∂u

∂t
+ ξ

∂u

∂x
= 0, x ∈ [0, 2π], t ∈ [0, 1] (29)

u(x, 0) = h(x) (30)
u(0, t) = u(2π, t) (31)

where ξ is the convection coefficient and h(x) is the initial condition. Following (Krishnapriyan et al., 2021), we use a
constant setting of h(x) = sin(x) with periodic boundary conditions in all our experiments, while varying the value of ξ in
different case studies.

B.2. Evaluation Baselines

We compare the proposed CoPINN with the following methods:

• PINN (Physics-informed neural networks) (Raissi et al., 2019) is the first attempt to integrate physical information,
namely, the constraints of PDEs, into neural network optimization. This integration allows the model to learn the
data distribution during training while adhering to physical laws, thereby enhancing both its generalization ability and
physical consistency.

• gPINN (Gradient-enhanced physics-informed neural networks) (Yu et al., 2022) leverages gradient information of the
PDE residual and embeds the gradient into the loss function, thereby improving the accuracy and training efficiency of
PINN.

• SPINN (Separable physics-informed neural networks) (Cho et al., 2023) propose a new architecture to operate on a
per-axis basis, thereby significantly reducing the number of network propagations in multi-dimensional PDEs. Based
on SPINN, the author also proposed SPINN with modified MLP (SPINN (m)), which uses modified MLP to replace
MLP and achieve better performance.

• AHD-PINN (PINN with Higher Derivative of the Activation function satisfies bijective) (Dashtbayaz et al., 2024)
demonstrates the global minimization of residual loss in PINN with sufficient network width, and establishes optimal
activation function selection based on bijective derivatives for k-th order operators.

• RoPINN (Region optimized physics-informed neural networks) (Wu et al., 2024) extends the optimization process of
PINN from isolated points to their continuous neighborhood regions, which can theoretically decrease the generalization
error, especially for hidden high-order constraints of PDEs.

• FPINN (Deep fuzzy physics-informed neural networks) (Wu et al., 2025) is the first attempt to apply fuzzy neural
network to solve PDEs, which can handle the ambiguity in data from commercial simulation software.

14

CoPINN: Cognitive Physics-Informed Neural Networks

B.3. Evaluation Metrics

To comprehensively evaluate our CoPINN, we introduce two evaluation metrics: Relative L2 error (RL2) and Root Mean
Square Error (RMSE). To be specific, for the forward problem of partial differential equations, the Relative L2 error is
defined as:

RL2 =
1

m

m∑
i=1

∥∥∥ui
pred − ui

exact

∥∥∥
2∥∥ui

exact

∥∥
2

, (32)

where ui
pred and ui

exact indicate the prediction and reference solutions of the i-th collocation point, m is the number of
collocation points, respectively.

The second evaluation metric is the Root Mean Square Error, given by:

RMSE =

√√√√ 1

m

m∑
i=1

(ui
pred − ui

exact)
2. (33)

The calculation methods for RL2 and RMSE are referenced in the original PINN paper (Raissi et al., 2019) and the SPINN
paper (Cho et al., 2023).

The third evaluation metric is the improvement percentage (IMP.), given by:

IMP. =
|us − ub|

us
× 100%, (34)

where us represents the RL2 or RMSE of the second-best method, while ub denotes the RL2 or RMSE of the best
method.

B.4. Implementation Details

The results of all the experiments were averaged from five random seeds. For Helmholtz, (2+1)-d Klein-Gordon, (3+1)-d
Klein-Gordon, Diffusion and flow Mixing 3D equations, we set the sampling points to 1003, 1003, 503, 1013, and 1003

during testing, respectively. Following SPINN (Cho et al., 2023), we divide the dataset into a training set and a test set. The
training set is used to train the neural network, while the test set is used to evaluate the prediction ability of the model. For
all comparative methods, we use the source codes provided by the original authors and apply the parameters recommended
in their published papers. For our CoPINN, the network architecture consists of five hidden layers, where each layer has
128 hidden units. We apply the modified MLP introduced in (Wang et al., 2021a) to CoINN. On all datasets, we exploit
the Adam optimizer (Kingma & Ba, 2014) to train our model with a large learning rate of 1e-3 for 50,000 epochs. We use
the ‘tanh’ activation function throughout our CoPINN. According to the parameter analysis of our method, on the (2+1)-d
Klein-Gordon dataset, we set β = 0.01. And on the Helmholtz, Diffusion, and (3+1)-d Klei-Gordon datasets, β is set to
0.001. To ensure a fair comparison, we set the balance parameter of the loss terms to be equal, i.e., λ∗ = 1 in Equation (5).
All experiments are implemented in JAX/Flax and trained on a single NVIDIA 3090 GPU with 24GB of memory.

C. Additional Experimental Results
C.1. Additional Ablation Study

This section serves as a supplement to the ablation study in Section 3.3. To demonstrate the effectiveness of each component
in the cognitive training scheduler of our CoPINN, we perform an ablation study on the (2+1)-d Klein-Gordon equation
using the RMSE metric. Specifically, we design the following three variations of CoPINN, i.e., CoPINN-1, CoPINN-2,
and CoPINN-3. Specifically, CoPINN-1 uses the original loss function, i.e., Equation (4). CoPINN-2 represents removing
the epoch change component in Equation (11), i.e., the weights are calculated by vij = v1e − β · δij . CoPINN-3 represents
removing the sample change component in Equation (11), i.e., the weights are calculated by vij = v1e − τe · (i− 1). The
results are shown in Table 3 demonstrate that: (1) Both of these two components are essential, and missing either will result
in performance degradation. (2) The epoch change component is more important than the sample change component. These
observations are the same as leveraging RL2.

15

CoPINN: Cognitive Physics-Informed Neural Networks

Table 3. Ablation study on the (2+1)-d Klein-Gordon equation. Evaluation metric is RMSE.

Methods
Nc 163 323 643 1283 2563

CoPINN-1 0.0039 0.0013 0.0008 0.0005 0.0002
CoPINN-2 0.0023 0.0017 0.0010 0.0008 0.0007
CoPINN-3 0.0010 0.0006 0.0005 0.0005 0.0003

CoPINN (Ours) 0.0010 0.0005 0.0002 0.0002 0.0002

C.2. Additional Visualisation Analysis

This section serves as a supplement to the visualisation analysis presented in Section 3.4. To more comprehensively compare
CoPINN with baselines, we present the exact solution, prediction, and absolute error for each method on the Diffusion
equation in Figure 9. The selected time points are t = 0, 0.5, 1. The prediction results of our CoPINN are highly consistent
with the exact solution, further confirming its superior performance.

t = 0.0

t = 0.5

Exact solution Prediction Absolute error

t = 1.0

(a) CoPINN

t = 0.0

t = 0.5

Exact solution Prediction Absolute error

t = 1.0

(b) SPINN (m)

Figure 9. Prediction results of CoPINN and SPINN (m) on the Diffusion dataset with Nc = 2563. The left is the exact solution, the
middle is the predicted value, and the right is the absolute value of the error.

C.3. Additional Error Analysis

This section serves as a supplement to the error analysis presented in Section 3.6. To further observe the performance trend
of our CoPINN as the number of iterations increases, we plot the RMSE metric variation curves for each method across
epochs on the Helmholtz and (2+1)-d Klein-Gordon equations. As shown in Figure 10, similar observations can be obtained
as in the RL2 metric: despite fluctuations, RMSE curves for all methods generally decrease over iterations, showing
effective optimization, with CoPINN consistently outperforming baselines and achieving superior final performance as
epochs increase. These consistent improvement underscores the superiority and stability of our CoPINN.

16

CoPINN: Cognitive Physics-Informed Neural Networks

0 10000 20000 30000 40000 50000
Epochs

10 3

10 2

10 1

100

RM
SE

PINN
gPINN
RoPINN
AHD-PINN
FPINN
SPINN
SPINN(m)
CoPINN

(a) Helmholtz

0 10000 20000 30000 40000 50000
Epochs

10 3

10 2

10 1

100

RM
SE

PINN
gPINN
RoPINN
AHD-PINN
FPINN
SPINN
SPINN(m)
CoPINN

(b) (2+1)-d Klein-Gordon

Figure 10. Variation curve of RMSE with the increase of epoch under Nc = 323.

C.4. Experiments on Flow-mixing 3D Equation

To further validate the performance advantages of the proposed CoPINN, we compare the results of CoPINN, SPINN, and
SPINN(m) on a more complex Flow-mixing 3D Equation. As demonstrated by the results in Table 4, CoPINN achieves the
smallest error on the Flow-mixing 3D Equation, further confirming its superiority.

Table 4. Full results of the Flow-mixing 3D equation. Nc is the number of collocation points. The best and the second-best results are
highlighted in boldface and underlined, respectively.

Evaluation Metric RL2 RMSE

Methods Ref.
Nc 163 323 643 1283 2563 163 323 643 1283 2563

SPINN NeurIPS’2023 0.1352 0.1054 0.0861 0.0787 0.0672 0.1087 0.0875 0.0711 0.0575 0.0488
SPINN (m) NeurIPS’2023 0.0884 0.0263 0.0080 0.0032 0.0023 0.0342 0.0241 0.0063 0.0022 0.0016

CoPINN Ours 0.0853 0.0230 0.0063 0.0032 0.0022 0.0323 0.0190 0.0060 0.0022 0.0015
IMP. - 4% 11% 21% 0% 4% 6% 21% 5% 0% 6%

C.5. Experiments on Convection Equation

To further validate the effectiveness of the proposed difficulty evaluation and cognitive training scheduler on the 1D
Convection equation, we employ them on the vanilla PINN. In this experiment, we set the number of collocation points
to 1000, set the β in the cognitive training scheduler as 0.1, do not change other default parameters, and average across 3
random runs. The experimental results below show that, in Equation (29), when ξ = 30, our method outperforms all the
comparison methods, and when ξ = 50, our method is also competitive compared to R3 and Casual R3.

Table 5. Relative L2 errors of comparative methods over 1D Convection equation.

Methods
ξ

30 50

RAD (Wu et al., 2023) 0.0418 0.6547
R3 (Daw et al., 2023) 0.0160 0.5794

Causal R3 (Daw et al., 2023) 0.0073 0.5471
Ours 0.0055 0.5811

17

CoPINN: Cognitive Physics-Informed Neural Networks

D. Related Work
Physics-Informed Neural Networks (PINN) (Raissi et al., 2019) is a machine learning model that integrates physical laws
into the training process of neural networks. Its goal is to solve partial differential equations (PDEs) and other complex
scientific problems by combining data-driven learning with known physical principles. Due to its meshless character and
low computational cost, PINN has become a promising alternative to traditional numerical methods. Thus, in recent years, a
large number of PINN methods have been proposed (Song & Alkhalifah, 2021; Cai et al., 2021; Wang et al., 2022; Jin et al.,
2024; Zou et al., 2024b). With the fast development of deep learning, the PINN technology has been widely explored from
various aspects: novel neural network architectures, novel optimization schemes, loss-weighting, and adaptive sampling. In
the following, we review these four aspects of technology.

Neural network architectures attempt to design novel neural network architectures to enhance model capacity. For
example, cPINN (Jagtap et al., 2020) constructs a separate neural network in each discrete sub-domain. However, cPINN
struggles with solving PDE problems involving noisy data. To address this limitation, BPINN (Yang et al., 2021) introduces
a Bayesian framework to quantify aleatoric uncertainty caused by noisy data. Despite their effectiveness, BPINN incurs
significant time overhead. To reduce computational costs while handling noisy data, FPINN (Wu et al., 2025) leverages
fuzzy membership functions and fuzzy rules to manage noise and uncertainty. Nevertheless, these methods face challenges
in solving high-dimensional PDEs or approximating highly complex solution functions due to their high computational
and memory demands. To tackle these issues, SPINN (Cho et al., 2023) adopts a per-axis operation approach, significantly
reducing the network propagations required for multi-dimensional PDEs.

Optimization schemes aim to develop new optimization schemes to cope with the rough loss landscape. For instance,
hp-vPINN (Kharazmi et al., 2021) solves PDEs by minimizing residuals through a least-squares approach. gPINN (Yu et al.,
2022) incorporates gradient information from PDE residuals into the loss function to enhance precision and training efficiency.
However, these methods often violate the temporal causality property, leading to training challenges for evolutionary PDEs.
To address this issue, TL-DPINN (Li et al., 2024) adopts implicit time differencing to preserve temporal causality and utilize
transfer learning to update PINN sequentially. Despite their advantages, TL-DPINN optimizes models only on scattered
points. To achieve accurate solutions across the entire domain, RoPINN (Wu et al., 2024) extends the optimization process
to continuous neighborhood regions, thereby improving the performance of PINN.

Loss re-weighting aims to develop novel loss re-weighting to balance different losses, thereby achieving more balanced
convergence. To be specific, Wang et al. (2022) observed that the weighted combination of competitive multiple loss
functions significantly impacts the training of PINN. To address this, they propose lbPINN, which automatically assigns loss
weights based on maximum likelihood estimation. Similarly, Xiang et al. (2022) introduces SA-PINN, employing Gaussian
Process regression to construct a continuous map of self-adaptive weights. This method dynamically increases weights as
the corresponding losses rise during training, enhancing model performance.

Adaptive sampling operates as a dynamic optimization framework that iteratively adjusts the spatial-temporal distribution
of training points during neural network training. This methodology strategically allocates computational resources by
continuously refining the selection of collocation points based on real-time error metrics. Through residual-driven refinement
mechanisms, the algorithm preferentially concentrates sampling density in regions exhibiting elevated PDE residual errors
(indicative of model inaccuracies) or steep solution gradients (marking mathematically challenging zones like boundary
layers, shock fronts, or material interfaces) (Wu et al., 2023; Daw et al., 2023). This targeted resource allocation enables the
model to resolve physically critical features with increased precision while avoiding computational redundancy in smoother,
well-predicted domains, thereby ensuring enhanced solution accuracy and training efficiency compared to static sampling
approaches.

However, the above four aspects of technology always treat both easy and hard samples equally while ignoring sample
importance and learning difficulty. To address this issue, we draw inspiration from human cognitive processes and propose a
PINN model with SPL that evaluates sample-level difficulty and guides the neural network to fit samples progressively from
easy to hard when solving PDEs.

E. Limitations
Although the proposed CoPINN method demonstrates significant advantages in solving partial differential equations, we
acknowledge several limitations that require further investigation. First, when CoPINN increases the weight of difficult
samples during each iteration, it may overly focus on these samples. This could result in overfitting to the difficult samples

18

CoPINN: Cognitive Physics-Informed Neural Networks

while neglecting other samples, particularly if the difficult samples do not adequately represent the overall data distribution.
Second, dynamically weighting samples can introduce instability into the training process, particularly when the weights
assigned to difficult samples increase significantly. This may cause CoPINN to rely disproportionately on these samples
during certain iterations, potentially leading to deviations in gradient updates and a more volatile training process.

19

