
Under review as a conference paper at ICLR 2021

I N S TA N T E M B E D D I N G :
E F F I C I E N T L O C A L N O D E R E P R E S E N TAT I O N S

Anonymous authors
Paper under double-blind review

A B S T R A C T

In this paper, we introduce InstantEmbedding, an efficient method for generating
single-node representations using local PageRank computations. We theoretically
prove that our approach produces globally consistent representations in sublinear
time. We demonstrate this empirically by conducting extensive experiments on
real-world datasets with over a billion edges. Our experiments confirm that Instant-
Embedding requires drastically less computation time (over 9,000 times faster)
and less memory (by over 8,000 times) to produce a single node’s embedding than
traditional methods including DeepWalk, node2vec, VERSE, and FastRP. We also
show that our method produces high quality representations, demonstrating results
that meet or exceed the state of the art for unsupervised representation learning on
tasks like node classification and link prediction.

1 I N T R O D U C T I O N

Graphs are widely used to represent data when are objects connected to each other, such as social
networks, chemical molecules, and knowledge graphs. A widely used approach in dealing with
graphs is learning compact representations of graphs (Perozzi et al., 2014; Grover & Leskovec,
2016; Abu-El-Haija et al., 2018), which learns a d-dimensional embedding vector for each node in a
given graph. Unsupervised embeddings in particular have shown improvements in many downstream
machine learning tasks, such as visualization (Maaten & Hinton, 2008), node classification (Perozzi
et al., 2014) and link prediction (Abu-El-Haija et al., 2018). Importantly, since such embeddings are
learned solely from the structure of the graph, they can be used across multiple tasks and applications.

Typically, graph embedding models often assume that graph data fits in memory (Perozzi et al., 2014)
and require representations for all nodes to be generated. However, in many real-world applications, it
is often the case that graph data is large but also scarcely annotated. For example, the Friendster social
graph (Yang & Leskovec, 2015) has only 30% nodes assigned to a community, from its total 65M
entries. At the same time, many applications of graph embeddings such as classifying a data item
only require one current representation for the item itself, and eventually representations of labeled
nodes. Therefore, computing a full graph embedding is at worst infeasible and at best inefficient.

These observations motivate the problem which we study in this paper – the Local Node Embedding
problem. In this setting, the embedding for a node is restricted to using only local structural infor-
mation, and can not access the representations of other nodes in the graph or rely on trained global
model state. In addition, we require that a local method needs to produce embeddings which are
consistent with all other node’s representations, so that the final representations can be used in the
same downstream tasks that graph embeddings have proved adapt at in the past.

In this work, we introduce InstantEmbedding, an efficient method to generate local node embeddings
on the fly in sublinear time which are globally consistent. Considering previous work that links
embedding learning methods to matrix factorization (Tsitsulin et al., 2018; Qiu et al., 2018), our
method leverages a high-order similarity matrix based on Personalized PageRank (PPR) as foundations
on which local node embeddings are computed via hashing. We offer theoretical guarantees on the
locality of the computation, as well as the proof of the global consistency of the generated embeddings.
We show empirically that our method is able to produce high-quality representations on par with
state of the art methods, with efficiency several orders of magnitude better in clock time and memory
consumption: running 9,000 times faster and using 8,000 times less memory on the largest graphs
that contenders can process.

1

Under review as a conference paper at ICLR 2021

Table 1: Related work in terms of desirable properties and the computational complexity necessary
to generate a single node embedding. Note that all existing methods must generate a full graph
embedding, and thus are directly dependent on the total graph size, while our method can directly
solve this task in sublinear time. Analysis in Section 3.2.1.

Properties Complexities

method Local
Inference

No Global
Training

Unsupervised
Embedding

Attribute-
Free

Time O Memory O

DeepWalk 8 8 4 4 dn logn dn+m
node2vec 8 8 4 4 dbn n3

VERSE 8 8 4 4 dbn dn+m
FastRP 8 8 4 4 dm

√
n dn+m

GCN 8 8 8 8 dm dn+m
DGI 8 8 4 8 dm dn+m

InstantEmbedding 4 4 4 4 1
α(1−α)ε + d 1

α(1−α)ε + d

2 P R E L I M I N A R I E S & R E L AT E D W O R K

2 . 1 G R A P H E M B E D D I N G

Let G = (V,E) represent an unweighted graph, which contains a set of nodes V , |V | = n, and edges
E ⊆ (V × V), |E| = m. A graph can also be represented as an adjacency matrix A ∈ {0, 1}n×n
where Au,v = 1 iff (u, v) ∈ E. The task of graph embedding then, is to learn a d-dimensional node
embedding matrix X ∈ Rn×d where Xv serves as the embedding for any node v ∈ V . We note that
d� n, i.e. the learned representations are low-dimensional, and the challenge of graph embedding is
to best preserve graph properties (such as node similarities) in this space. Following the formalization
in Abu-El-Haija et al. (2018), many graph embedding can be thought of minimizing an objective in
the general form: minX L(f(X), g(A)), where f : Rn×d → Rn×n is a pairwise distance function
on the embedding space, g : Rn×n → Rn×n is a distance function on the (possibly transformed)
adjacency matrix, and L is a loss function over all (u, v) ∈ (V × V) pairs.

A number of graph embedding methods have been proposed. One family of these methods simply
learn X as a lookup dictionary of embeddings and calculate the loss via distance (Kruskal, 1964), or
matrix factorization (either implicit (Perozzi et al., 2014; Grover & Leskovec, 2016) or explicit (Ou
et al., 2016)). Another line of work focuses on leveraging the graph structure using neighborhood
aggregation (Battaglia et al., 2016; Scarselli et al., 2008), or the Laplacian matrix of the graph (Kipf
& Welling, 2016). On attributed structured data, Graph Convolutional Networks (Kipf & Welling,
2016) have been successfully applied to both supervised and unsupervised tasks (Veličković et al.,
2018). However, in the absence of node-level features, Duong et al. (2019) demonstrated that these
methods do not produce meaningful representations.

Graph Embedding via Random Projection The computational efficiency brought by advances
in random projection (Achlioptas, 2003; Dasgupta et al., 2010) paved the way for its adaptation
in graph embedding to allow direct construction of the embedding matrix X. Two recent works,
RandNE (Zhang et al., 2018) and FastRP (Chen et al., 2019) iteratively project the adjacency matrix to
simulate the higher-order interactions between nodes. As we show in the experiments, these methods
suffer from high memory requirements and are not always competitive with other methods.

2 . 2 L O C A L A L G O R I T H M S O N G R A P H S

Local algorithms on graphs (Suomela, 2013) solve graph without using the full graph. A well-
studied problem in this space is personalized recommendation (Jeh & Widom, 2003) where users are
represented as nodes in a graph and the goal is to recommend items to specific users leveraging the
graph structure. Classic solutions to this problem are Personalized PageRank (Gupta et al., 2013) and
Collaborative Filtering (Schafer et al., 2007; He et al., 2017). Interestingly, these methods have been
recently applied to graph neural networks (Klicpera et al., 2019; He et al., 2020). We now recall the
definition of Personalized PageRank that is one of the main ingredients in our embedding algorithm.

2

Under review as a conference paper at ICLR 2021

Definition (Personalized PageRank (PPR, variation)). Given s ∈ Rn (si ≥ 0,
∑
i si = 1), a

distribution of the starting node of random walks, and α ∈ (0, 1), a decay factor, the Personalized
PageRank vector π(s) ∈ Rn is defined recursively as:

π(s) = αs + (1− α)π(s)>
1

2
(I + D−1A), (1)

where 1
2 (I + D−1A) is the lazy random-walk matrix.

PPR takes as input a distribution of starting nodes s, which is typically a n dimensional one-hot vector
ei with 1 in the i-th coordinate, enforcing a local random walks starting from node i. Following
this practice, we denote πi ∈ Rn, the PPR vector starting from a single node i, and PPR ∈ Rn×n,
the full PPR matrix for all nodes in the graph, where PPRi,: = π(ei). VERSE (Tsitsulin et al.,
2018) proposes to learn node embeddings by implicitly factorizing PPR. Its stochastic approach
can perform well, but lacks guarantees of stability and convergence. The idea of learning embeddings
based on local random walks has also been used in the property testing framework, a direction in
graph algorithm aiming at analyzing the clustering structure of a graph (Kale & Seshadhri, 2008;
Czumaj & Sohler, 2010; Czumaj et al., 2015; Chiplunkar et al., 2018).

2 . 3 P R O B L E M S TAT E M E N T

In this work, we consider the problem of embedding a single node in a graph quickly. More formally,
we consider what we term the Local Node Embedding problem: given a graph G and any node v,
return a globally consistent structural representation for v using only local information around v, in
time sublinear to the size of the graph.

A solution to the local node embedding problem should possess the following properties:

1. Locality. The embeddings for a node are computed locally, i.e. the embedding for a node can
be produced using only local information and in time independent of the total graph size.
2. Global Consistency. A local method must produce embeddings that are globally consistent
(i.e. able to relate each embedding to each other, s.t. distances in the space preserve proximity).

While many node embedding approaches have been proposed (Chen et al., 2018), to the best of
our knowledge we are the first to examine the local embedding problem. Furthermore, no existing
methods for positional representations of nodes meet these requirements. We briefly discuss these
requirements in detail below, and put the related work in terms of these properties in Table 1.

Locality. While classic node embedding methods, such as DeepWalk (Perozzi et al., 2014),
node2vec (Grover & Leskovec, 2016), or VERSE (Tsitsulin et al., 2018) rely on information ag-
gregated from local subgraphs (e.g. sampled by a random walk), they do not meet our locality
requirement. Specifically, they also require the representations of all the nodes around them, resulting
in a dependency on information from all nodes in the graph (in addition to space complexity O(nd)
where d is the embedding dimension) to compute a single representation. Classical random-projection
based methods also require access to the full adjacency matrix in order to compute the higher-order
ranking matrix. We briefly remark that even methods capable of local attributed subgraph embedding
(such as GCN or DGI) also do not meet this definition of locality, as they require a global training
phase to calibrate their graph pooling functions.

Global Consistency. This property allows embeddings produced by local node embedding to be
used together, perhaps as features in a model. While existing methods for node embeddings are global
ones which implicitly have global consistency, this property is not trivial for a local method to achieve.
Specifically, a local method must produce a node representation that resides in a space, preserving
proximities to all other node embeddings that may be generated, without relying on a global state.
One exciting implication of a local method which is globally consistent is that it can wait to compute
a representation until it is actually required for a task. For example, in a production system, one might
only produce representations for immediate classification when they are requested.

We propose our approach satisfying these properties in Section 3, and experimentally validate it in
Section 4, followed by conclusions in Section 5.

3

Under review as a conference paper at ICLR 2021

3 M E T H O D

Here we outline our proposed approach for local node embedding. We begin by discussing the
connection between a recent embedding approach and matrix factorization. Then using this analysis,
we propose an embedding method based on randomly hashing the PPR matrix. We note that this
approach has a tantalizing property – it can be decomposed into entirely local operations per node.
With this observation in hand, we present our solution, InstantEmbedding. Finally, we analyze the
algorithmic complexity of our approach, showing that it is both a local algorithm (which runs in time
sublinear to the size of G) and that the local representations are globally consistent.

3 . 1 G L O B A L E M B E D D I N G U S I N G P P R

A recently proposed method for node embedding, VERSE (Tsitsulin et al., 2018), learns node em-
beddings using a neural network which encodes Personalized PageRank similarities. Their objective
function, in the form of Noise Contrastive Estimation (NCE) (Gutmann & Hyvärinen, 2010), is:

L =

n∑
i=1

n∑
j=1

[
PPRij log σ

(
x>i xj

)
+ bEj′∼U log σ

(
−x>i xj′

)]
, (2)

where PPR is the Personalized PageRank matrix, σ is the sigmoid function, b is the number of
negative samples, and U is a uniform noise distribution from which negative samples are drawn. Like
many SkipGram-style methods (Mikolov et al., 2013), this learning process can be linked to matrix
factorization by the following lemma:
Lemma 3.1 (Tsitsulin et al. (2020)). VERSE implicitly factorizes the matrix log(PPR)+log n−log b
into XX>, where n is the number of nodes in the graph and b is the number of negative samples.

3 . 1 . 1 H A S H I N G F O R G R A P H E M B E D D I N G

Lemma 3.1 provides an incentive to find an efficient alternative to factorizing the dense similarity
matrix M = log(PPR)+log n−log b. Our choice of the algorithm requires two important properties:
a) providing an unbiased estimator for the inner product, and b) requiring less than O(n) memory.
The first property is essential to ensure we have a good sketch of M for the embedding, while the
second one keeps our complexity per node sublinear.

In order to meet both requirements we propose to use hashing (Weinberger et al., 2009) to pre-
serve the essential similarities of PPR in expectation. We leverage two global hash functions
hd : N→ {0, ..., d− 1} and hsgn : N→ {−1, 1} sampled from universal hash families Ud and U−1,1
respectively, to define the hashing kernel Hhd,hsgn : Rn → Rd. Applied to an input vector x, it yields
h = Hhd,hsgn(x), where hi =

∑
k∈h−1

d (i) xkhsgn(k).

We note that although Hhd,hsgn is proposed for vectors, it can be trivially extended to matrix M when
applied to each row vector of that matrix, e.g. by defining Hhd,hsgn(M)i,: ≡ Hhd,hsgn(Mi,:). In the
appendix we prove the next lemma that follows from (Weinberger et al., 2009) and highlights both
the aforementioned properties:
Lemma 3.2. The space complexity of Hhd,hsgn is O(1) and:

Ehd∼Ud,hsgn∼U−1,1

[
Hhd,hsgn

(M)Hhd,hsgn
(M)>

]
= MM>

This matrix sketching technique is strongly related to the factorization proposed in Lemma 3.1. To
better understand this, we consider the approximation M ≈ UΣUT . If the (asymptotic) solution
of VERSE is U

√
Σ, then our method aims to directly approximate UΣ. We show that this rescaled

solution is more computationally tractable, while still preserving critical information for high-quality
node representations.

Our algorithm for global node embedding is presented in Algorithm 1. First, we compute the PPR
matrix PPR (Line 2) with a generic approach (CreatePPRMatrix), which takes a graph and ε,
the desired precision of the approximation. We remark that any of the many proposed approaches
for computing such a matrix (e.g. from Jeh & Widom (2003); Andersen et al. (2007); Lofgren et al.
(2014)) can be used for this calculation. As the PPR could be dense, the same could be said about the

4

Under review as a conference paper at ICLR 2021

implicit matrix M. Thus, we filter the signal from non-significant PPR values by applying the max
operator. We remove the constant log b from the implicit target matrix. In lines (4-6), the provided
hash function accumulates each value in the corresponding embedding dimension.

Algorithm 1 Global Node Embedding using Personalized PageRank
Input: graph G, embedding dimension d, PPR precision ε, hash functions hd, hsgn
Output: embedding matrix W

1: function G R A P H E M B E D D I N G(G, d, ε, hd, hsgn)
2: PPR← CreatePPRMatrix(G, ε)
3: W = 0n×d
4: for πi in PPR do
5: for rj in πi do
6: Wi,hd(j) += hsgn(j)×max(log(rj ∗ n), 0)
7: return W

Interestingly, the projection operation only uses information from each node’s individual PPR vector
πi to compute its representation. In the following section, we will show that local calculation of the
PPR can be utilized to develop an entirely local algorithm for node embedding.

3 . 2 L O C A L N O D E E M B E D D I N G V I A I N S TA N T E M B E D D I N G

Having a local projection method, all that we require is a procedure that can calculate the PPR vector
for a node in time sublinear to size of the graph. Specifically, for InstantEmbedding we propose that
the CreatePPRMatrix operation consists of invoking the SparsePPR routine from Andersen
et al. (Andersen et al., 2007) once for each node i. This routine is an entirely local algorithm for
efficiently constructing πi, the PPR vector for node i, which offers strong guarantees. The next lemma
follows from (Andersen et al., 2007) and formalizes the result (proof in Appendix A.4).

Lemma 3.3. The I N S TA N T E M B E D D I N G(v,G, d, ε) algorithm computes the local embedding of
a node v by exploring at most the O (1/(1−α)ε) nodes in the neighborhood of v.

We present InstantEmbedding, our algorithm for local node embedding, in Algorithm 2. As we
will show, it is a self-contained solution for the local node embedding problem that can generate
embeddings for individual nodes extremely efficiently. Notably, per Lemma 3.3, the local area around
v explored by InstantEmbedding is independent of n. Therefore the algorithm is strictly local.

Algorithm 2 InstantEmbedding
Input: node v, graph G, embedding dimension d, PPR precision ε, hash functions hd, hsgn
Output: embedding vector w

1: function I N S TA N T E M B E D D I N G(v,G, d, ε, hd, hsgn)
2: πv ← SparsePPR(v,G, ε)
3: w← 0d
4: for rj in πv do
5: whd(j) += hsgn(j)×max(log(rj ∗ n), 0)
6: return w

3 . 2 . 1 A N A LY S I S

We now prove some basic properties of our proposed approach. First, we show that the runtime of our
algorithm is local and independent of n, the number of nodes in the graph. Then, we show that our
local computations are globally consistent, i.e., the embedding of a node v is the same independently
if we compute it locally or if we recompute the embeddings for all nodes in the graph at the same
time. Note that we focus on bounding the running time to compute the embedding for a single node
in the graph. Nonetheless, the global complexity to compute all the embeddings can be obtained by
multiplying our bound by n, although it is not the focus of this work. We state the following theorem
and prove it in Appendix A.5.

Theorem 3.4. The InstantEmbedding(v,G, d, ε) algorithm has running time O (d+ 1/α(1−α)ε).

5

Under review as a conference paper at ICLR 2021

Besides the embedding size d, both the time and and space complexity of our algorithm depend only
on the approximation factor ε and the decay factor α. Both are independent of n, the size of the graph,
and m, the size of the edge set. Notably, if O (1/α(1−α)ε) ∈ o(n), as commonly happen in real world
applications, our algorithm has sublinear time w.r.t. the graph size. Lastly, we note that the space
complexity is also sublinear (due to Lemma 3.3), which we show in the appendix.

Now we turn our attention to the consistency of our algorithm, by showing that for a node v the
embeddings computed by InstantEmbedding and GraphEmbedding are identical. In the fol-
lowing we denote the graph embedding computed by GraphEmbedding(G, d, ε) for node v by
GraphEmbedding(G, d, ε)v , and we prove the following theorem (Appendix A.6).

Theorem 3.5 (Global Consistency). InstantEmbedding(v,G, d, ε) output equals one of
GraphEmbedding(G, d, ε) at position v.

Complexity Comparison. Table 1 compares the complexity of InstantEmbedding with that of previ-
ous works: d, n, m stands for embedding dimension, size of graph and number of edges respectively.
Specifically, b ≥ 1 stands for the number of samples used in node2vec and VERSE. It is noteworthy
that all the previous works have time complexity depending on n, and perform at least linear w.r.t.
size of the graph. In contrast, our algorithm depends only on ε and α, and has sublinear time w.r.t. n,
the graph size. In Section 4, we experimentally verify the advantages of our principled method.

4 E X P E R I M E N T S

In the light of the theoretical guarantees about the proposed method, we perform extended experiments
in order to verify our two main hypotheses:

1. H1. Computing local node-embedding is more efficient than generating a global embedding.
2. H2. The local representations are consistent and of high-quality, being competitive with and
even surpassing state-of-the-art methods on several tasks.

We assess H1 in Section 4.2, in which we measure the efficiency of generating a single node
embedding for each method. Then in Section 4.3 we validate H2 by comparing our method against
the baselines on multiple datasets using tasks of node classification, link prediction and visualization.

4 . 1 D ATA S E T S A N D E X P E R I M E N TA L S E T T I N G S

Table 2: Dataset attributes: size of ver-
tices |V |, edges |E|, labeled vertices |S|.

Dataset |V | |E| |S|
PPI 3.8k 38k 3.8k
BlogCatalog 10k 334k 10k
CoCit 44k 195k 44k
CoAuthor 52k 356k —
Flickr 81k 5.9M 81k
YouTube 1.1M 3.0M 32k
Amazon2M 2.4M 62M —
Orkut 3.0M 117M 110k
Friendster 66M 1806M —

To ensure a relevant and fair evaluation, we compare our
method against multiple strong baselines, including Deep-
Walk (Perozzi et al., 2014), node2vec (Grover & Leskovec,
2016), VERSE (Tsitsulin et al., 2018), and FastRP (Chen
et al., 2019). Each method was run on a virtual machine
hosted on the Google Cloud Platform, with a 2.3GHz 16-
core CPU and 128GB of RAM. All reported results use
dimensionality d = 512 for every method. We provide ex-
tended results for 4 additional baselines: RandNE (Zhang
et al., 2018), NodeSketch (Yang et al., 2019), LouvainNE
(Bhowmick et al., 2020) and FREDE (Tsitsulin et al., 2020)
on a subset of tasks, along with full details regarding each
method and its parameterization in the Appendix B.1. For reproducibility, we release an implementa-
tion of our method.1

InstantEmbedding Instantiation. As presented in Section 3, our implementation of the presented
method relies on the choice of PPR approximation used. For instant single-node embeddings, we use
the highly efficient PushFlow (Andersen et al., 2007) approximation that enables us to dynamically
load into memory at most 2/(1−α)ε nodes from the full graph to compute a single PPR vector π. This
is achieved by storing graphs in binarized compressed sparse row format that allows selective reads
for nodes of interest. In the special case when a full graph embedding is requested, we have the
freedom to approximate the PPR in a distributed manner (we omit this from runtime analysis, as

1Software available for reviewers and ACs in the OpenReview forum.

6

Under review as a conference paper at ICLR 2021

105 106 107 108 109

10−2

100

102

104

106

> 9000×

log(|E|)

Ti
m

e,
lo

g(
se

co
nd

s)

(a) Running Time

105 106 107 108 109

10−1

101

103

105

107

> 8000×

log(|E|))

M
em

or
y,

lo
g(

M
B

)

(b) Memory Usage

DeepWalk node2vec VERSE FastRP InstantEmbedding (ours)

Figure 1: Required (a) running time and (b) memory consumption to generate a node embedding
(d=512) based on the edge count of each graph (|E|), with the best line fit drawn. Our method is over
9,000 times faster than FastRP and uses over 8,000 times less memory than VERSE, the next most
efficient baselines respectively, in the largest graph that these baseline methods can process.

we had no distributed implementations for the baselines, but we note our local method is trivially
parallelizable). We refer to Appendix B.5 for the study of the influence of ε on runtime and quality.

Datasets. We perform our evaluations on 10 datasets as presented in Table 2. Detailed descriptions,
scale-free and small-world measurements for these datasets are available in the supplementary
material. Note that on YouTube and Orkut the number of labeled nodes is much smaller than the total.
We observe this behavior in several real-world application scenarios, where our method shines the
most.

4 . 2 P E R F O R M A N C E C H A R A C T E R I S T I C S

We report the mean wall time and total memory consumption (Wolff) required to generate an
embedding (d=512) for a single node in the given dataset. Note that due to the nature of all considered
baselines, they implicitly have to generate a full graph embedding in order to get a node representation.
We repeat the experiment 1,000 times for InstantEmbedding due to its locality property; for the
baselines, we average the running time from 5 experiments, and measure the memory usage once. For
reference, we also provide the performance of InstantEmbedding producing a full graph embedding
in Appendix B.3.

Running Time. As Figure 1(a) shows, InstantEmbedding is the most scalable method, drastically
outperforming all the other methods, at the task of producing a single node embedding. We are over
9,000 times faster than the next fastest baseline in the largest graph both methods can process, and
can scale to graphs of any size.

Memory Consumption.As Figure 1(b) shows, InstantEmbedding is the most efficient method having
been able to run in all datasets using negligible memory compared to the other methods. Compared
to the next most memory-efficient baseline (VERSE) we are over 8,000 times more efficient in the
largest graph both methods can process.

The results of running time and memory analysis confirm hypothesis H1 and show that Instant-
Embedding has a significant speed and space advantage versus the baselines. The relative speedup
continues to grow as the size of the datasets increase. On a dataset with over 1 billion edges (Friend-
ster), we can compute a node embedding in 80ms – fast enough for a real-time application!

4 . 3 E M B E D D I N G Q U A L I T Y

Node Classification. This task measures the semantic information preserved by the embeddings
by training a simple classifier on a small fraction of labeled representations. For each method, we
perform three different random splits of the data. More details are available in the Appendix B.4.1.

In Table 3 we report the mean Micro F1 scores with their respective confidence intervals (corre-
sponding Macro-F1 scores in the supplementary material). For each dataset, we perform Welch’s

7

Under review as a conference paper at ICLR 2021

Table 3: Average Micro-F1 classification scores and confidence intervals. Our method is marked as
follows: * - above baselines; bold - no other method is statistically significant better.

Method \ Dataset PPI BlogCatalog CoCit Flickr YouTube Orkut

DeepWalk 16.08 ± 0.64 32.48 ± 0.35 37.44 ± 0.67 31.22 ± 0.38 38.69 ± 1.17 87.67 ± 0.23
node2vec 15.03 ± 3.18 33.67 ± 0.93 38.35 ± 1.75 29.80 ± 0.67 36.02 ± 2.01 DNC
VERSE 12.59 ± 2.54 24.64 ± 0.85 38.22 ± 1.34 25.22 ± 0.20 36.74 ± 1.05 81.52 ± 1.11
FastRP 15.74 ± 2.19 33.54 ± 0.96 26.03 ± 2.10 29.85 ± 0.26 22.83 ± 0.41 DNC

InstantEmbedding 17.67* ± 1.22 33.36 ± 0.67 39.95* ± 0.67 30.43 ± 0.79 40.04* ± 0.97 76.83 ± 1.16

Table 4: Average ROC-AUC scores and confidence intervals for the link prediction task. Our method
is marked as follows: * - above baselines; bold - no other method is statistically significant better.

Method \ Dataset CoAuthor Blogcatalog Youtube Amazon2M

DeepWalk 88.43 ± 1.08 91.41 ± 0.67 82.17 ± 1.02 98.79 ± 0.41
node2vec 86.09 ± 0.85 92.18 ± 0.12 81.27 ± 1.58 DNC
VERSE 92.75 ± 0.73 93.42 ± 0.35 80.03 ± 0.99 99.67 ± 0.18
FastRP 82.19 ± 2.22 88.68 ± 0.70 76.30 ± 1.46 92.12 ± 0.61

InstantEmbedding 90.44 ± 0.48 92.74 ± 0.60 82.89* ± 0.83 99.15 ± 0.18

t-test between our method and the best performing contender. We observe that InstantEmbedding
is remarkably good on these node classification, despite its several approximations and locality
restriction. Specifically, on four out of five datasets, no other method is statistically significant above
ours, and three of these (PPI, CoCit and YouTube) we achieve the best classification results.

In Figure 2, we study how our hyperparameter, the PPR approximation error ε, influences both the
classification performance, running time, and memory consumption. There is a general sweet spot
(around ε = 10−5) across datasets where InstantEmbedding outperforms competing methods while
being orders of magnitude faster. Data on the other datasets is available in Section B.5.

10−610−510−410−310−210−1

25

30

35

40

log(ε)

M
ic

ro
-F

1

(a) Micro F1 Score

10−610−510−410−310−210−1

10−1

102

105

log(ε)

L
og

(s
)

(b) Running Time (s)

10−610−510−410−310−210−1

10−1

102

105

log(ε)

L
og

(M
B

)

(c) Peak Memory (MB)

InstantEmbedding (ours) DeepWalk node2vec VERSE FastRP

Figure 2: The impact of the choice of ε on the quality of the resulting embedding (through the
Micro-F1 score), average running time and peak memory increase for the YouTube dataset.

Link prediction. We conduct link prediction experiments to assess the capability of the produced
representations to model hidden connections in the graph. For the dataset which has temporal
information (CoAuthor), we select data until 2014 as training data, and split co-authorship links
between 2015-2016 in two balanced partitions that we use as validation and test. For the other datasets,
we uniformly sample 80% of the available edges as training (to learn embeddings on), and use the rest
for validation (10%) and testing (10%). Over repeated runs, we vary the splits. More details about the
experimental design are available in the supplementary material. We report results for each method in
in Table 4, which shows average ROC-AUC and confidence intervals for each method. Across the
datasets, our proposed method beats all baselines except VERSE, however we do achieve the best
performance on YouTube by a statistically significant margin.

Visualization. Figure 3 presents UMAP (McInnes et al., 2018) projections on the CoCit dataset,
where we grouped together similar conferences. We note that our sublinear approach is especially

8

Under review as a conference paper at ICLR 2021

well suited to visualizing graph data, as visualization algorithms only require a small subset of points
(typically downsampling to only thousands) to generate a visualization for datasets.

The experimental analysis of node classification, link prediction, and visualization show that despite
relying on two different approximations (PPR & random projection), InstantEmbedding is able
to very quickly produce representations which meet or exceed the state of the art in unsupervised
representation learning for graph structure, confirming hypothesis H2. We remark that interestingly
InstantEmbedding seems slightly better at node classifications than link prediction. We suspect that
the randomization may effectively act as a regularization which is more useful on classification.

(a) DeepWalk (b) VERSE (c) FastRP (d) InstantEmbedding

Figure 3: UMAP visualization of CoCit (d=512). Research areas (ML, DM, DB, IR).

5 C O N C L U S I O N

The present work has two main contribution: a) introducing and formally defining the Local Node
Embedding problem and b) presenting InstantEmbedding, a highly efficient method that selectively
embeds nodes using only local information, effectively solving the aforementioned problem. As
existing graph embedding methods require accessing the global graph structure at least once during the
representation generating process, the novelty brought by InstantEmbedding is especially impactful
in real-world scenarios where graphs outgrow the capabilities of a single machine, and annotated data
is scarce or expensive to produce. Embedding selectively only the critical subset of nodes for a task
makes many more applications feasible in practice, while reducing the costs for others.

Furthermore, we show theoretically that our method embeds a single node in space and time sublinear
to the size of the graph. We also empirically prove that InstantEmbedding is capable of surpassing
state-of-the-art methods, while being many orders of magnitude faster than them – our experiments
show that we are over 9,000 times faster on large datasets and on a graph over 1 billion edges we can
compute a representation in 80ms.

R E F E R E N C E S

Microsoft academic graph (mag) - kkd cup 2016. https://www.kdd.org/kdd-cup/view/
kdd-cup-2016/Data, 2016.

Sami Abu-El-Haija, Bryan Perozzi, Rami Al-Rfou, and Alexander A Alemi. Watch your step:
Learning node embeddings via graph attention. In Advances in Neural Information Processing
Systems, pp. 9180–9190, 2018.

Dimitris Achlioptas. Database-friendly random projections: Johnson-lindenstrauss with binary coins.
Journal of computer and System Sciences, 66(4):671–687, 2003.

Reid Andersen, Fan Chung, and Kevin Lang. Using pagerank to locally partition a graph. Internet
Mathematics, 4(1):35–64, 2007.

Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interaction networks
for learning about objects, relations and physics. In Advances in neural information processing
systems, pp. 4502–4510, 2016.

Ayan Kumar Bhowmick, Koushik Meneni, Maximilien Danisch, Jean-Loup Guillaume, and Bivas
Mitra. Louvainne: Hierarchical louvain method for high quality and scalable network embedding.
In Proceedings of the 13th International Conference on Web Search and Data Mining, pp. 43–51,
2020.

9

https://www.kdd.org/kdd-cup/view/kdd-cup-2016/Data
https://www.kdd.org/kdd-cup/view/kdd-cup-2016/Data

Under review as a conference paper at ICLR 2021

Haochen Chen, Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. A tutorial on network embeddings.
arXiv preprint arXiv:1808.02590, 2018.

Haochen Chen, Syed Fahad Sultan, Yingtao Tian, Muhao Chen, and Steven Skiena. Fast and accu-
rate network embeddings via very sparse random projection. In Proceedings of the 28th ACM
International Conference on Information and Knowledge Management, pp. 399–408, 2019.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn: An
efficient algorithm for training deep and large graph convolutional networks. In ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (KDD), 2019. URL http://web.cs.
ucla.edu/˜chohsieh/data/Amazon2M.tar.gz.

Ashish Chiplunkar, Michael Kapralov, Sanjeev Khanna, Aida Mousavifar, and Yuval Peres. Testing
graph clusterability: Algorithms and lower bounds. In 2018 IEEE 59th Annual Symposium on
Foundations of Computer Science (FOCS), pp. 497–508. IEEE, 2018.

Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to
algorithms. MIT press, 2009.

Artur Czumaj and Christian Sohler. Testing expansion in bounded-degree graphs. Combinatorics,
Probability and Computing, 19(5-6):693–709, 2010.

Artur Czumaj, Pan Peng, and Christian Sohler. Testing cluster structure of graphs. In Proceedings of
the forty-seventh annual ACM symposium on Theory of Computing, pp. 723–732, 2015.

Anirban Dasgupta, Ravi Kumar, and Tamás Sarlós. A sparse johnson: Lindenstrauss transform. In
Proceedings of the forty-second ACM symposium on Theory of computing, pp. 341–350, 2010.

Chi Thang Duong, Thanh Dat Hoang, Ha The Hien Dang, Quoc Viet Hung Nguyen, and Karl Aberer.
On node features for graph neural networks. arXiv preprint arXiv:1911.08795, 2019.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp.
855–864, 2016.

Pankaj Gupta, Ashish Goel, Jimmy Lin, Aneesh Sharma, Dong Wang, and Reza Zadeh. Wtf: The
who to follow service at twitter. In Proceedings of the 22nd international conference on World
Wide Web, pp. 505–514, 2013.

Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new estimation principle
for unnormalized statistical models. In Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, pp. 297–304, 2010.

Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. Neural col-
laborative filtering. In Proceedings of the 26th international conference on world wide web, pp.
173–182, 2017.

Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang. Lightgcn:
Simplifying and powering graph convolution network for recommendation. arXiv preprint
arXiv:2002.02126, 2020.

Glen Jeh and Jennifer Widom. Scaling personalized web search. In WWW, 2003.

Satyen Kale and C Seshadhri. Testing expansion in bounded degree graphs. 35th ICALP, pp. 527–538,
2008.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Combining neural networks
with personalized pagerank for classification on graphs. In International Conference on Learning
Representations, 2019.

Joseph B Kruskal. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis.
Psychometrika, 29(1):1–27, 1964.

10

http://web.cs.ucla.edu/~chohsieh/data/Amazon2M.tar.gz
http://web.cs.ucla.edu/~chohsieh/data/Amazon2M.tar.gz

Under review as a conference paper at ICLR 2021

Omer Levy and Yoav Goldberg. Neural word embedding as implicit matrix factorization. In Advances
in neural information processing systems, pp. 2177–2185, 2014.

Peter A Lofgren, Siddhartha Banerjee, Ashish Goel, and C Seshadhri. Fast-ppr: Scaling personalized
pagerank estimation for large graphs. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 1436–1445, 2014.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(Nov):2579–2605, 2008.

Leland McInnes, John Healy, Nathaniel Saul, and Lukas Großberger. Umap: Uniform manifold
approximation and projection. Journal of Open Source Software, 2018.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations
of words and phrases and their compositionality. In C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger (eds.), Advances in Neural Information Processing Systems
26, pp. 3111–3119. 2013.

Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. Asymmetric transitivity preserv-
ing graph embedding. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 1105–1114, 2016.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representations.
In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and
data mining, pp. 701–710, 2014.

Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. Network embedding as
matrix factorization: Unifying deepwalk, line, pte, and node2vec. In Proceedings of the Eleventh
ACM International Conference on Web Search and Data Mining, pp. 459–467, 2018.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2008.

J Ben Schafer, Dan Frankowski, Jon Herlocker, and Shilad Sen. Collaborative filtering recommender
systems. In The adaptive web, pp. 291–324. Springer, 2007.

Chris Stark, Bobby-Joe Breitkreutz, Teresa Reguly, Lorrie Boucher, Ashton Breitkreutz, and Mike
Tyers. Biogrid: a general repository for interaction datasets. Nucleic acids research, 34(suppl 1):
D535–D539, 2006. https://snap.stanford.edu/node2vec/Homo_sapiens.mat.

Jukka Suomela. Survey of local algorithms. ACM Computing Surveys (CSUR), 45(2):1–40, 2013.

Lei Tang and Huan Liu. Social dimension approach to classification in large-scale networks. 2010.
URL http://leitang.net/social_dimension.html.

Anton Tsitsulin, Davide Mottin, Panagiotis Karras, and Emmanuel Müller. Verse: Versatile graph
embeddings from similarity measures. In Proceedings of the 2018 World Wide Web Conference,
pp. 539–548, 2018.

Anton Tsitsulin, Marina Munkhoeva, Davide Mottin, Panagiotis Karras, Ivan Oseledets, and Em-
manuel Müller. Frede: Linear-space anytime graph embeddings. arXiv preprint arXiv:2006.04746,
2020.

Petar Veličković, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, and R Devon
Hjelm. Deep graph infomax. arXiv preprint arXiv:1809.10341, 2018.

Kilian Weinberger, Anirban Dasgupta, John Langford, Alex Smola, and Josh Attenberg. Feature
hashing for large scale multitask learning. In Proceedings of the 26th annual international
conference on machine learning, pp. 1113–1120, 2009.

11

https://snap.stanford.edu/node2vec/Homo_sapiens.mat
http://leitang.net/social_dimension.html

Under review as a conference paper at ICLR 2021

Milian Wolff. A heap memory profiler for linux, 2018. https://github.com/KDE/
heaptrack.

Dingqi Yang, Paolo Rosso, Bin Li, and Philippe Cudre-Mauroux. Nodesketch: Highly-efficient graph
embeddings via recursive sketching. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 1162–1172, 2019.

Jaewon Yang and Jure Leskovec. Defining and evaluating network communities
based on ground-truth. Knowledge and Information Systems, 42(1):181–213, 2015.
https://snap.stanford.edu/data/com-Orkut.html https://snap.
stanford.edu/data/com-Friendster.html.

Ziwei Zhang, Peng Cui, Haoyang Li, Xiao Wang, and Wenwu Zhu. Billion-scale network embedding
with iterative random projection. In 2018 IEEE International Conference on Data Mining (ICDM),
pp. 787–796. IEEE, 2018.

12

https://github.com/KDE/heaptrack
https://github.com/KDE/heaptrack
https://snap.stanford.edu/data/com-Orkut.html
https://snap.stanford.edu/data/com-Friendster.html
https://snap.stanford.edu/data/com-Friendster.html

Under review as a conference paper at ICLR 2021

A P P E N D I X

A P R O O F S

A . 1 V E R S E A S M AT R I X FA C T O R I Z AT I O N

Lemma A.1. (restated from Tsitsulin et al. (2020), (ref. Lemma 3.1)) VERSE implicitly factorizes
the matrix log(PPR) + log n− log b into XX>, where n is the number of nodes in the graph and b
is the number of negative samples.

Proof. (from Tsitsulin et al. (2020), following Levy & Goldberg (2014); Qiu et al. (2018)) Since
PPR is right-stochastic and the noise distribution does not depend on j we can decompose the
positive and negative terms from the objective of VERSE:

L =

n∑
i=1

n∑
j=1

PPRij log σ
(
x>i xj

)
+
b

n

n∑
i=1

n∑
j′=1

log σ
(
−x>i xj′

)
.

Isolating the loss for a pair of vertices i, j:

Lij = PPRij log σ
(
x>i xj

)
+
b

n
log σ

(
−x>i xj

)
.

We substitute zij = x>i xj , use our independence assumption, and solve for ∂Lij

∂zij
= PPRijσ(−zij)−

b
nσ(zij)=0 to get zij=log

n·PPRij

b , hence log(PPR)+log n−log b = XX>.

A . 2 H A S H K E R N E L

Lemma A.2. (restated from Weinberger et al. (2009)) The hash kernel is unbiased:
Ehd∼Ud,hsgn∼U−1,1

[
Hhd,hsgn

(x)>Hhd,hsgn
(x)
]

= x>x

Corollary A.2.1. (ref. Lemma 3.2) The space complexity of Hhd,hsgn
is O(1) and:

Ehd∼Ud,hsgn∼U−1,1

[
Hhd,hsgn(M)Hhd,hsgn(M)>

]
= MM>

Proof. We note that the space complexity required to store a hash function from an universal family is
O(1). Indeed, one can choose an universal hash family such that its elements are uniquely determined
by a fixed choice of keys. As an example, the multiplication hash function (Cormen et al. (2009))
hA(x) = dn(xA mod 1))e requires constant memory to store the key A ∈ (0, 1).

In order to prove the projection provides unbiased dot-products, considering the expectation per each
entry, we have:

Ehd∼Ud,hsgn∼U−1,1

[(
Hhd,hsgn

(M)Hhd,hsgn
(M)>

)
i,j

]
=Ehd∼Ud,hsgn∼U−1,1

[(
Hhd,hsgn(Mi)Hhd,hsgn(Mj)

>)]
=MiM

>
j From Lemma A.2

=
(
MM>

)
i,j

which holds for all i, j pairs.

A . 3 S PA R S E P E R S O N A L I Z E D PA G E R A N K P R O P E R T I E S

Theorem A.3. (restated from Andersen et al. (2007)) Properties of the
S PA R S E P E R S O N A L I Z E D PA G E R A N K(v,G, ε) (3) algorithm are as follows. For any
starting vector v, and any constant ε ∈ (0, 1], the algorithm computes an ε-approximate Personal-
izedPageRank vector p. Furthermore the support of p satisfies vol(Supp(p)) ≤ O (1/(1−α)ε), and
the running time of the algorithm is O(1/αε).

We note here that Andersen et al. (2007) prove their results for the lazy transition matrix and not
the standard transition matrix that we consider here. Nevertheless as discussed in Appendix A.7
switching between the two definitions does not change the asymptotic of their results.

13

Under review as a conference paper at ICLR 2021

Algorithm 3 S PA R S E P E R S O N A L I Z E D PA G E R A N K cf. Andersen et al. (2007)
Input: node v, graph G, precision ε, return probability α
Output: PPR vector π

1: function S PA R S E P E R S O N A L I Z E D PA G E R A N K(v, G, ε, α)
2: r← 0n (sparse)
3: π ← 0n (sparse)
4: r[v] = 1
5: while ∃ w ∈ G, r[w] > ε× deg(w) do
6: r̂ ← r[w]
7: π[w]← π[w] + αr̂

8: r[w]← (1−α)r̂
2

9: r[u]← r[u] + (1−α)r̂
2 deg(w)

, ∀(w, u) ∈ G
10: return π

A . 4 I N S TA N T E M B E D D I N G L O C A L I T Y

Lemma A.4. (ref. Lemma 3.3) The I N S TA N T E M B E D D I N G(v,G, d, ε) algorithm computes the
local embedding of a node v by exploring at most the O (1/(1−α)ε) nodes in the neighborhood of v.

Proof. First recall that the only operation that explores the graph in I N S TA N T E M B E D D I N G is
S PA R S E P E R S O N A L I Z E D PA G E R A N K, which explores a node w in the graph if and only if a
neighbor of w has a positive score (i.e. r[w′] > ε × deg(w′) was true and thus π[w′] > 0), and so
it is part of the support of π. Furthermore at the beginning of the algorithm only v is active. So it
follows that every node explored by the algorithm is connected to v via a path composed only by the
nodes with π score strictly larger than 0. So its distance from v is bounded by the support of the π
vector that is O (1/(1−α)ε) cf. Theorem A.3.

A . 5 I N S TA N T E M B E D D I N G C O M P L E X I T Y

Theorem A.5. (ref. Theorem 3.4) The I N S TA N T E M B E D D I N G(v,G, d, ε) algorithm has running
time O (d+ 1/α(1−α)ε).

Proof. The first step of the I N S TA N T E M B E D D I N G is computing the approximate Personalized
PageRank vector. As noted in Theorem A.3, this can be done in time O (1/αε).

We now focus our attention to the second part of our algorithm, projecting the sparse PPR vector into
the embedding space. For each non-zero entry rj of the PPR vector π, we compute hash functions
hd(j), hsgn(j) and max(log(rj ∗ n), 0) in O(1) time. The total number of iterations is equal to the
support size of π, i.e. O (1/(1−α)ε).

Finally, we note that our algorithm always generates a dense embedding, handling this variable in
O(d) time complexity. However, in practice this term is negligible as 1/e >> d. Summing up the
aforementioned bounds we get the total running time of our algorithm:

O (d+ 1/αε + 1/(1−α)ε) = O (d+ 1/α(1−α)ε)

A . 6 G L O B A L C O N S I S T E N C Y

Theorem A.6. (ref. Theorem 3.5)
I N S TA N T E M B E D D I N G(v,G, d, ε) output equals G R A P H E M B E D D I N G(G, d, ε)v .

Proof. We begin by noting that for a fixed parameterization, the
S PA R S E P E R S O N A L I Z E D PA G E R A N K routine will compute an unique vector for
a given node. Analyzing now the Wv,j entry of the embedding matrix generated by
G R A P H E M B E D D I N G(G, d, ε), we have:

Wv,j =
∑
rk∈πv

hsgn(k)×max(log(rk ∗ n), 0)I[hd(k) = j]

14

Under review as a conference paper at ICLR 2021

The entire computation is deterministic and directly dependent only on the hash functions of choice
and the indexing of the graph. By fixing the two hash functions hd and hsgn, we also have that
Wv,j = wv

j where wv = I N S TA N T E M B E D D I N G(v,G, d, ε), ∀v ∈ [0..n−1], j ∈ [0..d−1].

A . 7 R E PA R A M E T E R I Z AT I O N

We note that Andersen et al. (2007) in their paper use a lazy random walk transition matrix. Further-
more in their analysis they also consider a lazy random walk. Nevertheless, this does not affect the
asymptotic of their results, in fact in Proposition 8.1 in Andersen et al. (2007) they show that the two
definition are equivalent up to a small change in α. More precisely, a standard personalized PageRank
with decay factor α is equivalent to a lazy random walk with decay factor α

2−α . So all the asymptotic
of the bounds in Andersen et al. (2007) apply also to the classic random walk setting that we study in
this paper.

B E X P E R I M E N T S

B . 1 M E T H O D S D E S C R I P T I O N S

We ran all baselines on 128 and 512 embedding dimensions. As we expect our method to perform
better as we increase the projection size, we performed an auxiliary test with embedding size 2048
for InstantEmbedding. We also make the observation that learning-based methods generally do not
scale well with an increase of the embedding space. The following are the description and individual
parameterization for each method.

• DeepWalk (Perozzi et al., 2014): Constructs node-contexts from random-walks and learns
representations by increasing the nodes co-occurrence likelihood by modeling the posterior
distribution with hierarchical softmax. We set the number of walks per node and their length
to 80, and context windows size to 10.
• Node2Vec (Grover & Leskovec, 2016): Samples random paths in the graph similar to

DeepWalk, while adding two parameters, p and q, controlling the behaviour of the walk.
Estimates the likelihood through negative sampling. We set again the number of walks per
node and their length to 80 and windows size 10, number of negative samples to 5 per node
and p = q = 1.
• Verse (Tsitsulin et al., 2018): Minimizes objective through gradient descent, by sampling

nodes from PPR random walks and negatives samples from a noise distribution. We train it
over 105 epochs and set the stopping probability to 0.15.
• FastRP (Chen et al., 2019): Computes a high-order similarity matrix as a linear combination

of multiple-steps transitions matrices and projects it into an embedding space through a
sparse random matrix. We fix the linear coefficients to [0, 0, 1, 6] and the normalization
parameter −0.65.
• InstantEmbedding (this work): Approximate per-node PPR vectors with return probability
α and precision ε, which are projected into the embedding space using two fixed hash
functions. In all our experiments, we set α = 0.15 and ε > 1

n , where n is the number of
nodes in the graph.

Four additional baselines were considered for extending a subset of our experiments, as follows:

• RandNE (Zhang et al., 2018): Linearnly combine transition matrices of multiple orders,
randomly projected through an orthogonal Gaussian matrix. We used transitions up to order
3, with coefficients [1, 100, 104, 105].
• NodeSketch (Yang et al., 2019): Employs a recursive sketching process using a hash

function that preserves hamming distances. Where provided, we use the recommended
default parameters, and on all other datasets we choose the best performing (‘order‘, α)
parameters from {(2, 0.0001), (5, 0.001)}.
• LouvainNE (Bhowmick et al., 2020): Aggregates node representations from a successive

sub-graph hierarchy. We use the recommended defaults across all datasets, with Louvain
partition strategy and a damping parameter a = 0.01.

15

Under review as a conference paper at ICLR 2021

Table 5: Analysis of employed networks in terms of scale-free and small-world measures. The scale-
free degree is reported as a Kolmogorov-Smirnov test between power-law and exponential/log-normal
distributions candidates (R = mean log-likelihood ratio, p = degree of confidence).

Exponential Distribution Log-normal Distribution Pseudo-
diameter

Transitivity

R p R p

PPI 12.49 0.02 -0.56 0.45 8 0.09
Blogcatalog 63.39 0 -1.9 0.16 5 0.09
CoCit 354.09 0 -2.61 0.19 25 0.08
CoAut 502 0 -102 0 30 0.28
Flickr -61.31 0.28 -504 0 6 0.18
YouTube 60175 0 -142 0 24 0.006
Amazon2M 41233 0 -190 0 29 0.13
Orkut 33757 0 -737 0 10 0.04

• FREDE (Tsitsulin et al., 2020): Sketches matrix 2 by iteratively computing per-node PPR
vectors and using frequent directions. We use the provided default parameters for all datasets
in order to measure running times.

B . 2 D ATA S E T D E S C R I P T I O N S

The graph datasets we used in our experiments are as follows:

• PPI (Stark et al., 2006): Subgraph of the protein-protein interaction for Homo Sapiens
species and ground-truth labels represented by biological states. Data originally processed
by Grover & Leskovec (2016).

• Blogcatalog (Tang & Liu, 2010): Network of social interactions between bloggers. Authors
specify categories for their blog, which we use as labels.

• Microsoft Academic Graph (MAG) (mag, 2016): Collection of scientific papers, authors,
journals and conferences. Two distinct subgraphs were originally processed by Tsitsulin
et al. (2018), based on co-authorship (CoAuthor) and co-citations (CoCit) relations. For the
latter one, labels are represented by the unique conference where the paper was published.

• Flickr (Tang & Liu, 2010): Contact network of users within 195 randomly sampled interest
groups.

• YouTube (Tang & Liu, 2010) Social network of users on the video-sharing platform. Labels
are represented by group of interests with at least 500 subscribers.

• Amazon2M (Chiang et al., 2019): Network of products where edges are represented by
co-purchased relations.

• Orkut (Yang & Leskovec, 2015): Social network where users can create and join groups,
used at ground-truth labels. We followed the approach of Tsitsulin et al. (2018) and selected
only the top 50 largest groups.

• Friendster (Yang & Leskovec, 2015): Social network where users can form friendship edge
each other. It also allows users form a group which other members can then join.

To better understand the variety of our chosen datasets, we report the scale-free and small-world
characteristics of the networks in Table 5. fitting a power-law distribution to node degrees, and
comparing it to other 2 distributions (exponential and log-normal) through the Kolmogorov-Smirnov
test (R = mean log-likelihood ratio, p = degree of confidence). We note that on the CoAuthorship,
Flickr, YouTube, Amazon2M and Orkut networks, the h0 hypothesis can be rejected (p < 0.05) and
thus conclude that the log-normal distribution is a better fit (graphs are not scale-free). Additionally,
we report two small-world related measures: the pseudo-diameter of the graphs and their global
clustering coefficient (transitivity). We observe that that graphs we use in the study are diverse,
covering the spectrum of small-world and large-diameter networks.

16

Under review as a conference paper at ICLR 2021

B . 3 R U N T I M E A N A LY S I S

B . 3 . 1 G E N E R A L S E T U P

For the runtime analysis we use the same parameterization as described in B.1 for all methods. In the
special case of InstantEmbedding, we dynamically load into memory just the required subgraph in
order to approximate the PPR vector for a single node. We individually ran each method on a virtual
machine hosted on the Google Cloud Platform, with a 2.3GHz 16-core CPU and 128GB of RAM.

B . 3 . 2 R U N T I M E : S P E E D

All methods, except the single-threaded FastRP, leveraged the 16 cores of our machines. Some
methods did not complete all the tasks: none ran on Friendster; node2vec was unable to run on
Amazon2M and Orkut; FastRP did not run on Orkut specifically for a 512-dimension embedding. We
note that all reported numbers are real execution times, taking into account also loading the data in
memory. The detailed results are shown in Table 7.

For reference, we also provide the total running time for producing a full graph embedding. We note
that when computing the PPR matrix (of an entire graph) a local measure may be suboptimal, and
we leave optimizing global run time as future work. Nevertheless, here we report the total running
time of our local method successively applied to all nodes in a graph in Table 6 , with an additional 4
recent baselines. All methods ran on the same machine and produced a 512-dimensional embedding
for the node classification task. From the additional baselines, only RandNE and LouvainNE could
scale to Orkut, while FREDE could only produce an embedding on half of the datasets.

B . 3 . 3 TA S K : M E M O RY U S A G E

The methods that failed to complete in the Running Times section are also marked here accordingly.
We note that due to the local nature of our method, we can consistently keep the average memory usage
under 1MB for all datasets. This observation reinforces the sublinear guarantees of our algorithm
when being within a good ε-regime, as stated in Lemma A.4. The detailed results are shown in Table
8.

Table 6: Total approximate running time for producing a 512-dimensional full graph embedding, with
4 additional recent baselines. In this scenario, InstantEmbedding produced a full graph embedding, as
opposed to the originally proposed single node representation task.

PPI BlogCatalog CoCit Flickr YouTube Orkut

DeepWalk 254 711 2,767 6,035 81,168 219,003
node2vec 24.82 67.8 280 802 7,600 DNC
VERSE 87.5 198 904 1,863 31,101 84,468
RandNE 2.05 3.93 3.86 39.4 32.1 773
FastRP 1.81 5.62 7.21 79.8 85.5 DNC
NodeSketch 19.9 609 496 3,350 2,798 DNC
LouvainNE 0.62 2.47 7.6 17.7 196 733
FREDE 150 1,194 10,954 DNC DNC DNC

InstantEmbedding 0.27 3.98 5.32 53.6 1,254 58,070

17

Under review as a conference paper at ICLR 2021

Table 7: Average run time (in seconds) to generate a 128-size and a 512-size node embedding for
each method and each dataset with the respective standard deviation. Each experiment was run 5
times for all the methods (given their global property) except for InstantEmbedding for which we ran
the experiment 1000 times (given the method’s locality property).
bold - improvement over the baselines; DNC - Did Not Complete.

InstantEmbedding DeepWalk node2vec VERSE FastRP

PPI
128 0.00735 92.74 12.90 40.05 1.42

± 0.00130 ± 0.68 ± 0.26 ± 0.08 ± 0.02

512 0.00751 254.31 24.82 87.53 1.81
± 0.00137 ± 7.68 ± 0.17 ± 0.24 ± 0.02

BlogCatalog
128 0.00627 349.66 37.10 109.15 3.03

± 0.00221 ± 30.03 ± 0.19 ± 1.20 ± 0.08

512 0.00826 711.76 67.86 198.75 5.62
± 0.00436 ± 17.81 ± 0.11 ± 1.68 ± 0.15

CoCit
128 0.01993 1,015.44 149.53 427.06 3.51

± 0.01042 ± 3.23 ± 1.14 ± 4.23 ± 0.12

512 0.02019 2,766.99 280.35 904.53 7.21
± 0.01048 ± 5.71 ± 0.82 ± 7.89 ± 0.72

CoAuthor
128 0.01612 1,334.55 189.30 468.47 2.71

± 0.00733 ± 10.84 ± 11.78 ± 1.88 ± 0.02

512 0.01630 3,561.27 339.01 1,029.88 5.50
± 0.00761 ± 27.86 ± 1.04 ± 9.96 ± 0.08

Flickr
128 0.02042 2,519.22 564.71 1,038.87 38.41

± 0.01140 ± 121.60 ± 5.01 ± 11.27 ± 0.42

512 0.02051 6,035.50 802.64 1,863.41 79.88
± 0.01128 ± 102.25 ± 4.95 ± 39.82 ± 2.00

YouTube
128 0.06065 27,249.93 4,301.05 16,618.20 30.44

± 0.04521 ± 1,383.18 ± 21.36 ± 282.96 ± 1.14

512 0.06128 81,168.81 7,600.46 31,101.92 85.52
± 0.04534 ± 2,752.42 ± 64.14 ± 121.03 ± 4.81

Amazon2M
128 0.09746 63,525.32 DNC 38,627.77 450.84

± 0.05306 ± 164.83 ± 4,058.04 ± 21.07

512 0.09715 173,966.97 DNC 73,993.64 940.88
± 0.05187 ± 1,094.66 ± 2,110.29 ± 31.16

Orkut
128 0.17192 94,217.21 DNC 50,516.07 843.46

± 0.04782 ± 1,121.94 ± 4,082.24 ± 17.69

512 0.17231 219,003.92 DNC 84,468.50 DNC
± 0.04806 ± 781.12 ± 3,407.44

Friendster
128 0.07910 DNC DNC DNC DNC

± 0.04084

512 0.07930 DNC DNC DNC DNC
± 0.04090

18

Under review as a conference paper at ICLR 2021

Table 8: Peak memory used (in MB) to generate a 128-size and 512-size node embedding for each
method and each dataset. Each experiment was run once for all the methods (given their global
property) except for InstantEmbedding for which we ran the experiment 1000 times (given the
method’s locality property) and report the mean peak memory consumption with the respective
standard deviation.
bold - improvement over the baselines; DNC - Did Not Complete.

InstantEmbedding DeepWalk node2vec VERSE FastRP

PPI
128 0.1692 ± 0.0214 4.80 54.02 2.40 68.17
512 0.1707 ± 0.0211 16.75 65.98 8.39 197.67

BlogCatalog
128 0.2040 ± 0.0788 14.54 2,970.00 8.08 150.47
512 0.2140 ± 0.0871 46.21 3,000.00 23.92 504.65

CoCit
128 0.2697 ± 0.0848 52.27 148.93 24.38 438.27
512 0.2780 ± 0.0692 187.54 284.20 92.01 1,660.00

CoAuthor
128 0.1778 ± 0.0592 61.13 120.56 28.25 465.47
512 0.1803 ± 0.0642 220.32 279.75 107.85 1,770.00

Flickr
128 0.4138 ± 0.1525 140.33 69,860.00 88.83 1,080.00
512 0.4451 ± 0.1729 387.67 70,110.00 212.50 3,830.00

YouTube
128 0.5902 ± 0.2407 1,360.00 24,910.00 611.48 10,240.00
512 0.5456 ± 0.2642 4,860.00 28,410.00 2,360.00 40,610.00

Amazon2M
128 0.6321 ± 0.3122 3,380.00 DNC 1,760.00 26,440.00
512 0.6778 ± 0.2862 10,910.00 DNC 5,520.00 125,870.00

Orkut
128 0.9124 ± 0.0672 4,560.00 DNC 2,520.00 35,940.00
512 0.8884 ± 0.1224 14,000.00 DNC 7,240.00 DNC

Friendster
128 0.6818 ± 0.2476 DNC DNC DNC DNC
512 0.7892 ± 0.1753 DNC DNC DNC DNC

19

Under review as a conference paper at ICLR 2021

B . 4 E M B E D D I N G Q U A L I T Y

B . 4 . 1 Q U A L I T Y: N O D E C L A S S I F I C AT I O N

These tasks aim to measure the semantic information preserved by the embeddings, through the
means of the generalization capacity of a simple classifier, trained on a small fraction of labeled
representations. All methods use 512 embedding dimensions. For each methods, we perform three
different splits of the data, and for our method we generate five embeddings, each time sampling
a different projection matrix. We use a logistic regression (LR) classifier from using Scikit-Learn
(Pedregosa et al., 2011) to train the classifiers. In the case of multi-class classification (we follow
Perozzi et al. (2014) and use a one-vs-rest LR ensemble) – we assume the number of correct labels K
is known and select the top K probabilities from the ensemble. To simulate the sparsity of labels in
the real-wold, we train on 10% of the available labels for PPI and Blogcatalog and only 1% for the
rest of them, while testing on the rest.

We treat CoCit as a multi-class problem as each paper is associated an unique conference were it was
published. Also, for Orkut we follow the approach from Tsitsulin et al. (2018) and select only the
top 50 largest communities, while further filtering nodes belonging to more than one community. In
these two cases, are fitting a simply logistic regression model on the available labeled nodes. The
other datasets have multiple labels per node, and we are using a One-vs-The-Rest ensemble. When
evaluating, we assume the number of correct labels, K, is known and select the top K probabilities
from the ensemble. For each methods, we are performing three different splits of the data, and for our
method we generate five embeddings, sampling different projection matrices.

We report the average and 90% confidence interval for micro and macro F1-scores at different
fractions of known labels. The following datasets are detailed for node classification: PPI (Table 9),
BlogCatalog (Table 10), CoCit (Table 11), Flickr (Table 12), and YouTube (Table 13).

We also report experiments with 4 additional baselines in Table 14. The classification task is the
same, however for NodeSketch we used the recommended SVC classifier with hamming kernel, as
the Logistic Regression could not infer a separation boundary in this particular case. Additionally,
for FREDE we are referencing the scores from the original paper, having a comparable evaluation
framework. We note that although FREDE produces better scores, it does not scale past a medium-
sized graph, and its extremely high running times (Table 6) takes this approach out of the original
scope of our paper.

Table 9: Classification micro and macro F1-scores for PPI.

Labeled Nodes

10.00% 50.00% 90.00%

Method d Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

DeepWalk 128 15.72 ± 1.75 12.56 ± 1.84 21.34 ± 1.20 18.59 ± 1.40 24.44 ± 0.32 20.36 ± 2.74
512 16.08 ± 0.64 12.89 ± 1.66 19.90 ± 1.02 18.08 ± 1.11 21.51 ± 5.75 20.36 ± 5.05

node2vec 128 15.65 ± 1.46 12.07 ± 1.23 20.97 ± 1.26 17.86 ± 0.85 23.99 ± 5.84 19.05 ± 2.25
512 15.03 ± 3.18 12.19 ± 2.34 21.04 ± 1.90 18.11 ± 2.13 22.02 ± 1.14 18.18 ± 3.47

VERSE 128 14.41 ± 1.40 11.56 ± 1.37 19.63 ± 1.08 16.95 ± 1.61 22.01 ± 2.66 18.71 ± 0.61
512 12.59 ± 2.54 9.54 ± 2.22 13.62 ± 0.88 11.67 ± 0.85 16.00 ± 0.26 13.66 ± 0.53

FastRP 128 11.73 ± 2.37 7.24 ± 1.49 16.76 ± 0.70 11.03 ± 1.05 19.45 ± 3.10 11.70 ± 2.98
512 15.74 ± 2.19 11.11 ± 1.20 21.19 ± 2.25 15.72 ± 1.37 21.52 ± 5.31 16.63 ± 1.87

Instant
Embedding

128 15.88 ± 1.36 11.67 ± 1.09 20.51 ± 0.70 16.89 ± 0.93 21.82 ± 2.47 17.49 ± 2.36
512 17.67 ± 1.22 13.04 ± 1.06 23.50 ± 0.97 19.84 ± 1.34 25.36 ± 2.32 21.21 ± 2.92
2048 18.77 ± 1.22 13.76 ± 1.41 24.30 ± 0.67 20.44 ± 0.85 25.85 ± 2.91 22.03 ± 3.84

B . 4 . 2 TA S K : L I N K P R E D I C T I O N

For this task we create edge embeddings by combining node representations, and treat the problem
as a binary classification. We observed that different strategies for aggregating embeddings could
maximize the performance of different methods under evaluation, so we conducted an in-depth

20

Under review as a conference paper at ICLR 2021

Table 10: Classification micro and macro F1-scores for Blogcatalog.

Labeled Nodes

10.00% 50.00% 90.00%

Method d Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

DeepWalk 128 36.05 ± 0.85 20.91 ± 0.79 41.07 ± 1.05 26.85 ± 0.96 42.69 ± 1.49 28.87 ± 4.61
512 32.48 ± 0.35 18.69 ± 1.17 37.88 ± 0.61 25.38 ± 0.85 40.14 ± 4.03 26.11 ± 6.42

node2vec 128 33.63 ± 0.96 15.28 ± 0.99 37.18 ± 0.82 20.02 ± 0.44 38.34 ± 3.62 21.26 ± 1.37
512 33.67 ± 0.93 16.24 ± 1.11 37.42 ± 1.40 21.43 ± 0.73 38.98 ± 4.70 21.94 ± 1.49

VERSE 128 32.57 ± 0.96 18.67 ± 1.46 38.66 ± 0.88 25.0 ± 1.37 39.47 ± 1.34 26.64 ± 1.08
512 24.64 ± 0.85 12.33 ± 1.58 29.27 ± 0.41 18.48 ± 0.88 33.18 ± 2.51 21.11 ± 2.60

FastRP 128 28.68 ± 0.35 12.74 ± 1.23 31.22 ± 1.34 14.78 ± 0.53 31.61 ± 1.90 15.34 ± 3.27
512 33.54 ± 0.96 17.83 ± 1.90 36.94 ± 1.08 21.49 ± 0.38 37.62 ± 2.66 22.26 ± 2.98

Instant
Embedding

128 27.99 ± 1.20 13.72 ± 1.49 32.40 ± 1.23 18.77 ± 1.40 33.40 ± 2.95 19.94 ± 3.30
512 33.36 ± 1.11 17.37 ± 1.61 37.76 ± 1.37 23.79 ± 1.61 39.33 ± 3.45 26.14 ± 3.07
2048 36.05 ± 1.66 19.01 ± 1.93 41.42 ± 1.49 27.16 ± 1.96 42.46 ± 4.35 29.00 ± 3.94

Table 11: Classification micro and macro F1-scores for CoCit.

Labeled Nodes

1.00% 5.00% 9.00%

Method d Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

DeepWalk 128 36.51 ± 0.85 27.54 ± 1.26 41.52 ± 0.03 29.85 ± 1.31 43.21 ± 0.61 30.31 ± 0.50
512 37.44 ± 0.67 26.57 ± 0.76 39.41 ± 1.11 29.92 ± 0.79 40.95 ± 0.82 31.48 ± 0.91

node2vec 128 37.55 ± 0.99 26.38 ± 0.88 42.92 ± 0.55 31.12 ± 0.41 43.94 ± 0.61 32.03 ± 0.20
512 38.35 ± 1.75 27.71 ± 1.17 42.53 ± 0.26 31.05 ± 0.50 43.99 ± 0.32 32.14 ± 0.38

VERSE 128 38.52 ± 0.47 28.17 ± 1.20 41.68 ± 0.96 31.14 ± 0.26 43.47 ± 0.26 32.22 ± 0.53
512 38.22 ± 1.34 27.42 ± 0.91 38.03 ± 0.58 29.50 ± 0.88 38.88 ± 0.61 31.04 ± 0.82

FastRP 128 15.97 ± 0.55 4.18 ± 0.29 16.74 ± 0.64 4.31 ± 0.47 16.62 ± 0.35 4.17 ± 0.29
512 18.88 ± 1.28 6.63 ± 0.47 26.82 ± 1.23 9.17 ± 0.26 27.91 ± 0.99 8.79 ± 0.38

Instant
Embedding

128 38.19 ± 1.07 25.29 ± 1.14 41.23 ± 0.49 27.92 ± 0.63 42.48 ± 0.42 28.44 ± 0.72
512 39.95 ± 0.67 27.64 ± 1.22 43.01 ± 0.51 30.61 ± 0.51 44.05 ± 0.35 31.50 ± 0.63
2048 40.49 ± 1.06 28.86 ± 0.81 43.79 ± 0.46 31.69 ± 0.55 44.85 ± 0.46 32.76 ± 0.41

Table 12: Classification micro and macro F1-scores for Flickr.

Labeled Nodes

1.00% 5.00% 9.00%

Method d Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

DeepWalk 128 32.55 ± 0.91 13.81 ± 1.72 37.44 ± 0.44 22.58 ± 0.53 38.78 ± 0.23 24.75 ± 0.58
512 31.22 ± 0.38 13.42 ± 1.23 35.67 ± 0.38 22.72 ± 1.52 37.25 ± 0.09 25.74 ± 0.58

node2vec 128 29.27 ± 0.96 6.40 ± 0.50 34.12 ± 0.47 12.82 ± 0.88 35.15 ± 0.03 14.89 ± 0.47
512 29.80 ± 0.67 7.14 ± 0.20 34.40 ± 0.26 13.50 ± 0.20 35.39 ± 0.06 15.58 ± 0.58

VERSE 128 28.04 ± 1.84 10.52 ± 2.37 33.52 ± 0.12 19.12 ± 0.41 35.38 ± 0.41 22.31 ± 0.93
512 25.22 ± 0.20 7.20 ± 1.28 28.25 ± 0.29 14.17 ± 1.02 29.65 ± 0.32 17.09 ± 0.29

FastRP 128 28.20 ± 0.53 9.39 ± 1.61 30.43 ± 0.15 13.82 ± 0.61 30.65 ± 0.29 14.51 ± 0.38
512 29.85 ± 0.26 12.28 ± 2.72 33.64 ± 0.58 18.94 ± 1.28 34.88 ± 0.58 21.44 ± 1.23

Instant
Embedding

128 27.41 ± 0.90 9.14 ± 0.56 31.84 ± 0.25 14.90 ± 0.55 33.14 ± 0.33 17.27 ± 0.65
512 30.43 ± 0.79 10.78 ± 1.20 34.00 ± 0.25 18.36 ± 0.51 35.37 ± 0.25 21.26 ± 0.48
2048 31.89 ± 0.62 11.15 ± 1.02 35.94 ± 0.23 19.38 ± 0.85 37.21 ± 0.18 23.02 ± 0.56

21

Under review as a conference paper at ICLR 2021

Table 13: Classification micro and macro F1-scores for YouTube.

Labeled Nodes

1.00% 5.00% 9.00%

Method d Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

DeepWalk 128 37.53 ± 1.40 29.04 ± 3.77 41.64 ± 0.15 34.45 ± 0.70 42.97 ± 0.29 35.62 ± 0.93
512 38.69 ± 1.17 31.11 ± 1.08 40.26 ± 0.38 35.09 ± 0.26 40.74 ± 0.06 36.14 ± 0.23

VERSE 128 37.13 ± 0.41 28.54 ± 2.39 39.74 ± 0.32 33.87 ± 0.67 41.70 ± 0.38 35.04 ± 0.41
512 36.74 ± 1.05 27.16 ± 0.15 37.47 ± 1.37 32.40 ± 0.91 37.64 ± 0.67 33.00 ± 0.35

node2vec 128 34.64 ± 2.63 25.35 ± 3.83 40.62 ± 1.02 33.26 ± 0.20 42.65 ± 0.70 35.73 ± 0.32
512 36.02 ± 2.01 25.03 ± 2.89 39.64 ± 0.44 33.78 ± 0.38 40.47 ± 0.85 35.01 ± 1.08

FastRP 128 23.61 ± 1.61 6.24 ± 0.61 24.16 ± 0.96 6.64 ± 1.64 24.50 ± 0.29 7.09 ± 0.35
512 22.83 ± 0.41 7.21 ± 0.20 23.43 ± 0.55 8.77 ± 0.82 23.76 ± 0.64 9.56 ± 0.91

Instant
Embedding

128 37.89 ± 1.02 26.27 ± 1.36 40.90 ± 0.53 31.57 ± 0.86 41.78 ± 0.37 32.73 ± 0.51
512 40.04 ± 0.97 27.52 ± 1.60 43.31 ± 0.41 33.98 ± 0.81 44.00 ± 0.42 35.56 ± 0.69
2048 40.91 ± 0.86 28.34 ± 1.43 44.82 ± 0.49 35.16 ± 1.02 45.67 ± 0.32 36.90 ± 0.69

investigation in order for the fairest possible evaluation. Specifically, for two node embeddings w and
ŵ we adopt the following strategies for creating edge representations:

1. dot-product: w>ŵ

2. cosine distance: w>ŵ
‖w‖‖ŵ‖

3. hadamard product: w � ŵ

4. element-wise average: 1
2 (w + ŵ)

5. L1 element-wise distance: |w − ŵ|
6. L2 element-wise distance (w − ŵ)� (w − ŵ)

While the first two strategies directly create a ranking from two embeddings, for the other ones we
train a logistic regression on examples from the validation set. In all cases, a likelihood scalar value
will be attributed to all edges, and we report their ROC-AUC score on the test set.

Taking into account that different embedding methods may determine a specific topology of the
embedding space, that may in turn favour a specific edge aggregation method, for each method we
consider only the strategy that consistently provides good results on all datasets. This ensures that all
methods can be objectively compared to one another, independent of the particularities of induced
embedding space geometry.

The following tables show detailed analysis of link prediction results for BlogCatalog (Table 15) and
CoAuthor (Table 16).

Table 14: Approximate Micro-F1 scores with an additional 4 baselines. All methods produced 512-
dimensional embeddings, with the exception of FREDE for which we refer the scores from the
original paper.

PPI BlogCatalog CoCit Flickr YouTube Orkut

DeepWalk 16.08 32.48 37.44 31.22 38.69 87.67
node2vec 15.03 33.67 38.35 29.80 36.02 DNC
VERSE 12.59 24.64 38.22 25.22 36.74 81.52
RandNE 15.77 32.79 16.23 29.19 24.57 59.01
FastRP 15.74 33.54 26.03 29.85 22.83 DNC
NodeSketch 12.03 29.65 16.67 23.07 32.02 DNC
LouvainNE 14.73 22.28 35.14 26.37 33.52 45.08
FREDE 19.56 35.69 42.46 DNC DNC DNC

InstantEmbedding 17.67 33.36 39.95 30.43 40.04 76.83

22

Under review as a conference paper at ICLR 2021

10−610−510−410−310−210−1

10

15

log(ε)

M
ic

ro
F1

(a) Micro F1 Score

InstantEmbedding DeepWalk node2vec VERSE FastRP

10−610−510−410−310−210−1

10−1

100

101

102

log(ε)

L
og

(T
im

e
(s

))

(b) Running Time

10−610−510−410−310−210−1

10−1

100

101

102

log(ε)

L
og

(M
em

or
y

(m
b)

)

(c) Peak Memory

Figure 4: Effect of ε on the PPI dataset.

10−610−510−410−310−210−1

20

25

30

35

log(ε)

M
ic

ro
F1

(a) Micro F1 Score

InstantEmbedding DeepWalk node2vec VERSE FastRP

10−610−510−410−310−210−1

10−1

100

101

102

103

log(ε)

L
og

(T
im

e
(s

))

(b) Running Time

10−610−510−410−310−210−1

10−2

100

102

104

log(ε)

L
og

(M
em

or
y

(m
b)

)

(c) Peak Memory

Figure 5: Effect of ε on the BlogCatalog dataset.

B . 5 E P S I L O N I N F L U E N C E

In order to gain insight into the effect of ε on the behaviour of our method, we test 6 values in the range
of [10−1, ..., 10−6]. We note that the decrease of ε is strongly correlated with a better classification
performance, but also to a larger computational overhead. The only apparent exception seems to be
the Micro-F1 score on the Blogcatalog dataset, which drops suddenly when ε = 10−6. We argue that
this is due to the fact that more probability mass is dispersed further away from the central node, but
the max operator cuts that information away (as the number of nodes is small), and thus the resulting
embedding is actually less accurate.

B . 5 . 1 TA S K : V I S U A L I Z AT I O N

Figure 3 presents multiple UMAP (McInnes et al., 2018) projections on the CoCit dataset, where we
grouped together similar conferences. We note that our sublinear approach is especially well suited to

Table 15: Link-prediction ROC-AUC scores for Blogcatalog. For each method, we highlight the
aggregation function that consistently performs good on all datasets.

Aggregation Function

Method d hadamard dot-product cosine L1 L2 average

DeepWalk 128 68.92 ± 2.45 63.01 ± 2.83 75.73 ± 1.49 91.51 ± 0.61 91.84 ± 0.88 82.07 ± 0.09
512 67.70 ± 1.58 62.80 ± 2.07 72.83 ± 0.82 90.94 ± 0.29 91.41 ± 0.67 83.71 ± 1.46

node2vec 128 93.12 ± 0.20 91.85 ± 1.37 22.52 ± 0.41 89.90 ± 0.70 90.28 ± 1.28 94.41 ± 0.53
512 92.18 ± 0.12 90.96 ± 0.12 12.49 ± 1.20 93.89 ± 0.38 93.50 ± 0.76 93.72 ± 0.26

VERSE 128 94.96 ± 0.38 95.10 ± 0.67 85.21 ± 0.88 75.74 ± 0.85 75.92 ± 0.73 94.07 ± 0.47
512 93.42 ± 0.35 93.40 ± 0.67 61.48 ± 0.88 91.52 ± 0.26 92.17 ± 0.61 93.14 ± 0.58

FastRP 128 73.54 ± 0.23 68.16 ± 0.55 76.32 ± 1.90 85.78 ± 2.31 82.46 ± 2.01 89.25 ± 0.85
512 78.34 ± 2.80 70.67 ± 0.79 79.25 ± 1.02 88.68 ± 0.70 84.56 ± 0.76 90.99 ± 0.55

Instant
Embedding

128 89.22 ± 1.48 84.95 ± 4.19 51.57 ± 1.14 72.52 ± 1.71 64.39 ± 1.37 87.65 ± 0.70
512 92.74 ± 0.60 90.77 ± 1.51 51.75 ± 1.16 83.07 ± 1.00 70.39 ± 1.11 90.63 ± 0.56
2048 93.84 ± 0.33 93.44 ± 0.53 51.35 ± 1.18 88.95 ± 0.85 77.39 ± 1.02 92.40 ± 0.42

23

Under review as a conference paper at ICLR 2021

10−610−510−410−310−210−1

20

30

40

log(ε)

M
ic

ro
F1

(a) Micro F1 Score

InstantEmbedding DeepWalk node2vec VERSE FastRP

10−610−510−410−310−210−1

10−1

100

101

102

103

log(ε)

L
og

(T
im

e
(s

))
(b) Running Time

10−610−510−410−310−210−1

10−1

100

101

102

103

log(ε)

L
og

(M
em

or
y

(m
b)

)

(c) Peak Memory

Figure 6: Effect of ε on the CoCit dataset.

10−610−510−410−310−210−1

15

20

25

30

log(ε)

M
ic

ro
F1

(a) Micro F1 Score

InstantEmbedding DeepWalk node2vec VERSE FastRP

10−610−510−410−310−210−1

10−1

100

101

102

103

104

log(ε)

L
og

(T
im

e
(s

))

(b) Running Time

10−610−510−410−310−210−1

10−2

100

102

104

log(ε)

L
og

(M
em

or
y

(m
b)

)

(c) Peak Memory

Figure 7: Effect of ε on the Flickr dataset.

10−610−510−410−310−210−1

25

30

35

40

log(ε)

M
ic

ro
F1

(a) Micro F1 Score

InstantEmbedding DeepWalk node2vec VERSE FastRP

10−610−510−410−310−210−1

10−1

101

103

105

log(ε)

L
og

(T
im

e
(s

))

(b) Running Time

10−610−510−410−310−210−1

10−1

101

103

105

log(ε)

L
og

(M
em

or
y

(m
b)

)

(c) Peak Memory

Figure 8: Effect of ε on the YouTube dataset.

24

Under review as a conference paper at ICLR 2021

Table 16: Temporal link-prediction ROC-AUC scores for CoAuthor. For each method, we highlight
the aggregation function that consistently performs good on all datasets.

Aggregation Function

Method d hadamard dot-product cosine L1 L2 average

DeepWalk 128 75.59 ± 0.88 74.05 ± 1.58 83.5 ± 0.12 86.99 ± 0.09 87.21 ± 0.73 73.64 ± 1.72
512 78.42 ± 0.53 76.40 ± 1.87 82.05 ± 1.20 87.85 ± 0.29 88.43 ± 1.08 79.56 ± 0.70

node2vec 128 80.18 ± 0.67 45.00 ± 1.34 54.59 ± 0.88 70.14 ± 1.31 70.32 ± 0.58 79.07 ± 0.53
512 86.09 ± 0.85 45.19 ± 0.20 42.99 ± 1.66 72.41 ± 1.84 72.70 ± 1.43 84.00 ± 0.38

VERSE 128 93.16 ± 0.44 92.74 ± 0.15 90.85 ± 0.20 79.24 ± 1.49 80.27 ± 0.41 86.50 ± 0.47
512 92.75 ± 0.73 92.36 ± 1.08 90.33 ± 0.20 72.58 ± 1.17 73.82 ± 1.49 86.69 ± 1.02

FastRP 128 60.23 ± 1.78 59.97 ± 1.61 65.08 ± 0.93 78.51 ± 0.64 77.66 ± 0.23 57.69 ± 1.90
512 61.16 ± 1.75 61.92 ± 0.85 70.12 ± 0.38 82.19 ± 2.22 78.51 ± 1.99 63.87 ± 1.49

Instant
Embedding

128 89.41 ± 0.67 88.88 ± 0.79 89.15 ± 0.63 66.19 ± 1.92 66.78 ± 1.90 83.22 ± 0.86
512 90.44 ± 0.48 90.10 ± 0.69 90.60 ± 0.55 76.50 ± 1.44 75.76 ± 1.41 85.64 ± 0.67
2048 89.45 ± 0.62 90.38 ± 0.60 90.84 ± 0.44 88.42 ± 0.48 84.83 ± 0.67 87.67 ± 1.07

visualizing graph data, as visualization algorithms (such as t-SNE or UMAP) only require a small
subset of points (typically downsampling to only thousands) to generate a visualization for datasets.

(a) DeepWalk (b) VERSE

(c) FastRP (d) InstantEmbedding

Figure 9: UMAP visualization of CoCit (d=512). Research areas (ML, DM, DB, IR).

25

	Introduction
	Preliminaries & Related Work
	Graph Embedding
	Local Algorithms on Graphs
	Problem Statement

	Method
	Global Embedding using PPR
	Hashing for Graph Embedding

	Local Node Embedding via InstantEmbedding
	Analysis

	Experiments
	Datasets and experimental settings
	Performance Characteristics
	Embedding Quality

	Conclusion
	Proofs
	Verse as Matrix Factorization
	Hash Kernel
	SparsePersonalizedPageRank Properties
	InstantEmbedding Locality
	InstantEmbedding Complexity
	Global Consistency
	Reparameterization

	Experiments
	Methods Descriptions
	Dataset Descriptions
	Runtime Analysis
	General Setup
	Runtime: Speed
	Task: Memory Usage

	Embedding Quality
	Quality: Node Classification
	Task: Link Prediction

	Epsilon Influence
	Task: Visualization

