Under review as a conference paper at ICLR 2023

DPM-SOLVER++: FAST SOLVER FOR GUIDED SAM-
PLING OF DIFFUSION PROBABILISTIC MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion probabilistic models (DPMs) have achieved impressive success in high-
resolution image synthesis, especially in recent large-scale text-to-image generation
applications. An essential technique for improving the sample quality of DPMs
is guided sampling, which usually needs a large guidance scale to obtain the best
sample quality. The commonly-used fast sampler for guided sampling is DDIM,
a first-order diffusion ODE solver that generally needs 100 to 250 steps for high-
quality samples. Although recent works propose dedicated high-order solvers and
achieve a further speedup for sampling without guidance, their effectiveness for
guided sampling has not been well-tested before. In this work, we demonstrate
that previous high-order fast samplers suffer from instability issues, and they even
become slower than DDIM when the guidance scale grows large. To further
speed up guided sampling, we propose DPM-Solver++, a high-order solver for the
guided sampling of DPMs. DPM-Solver++ solves the diffusion ODE with the data
prediction model and adopts thresholding methods to keep the solution matches
training data distribution. We further propose a multistep variant of DPM-Solver++
to address the instability issue by reducing the effective step size. Experiments
show that DPM-Solver++ can generate high-quality samples within only 15 to 20
steps for guided sampling by pixel-space and latent-space DPMs.

1 INTRODUCTION

Diffusion probabilistic models (DPMs) (Sohl-Dickstein et al., 20155 Ho et al.l |2020; |Song et al.,
2021b) have achieved impressive success on various tasks, such as high-resolution image synthe-
sis (Dhariwal & Nichol, |2021; Ho et al., [2022; Rombach et al., 2022)), image editing (Meng et al.
2022; Saharia et al., [2022a; Zhao et al.} 2022), text-to-image generation (Nichol et al., 2021} [Saharia
et al.| [2022b; Ramesh et al.|[2022; Rombach et al.| 2022} |Gu et al., 2022])), voice synthesis (Liu et al.|
2022a}; |Chen et al.} 2021ajb), molecule generation (Xu et al., 2022 [Hoogeboom et al.|, 2022; [Wu et al.}
2022) and data compression (Theis et al., [2022; Kingma et al.,[2021). Compared with other deep
generative models such as GANs (Goodfellow et al.,|2014) and VAEs (Kingma & Welling, [2014]),
DPMs can even achieve better sample quality by leveraging an essential technique called guided sam-
pling (Dhariwal & Nicholl 2021;Ho & Salimans| 2021)), which uses additional guidance models to
improve the sample fidelity and the condition-sample alignment. Through it, DPMs in text-to-image
and image-to-image tasks can generate high-resolution photorealistic and artistic images which are
highly correlated to the given condition, bringing a new trend in artificial intelligence art painting.

The sampling procedure of DPMs gradually removes the noise from pure Gaussian random variables
to obtain clear data, which can be viewed as discretizing either the diffusion SDEs (Ho et al.| [2020;
Song et al.| |2021b) or the diffusion ODEs (Song et al.,[2021bja) defined by a parameterized noise
prediction model or data prediction model (Ho et al.||2020; Kingma et al.| [2021). Guided sampling
of DPMs can also be formalized with such discretizations by combining an unconditional model with
a guidance model, where a hyperparameter controls the scale of the guidance model (i.e. guidance
scale). The commonly-used method for guided sampling is DDIM (Song et al., |2021a), which is
proven as a first-order diffusion ODE solver (Salimans & Hol 2022; Lu et al., [2022) and it generally
needs 100 to 250 steps of large neural network evaluations to converge, which is time-consuming.

Dedicated high-order diffusion ODE solvers (Lu et al., [2022} [Zhang & Chenl [2022)) can generate
high-quality samples in 10 to 20 steps for sampling without guidance. However, their effectiveness

Under review as a conference paper at ICLR 2023

DDIM (order = 1) PNDM (order = 2) DEIS-1 (order = 2) DEIS;Z (order = 3)

(Song et al 2021a) (Ciu et al 2022b)

[4

(Zhang & Chenl [2022)) (Zhang & Chenl[2022))

—) ’

. A = 5]
= o {

DPM-Solver (order =2) DPM-Solver-3 (order=3) DDIM (thresholding) DPM-Solver++ (order = 2)
2022) 2022) (Saharia et all 2022b) (ours)

Figure 1: Previous high-order solvers are unstable for guided sampling: Samples using the pre-trained
DPMs (Dhariwal & Nichol, 2021) on ImageNet 256 x 256 with a classifier guidance scale 8.0, varying different
samplers (and different solver orders) with only 15 function evaluations. : DDIM with the dynamic threshold-
ing (Saharia et al, [2022b). Our proposed DPM-Solver++ (detailed in Algorithm Z) can generate better samples
than the first-order DDIM, while other high-order samplers are worse than DDIM.

for guided sampling has not been carefully examined before. In this work, we demonstrate that
previous high-order solvers for DPMs generate unsatisfactory samples for guided sampling, even
worse than the simple first-order solver DDIM. We identify two challenges of applying high-order
solvers to guided sampling: (1) the large guidance scale narrows the convergence radius of high-order
solvers, making them unstable; and (2) the converged solution does not fall into the same range with

the original data (a.k.a. “train-test mismatch” (Saharia et al., 2022b)).

Based on the observations, we propose DPM-Solver++, a training-free fast diffusion ODE solver
for guided sampling. We find that the parameterization of the DPM critically impacts the solution
quality. Subsequently, we solve the diffusion ODE defined by the data prediction model, which
predicts the clean data given the noisy ones. We derive a high-order solver for solving the ODE with
the data prediction parameterization, and adopt dynamic thresholding methods (Saharia et al, 2022b))
to mitigate the train-test mismatch problem. Furthermore, we develop a multistep solver which uses
smaller step sizes to address instability.

As shown in Fig.[T} DPM-Solver++ can generate high-quality samples in only 15 steps, which is much
faster than all the previous training-free samplers for guided sampling. Our additional experimental
results show that DPM-Solver++ can generate high-fidelity samples and almost converge within only
15 to 20 steps, for a wide variety of guided sampling applications, including both pixel-space DPMs
and latent-space DPMs.

2 DIFFUSION PROBABILISTIC MODELS
In this section, we review diffusion probabilistic models (DPMs) and their sampling methods.

2.1 FAST SAMPLING FOR DPMSs BY DIFFUSION ODES

Diffusion Probabilistic Models (DPMs) (Sohl-Dickstein et al 2013} [Ho et al.l 2020; [Song et all}
gradually add Gaussian noise to a D-dimensional random variable xo € R” to perturb
the corresponding unknown data distribution gg(g) at time O to a simple normal distribution
qr(x7) ~ N(x7|0,5%I) at time T > 0 for some & > 0. The transition distribution g;(x+|xo) at

Under review as a conference paper at ICLR 2023

each time ¢ € [0, T satisfies
G0 (@t|20) = N (@1|owo, o7 1), M

where oy, 0; > 0 and the signal-to-noise-ratio (SNR) o /o2 is strictly decreasing w.r.t. ¢ (Kingma
et al,|2021). Eq. (1) can be written as ; = ayxg + o€, where € ~ N(0, I).

Parameterization: noise prediction and data prediction DPMs learn to recover the data xg
based on the noisy input 7 with a sequential denoising procedure. There are two alternative ways to
define the model. The noise prediction model €g(x,t) attempts to predict the noise € from the data
x:, which optimizes the parameter 6 by the following objective (Ho et al.,[2020;|Song et al., 202 1b):

min By, e ¢ [w(t)] €0 (w1, 1) — €3] @

where g ~ go(xo), € ~ N(0,I),t ~U([0,1]), and w(¢) > 0 is a weighting function. Alternatively,
the data prediction model xy(x,t) predicts the original data o based on the noisy x;, and its
relationship with €y(x4, t) is given by xg(xs,t) = (x: — or€g(x4,t)) /0y (Kingma et al.,[2021).

Diffusion ODEs Sampling by DPMs can be implemented by solving the diffiusion ODEs (Song
et al.,[2021bfja; [Liu et al., 2022bj Zhang & Chen| 2022} Lu et al.,[2022), which is generally faster than
other sampling methods. Specifically, sampling by diffusion ODEs need to discretize the following
ODE (Song et al.,|2021b)) with ¢ changing from 7' to 0:

dmt 2

t -
T (t)xe + gz(gt) eo(xi,t), wr ~N(0,5°T), (3)
and the equivalent diffusion ODE w.r.t. the data prediction model x¢ is
da, g2 (t) asg?(t) 9
E = (f(t) + 20',52 Ty — 20_2 $9($t7t), T ~ N(Oa g I)7 (4)

where the coefficients f(t) = dl((’ﬁ“‘ Lg% (t) = d(ft? —2d l‘zlgt(’“ o? (Kingma et al., 2021).

2.2 GUIDED SAMPLING FOR DPMs

Guided sampling (Dhariwal & Nichol, |2021; Ho & Salimans| 2021) is a widely-used technique
to apply DPMs for conditional sampling, which is useful in text-to-image, image-to-image, and
class-to-image applications (Dhariwal & Nichol, 2021} |Saharia et al., [2022b; Rombach et al., 2022
Nichol et al.,[2021; Ramesh et al.| [2022)). Given a condition variable ¢, guided sampling defines a
conditional noise prediction model €y(x;,t, c¢). There are two types of guided sampling methods,
depending on whether they require a classifier model. Classifier guidance (Dhariwal & Nichol, |2021)
leverages a pretrained classifier py (c|x,, t) to define the conditional noise prediction model by:

€o(xs,t,¢) = €g(xy,t) — 5+ 04V, logpe(clas, t), 5)

where s > 0 is the guidance scale. In practice, a large s is usually preferred for improving the
condition-sample alignment (Rombach et al.l [2022; [Saharia et al., [2022b) for guided sampling.
Classifier-free guidance (Ho & Salimans, [2021) shares the same parameterized model €y (¢, t, ¢) for
the unconditional and conditional noise prediction models, where the input c for the unconditional
model is a special placeholder &. The corresponding conditional model is defined by:

€g(xt,t,c) = s €g(me, t,c) + (1 —s) - €94, t, D). 6)

Then, samples can be drawn by solving the ODE with €g(xy,t,c) in place of ep(xy,t).
DDIM (Song et al.l 20214a) is a typical solver for guided sampling, which generates samples in
a few hundreds of steps.

2.3 EXPONENTIAL INTEGRATORS AND HIGH-ORDER ODE SOLVERS

It is shown in recent works (Lu et al., [2022; Zhang & Chen, 2022) that ODE solvers based on
exponential integrators (Hochbruck & Ostermann, [2010) converge much faster than the traditional

Under review as a conference paper at ICLR 2023

solvers for solving the unconditional diffusion ODE (EI) Given an initial value x, at time s > 0, |Lu
et al](2022) derive the solution x; of the diffusion ODE (3)) at time ¢ as:

At
= L, at/ e g (@, N, %)
A

Qs

s

where the ODE is changed from the time (¢) domain to the log-SNR (\) domain by the change-of-
variables formula. Here, the log-SNR \; := log(«: /o) is a strictly decreasing function of ¢ with
the inverse function ¢ (-), and & = @, (n), €9(Ex, A) = €g(x¢, (n), tA(A)) are the corresponding
change-of-variable forms for \. [Lu et al.|(2022) showed that DDIM is a first-order solver for Eq. .
They further proposed a high-order solver named “DPM-Solver”, which can generate realistic samples
for the unconditional model in only 10-20 steps.

Unfortunately, the outstanding efficiency of existing high-order solvers does not transfer to guided
sampling, which we shall discuss soon.

3 CHALLENGES OF HIGH-ORDER SOLVERS FOR GUIDED SAMPLING

Before developing new fast solvers, we first examine the performance of existing high-order diffusion
ODE solvers and highlight the challenges.

The first challenge is the large guidance scale causes high-order solvers to be instable. As shown in
Fig.[T] for a large guidance scale s = 8.0 and 15 function evaluations, previous high-order diffusion
ODE solvers (Lu et al., 2022; Zhang & Chen} |2022; |Liu et al.,|2022b)) produce low-quality images.
Their sample quality is even worse than the first-order DDIM. Moreover, the sample quality becomes
even worse as the order of the solver gets higher.

Intuitively, large guidance scales may amplify both the output and the derivatives of the model
€p in Eq. (3). The derivatives of the model affect the convergence range of ODE solvers, and the
amplification may cause high-order ODE solvers to need much smaller step sizes to converge, and
thus the higher-order solvers may perform worse than the first-order solver. Moreover, high-order
solvers require high-order derivatives, which are generally more sensitive to the amplifications. This
further narrows the convergence radius.

The second challenge is the “train-test mismatch” problem (Saharia et al., |2022b). The data lie
in a bounded interval (e.g. [—1, 1] for image data). However, the large guidance scale pushes the
conditional noise prediction model €y (x,t, ¢) away from the true noise, which in turns make the
sample (i.e. the converged solution x of diffusion ODEs) to fall out of the bound. In this case, the
generated images are saturated and unnatural (Saharia et al.,|2022b)).

4 DESIGNING TRAINING-FREE FAST SAMPLERS FOR GUIDED SAMPLING

In this section, we design novel high-order diffusion ODE solvers for faster guided sampling. As
discussed in Sec. [3] previous high-order solvers have instability and “train-test mismatch” issues for
large guidance scales. The “train-test mismatch” issue arises from the ODE itself, and we find the
parameterization of the ODE is critical for the converged solution to be bounded. While previous
high-order solvers are designed for the noise prediction model €y, we solve the ODE (@) for the
data prediction model xy, which itself has some advantages and thresholding methods are further
available to keep the samples bounded (Ho et al., [2020; |Saharia et al., 2022b). We also propose a
multistep solver to address the instability issue.

4.1 DESIGNING SOLVERS BY DATA PREDICTION MODEL

We follow the notations in Lu et al. (2022). Given a sequence {t;}}, decreasing from ¢ty = T to
tar = 0 and an initial value z;, ~ N(0[521), the solver aims to iteratively compute a sequence
{@4,}, to approximate the exact solution at each time ¢;, and the final value &;,, is the approximated
sample by the diffusion ODE. Denote h; :== \;, — A\y,_, fori =1,... M.

For solving the diffusion ODE w.r.t. @y in Eq. @), we firstly propose a simplified formulation
of the exact solution of diffusion ODEs w.r.t. xg below. Such formulation exactly computes

Under review as a conference paper at ICLR 2023

the linear term in Eq. (@) and only remains an exponentially-weighted integral of xy. Denote
Zg(Ex, A) = xg(x4, (1), tA(N)) as the change-of-variable form of &g for A, we have:

Proposition 4.1 (Exact solution of diffusion ODEs of x¢, proof in Appendix [A). Given an initial
value x, at time s > 0, the solution x; at time t € [0, s] of diffusion ODEs in Eq. @) is:

At
@, = g, + at/ a2, N)dA. (8)
A

s s

As the diffusion ODEs in Eq. (3) and Eq.(d) are equivalent, the exact solution formulations in Eq.
and Eq. () are also equivalent. However, from the prespective of designing ODE solvers, these
two formulations are different. Firstly, Eq. (7)) exactly computes the linear term <t x,, while Eq. (§)
exactly computes another the linear term Z-x,. Moreover, to design ODE solvers, Eq. (7) needs to

approximate the integral | e *egd\, while Eq. (8) needs to approximate i e xyd), and these two
integrals are different (recall that &y := (x; — o1€9) /). Therefore, the high-order solvers based
on Eq. (7) and Eq. (8) are essentially different. We further propose the general manner for design
high-order ODE solvers based on Eq. (8) below.

Given the previous value x;, , attime ¢;_1, the aim of our solver is to approximate the exact solution

at time ¢;. Denote wén) \) = % as the n-th order total derivatives of xy w.r.t. logSNR .

For k > 1, taking the (k — 1)-th Taylor expansion at A;, , for @y w.rt. A € [\, _,, A, | and substitute
it into Eq.) with s = ¢;_; and ¢ = ¢;, we have

; o1 S Mo A=A k1
Ly; = o Ty, + 0y Zwe (w)\ti717>\ti71) e n! d)‘+0(h1)7 &)
ti—1 — A :
n=0 t
estimated analytically computed (AppendixE]) omitted
where the integral [e 7’1)d/\ can be analytically computed by integral-by-parts (detailed in

Appendix [A). Therefore, to des1gn a k-th order ODE solver, we only need to estimate the n-th order

derivatives a:é)()\ti—l) for n < k — 1 after omitting the O(hF™') high-order error terms, which are

well-studied techniques and we discussed in details in Sec. A special case is k = 1, where the
solver is the same as DDIM (Song et al.,2021a), and we discuss in Sec. @

For k = 2, we use a similar technique as DPM-Solver-2 (Lu et al.| 2022) to estimate the derivative

:cél) (& tip At,_,). Specifically, we introduce an additional intermediate time step s; between ¢;_1

and ¢; and combine the function values at s; and ¢;_; to approximate the derivative, which is the
standard manner for singlestep ODE solvers (Atkinson et al.,[2011). Overall, we need 2M + 1 time
steps ({t; } Y, and {sz}) which satisfies £y > s1 > t1 > -+ > tpr—1 > sy > tar. The detailed
algorithm is proposed in Algorlthmm, where we combine the previous value x;, , attime ¢;,_; with
the intermediate value u,; at time s; to compute the value x;, at time ¢;.

Algorithm 2 DPM-Solver++(2M).

Require: initial value z, time steps {t;}}£,, data prediction
model xy.

Algorithm 1 DPM-Solver++(2S).

Require: initial value 7, time steps {t;}£, and {s;}}1,, data 1: Denote h; := A, = Ay, fori=1,..., M.
prediction model xg. 2: &4, < 7. Initialize an empty buffer Q.
I @y 7. 3'Qﬁw(
: .) : 0(Z4y, to)
§: for i < 1to M do 4 &y, 7110 g, (e — 1) @y (&4, to)
' buff
4 5: Q(ﬂmo(mmtl)
. _ ~ 6: for i < 2to M do
5. gy, - ay, (e7mihi —1) wo(@y,_, tiz1) 7. e L},;
. . _ 1 7 . 1 . - -
j Die (lat fo)z()(ztk‘(’ tlll) +1)2T'Dz0(u“) & Die (1 + %> o (Tr,_yotio1) = 5 %o (., Liv2)
: Ty, o =Xy, — oy, (67— ; - o~ _n
i1 9 Ty, — ——Ty, , —oy, (e —1) D,
8: end for Ttio1 ! - u) Di
9: return &;,, 10: Ifi < M, then Q <= xo(&:,,t;)
11: end for

12: return &;,,

‘We name the algorithm as DPM-Solver++(2S), which means that the proposed solver is a second-order
singlestep method. We present the theoretical guarantee of the convergence order in Appendix [A] For

Under review as a conference paper at ICLR 2023

Table 1: Comparison between high-order diffusion ODE solvers based on exponential integrators, including
DEIS (Zhang & Chen) [2022), DPM-Solver (Lu et al.| [2022) and DPM-Solver++ (ours).

DEIS DPM-Solver DPM-Solver++
(Zhang & Chen/[2022) (Lu et al.|[2022) (ours)
First-Order DDIM DDIM DDIM
Model Type €y €y T
Taylor Expansion €y fort €p for A xg for A
Solver Type (High-Order) Multistep Singlestep Singlestep + Multistep

k > 3, as discussed in Sec. [3] high-order solvers may be unsuitable for large guidance scales, thus we
mainly consider £ = 2 in this work, and leave the solvers for higher orders for future study.

Moreover, we provide a theoretical comparison between DPM-Solver-2 (Lu et al., 2022) and DPM-
Solver++(2S) in Appendix [Bl We find that DPM-Solver++(2S) has a smaller constant before the
high-order error terms, thus generally has a smaller discretization error than DPM-Solver-2.

4.2 FROM SINGLESTEP TO MULTISTEP

Ateach step (from ¢;_; to t;), the proposed singlestep solver needs two sequential function evaluations
of the neural network xy. Moreover, the intermediate values w,; are only used once and then discarded.
Such method loses the previous information and may be inefficient. In this section, we propose
another second-order diffusion ODE solver which uses the previous information at each step.

In general, to approximate the derivatives acén) in Eq. (9) for n > 1, there is another mainstream
approach (Atkinson et al., 2011): multistep methods (such as Adams—Bashforth methods). Given
the previous values {Z;; };;%) at time t;_1, multistep methods just reuse the previous values to
approximate the high-order derivatives. Multistep methods are empirically more efficient than
singlestep methods, especially for limited number of function evaluations. (Atkinson et al.,|[2011])

We combine the techniques for designing multistep solvers with the Taylor expansions in Eq. (9) and
further propose a multistep second-order solver for diffusion ODEs with xy. The detailed algorithm
is proposed in Algorithm 2, where we combine the previous values @, , and &;,_, to compute the
value x;, without additional intermediate values. We name the algorithm as DPM-Solver++(2M),
which means that the proposed solver is a second-order multistep solver. We also present a detailed
theoretical guarantee of the convergence order, which is stated in Appendix

For a fixed budget NV of the total number of function evaluations, multistep methods can use M = N
steps, while k-th order singlestep methods can only use no more than M = N/k steps. Therefore,
each step size h; of multistep methods is around 1/k of that of singlestep methods, so the high-order
error terms O(h¥) in Eq. (9) of multistep methods may also be smaller than those of singlestep
methods. We show in Sec. [6.1] that the multistep methods are slightly better than singlestep methods.

4.3 COMBINING THRESHOLDING WITH DPM-SOLVER++

For distributions of bounded data (such as the image data), thresholding methods (Ho et al.| [2020;
Saharia et al.| [2022b)) can push out-of-bound samples inwards and somehow reduce the adverse
impact of the large guidance scale. Specifically, thresholding methods define a clipped data prediction
model Zg(x;,t, c) by elementwise clipping the original model xy = (x; — o1€p)/ay within the
data bound, which results in better sample quality for large guidance scales (Saharia et al., [2022b)).
As our proposed DPM-Solver++ is designed for the xp model, we can straightforwardly combine
thresholding methods with DPM-Solver++.

5 RELATIONSHIP WITH OTHER FAST SAMPLING METHODS

In essence, all training-free sampling methods for DPMs can be understood as either discretizing
diffusion SDEs (Ho et al.}2020; [Song et al., 2021b; Jolicoeur-Martineau et al., [2021; Tachibana et al.}
2021;|Kong & Ping, 2021} Bao et al.,[2022bj Zhang et al., [2022) or discretizing diffusion ODEs (Song

Under review as a conference paper at ICLR 2023

et al.l|2021bja;|Liu et al.,|2022b; [Zhang & Chenl [2022} [Lu et al.,2022). As DPM-Solver++ is designed
for solving diffusion ODEs, in this section, we discuss the relationship between DPM-Solver++ and
other diffusion ODE solvers. We further briefly discuss other fast sampling methods for DPMs.

5.1 COMPARISON WITH SOLVERS BASED ON EXPONENTIAL INTEGRATORS

Previous state-of-the-art fast diffusion ODE solvers (Lu et al.,[2022; |Zhang & Chen,|2022) leverages
exponential integrators to solve diffusion ODEs with noise prediction models €y. In short, these
solvers approximate the exact solution in Eq. and include DDIM (Song et al., |2021a) as the
first-order case. Below we show that the first-order case for DPM-Solver++ is also DDIM.

For k = 1, Eq. (O) becomes (after omitting the O(h¥ ") terms)

At
- Ot; - ~ DY
.’Bti = d :Btiil +Gti$9(mti71,ti_1)/ e d)\
Ot; 1 At
Ot;, - —h; -
= Lt 1 — ati(e - 1)w9(wti_1vti71)v
Utl—l

Therefore, our proposed DPM-Solver++ is the high-order generalization of DDIM w.r.t. the data
prediction model . To the best of our knowledge, such generalization has not been proposed before.
We list the detailed difference between previous high-order solvers based on exponential integrators
and DPM-Solver++ in Table[I] We emphasize that although the first-order version of these solvers
are equivalent, the high-order versions of these solvers are rather different.

5.2 OTHER FAST SAMPLING METHODS

Samplers based on diffusion SDEs (Ho et al.| 2020; Song et al., |2021b}; |Jolicoeur-Martineau et al.}
2021} [Tachibana et al., 2021; Kong & Ping} 2021} |Bao et al.,|2022bj |[Zhang et al., |[2022) generally
needs more steps to converge than those based on diffusion ODEs (Lu et al.,[2022), because SDEs
introduce more randomness and make denoising more difficult. Samplers based on extra training
include model distillation (Salimans & Ho, 2022} |Luhman & Luhman, [2021), learning reverse
process variances (San-Roman et al.|[2021;Nichol & Dhariwal, |2021; Bao et al.|[2022a)), and learning
sampling steps (Lam et al., 2021} Watson et al.||2022). However, training-based samplers are hard to
scale-up to pre-trained large DPMs (Saharia et al., 2022b; [Rombach et al., 2022; [Ramesh et al., 2022).
There are other fast sampling methods by modifying the original DPMs to a latent space (Vahdat et al.|
2021)) or with momentum (Dockhorn et al., [2022)). In addition, combining DPMs with GANSs (Xiao
et al.,[2022}; [Wang et al.l 2022) improves the sample quality of GANs and sampling speed of DPMs.

6 EXPERIMENTS

In this section, we show that DPM-Solver++ can speed up both the pixel-space DPMs and the
latent-space DPMs for guided sampling. We vary different number of function evaluations (NFE)
which is the numebr of calls to the model €y(x¢,t, ¢) or &(x4,t, ¢), and compare DPM-Solver++
with the previous state-of-the-art fast samplers for DPMs including DPM-Solver (Lu et al.| [2022),
DEIS (Zhang & Chen, [2022)), PNDM (Liu et al., [2022b)) and DDIM (Song et al.,|2021a). We also
convert the discrete-time DPMs to the continuous-time and use these continuous-time solvers. We
refer to Appendix [C|for the detailed implementations and experiment settings.

As previous solvers did not test the performance in guided sampling, we also carefully tune the
baseline samplers by ablating the step size schedule (i.e. the choice for the time steps {t;}£,) and
the solver order. We find that

* For the step size schedule, we search the time steps in the following choices: uniform ¢
(a widely-used setting in high-resolution image synthesis), uniform A (used in (Lu et al.|
2022)), uniform split of the power functions of ¢ (used in (Zhang & Chen, 2022), detailed in
Appendix [C)), and we find that the best choice is uniform ¢. Thus, we use uniform ¢ for the
time steps in all of our experiments for all of the solvers.

* We find that for a large guidance scale, the best choice for all the previous solvers is the
second-order (i.e. DPM-Solver-2 and DEIS-1). However, for a comprehensive comparison,

Under review as a conference paper at ICLR 2023

—%— Ist-order (DDIM) (S Ist-order (DDIM) x- 1st-order (DDIM)
404
2nd-order, ¢ (DPM-Solver) "1 2nd-order, singlestep (DPM-Solver---+) 2nd-order, multistep (DPM-Solver---+)
—%— 2nd-order, xy (DPM-Solver++) | 130 x| —*— 2nd-order, multistep (DPM-Solver-+-+) BTN S Hstorder (DDIM)

12 ™, —— 12nd-order, multistep (DPM-Solver+-+)

FID

134 10 \
124
114
104
9 X N “x

10 15 20 25 50 100 250 10 1520 25 50 100 250 10 15 20 25 50 100 250
NFE NFE NFE

(a) From €y to x@y. (b) From singlestep to multistep. (c) Thresholding.

Figure 2: Ablation study for DPM-Solver++. Sample quality measured by FID | of different sampling methods
for DPMs on ImageNet 256x256 with guidance scale 8.0. varying the number of function evaluations (NFE).

“ \ —<— IDPM-Solver++ —— DPM-Solver++ —— 'DPM-Solver+-+ X —*— DPM-Solver-++
X DDIM . DDIM 1] DDIM \ DDIM
\ —— DDIM —— DDIM —— DDIM —— PNDM

—%— PNDM
—+— DPM-Solver
X —— DEIS

\
i \K

\

—— PNDM
—— DPM-Solver 1

—— DEIS EM \\

—— PNDM
—— DPM-Solver
—— DEIS

—— DPM-Solver
—— DEIS

MSE

W\

a4 t/

0 i 0. o 100 50 B
NFE NFE NFE

(a) Pixel-space DPM (b) Pixel-space DPM (c) Pixel-space DPM (d) Latent-space DPM
(s = 8.0) (s =4.0) (s =2.0) (s=17.5)

NFE

Figure 3: (a-c) Sample quality measured by FID | of different sampling methods for DPMs on ImageNet
256x256 with different guidance scale s, varying the number of function evaluations (NFE). T: results by
combining the solver with dynamic thresholding method (Saharia et al.|[2022b). (d) Convergence error measured
by L2-norm | (divided by dimension) between different sampling methods and 1000-step DDIM, varying the
number of function evaluations (NFE), for the latent-space DPM “stable-diffusion” (Rombach et al., 2022} on
MS-COCO2014 validation set, with the default guidance scale s = 7.5 in their official code.

we run all the orders of previous solvers, including DPM-Solver-2 and DPM-Solver-3;
DEIS-1, DEIS-2 and DEIS-3 and choose their best result for each NFE in our comparison.

We run both DPM-Solver++(2S) and DPM-Solver++(2M), and we find that for large guidance scales,
the multistep DPM-Solver++(2M) performs better; and for a slightly small guidance scales, the
singlestep DPM-Solver++(2S) performs better. We report the best results of DPM-Solver++ and all
of the previous samplers in the following sections, the detailed values are listed in Appendix [D]

6.1 PIXEL-SPACE DPMs WITH GUIDANCE

We firstly compare DPM-Solver++ with other samplers for the guided sampling with classifier-
guidance on ImageNet 256x256 dataset by the pretrained DPMs(Dhariwal & Nichol, 2021). We mea-
sure the sample quality by drawing 10K samples and computing the widely-used FID score (Heusel
et al.} |2017), where lower FID usually implies better sample quality. We also adopt the dynamic
thresholding method (Saharia et al.l | 2022b) for both DDIM and DPM-Solver++. We vary the guidance
scale s in 8.0, 4.0 and 2.0, the results are shown in Fig. Eka-c). We find that for large guidance scales,
all the previous high-order samplers (DEIS, PNDM, DPM-Solver) converge slower than the first-order
DDIM, which shows that previous high-order samplers are unstable. Instead, DPM-Solver++ achieve
the best speedup performance for both large guidance scales and small guidance scales. Especially
for large guidance scales, DPM-Solver++ can almost converge within only 15 NFE.

As an ablation, we also compare the singlestep DPM-Solver-2, the singlestep DPM-Solver++(2S)
and the multistep DPM-Solver++(2M) to demonstrate the effectiveness of our method. We use a
large guidance scale s = 8.0 and conduct the following ablations:

* From €y to xg: As shown in Fig. [2a] by simply changing the solver from €y to x (i.e.
from DPM-Solver-2 to DPM-Solver++(2S)), the solver can achieve a stable acceleration
performance which is faster than the first-order DDIM. Such result indicates that for guided
sampling, high-order solvers w.r.t. &y may be more preferred than those w.r.t. €.

* From singlestep to multistep: As show in Fig. 2b] the multistep DPM-Solver++(2M)
converges slightly faster than the singlestep DPM-Solver++(2S), which almost converges in

Under review as a conference paper at ICLR 2023

15 NFE. Such result indicates that for guided sampling with a large guidance scale, multistep
methods may be faster than singlestep methods.

» With or without thresholding: We compare the performance of DDIM and DPM-Solver++
with / without thresholding methods in Fig. Note that the thresholding method changes
the model x4 and thus also changes the converged solutions of diffusion ODEs. Firstly, we
find that after using the thresholding method, the diffusion ODE can generate higher quality
samples, which is consistent with the conclusion in (Saharia et al.,[2022b). Secondly, the
sample quality of DPM-Solver++ with thresholding outperforms DPM-Solver++ without
thresholding under the same NFE. Moreover, when combined with thresholding, DPM-
Solver++ is faster than the first-order DDIM, which shows that DPM-Solver++ can also
speed up guided sampling by DPMs with thresholding methods.

6.2 LATENT-SPACE DPMS WITH GUIDANCE

We also evaluate DPM-Solver++ on the latent-space DPMs (Rombach et al., 2022), which is recently
popular among the community due to their official code “stable-diffusion”. We use the default
guidance scale s = 7.5 in their official code. The latent-space DPMs map the image data with a
latent code by training a pair of encoder and decoder, and then train a DPM for the latent code. As
the latent code is unbounded, we do not apply the thresholding method.

Specifically, we randomly sample 10K caption-image pairs from the MS-COCO2014 validation
dataset and use the captions as conditions to draw 10K images from the pretrained “stable-diffusion”
model, and we only draw a single image sample of each caption, following the standard evaluation
procedures in (Nichol et al., |2021; |Rombach et al.| 2022). We find that all the solvers can achieve
a FID around 15.0 to 16.0 even within only 10 steps, which is very close to the FID computed by
the converged samples reported in the official page of “stable-diffusion”. We believe it is due to the
powerful pretrained decoder, which can map a non-converged latent code to a good image sample.

For latent-space DPMs, different diffusion ODE solvers directly affect the convergence speed on
the latent space. To further compare different samplers for latent-space DPMs, we directly compare
different solvers according to the convergence error on the latent space by the L2-norm between the
sampled @ and the true solution x}; (and the error between them is ||z — x||2/+/D). Specifically,
we firstly sample 10K noise variables from the standard normal distribution and fix them. Then we
sample 10K latent codes by different DPM samplers, starting from the 10K fixed noise variables.
As all these solvers can be understood as discretizing diffusion ODEs, we compare the sampled
latent codes by the true solution x{ from a 999-step DDIM with samples x by different samplers
within different NFE, and the results are shown in Fig. [3(d). We find that the supported fast samplers
(DDIM and PNDM) in “stable-diffusion” converge much slower than DPM-Solver++ and DEIS, and
we find that the second-order multistep DPM-Solver++ and DEIS achieve a quite close speedup on
the latent space. Moreover, as “stable-diffusion” by default use PNDM with 50 steps, we find that
DPM-Solver++ can achieve a similar convergence error with only 15 to 20 steps. We also present an
empirical comparison of the sampled images between different solvers in Appendix [D] and we find
that DPM-Solver++ can indeed generate quite good image samples within only 15 to 20 steps.

7 CONCLUSIONS

We study the problem of accelerating guided sampling of DPMs. We demonstrate that previous
high-order solvers based on the noise prediction models are abnormally unstable and generate worse-
quality samples than the first-order solver DDIM for guided sampling with large guidance scales. To
address this issue and speed up guided sampling, we propose DPM-Solver++, a training-free fast
diffusion ODE solver for guided sampling. DPM-Solver++ is based on the diffusion ODE with the
data prediction models, which can directly adopt the thresholding methods to stabilize the sampling
procedure further. We propose both singlestep and multistep variants of DPM-Solver++. Experiment
results show that DPM-Solver++ can generate high-fidelity samples and almost converge within only
15 to 20 steps, applicable for pixel-space and latent-space DPMs.

Under review as a conference paper at ICLR 2023

ETHICS STATEMENT

Like other deep generative models such as GANs, DPMs may also be used to generate adverse fake
contents (images). The proposed solver can accelerate the guided sampling by DPMs which can
further be used for image editing and generate photorealistic fake images. Such influence may further
amplify the potential undesirable affects of DPMs for malicious applications.

REPRODUCIBILITY STATEMENT

Our code is based on the official code of DPM-Solver (Lu et al.||2022) and the pretrained checkpoints
in|\Dhariwal & Nichol|(2021) and Stable-Diffusion (Rombach et al.,[2022). We will release it after the
blind review. In addition, datasets used in experiments are publicly available. Our detailed experiment
settings and implementations are listed in Appendix [C] and the proof of the solver convergence
guarantee are presented in Appendix

REFERENCES

Kendall Atkinson, Weimin Han, and David E Stewart. Numerical solution of ordinary differential
equations, volume 108. John Wiley & Sons, 2011.

Fan Bao, Chongxuan Li, Jiacheng Sun, Jun Zhu, and Bo Zhang. Estimating the optimal covariance
with imperfect mean in diffusion probabilistic models. arXiv preprint arXiv:2206.07309, 2022a.

Fan Bao, Chongxuan Li, Jun Zhu, and Bo Zhang. Analytic-DPM: An analytic estimate of the optimal
reverse variance in diffusion probabilistic models. In International Conference on Learning
Representations, 2022b.

Nanxin Chen, Yu Zhang, Heiga Zen, Ron J. Weiss, Mohammad Norouzi, and William Chan. Wave-
grad: Estimating gradients for waveform generation. In International Conference on Learning
Representations, 2021a.

Nanxin Chen, Yu Zhang, Heiga Zen, Ron J. Weiss, Mohammad Norouzi, Najim Dehak, and William
Chan. Wavegrad 2: Iterative refinement for text-to-speech synthesis. In International Speech
Communication Association, pp. 3765-3769, 2021b.

Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion models beat GANs on image synthesis. In
Advances in Neural Information Processing Systems, volume 34, pp. 8780-8794, 2021.

Tim Dockhorn, Arash Vahdat, and Karsten Kreis. Score-based generative modeling with critically-
damped Langevin diffusion. In International Conference on Learning Representations, 2022.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron C. Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in Neural
Information Processing Systems, volume 27, pp. 2672-2680, 2014.

Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo Zhang, Dongdong Chen, Lu Yuan, and
Baining Guo. Vector quantized diffusion model for text-to-image synthesis. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10696-10706, 2022.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
GANSs trained by a two time-scale update rule converge to a local Nash equilibrium. In Isabelle
Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan,
and Roman Garnett (eds.), Advances in Neural Information Processing Systems, volume 30, pp.
6626-6637, 2017.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In NeurIPS 2021 Workshop on
Deep Generative Models and Downstream Applications, 2021.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances in
Neural Information Processing Systems, volume 33, pp. 6840-6851, 2020.

10

Under review as a conference paper at ICLR 2023

Jonathan Ho, Chitwan Saharia, William Chan, David J Fleet, Mohammad Norouzi, and Tim Salimans.
Cascaded diffusion models for high fidelity image generation. Journal of Machine Learning
Research, 23(47):1-33, 2022.

Marlis Hochbruck and Alexander Ostermann. Exponential integrators. Acta Numerica, 19:209-286,
2010.

Emiel Hoogeboom, Victor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant diffusion
for molecule generation in 3D. In International Conference on Machine Learning, pp. 8867-8887.
PMLR, 2022.

Alexia Jolicoeur-Martineau, Ke Li, Rémi Piché-Taillefer, Tal Kachman, and Ioannis Mitliagkas.
Gotta go fast when generating data with score-based models. arXiv preprint arXiv:2105.14080,
2021.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In International Conference
on Learning Representations, 2014.

Diederik P Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. In
Advances in Neural Information Processing Systems, 2021.

Zhifeng Kong and Wei Ping. On fast sampling of diffusion probabilistic models. arXiv preprint
arXiv:2106.00132, 2021.

Max WY Lam, Jun Wang, Rongjie Huang, Dan Su, and Dong Yu. Bilateral denoising diffusion
models. arXiv preprint arXiv:2108.11514, 2021.

Jinglin Liu, Chengxi Li, Yi Ren, Feiyang Chen, and Zhou Zhao. Diffsinger: Singing voice synthesis
via shallow diffusion mechanism. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pp. 11020-11028, 2022a.

Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo numerical methods for diffusion models on
manifolds. arXiv preprint arXiv:2202.09778, 2022b.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A
fast ode solver for diffusion probabilistic model sampling in around 10 steps. arXiv preprint
arXiv:2206.00927, 2022.

Eric Luhman and Troy Luhman. Knowledge distillation in iterative generative models for improved
sampling speed. arXiv preprint arXiv:2101.02388, 2021.

Chenlin Meng, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon. SDEdit:
Image synthesis and editing with stochastic differential equations. In International Conference on
Learning Representations, 2022.

Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with
text-guided diffusion models. arXiv preprint arXiv:2112.10741, 2021.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International Conference on Machine Learning, pp. 8162-8171. PMLR, 2021.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with CLIP latents. arXiv preprint arXiv:2204.06125, 2022.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 10684—10695, 2022.

Chitwan Saharia, William Chan, Huiwen Chang, Chris Lee, Jonathan Ho, Tim Salimans, David Fleet,
and Mohammad Norouzi. Palette: Image-to-image diffusion models. In ACM SIGGRAPH 2022
Conference Proceedings, pp. 1-10, 2022a.

11

Under review as a conference paper at ICLR 2023

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed
Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al.
Photorealistic text-to-image diffusion models with deep language understanding. arXiv preprint
arXiv:2205.11487, 2022b.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. In
International Conference on Learning Representations, 2022.

Robin San-Roman, Eliya Nachmani, and Lior Wolf. Noise estimation for generative diffusion models.
arXiv preprint arXiv:2104.02600, 2021.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised

learning using nonequilibrium thermodynamics. In International Conference on Machine Learning,
pp. 2256-2265. PMLR, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Interna-
tional Conference on Learning Representations, 2021a.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In International
Conference on Learning Representations, 2021b.

Hideyuki Tachibana, Mocho Go, Muneyoshi Inahara, Yotaro Katayama, and Yotaro Watanabe. It6-
Taylor sampling scheme for denoising diffusion probabilistic models using ideal derivatives. arXiv
preprint arXiv:2112.13339, 2021.

Lucas Theis, Tim Salimans, Matthew D Hoffman, and Fabian Mentzer. Lossy compression with
gaussian diffusion. arXiv preprint arXiv:2206.08889, 2022.

Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based generative modeling in latent space. In
Advances in Neural Information Processing Systems, volume 34, pp. 11287-11302, 2021.

Zhendong Wang, Huangjie Zheng, Pengcheng He, Weizhu Chen, and Mingyuan Zhou. Diffusion-gan:
Training gans with diffusion. arXiv preprint arXiv:2206.02262, 2022.

Daniel Watson, William Chan, Jonathan Ho, and Mohammad Norouzi. Learning fast samplers
for diffusion models by differentiating through sample quality. In International Conference on
Learning Representations, 2022.

Lemeng Wu, Chengyue Gong, Xingchao Liu, Mao Ye, and Qiang Liu. Diffusion-based molecule
generation with informative prior bridges. arXiv preprint arXiv:2209.00865, 2022.

Zhisheng Xiao, Karsten Kreis, and Arash Vahdat. Tackling the generative learning trilemma with
denoising diffusion GANSs. In International Conference on Learning Representations, 2022.

Minkai Xu, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, and Jian Tang. Geodiff: A geometric
diffusion model for molecular conformation generation. arXiv preprint arXiv:2203.02923, 2022.

Qinsheng Zhang and Yongxin Chen. Fast sampling of diffusion models with exponential integrator.
arXiv preprint arXiv:2204.13902, 2022.

Qinsheng Zhang, Molei Tao, and Yongxin Chen. gddim: Generalized denoising diffusion implicit
models. arXiv preprint arXiv:2206.05564, 2022.

Min Zhao, Fan Bao, Chongxuan Li, and Jun Zhu. Egsde: Unpaired image-to-image translation via
energy-guided stochastic differential equations. arXiv preprint arXiv:2207.06635, 2022.

12

Under review as a conference paper at ICLR 2023

A ADDITIONAL PROOFS

A.1 PROOF OF PROPOSITION [4.T]
Taking derivative w.r.t. ¢ in Eq. (§) yields

d d s d At A dA ~ A
Lt gt Ts gt) (&, N)dA + dittat@&fce (@, At)

o T @, @)

do; x dA A
- dtt a: dtt e g (x,, Ar)
2 2
g (t) Tt arg (t)
=(f(t = t
(f()Jr 20_752) o 20t2 mG(xt,)v

_ dlogay 204 _ do} dlogay 2

where the last inequality follows from the definitions f(¢) i I 7

A.2 CONVERGENCE OF ALGORITHMS

We make the following assumptions as in |Lu et al.[(2022) for xy, i.e.,

(2)

© :1:((,1) and " exist and are continuous (and hence are bounded).

. we s
» The map & — xy(x,t) is L-Lipschitz.

b hmaa; = INax)<i<M hj = O(I/M)
We also assume further
er;>c>0foralli=1,---, M.

Then, both algorithms are second-order:
Proposition A.1. Under the above assumptions, when h, . is sufficiently small, we have for both
Algorithmsand@ @y, — Ziy, || = O(R2

max)'

A.2.1 CONVERGENCE OF ALGORITHMIII

The convergence proof of this algorithm is similar to that in DPM-Solver-2 (Lu et al.,2022). We give
it in this section for completeness.

First, Taylor’s expansion gives

Qg —rih
Ls; = o - LT,y — Qs (e rih 1)w0(wti—1’ti*1) + O(hzz)a
ti—1
o, Y _
T, = ¢ LTy, — Oy (e hi 1)%0(1:“71) tl—l) — Qi (_e hi h”L + 1) mél)($t1717ti—1) + O(hlg)

Let A; == ||, — @4,]|, then |Ju; — s, || < CA;_1 + CLh;A;—1 + Ch?. Note that

il

1
mél)(mti,lati—l) — — (wo(ms,, 5:) — (s, _,,tio1)) H < Ch;.

Since 7; is bounded away from zero, and e " = 1 — h; + h?/2 + O(h3}), we know

_h e —1 -
H(—e hi _ hy + 1)wé1)(:cti_l7ti,1) T (fca(ui,si) — $0($ti_1,ti1))H
Llehi—1 —ehi—h;+1
ol 3 |zo (s, 5i) — To(@e,_,, ti1)]|

< CLhi(Ai_l + ||’U,l — ZcélH) + Ch? + Ch? ||$0($si75i) — m@(mtplati—l)n
< CLh;A;—1 + C(L + Ml)h?,

13

Under review as a conference paper at ICLR 2023

where M; = 1+ sup,, | <1<, wél) (x4, t)||. Then, A; could be estimated as follows.

Qg

A; < Ai 1+ Chi(Ai_1 + h?).

Qt;_y

Thus, A; = O(h2,,,,.) as long as hyyq. is sufficiently small.

max

A.3 CONVERGENCE OF ALGORITHM[2]

Following the same line of argument of the convergence proof of Algorithm [T} we can prove the
convergence of Algorithm Let A; := |&;, — x4, ||. Taylor’s expansion yields

Ot _h. —h.
Ty, — (Cmy, = o (e = Dmg(@e,_, ti1) =y, (—e M =Ry 4 1) mél)(mtiufi—l)) H < Chj,

Oty

where C is a constant depends on :Béz). Also note that

e (@, tio1) —

(wo (s, tim1) — To(@s,_y, ti2)) H < Ch;,

hi—1
Since r; is bounded away from zero, and e " = 1 — h; + h?/2 4+ O(h?), we know
—h e —1 - -
H(—e hi _h; + l)w(gl)(wtifnti,l) g (wo(Z4,_,,tio1) — :Ee(ivtiz,tiz))H
K3
5 llehi—1 —ehi—h,+1
S CLhZ(Al_l + Ai_g) + Ch1 + 7 9 - h ||.’I)9(C8t1’_1,ti_1) — me(mti_27ti—2)||

< CLhi(Ai—1 + Aj—2) + Ch} + Ch] ||o (@, tio1) — To(@e,_y, ti2)]|
< OLhi(Aj—1 + Aj_) + CM;h3,

where M; = 1 +sup,, | <;<y, wél) (x4, t)]|. Then, A; could be estimated as follows.

A; < aati Ai_q + ati(l — e_hi)LAi_l + oy, (CMlh? + CLh; (Ai—l + Ai_g)) + Ch?
ti—1
< aa“ Ai1+ Chi(Aiy + Aj_o + h2).
ti—1

Thus, A; = O(h?

A max .
verified by the Taylor’s expansion.

) as long as A, is sufficiently small and Ag + Ay = O(h?

2 az)» Which can be

B COMPARISON BETWEEN DPM-SOLVER AND DPM-SOLVER++
In this section, we convert DPM-Solver++(2S) to the formulation w.r.t. the noise prediction model
and compare it with the second-order DPM-Solver (Lu et al., 2022).

At each step, the second-order DPM-Solver (DPM-Solver-2 (Lu et al.l [2022)) has the following
updating:

Qs o .
U = —Fy,_, — osi(e”h’l —Deg(Ze,_,,ti—1)

Oy
. o, . v .
LTy, = L Lt,_q — Utz‘(ehl - 1)69(17%717%—1) (10)

Qt;_y

O, 1. .
- 2*;’_(6’“ —1) (€g(ui, 5;) — €9(Ty,_,, ti-1))
1

while DPM-Solver++(2S) has the following updating:

Os; . B .
w; = —F, | — (e rihi _ Daxg(Ze,_,,ti—1)
Tt (1)
- O-ti - —h; 1 - 1
Ty, = o, L, — Oy (6 - 1) ((1 - Tm)we(wtwwti*l) + mee(u“ Sl))

14

Under review as a conference paper at ICLR 2023

Because)
T — , T
xo(x,t) = z—0i%(2,1) = —x — e Meg(x,t)
o7 (e77

we can rewrite DPM-Solver++(2S) w.r.t. the noise prediction model (see Appendix [B.|for details):

Qg. .) ~
U; = - Lt;_1 — Os; (emhZ - 1)69(13”71,751‘_1)
Oty
~ Qg) ~
T, = t:1 T,y — Ot; (ehl - 1)69(xt1717ti—1) (12)
Ot.) —r. h ~
— 277";(6111 — 1) e :;hl (Gg(ui, Si) — EQ(mti,Uti—l))

Comparing with Eq. [T0] we can find that the only difference between DPM-Solver-2 and DPM-
Solver++(2S) is that DPM-Solver++(2S) has an additional coefficient e """ < 1 at the second term

(which is corresponding to approximating the first-order total derivative eél)). Specifically, we have

Eg(ui, Sl) - Gg(iti—l’ti_l) = Eél)(:ﬁtF] ’ ti—l) + O(hl)

As DPM-Solver++(2S) multiplies a smaller coefficient into the O(h;) error term, the constant before
the high-order error term of DPM-Solver++(2S) is smaller than that of DPM-Solver-2. As they
both are equivalent to a second-order discretization of the diffusion ODE, a smaller constant before
the error term can result in a smaller discretization error and reducing the numerical instabilities

(especially for large guidance scales). Therefore, using the data prediction model is a key for
stabilizing the sampling, and DPM-Solver++(2S) is more stable than DPM-Solver-2.

B.1 DETAILED DERIVATION

We can rewrite DPM-Solver++(2S) by:

Tg. . e ~
U; = = Ty, — A, (6 rihi 1).’1)9(:1,‘151’_1,“_1)
Oti_1
- T iti—l - &(G_Asi—’_)\tFI - 1)it7’,—1 + asq‘,(ei)\si' - e_)\tifl)EG(:iti_lati—l)
Ot;y_1 Qt;_y
Ag. . . ~
= - L,y — O—Sz‘(erlh% - 1)69(wti—17ti*1)
Oétl,1
and
- Ot . iy 1 - 1
= ey = o = 1) (L g tin) + gaolus))
i1 i i
M _ hi 4 +) _ %t ki A = ,
T a Lt;_y Uti(e)Ee(xtquutz—l) 20 (6 1)(‘739('“'1’81) w9($t1717t1—1))
ti—1 [
o L , N Ot ‘ -
= @y, — oy (" = Deg(@y, o ti1) + 5 (e = 1)eMior (g (i, 50) — o(Br,_ i 1))
(e TP 27'1'
and
ektl_l (.’Bg(ul,Si) .’Bg(mtl 1’tt—1))
1 1
= M u; — Ty, — e Nieg(ug, ;) + e At'ileo(a?t“,ti1))
Qs Aty

= e il (EG(wtzflvtz—l) - 69('“'15 31))
so we have
= Gt - _ hi _ T) _ Tt hi —rih; g} T .
L, = o Lt;_q Jti(e 1)69(33“71,@,1) % (6 1)6 (EQ(UZ,SZ) ee(wtifwtlfl))
ti—1 7

15

Under review as a conference paper at ICLR 2023

C IMPLEMENTATION DETAILS

C.1 CONVERTING DISCRETE-TIME DPMS TO CONTINUOUS-TIME

Discrete-time DPMs (Ho et al., 2020) train the noise prediction model €y at IV fixed time steps
{t,})_, and the noise prediction model is parameterized by € (., 101%0”) forn=1,..., N, where
each x,, is corresponding to the value at time ¢,,. In practice, these discrete-time DPMs usually

choose uniform time steps between [0, T, thus ¢, = % forn =1,..., N. The smallest time is %

Moreover, for the widely-used DDPM (Ho et al., 2020), we usually choose a sequence {3, }_;
which is defined by either linear schedule (Ho et al., [2020) or cosine schedule (Nichol & Dhariwal,
2021)). After obtained the 3,, sequence, the noise schedule «, is defined by

n

an = [J(1 = Bn), (13)
i=1
where each «,, is corresponding to the continuous-time ¢,, = %, i.e. ap, = ay. To generalize

the discrete o, to the continuous version, we use a linear interpolation for the function log «,.

Specifically, for each ¢ € [t,,, t,+1], we define

log a1 — log avy, (
thrl - tn

Therefore, we can obtain a continuous-time noise schedule o; defined for all ¢t € [%, T1, and the std

oy = /1 — a2 and the 1ogSNR \; = log ov; — log o4. Moreover, the logSNR), is strictly decreasing
for ¢, thus the change-of-variable for A is still valid.

log oy == log av,, + t—ty,). (14)

In practice, we usually have 7' = 1 and N = 1000, thus the smallest time is 10~3. Therefore, we
solve the diffusion ODEs from time ¢ = 1 to time ¢t = 1073 to get our final sample. Such sampling
can reduce the first-order discrete-time DDIM solver when using a uniform time step.

C.2 ABLATING TIME STEPS

Previous DEIS only tuned on low-resolutional data CIFAR-10, which may be not suitable for high-
resolutional data such as ImageNet 256x256 and large guidance scales for guided sampling. For a
fair comparison with the baseline samplers, we firstly do ablation study for the time steps with the
pretrained DPMs (Dhariwal & Nichol, 2021) on ImageNet 256x256 and vary the classifier guidance
scale. In our experiments, we tune the time step schedule according to their power function choices.
Specifically, let £, = 1072 and tg = 1, the time steps {t; }}, satisfies

M—i1 i 1\"
ti= =5t + 37tk)

where k is a hyperparameter. Following |Zhang & Chen| (2022), we search « in 1, 2, 3 by DEIS, and
the results are shown in Table@} We find that for all guidance scales, the best setting is £ = 1, i.e. the
uniform ¢ for time steps. We further compare uniform ¢ and uniform A and find that the uniform ¢
time step schedule is still the best choice. Therefore, in all of our experiments, we use the uniform ¢
for evaluations.

C.3 EXPERIMENT SETTINGS

We use uniform time step schedule for all experiments. Particularly, as DPM-Solver (Lu et al.,
2022) is designed for uniform A (the intermediate time steps are a half of the step size w.r.t. \),
we also convert the intermediate time steps to ensure all the time steps are uniform ¢. We find that
such conversion can improve the sample quality of both the singlestep DPM-Solver the singlestep
DPM-Solver++.

We run NFE in 10, 15, 20, 25 for the high-order solvers and additional 50, 100, 250 for DDIM. For
all experiments, we solver diffusion ODEs from ¢ = 1 to t = 103 with the interpolation of noise
schedule detailed in Appendix For DEIS, we use the “t-AB-k£” methods for k£ = 1,2, 3, which is
the fastest method in their original paper, and we name them as DEIS-k, respectively.

For the sampled image in Fig. [5] we use the prompt “A beautiful castle beside a waterfall in the
woods, by Josef Thoma, matte painting, trending on artstation HQ”.

16

Under review as a conference paper at ICLR 2023

Table 2: Sample quality measured by FID | on ImageNet 256 x 256 (discrete-time model (Dhariwal & Nichol,
2021)), varying the methods between DDIM (Song et al.,|2021a)) and different types of DEIS (Zhang & Chenl
2022). The number of function evaluations (NFE) is fixed by 10.

Method \ Guidance scale 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0
DDIM 13.04 1238 11.81 11.55 11.62 1195 13.01 16.35 29.33

DEIS-2, k =1 19.12 1483 1239 1094 1013 976 9.74 1101 2034
DEIS-2, k=2 3337 24.66 18.03 1357 11.16 1054 10.88 13.67 26.26
DEIS-2, k=3 55.69 44.01 33.04 2450 18.66 1635 16.87 2191 3841
DEIS-3, k=1 66.81 48.71 3389 2256 15.84 1196 10.18 10.19 18.70
DEIS-3, k=2 3451 2542 1852 1368 11.20 1046 10.75 13.36 25.59
DEIS-3, k=3 56.49 4451 3334 2468 1872 1638 16.79 21.76 38.02

D EXPERIMENT DETAILS

We list all the detailed experimental results in this section.

Table 3: Sample quality measured by FID | on ImageNet 256 x 256 (discrete-time model (Dhariwal & Nichol,
2021)), varying the number of function evaluations (NFE).

Guidance Scale Thresholding ~ Sampling Method \ NFE 10 15 20 25 50 100 250

DDIM (Song et al.|[2021a) 13.04 11.27 10.21 9.87 9.82 952 937

PNDM (Liu et al.| 2022b} 99.80 3759 1550 1154 \ \ \

DPM-Solver-2 (Lu et al.[|2022) 114.62 44.05 20.33 9.84 \ \ \

DPM-Solver-3 (Lu et al.|2022) 164.74 9159 64.11 29.40 \ \ \

No DEIS-1 (Zhang & Chen][2022) 1520 10.86 10.26 10.01 Voo

3.0 DEIS-2 (Zhang & Chen|2022) ~ 19.12 1137 10.08 9.75 Voo

DEIS-3 (Zhang & Chen|[2022) 66.86 24.48 1298 1087 \ \ \

DPM-Solver++(S) (ours) 1220 985 919 932 \ \ \

DPM-Solver++(M) (ours) 1444 946 910 9.11 \ \ \

DDIM (Song et al.|[2021a) 10.58 953 912 894 858 849 848

Yes DPM-Solver++(S) (ours) 926 893 840 863 \ \ \

DPM-Solver++(M) (ours) 956 864 850 8.39 \ \ \

DDIM (Song et al.{[2021a) 11.62 9.67 896 858 822 806 7.99

PNDM (Liu et al.| 20225} 2271 1003 869 847 \ \ \

DPM-Solver-2 (Lu et al.||2022) 37.68 942 822 8.08 \ \ \

DPM-Solver-3 (Lu et al.|[2022) 7497 15.65 999 8.15 \ \ \

No DEIS-1 (Zhang & Chen/[2022) 10.55 9.47 8.88 8.65 \ \ \

4.0 DEIS-2 (Zhang & Chen|[2022) 10.13 9.09 8.68 845 \ \ \

DEIS-3 (Zhang & Chen|2002) 15.84 925 863 8.43 N

DPM-Solver++(S) (ours) 9.08 851 8.00 8.07 \ \ \

DPM-Solver++(M) (ours) 898 826 806 806 \ O\ \

DDIM (Song et al.|[2021a) 10.45 8.95 8.51 825 791 782 1787

Yes DPM-Solver++(S) (ours) 894 826 795 7.87 \ \ \

DPM-Solver++(M) (ours) 891 821 799 796 \ \ \

DDIM (Song et al.|[2021a) 13.01 9.60 9.02 845 772 7.60 7.44

PNDM (Liu et al.| 20225} 1158 848 817 797 \ \ \

DPM-Solver-2 (Lu et al.[2022) 14.12 820 859 7.48 \ \ \

DPM-Solver-3 (Lu et al.|2022) 21.06 857 819 7.85 \ \ \

No DEIS-1 (Zhang & Chen!(2022) 1040 9.1 852 821 \ \ \

2.0 DEIS-2 (Zhang & Chen|[2022) 974 880 828 8.06 \ \ \

DEIS-3 (Zhang & Chen|[2022) 10.18 8.63 820 798 \ \ \

DPM-Solver++(S) (ours) 918 817 7.77 7.56 \ \ \

DPM-Solver++(M) (ours) 9.19 847 8.17 8.07 \ \ \

DDIM (Song et al.;[2021a) 11.19 920 842 805 7.65 759 7.63

Yes DPM-Solver++(S) (ours) 923 818 781 760 \ \ \
DPM-Solver++(M) (ours) 9.28 856 828 8.18 \ \

17

Under review as a conference paper at ICLR 2023

Table 4: Sample quality measured by MSE | on COC02014 validation set (discrete-time latent model (Rombach
etall[2022)), varying the number of function evaluations (NFE). Guidance scale is 7.5, which is the recommended

setting for stable-diffusion (Rombach et al.| 2022).

Guidance Scale Thresholding Sampling Method \ NFE 10 15 20 25 50 100 250
DDIM (Song et al.|[2021a 059 042 048 045 034 023 0.12

PNDM (Liu et al.[[2022b 066 043 050 046 0.32 \ \

DPM-Solver-2 (Lu et al.[[2022) 0.66 0.47 040 0.34 0.20 \ \

DPM-Solver-3 (Lu et al.|[2022) 0.59 0.48 043 0.37 0.23 \ \

7.5 No DEIS-1 (Zhang & Chen][2022) 0.47 039 0.34 029 0.16 \ \
DEIS-2 (Zhang & Chen|[2022) 0.48 040 0.34 029 0.15 \ \

DEIS-3 (Zhang & Chen|2022) 0.57 045 038 034 0.19 \ \

DPM-Solver++(S) (ours) 048 041 036 032 0.19 \ \

DPM-Solver++(M) (ours) 049 040 034 029 0.16 \ \

DDIM (Song et al.|[2021a 083 0.78 0.71 0.67 \ \ \

PNDM (Liu et al.[[2022b 099 0.87 0.79 0.75 \ \ \

DPM-Solver-2 (Lu et al.[[2022) 1.13 1.08 0.96 0.86 \ \ \

DEIS-1 (Zhang & Chen/[2022) 0.84 0.72 0.64 0.58 \ \ \

15.0 No DEIS-2 (Zhang & Chen|2022) 0.87 0.76 0.68 0.63 \ \ \
DEIS-3 (Zhang & Chen/[2022) 1.06 0.88 0.78 0.73 \ \ \

DPM-Solver++(S) (ours) 088 0.75 0.68 0.61 \ \ \

DPM-Solver++(M) (ours) 0.84 0.72 0.64 0.58 \ \ \

DPM-Solver-2 DPM-Solver++(2S)
(€g, singelstep) (o, singlestep) (x¢, multistep, thresholdin)

Figure 4: Samples of different sampling methods for DPMs on ImageNet 256x256 with guidance scale 8.0.

18

Under review as a conference paper at ICLR 2023

DDIM (N = 50)

DDIM (N = 15) DDIM (N = 20)
(Song et al} 2021

N p N

PNDM (N = 15) DM (N = 20) PNDM (N = 50)

(iu et al} 20226)

(it et al} 20226)

DDIM (N = 999, DPM-Solver-2 (N = 15) DPM-Solver-2 (N = 20) DPM-Solver-2 (N = 50)

converged) 2022) 2022) 2022)

i

DEIS-1 (N = 15) DEIS-1 (N = 20) DEIS-1 (N = 50)
(Zhang & Chen|,[2022) (Zhang & Chen|,[2022) (Zhang & Chenl[2022)

DPM-Solver++(2M) DPM-Solver++(2M) DPM-Solver++(2M)
(N = 15) (N = 20) (N = 50)
(ours) (ours) (ours)

Figure 5: Samples using the pre-trained latent-space DPMs (Stable-Diffusion (Rombach et al.l[2022)) with
a classifier-free guidance scale 7.5 (the default setting), varying different samplers and different number of
function evaluations N.

19

	Introduction
	Diffusion Probabilistic Models
	Fast Sampling for DPMs by Diffusion ODEs
	Guided Sampling for DPMs
	Exponential Integrators and High-Order ODE Solvers

	Challenges of High-Order Solvers for Guided Sampling
	Designing Training-Free Fast Samplers for Guided Sampling
	Designing Solvers by Data Prediction Model
	From Singlestep to Multistep
	Combining Thresholding with DPM-Solver++

	Relationship with Other Fast Sampling Methods
	Comparison with Solvers based on Exponential Integrators
	Other Fast Sampling Methods

	Experiments
	Pixel-Space DPMs with Guidance
	Latent-Space DPMs with Guidance

	Conclusions
	Additional Proofs
	Proof of Proposition 4.1
	Convergence of Algorithms
	Convergence of Algorithm 1

	Convergence of Algorithm 2

	Comparison between DPM-Solver and DPM-Solver++
	Detailed Derivation

	Implementation Details
	Converting Discrete-Time DPMs to Continuous-Time
	Ablating Time Steps
	Experiment Settings

	Experiment Details

