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Abstract
While Graph Neural Networks (GNNs) have
shown outstanding performance in node classi-
fication tasks, they are vulnerable to adversarial
attacks, which are imperceptible changes to in-
put samples. Adversarial training, as a widely
used tool to enhance the adversarial robustness of
GNNs, has presented remarkable effectiveness in
node classification tasks. However, the general-
ization properties for explaining their behaviors
remain not well understood from the theoretical
viewpoint. To fill this gap, we develop a high
probability generalization bound of general GNNs
in adversarial learning through covering number
analysis. We estimate the covering number of the
GNN model class based on the entire perturbed
feature matrix by constructing a cover for the per-
turbation set. Our results are generally applicable
to a series of GNNs. We demonstrate their ap-
plicability by investigating the generalization per-
formance of several popular GNN models under
adversarial attacks, which reveal the architecture-
related factors influencing the generalization gap.
Our experimental results on benchmark datasets
provide evidence that supports the established the-
oretical findings.

1. Introduction
As powerful architectures for processing complex graph-
structured data, GNNs have shown excellent performance in
certain security scenarios (Yan et al., 2023), such as malware
detection (Liu et al., 2023; Gu et al., 2024), intrusion detec-
tion (Zhou et al., 2021; Tran & Park, 2024), and blockchain
(Cai et al., 2023; Seo et al., 2024). Despite their tremen-
dous success, Zügner et al. (2018) first demonstrate the
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susceptibility of GNNs to adversarial attacks in node clas-
sification tasks. These attacks are deliberately designed by
the attackers to mislead the graph model’s prediction, which
significantly deteriorates the performance and applicabil-
ity of GNNs in security-related domains (Zhang & Zitnik,
2020; Finkelshtein et al., 2022; Liu et al., 2023). Therefore,
it is crucial to enhance the adversarial robustness of GNNs
for node classification tasks.

One principal approach to learning robust models is adver-
sarial training, which has proven to be a powerful defense
against adversarial attacks (Bai et al., 2021). Its core mech-
anism is a min-max optimization problem by incorporating
the adversarial samples that maximize the classification
error into the training to minimize the classification error
(Goodfellow et al., 2014; Madry et al., 2019). The empirical
advancements of adversarial training in the literature (Wang
et al., 2020; Lin et al., 2023) prompt numerous studies to
develop relevant theoretical analysis. However, generaliza-
tion analysis in adversarial learning presents more obstacles
as compared to its non-adversarial counterpart, i.e., the non-
smoothness of adversarial loss caused by the maximization
operation in the min-max process (Bai et al., 2021). Previ-
ous works mitigate the negative impact of non-smoothness
via restricted assumptions about losses or model functions
(Awasthi et al., 2020; Gao & Wang, 2021; Xiao et al., 2022),
or controlling the adversarial perturbation set (Mustafa et al.,
2022). Since the aforementioned works are confined to non-
graph data, this raises a question of whether adversarial
generalization can be extended to graph learning.

Unlike non-graph data, each node in GNNs aggregates
messages from its neighbor nodes through the message-
passing mechanism. This causes the accessibility of pre-
dictors to unlabeled samples in the test set during training
(Oono & Suzuki, 2020), which results in the invalidation
of previous analytical methods based on inductive learning
(Günnemann, 2022; Mustafa et al., 2022). The informa-
tion interaction of nodes also leads to the correlation of
perturbations between different nodes, making the adver-
sarial perturbation set of graph data different from that of
non-graph data.

To overcome these difficulties, we explore the adversarial
generalization of GNNs in transductive settings by assessing
the complexity of the adversarial loss function class through

1



Adversarial Robust Generalization of Graph Neural Networks

Table 1. Summary of generalization analysis of GNNs (m-number of training data, u-number of test data).

Reference Under Attack Learning Mode Analysis Tool Convergence Rate

Verma and Zhang (2019) No Inductive Uniform stability O(1/
√
m)

Zhou and Wang (2021) No Inductive Uniform stability O(1/
√
m)

Garg et al. (2020) No Inductive Rademacher complexity O(1/
√
m)

Oono and Suzuki (2020) No Transductive Rademacher complexity O(max{1/
√
m, 1/

√
u})

Esser et al. (2021) No Transductive Rademacher complexity O(max{1/
√
m, 1/

√
u})

Tand and Liu (2023) No Transductive Rademacher complexity O((1/m+ 1/u)
√
m+ u)

Sun et al. (2024) No Transductive PAC-Bayes O(1/
√
m)

Ours Yes Transductive Covering number O(max{1/
√
m, 1/

√
u})

covering number. Our analysis exhibits broad applicabil-
ity across a wide range of GNNs and losses. Our findings
provide theoretical support for the empirical success of ad-
versarial training and offer valuable insights for training
robust GNNs that generalize well. The key contributions
are as follows.

• We derive the first high-probability generalization
bound of general GNNs in adversarial learning. Our
analysis focuses on controlling the covering number
of the whole feature matrix affected by the perturba-
tion set, thereby achieving the complexity estimate of
the adversarial loss. This addresses the key obstacles
of extending the adversarial generalization to graph
learning, caused by interactions between perturbations.

• We conduct a comprehensive analysis on several pop-
ular GNNs and derive the covering number bound
of each perturbed GNN model. Our results indicate
the relation between the adversarial perturbations and
graph-based predictors, revealing the role of some
GNN-related factors for reducing adversarial gener-
alization, such as appropriate model architecture selec-
tion, weight norm normalization, etc..

• Based on our theoretical findings, we analyze and com-
pare the key factors influencing generalization capabil-
ity in adversarial learning, which is confirmed in our
experimental evidence.

2. Related Work
Adversarial training on GNNs. To enhance the adversarial
robustness of GNNs, Chen et al. (2020a) introduce Smooth-
ing Adversarial Training (SAT), which improves GNNs’ ro-
bustness by reducing the amplitude of adversarial gradients.
Jaeckle and Kumar (2021) propose a novel method called
AdvGNN, which efficiently generates adversarial exam-
ples by combining elements from both optimization-based
attacks and generative methods. Yang, Zhang and Yang
(2021) develop Graph Adversarial Self-supervised Learning
(GASSL), which can automatically generate challenging

views by adding perturbations to the input, thereby facilitat-
ing adversarial training on the encoder. Kone et al. (2022)
introduce Free Large-scale Adversarial Augmentation on
Graph (FLAG), which augments node features for better
performance under attack by iteratively adding gradient-
based adversarial perturbations during training. Deng et al.
(2023) propose Batch Virtual Adversarial Training (BVAT),
which promotes output smoothness of GNNs by applying
virtual adversarial perturbations to the nodes. Due to the
effectiveness of these empirical works in overcoming the
vulnerability of GNNs against adversarial attacks, it is cru-
cial to provide theoretical support for these advancements.

Generalization analysis of GNNs. Verma and Zhang
(2019) first apply uniform stability on one-layer GCN to
derive a generalization bound. Zhou and Wang (2021) ex-
tend their work to multi-layer GCNs and show a exponen-
tially dependency of generalization on the number of lay-
ers. Through the lens of Rademacher complexity, Garg
et al. (2020) establish the first data-dependent generaliza-
tion bound of message-passing GNNs; Oono and Suzuki
(2020) provide generalization and optimization guarantees
via boosting theory, and focus on a specific type of multi-
scale GNNs; Esser et al. (2021) establish the generalization
bound of GNNs in the semi-supervised transductive setting
and demonstrate the effectiveness of residual connections
in improving generalization of GNNs; Tang and Liu (2023)
derive high probability bounds of several popular GNNs,
including both linear and non-linear models. Moreover, Sun
et al. (2024) develop a PAC-Bayesian bound for GNNs,
which incorporates the interplay in the message passing
mechanism. Table 1 summarizes the related works on gen-
eralization analysis of GNNs. Though the above studies
cannot be directly extended to adversarial settings due to the
maximization over the adversarial loss, they provide valu-
able insights into the adversarial generalization analysis.

3. Preliminary
Given an undirected graph G = (A,X) with n nodes,
where A ∈ Rn×n is the adjacency matrix and X =
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[x1, . . . ,xn] ∈ Rn×d contains n node features with d di-
mensions. We consider transductive learning in our analy-
sis, where the unlabeled test samples are available during
training. Let S = {zi = (xi, yi)}ni=1 be the set of in-
stances, where x ∈ X , y ∈ Y and z ∈ Z = X × Y .
A labeled training set Sm with size m is selected from
S randomly. The goal of transductive learning is to pre-
dict the labels of the samples in the test set Su, where
n = m + u. The empirical error over the training set
Sm is denoted by Rm(f) = 1

m

∑m
i=1 ℓ(fi(A,X,W ), yi),

and the population risk over the test set Su is denoted by
Ru(f) =

1
u

∑m+u
i=m+1 ℓ(fi(A,X,W ), yi), where W is the

learning parameters, f ∈ F : X → Rn represents the out-
put function with fi(·) denoting the prediction of each node
feature xi, and ℓ ∈ L : F × Y → R is the loss function.

However, by perturbing the input samples and maximizing
the loss, the adversary can mislead the classifier to make
erroneous predictions (Huang et al., 2016). Given a noise
space B = {δ : ∥δ∥∞ ≤ θ}, for any δ ∈ B, we assume that
a set of adversarial nodes are generated from the neighbor
Aδ = {X̃ = [x̃1, . . . , x̃n], x̃i = xi + δ}. The adversary
create the worst case perturbation δ∗ ∈ B from

X̃
∗
= arg max

X̃∈Aδ

ℓ(fi(A, X̃,W ), yi),

where X̃
∗
= [x̃∗

1, . . . , x̃
∗
n] and x̃∗

i = xi + δ∗. To train a
robust model, the goal of adversarial training is to minimize
the following adversarial empirical risk

R̃m(f) =
1

m

m∑
i=1

max
X̃∈Aδ

ℓ(fi(A, X̃,W ), yi),

which measures the performance of the predictor f under
adversarial attacks defined above. To better understand the
robust generalization of the model, we define the adversarial
population risk

R̃u(f) =
1

u

m+u∑
i=m+1

max
X̃∈Aδ

ℓ(fi(A, X̃,W ), yi),

which measures the ability of f to generalize to unseen ad-
versarial samples. In this paper, we focus on the adversarial
generalization gap, which is denoted by

Gen(f) = |R̃m(f)− R̃u(f)|.

Results from learning theory (Bartlett & Mendelson, 2002)
indicate that the generalization gap can be bounded by as-
sessing the complexity of the adversarial loss class. Fol-
lowing previous studies (Bartlett et al., 2017; Mustafa et al.,
2022), we provide the definition below

Ladv := {zi → max
X̃∈Aδ

ℓ(fi(A, X̃,W ), yi) : f ∈ F}.

Nevertheless, measuring the complexity of Ladv directly is
difficult due to the maximum operation on the adversarial
loss function. By introducing statistical learning tools, we
overcome this problem through the lens of covering number,
which is defined as follows.

Definition 3.1. (Mustafa et al., 2022) Let (A,D) be a metric
space. Given a positive real number ϵ, we say that C ⊂ A is
an (ϵ,D)-cover of A if

sup
a∈A

inf
c∈C
D(a, c) ≤ ϵ.

The covering number of A is the minimum cardinality of
any subset that covers A at scale ϵ, denoted as N (A, ϵ).
Given the dataset S, a function class G taking values in a
real vector space, and an ℓp metric with p =∞, we denote
byN (G, ϵ, ∥ · ∥∞, S) the (ϵ, ∥ · ∥∞)-covering number of the
set G = {g(z1), . . . , g(zn) : g ∈ G}.

4. Main Results
In this section, we first investigate the complexity of the
adversarial loss function class via covering number and
derive a general adversarial generalization bound of GNNs.
Then we analyze the adversarial generalization properties
of several classical GNNs.

4.1. Generalization Analysis Over Adversarial Risk

To establish the generalization guarantee, we first make
some mild assumptions that are easy to satisfy.

Assumption 4.1. For the model function f and any node
xi, assume the following inequality holds for any δ ∈ B

∥fi(δ)− fi(δ′)∥∞ ≤ Kf∥δ − δ′∥∞.

Assumption 4.2. For the loss function ℓ and any node xi,
assume the following inequality holds for any f ∈ F

|ℓ(fi(·), yi)− ℓ(f ′i(·), yi)| ≤ Cℓ∥fi(·)− f ′i(·)∥∞.

Remark 4.3. Assumption 4.1 is readily satisfied by a wide
range of attacks (Awasthi et al., 2020; Fan et al., 2021),
where the Lipschitz constant Kf is determined by specific
model architectures. Assumption 4.2 is a mild assumption
that can be satisfied by some common losses, such as cross-
entropy loss and hinge loss.

Then, we quantify the covering number of the adversarial
loss class Ladv in an infinite space by presenting Lemma
4.4 as follows.

Lemma 4.4. Suppose Assumptions 4.1 and 4.2 hold. For
any δ ∈ B, we define the loss class

Ldis := {(zi, δ̂)→ ℓ(fi(A, X̂,W ), yi) : f ∈ F}
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and the extended dataset Ŝ = {(xi, δ̂, yi) : i ∈ [n], δ̂ ∈
CB}, where CB is an ( ϵ

2CℓKf
, ∥ · ∥∞)-cover of B and X̂ =

[x1 + δ̂, . . . ,xn + δ̂]. The following inequality holds

N (Ladv, ϵ, | · |∞, S) ≤ N (Ldis,
ϵ

2
, | · |∞, Ŝ).

Remark 4.5. Lemma 4.4 enables us to control the com-
plexity of the adversarial loss class by the complexity of
a constructed loss class, which is a finite discrete version
of the former. Notably, we use | · | in the covering num-
ber of Ladv, as the functions in Ladv involve a maximum
operation over B. This operation is eliminated in Ldis by
controlling the complexity of the perturbation set, where
each element in Ldis is a function.

By utilizing a constructed finite loss class, the difficulty
in measuring adversarial generalization caused by maxi-
mization over the adversarial loss is solved. However, the
interplay between the perturbed nodes introduces a further
difficulty in the complexity estimate of Ldis on Ŝ, which
is also the key challenge in measuring adversarial general-
ization of GNNs, compared with previous works (Farnia
& Ozdaglar, 2021; Mustafa et al., 2022). To address this
issue, we split the task of estimating the complexity of the
perturbed GNNs function class F̂ on Ŝ by utilizing the con-
structed perturbation cover set CB. We begin with fixing the
perturbation δ̂c ∈ CB, and define the corresponding GNNs
function class as follows

F̂ := {(xi, δ̂c)→ fi(A, X̂c,W ) : δ̂c ∈ CB},

where X̂c = [x1 + δ̂c, . . . ,xn + δ̂c]. Then, we step to the
following lemma to bound the covering number of Ldis on
Ŝ.

Lemma 4.6. Given the function classes Ldis and F̂ be
defined above. Suppose Assumptions 4.1 and 4.2 hold. The
following inequality holds

N (Ldis,
ϵ

2
, | · |∞, Ŝ) ≤

(6θCℓKf

ϵ

)dN (F̂ , ϵ

2Cℓ
, ∥ · ∥∞, S).

Remark 4.7. Lemma 4.6 overcomes the key difficulty of
estimating the covering number of the finite adversarial
loss class Ldis on Ŝ by additionally incorporating the fixed
perturbation δ̂c ∈ CB into analysis. We find that the spe-
cial mechanism of GNNs induces the interaction between
the perturbed nodes, compared with neural networks, thus
resulting in an additional term affected by the GNNs archi-
tecture and perturbation budget.

Now we can obtain the adversarial generalization gap below.

Theorem 4.8. Suppose Assumptions 4.1 and 4.2 hold.
Let F : Rn×d → Rn be the GNNs function class
taking values in [−q, q]. Let Q1 = 1

u + 1
m , Q2 =

m+u
(m+u−1/2)(10−1/2(max(m,u))) and c0 > 5.05. For any
f ∈ F , with probability of at least 1− δ, we have

Gen(f) ≤Qm,u + inf
µ>0

( 4µ√
m+ u

+
24Cℓ

m+ u∫ q
√

m+u
Cℓ

µ
2Cℓ

√
log

(3θKf

ϵ

)dN (F̂ , ϵ, ∥ · ∥∞, S)dϵ
)
,

where Qm,u = qc0Q1

√
min(m,u) + 2q

√
Q1Q2

2 ln 1
δ , and

µ > 0 is a constant.

Remark 4.9. Theorem 4.8 establishes a GNN-dependent
adversarial generalization bound in the context of transduc-
tive inference. The term Qm,u inherently exhibit monotonic
decrease at a rate of O(max{ 1√

m
, 1√

u
}) (Oono & Suzuki,

2020; Esser et al., 2021). Compared with the non-robust
generalization gap of GNNs (Tang & Liu, 2023), this bound
remains another additional difficulty, i.e., the complexity es-
timate of the perturbed model function class F̂ . Considering
the perturbed node features combined with the constructed
perturbation δ̂c, we conduct a comprehensive analysis of
N (F̂ , ϵ, ∥ · ∥∞, S) for various GNNs, and the explicit char-
acterizations will be discussed in the next section. Besides,
we can observe that the perturbation budget θ significantly
impairs the capability of GNNs to generalize, which high-
lights the importance of analyzing the factors influencing
GNNs’ adversarial robustness under theoretical guidance.

4.2. Adversarial Generalization Gap for GNNs

In this part, for different GNNs, we derive the upper bounds
of their covering number N (F̂ , ϵ, ∥ · ∥∞, S) and Lipschitz
constant Kf . Three representative GNNs, including GCN,
GCNII, and APPNP, are selected for analysis. To establish
the generalization gap, we make some necessary assump-
tions for L-layer GNNs first.

Assumption 4.10. For the activation function σt(·) of layer
t ∈ [1, L] and any vector x, assume the following inequality
holds

∥σt(x)− σt(x′)∥∞ ≤ ρt∥x− x′∥∞.

Assumption 4.11. For any input feature xi, assume that
∥xi∥2 ≤ b holds.

Assumption 4.12. For the weight matrix W = {W t}L−1
t=0 ,

where W t ∈ Rdt×dt+1 (d0 = d and dL = |Y|), assume
that ∥W t∥∞ ≤ wt holds.

Remark 4.13. Many commonly used activation functions
satisfy Assumption 4.10, such as Sigmoid, Tanh, and ELU
(Exponential Linear Unit). Assumption 4.11 can be satisfied
by applying a normalization operation on the input feature,
which is demonstrated to help reduce the generalization gap
(Verma & Zhang, 2019; Tang & Liu, 2023). The require-
ment that learning weights remain bounded during training
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in Assumption 4.12 is commonly observed in generalization
analysis (Garg et al., 2020; Cong et al., 2021).

Next, we analyze the upper bounds of the generalization
error of the following model, respectively.

GCN. Kipf and Welling (2016) propose an efficient layer-
wise propagation rule to learn node-level representations,
which encodes the node features in a way useful for semi-
supervised classification learning. The output function of a
L-layer GCN model is

f(A,X,W )

= σL(g(A)σL−1(g(A) . . . σ1(g(A)XW 1)W 2) . . .WL).

where g(A) ∈ Rn×n is the graph filter. Three types of
filters are introduced in this paper, such as the unnormalized
filter with self-loops g(A) = A+ I (Xu et al., 2018), the
symmetric normalized filter g(A) = (D + I)−1/2(A +
I)(D + I)−1/2 (Kipf & Welling, 2016), and the random
walk filter g(A) = (D+I)−1(A+I) (Zhang et al., 2019).
D ∈ Rn×n is the degree matrix of graph G, where Dii =∑n

j=1 Aij .
Proposition 4.14. With probability of at least 1 − δ, the
following inequality holds

Gen(f) ≤Qm,u +
4

m+ u

+
72Cℓ√
m+ u

(√
dθKGCN + vb̂gL

L∏
t=1

ρtwt

)
,

where g = ∥g(A)∥∞, KGCN = Cℓg
L
∏L

t=1 ρtwt, b̂ = b +√
dθ, and v = max{d1, . . . , dL+1}. Qm,u is as stated in

Theorem 4.8.
Remark 4.15. It’s clear that the perturbation budget θ in the
first term

√
dθKGCN would deteriorate the generalization

performance of GCN, where a higher dimensional feature
d could exacerbate this adverse effect. Thus, a smaller
perturbation budget θ could reduce the dependence of ad-
versarial generalization on d. Moreover, for the unnormal-
ized filter, for a fixed i ∈ [n] and any j ∈ [n], we have
∥g(A)∥∞ ≤ dmax + 1, where dmax denotes the maximum
degrees. For the symmetric normalized filter and random
walk filter, ∥g(A)∥∞ ≤

√
(dmax + 1)/(dmin + 1), where

dmin denotes the minimum degrees. This motivates apply-
ing normalized graph filters with an appropriate number of
layers to achieve the generalization ability, which is consis-
tent with the empirical findings (Kipf & Welling, 2016; Li
et al., 2018). Furthermore, the Lipschitz constant ρt = 1
is usually satisfied while the activation function is selected
properly. Thus, we can mitigate the performance loss caused
by the product of weight constraints by applying regulariza-
tion to the weights.

APPNP. Considering the limitations of the propagation pro-
cedure for node classification, Gasteiger et al. (2018) derive

an improved propagation scheme based on personalized
PageRank. This approach constructs a simple model that
utilizes a large and adjustable neighborhood for node classi-
fication, which avoids the poor performance of GCN caused
by more aggregation steps or more layers. The output func-
tion of a L-layer APPNP model is

f(A,X,W )

=σL(ĝ(A)σL−1(WL−1σL−2(WL−2 . . . σ1(W 1X)))),

where ĝ(A) =
∑K−1

k=0 γ(1−γ)kg(A)k+(1−γ)Kg(A)K .
K is the aggregation hop and γ is a probability, which is
designed to adjust the size of the neighborhood influencing
each node.
Proposition 4.16. With probability of at least 1 − δ, the
following inequality holds

Gen(f) ≤Qm,u +
4

m+ u

+
72Cℓ√
m+ u

(√
dθKAPPNP + vb̂ĝρL

L−1∏
t=1

ρtwt

)
,

where ĝ = ∥ĝ(A)∥∞ ≤ γ
(
1 +

∑K−1
k=1

(
(1 − γ)g

)k)
+(

(1 − γ)g
)K

, and KAPPNP = CℓĝρL
∏L−1

t=1 ρtwt. Qm,u is
as stated in Theorem 4.8. The definitions of b̂, g and v are
the same as in Proposition 4.14.
Remark 4.17. Compared to the generalization gap of GCN,
the main difference of the bound in Proposition 4.16 lies in
the treatment of graph filters. We find that the probability
γ ∈ (0, 1) is set as a small number, and the graph filter g(A)
is symmetric normalized, which yields that ĝ ≤ g ≤ gL

(Gasteiger et al., 2018). Therefore, APPNP could achieve
a better generalization performance than GCN. Moreover,
as a higher probability γ could improve the convergence
speed and benefit the generalization, such a large size of the
neighborhood would lead to a rapid performance degrada-
tion (Gasteiger et al., 2018). The neighborhood structures
vary across different types of graphs (Grover & Leskovec,
2016; Abu-El-Haija et al., 2020), which has a significant
impact on the selection of the parameter γ. Hence, it is
crucial to carefully adjust the parameters γ and K to guar-
antee a trade-off between the generalization behavior and
representation ability.

GCNII. Although combing the shallow graph neural net-
works and deep propagation, Chen et al. (2020b) consider
APPNP losing the powerful expression ability of deep non-
linear architectures. GCNII is proposed to alleviate the over-
smoothing in the deep graph model by using two simple
techniques, initial residual connection and identity mapping,
which enables GCN to express the high-order polynomial
filter with arbitrary coefficients. For l = [1, . . . , L− 1], the
propagation process is

H l = σl

[(
(1− α)g(A)H l−1 + αH0

)
ψ(W l)

]
,
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Table 2. Details of the adopted datasets.

Dataset Nodes Edges Features Classes Training Validation Test

Citeseer 3327 9104 3703 6 20 per class 500 1000
Cora 2708 10556 1433 77 20 per class 500 1000

Pubmed 19717 88648 500 3 20 per class 500 1000
DBLP 17716 105734 1639 4 20 per class 30 per class Rest

CS 18333 163788 6805 15 20 per class 30 per class Rest
CoraFull 19793 126842 8710 70 20 per class 30 per class Rest

where H0 = σ0(XW 0), ψ(W l) =
(
(1− β)In + βW l

)
,

and α, β ∈ (0, 1). The output function of a L-layer GCNII
model is f(A,X,W ) = σL(H

L−1WL).
Proposition 4.18. With probability of at least 1 − δ, the
following inequality holds

Gen(f) ≤ Qm,u +
4

m+ u

+
72Cℓ√
m+ u

(√
dθKGCNII + vb̂β

L∑
j=0

Tj

L∏
t=j

ρtw̃t

)
,

where w̃t ≤ 1− β + βwt, and

KGCNII = Cℓρ0w̃0

L∑
j=1

((1− α)g)j−1
L∏

t=L−j

ρtw̃t,

Tj = 2

L∑
j=0

((1− α)g)L−j
(
(1− α)gAj−1 + αA0

)
,

Ap = b̂ρ0w̃0

p∑
j=0

((1− α)g)j
p∏

t=p−j

ρtw̃t.

Qm,u is as stated in Theorem 4.8. The definitions of b̂, g
and v are the same as in Proposition 4.14.

Remark 4.19. According to Proposition 4.18, the perfor-
mance of GCNII is mainly related to the choice of α and β.
α is usually set as a small number to avoid the performance
drop if we stack many layers, as the final representation
of each node retains at least a fraction of α from the input
feature (Chen et al., 2020b). However, it is noteworthy that
the impact of α and L on generalization is closely relevant
to ∥g(A)∥∞. A deep model with a smaller α and an unnor-
malized filter would lead to worse generalization. Moreover,
β ensures at least the same performance between a deep
model and its shallow version (He et al., 2016). By setting β
relatively small and imposing regularization on the weight
can obtain a small weight norm, which is particularly useful
to avoid overfitting as well as enhance the generalization.

5. Experiments
In this section, we propose an adversarial training algorithm
to learn robust GNNs based on our theoretical findings, and

Algorithm 1 Train a robust graph model

1: Input: Graph G, dataset S, perturbation budget θ, regu-
larization parameter λ, initialization W 0, learning rate
η, number of iterations T .

2: while t < T do
3: S̃ ← ∅.
4: for i = 1, 2, . . . , n do
5: For the input matrixXt = [x1,t, . . . , xn,t], perturb

X̃t ← Xt +A(Xt, A, θ).
6: For each node in X̃t = [x̃1,t, . . . , x̃n,t], append

{(x̃i,t, yi,t)}ni=1 to S̃t and choose m samples ran-
domly to the training set S̃m,t.

7: end for
8: Define a new objective L(Wi,t) =

1
m

∑
Xi,t∈S̃m,t

ℓ(fi,t(A,X,W ), yi,t) + λ∥Wi,t∥∞.
9: For all i ∈ [m], update Wt using SGD:

Wi,t+1 ←Wi,t − η∇L(Wi,t).
10: end while
11: Output: W T

validate our theoretical results by evaluating the effect of
several factors.

Experimental Setup. We adopt six benchmark datasets
provided by PyTorch Geometric, including Citeseer, Cora,
Pubmed, DBLP, CS, and CoraFull (see Table 2 for more
details). We evaluate the performance of three popular GNN
models: GCN, GCNII, and APPNP. Let A be a gradient-
based attack algorithm (e.g., PGD, BIM, Mettack). We
present our robust learning method in Algorithm 1. During
the training procedure, adversarial examples are generated
by PGD algorithm (Bottou, 2010) with a step size of θ/128,
where θ is the perturbation budget. We set training iterations
T as 200 and use cross-entropy loss for training. SGD is
adopted for optimization with its learning rate η set by 0.05
and a weight decay of 1e-3. The regularization parameter λ
is fixed to 0.1. The generalization gap is approximated by
the following accuracy gap based on adversarial training

|adversarial train accuracy−adversarial test accuracy|,

which is the absolute difference between the accuracy on
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Figure 1. The generalization gap for different adversarial perturbations θ with increased number of layers L (on Cora).
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(a) Experiments of adversarial training for APPNP
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(b) Experiments of adversarial training for GCNII

Figure 2. The generalization gap for different hyper-parameter γ in APPNP and α in GCNII with increased perturbations θ.
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Figure 3. The generalization gap for different GNN models with increased perturbations θ.
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Figure 4. The generalization gap for different graph filters g(A) with increased perturbations θ (on Cora).
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Figure 5. The generalization gap for different input feature dimension d with increased perturbations θ (on Cora).
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Figure 6. The generalization gap for different regularization parameter λ with increased perturbations θ (on Cora).

training and test data.

We repeat each experiment 10 times and report the mean
value and standard deviation for output. For more detailed
model configuration and experimental results (including
results of other datasets, other attack methods, and other
influencing factors assessment), please refer to Appendix F.

Number of layers. For GCN, Figure 1 reveals that the gap
increases as the model gets deeper, which aligns with our
theoretical results. And affected by the superposition of
the increased nonlinear operations, APPNP performs worse
with the higher model depth. However, as stated in Propo-
sition 4.18, the parameter α could adjust the proportion of
parameters in deeper layers. The generalization gap of GC-
NII presents a slow decreasing trend, which demonstrates
its superior performance in a deep version.

Model architecture. According to Proposition 4.16, a rel-
atively bigger γ could help reduce the adversarial gener-
alization gap, especially when ∥g(A)∥∞ of the unnormal-
ized filter is much bigger than 1. Similarly, as stated in
Proposition 4.18, a little bigger α benefits the adversarial
generalization in a deep GCNII model. Figure 2 shows the
results of different hyper-parameters γ in APPNP and α in
GCNII, which exhibit a similar trend. Moreover, Figure 3
shows that GCNII and APPNP have a smaller generalization
gap than GCN, which demonstrates the effectiveness of the
improved model architectures.

Graph filter. The theoretical results demonstrate that the
unnormalized filter hurts the adversarial generalization due
to the exponential dependence on model depth. As is shown
in Figure 4, the two normalized filters (D + I)−1/2(A +

I)(D + I)−1/2 and (D + I)−1(A+ I) own better gener-
alization performance than the unnormalized filter A+ I .

Feature dimension. As shown in Figure 5, it is clear that
the generalization error with a lower input feature has a
better generalization performance, which is consistent with
our theoretical analysis as stated in Proposition 1.

Regularization parameter. Our theoretical results show
that the product of the norm weights deteriorates the gener-
alization, especially when we stack more layers. Figure 6
demonstrates that norm regularization facilitates the adver-
sarial generalization of GNNs.

6. Conclusion
In this paper, we establish an adversarial generalization
bound of GNNs in the context of transductive learning,
providing theoretical support to the empirical advancements
of adversarial training. Our approach is modular and easily
applicable to a wide range of GNN models. We further
showcase our results of generalization analysis on three
representative cases (GCN, APPNP, and GCNII), which are
validated in our experimental results.

In future work, we consider extending our result to an opti-
mistic fast-rate bound for a smooth assumption of the loss.
As the graph topology is vulnerable to adversarial attacks
(Li et al., 2022), adversarial generalization analysis against
structural perturbations will be our future exploration. The
detailed discussions about the extension of our work to
topology attacks are included in Appendix E.
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A. Notations
The main notations of this paper are summarized in Table 3.

Table 3. Summary of main notations involved in this paper

Notations Descriptions

A The adjacency matrix, where A ∈ Rn×n

X The node (input) feature matrix, where X ∈ Rn×d

D The degree matrix with Di,i =
∑

j Ai,j

g(A) The graph filter of G, where g(A) ∈ Rn×n

W The learning parameters of GNNs, where W = {W t}Lt=1

f(A,X,W ) The output function of GNNs

xi, yi The node feature and node label

ℓ(fi(A,X,W ), yi) The loss function

δ, θ The perturbations and perturbation budget

B The noise space {δ : ∥δ∥∞ ≤ θ}
Aδ The set of adversarial nodes {X̃ = [x̃1, . . . , x̃n], x̃i = xi + δ, i ∈ [n]}
maxX̃∈Aδ

ℓ(fi(A, X̃,W ), yi) The adversarial loss function

S, Ŝ The training dataset and the extended training dataset with the perturbations

R̃m(f), R̃u(f) The adversarial empirical (population) risk of the adversarial loss function

Gen(f) The generalization error in the adversarial settings

CB The cover of the noise set B
δ̂, δ̂c An arbitrary and fixed perturbations in the cover set CB
F̂ The model function class with the fixed perturbation δ̂c

N (F̂ , ϵ, ∥ · ∥∞, S) The covering number of perturbed function class F̂ at scale ϵ with an ℓ∞ metric

b, b̂ The norm constraints of ∥x∥2 and ∥x̃∥2
Cf , Kf , and ρt The Lipschitz constants of the loss function, output function, and activation function

wt the norm constraint of the t-th layer’s weight W t

∥x∥2 =
√∑

j |xj |2 The ℓ2 norm of a vector x

∥x∥∞ = max
∑

j |xj | The ℓ∞ norm of a vector x

∥X∥∞ = max
∑

j |Xij | The infinity norm of a matrix X

B. Proof of Main Results
B.1. Generalization for GNNs

As discussed in the main test, the main challenges in deriving the adversarial generalization bound for GNNs (Theorem 4.8)
can be handled by Lemma 4.4 and Lemma 4.6. Followed by Mustafa, Lei, and Kloft (2022), we first present the proofs of
Lemma 4.4, which controls the covering number of the adversarial loss class of GNNs through a covered perturbation class.

Proof of Lemma 4.4. For each function f ∈ F and a fixed δc ∈ B, we construct a new function h : Z → (Rn)B as
h(zi, δc) = ℓ(fi(A, X̃c,W ), yi), where X̃c = [x1 + δc, . . . ,xn + δc]. The corresponding function class is

L := {zi → ℓ(fi(A, X̃c,W ), yi) : f ∈ F}. (1)

Recalling the adversarial loss class Ladv, let maxδ∈B h(zi, δ) = maxX̃∈Aδ
ℓ(fi(A, X̃,W ), yi) for any δ ∈ B. In this

12
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part, we use the cover elements of the constructed class L on dataset S to build a cover for the adversarial loss function class
Ladv on the same dataset S. Recall from the definition that N (Ladv, ϵ, | · |∞, S) is the cover for

Ladv|S :=
{(

max
δ∈B

h(z1, δ), . . . ,max
δ∈B

h(zn, δ)
)}
⊂ Rn.

First we construct an ℓ∞−cover for Ladv|S by utilizing an ℓ∞−cover for

L|S :=
{(
h(z1, δc), . . . , h(zn, δc)

)}
⊂ (RB)n,

which is N (L, ϵ, ∥ · ∥∞, S) in definition. The cover of L of size NL is denoted by

CL :=
{(
c1j (δc), . . . , c

n
j (δc)

)
: j ∈ [NL]

}
⊂ (RB)n.

Then we can obtain the cover of Ladv|S as

CLadv
:=

{(
c̃1j := max

δ∈B
c1j (δ), . . . , c̃

n
j := max

δ∈B
cnj (δ)

)
: j ∈ [NL]

}
⊂ Rn.

We have

max
i∈[n]
|max
δ∈B

h(zi, δ)− c̃ij | = max
i∈[n]
|max
δ∈B

h(zi, δ)−max
δ∈B

cij(δ)| ≤ max
i∈[n]

max
δ∈B
|h(zi, δ)− cij(δ)| ≤ ϵ,

where the first equality is based on the construction of CLadv
, the first inequality follows from the inequality |maxx f(x)−

maxx g(x)| ≤ maxx |f(x)− g(x)|, and the last inequality is based on the covering number of L. Lastly, we have

N (Ladv, ϵ, | · |∞, S) ≤ N (L, ϵ, ∥ · ∥∞, S).

Now we control the complexity of the adversarial loss class. However, there is still a difficulty in deriving the upper bound
of N∞(L, ϵ, S), as the functions in L take values in an infinite-dimensional vector space. We approximate the space by a
finite discretization version to solve this problem, where the function class of the discrete version is defined by

Ldis := {(zi, δ̂)→ ℓ(fi(A, X̂,W ), yi) : f ∈ F}. (2)

In this part, the target is to control the covering number of the infinite-dimensional class L with the finite-dimensional
counterpart Ldis. To approximate the functions h with a discrete form, we construct an ϵ/2CℓKf−cover for set B

CB :=
{
δ̂j , j ∈ [NB]

}
⊂ B,

where NB is the size of the cover CB. Let the function class L and Ldis be defined in Equation (1) and (2) respectively.
Let the extended dataset be expressed by Ŝ = {(xi, δ̂, yi) : i ∈ [n], δ̂ ∈ CB}. Our goal is to construct an ϵ-cover of L by
utilizing an ϵ/2-cover of Ldis. According to the set CB, we have

Ldis|Ŝ :=
{(
h(z1, δ̂1), . . . , h(z1, δ̂NB), . . . , h(zn, δ̂1), . . . , h(zn, δ̂NB)

)}
⊂ Rn×NB .

N (Ldis, ϵ, | · |∞, Ŝ) is defined as an ϵ/2-cover for Ldis|Ŝ of size NLdis
, which is denoted by

CLdis
:=

{(
ĉ1j (δ̂1) . . . ĉ

1
j (δ̂NB), . . . , ĉ

n
j (δ̂1), . . . , ĉ

n
j (δ̂NB)

)
: j ∈ [NLdis

]
}
⊂ Rn×NB .

Next, we construct a cover of L|S . The key idea is to construct functions cj(δ̂), where j ∈ [NLdis
] is a piece-wise constant

around each δ̂ ∈ CB. Let

CL :=
{(
c1j (δ) := ĉ1j (arg min

δ̂∈CB

∥δ − δ̂∥), . . . , cnj (δ) := ĉnj (arg min
δ∈CB

∥δ − δ̂∥)
)
: j ∈ [NLdis

]
}
∈ (RB)n

13
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be an ϵ-cover of L. Therefore, we have

max
i

max
δ∈B
|h(zi, δ)− cij(δ)|

=max
i

max
δ∈B
|h(zi, δ)− h(zi, δ

∗) + h(zi, δ
∗)− cij(δ̂)|

≤max
i

max
δ∈B

(
|h(zi, δ)− h(zi, δ

∗)|+ |h(zi, δ
∗)− cij(δ)|

)
≤max

i
max
δ∈B
|h(zi, δ)− h(zi, δ

∗)|+max
i

max
δ̂∈CB

|h(zi, δ̂)− ĉij(δ
∗)|

≤max
i

max
δ∈B

CℓKf∥δ − δ∗∥+max
i

max
δ̂∈CB

|h(zi, δ̂)− ĉij(δ̂)|

≤CℓKf ϵ/2CℓKf + ϵ/2 = ϵ,

where δ∗ = argminδ̂∈CB
∥δ − δ̂∥. The first inequality follows from triangle inequality. The second inequality is followed

by the construction of CB, such that cij(δ) = ĉij(δ
∗). The third inequality is based on the Lipschitz properties of the loss

function with respect to δ. The last inequality is based on the construction of δ∗ and CLdis
. Then we can obtain

N (L, ϵ, ∥ · ∥∞, S) ≤ N (Ldis, ϵ/2, | · |∞, Ŝ),

which concludes that
N (Ladv, ϵ, | · |∞, S) ≤ N (L, ϵ, ∥ · ∥∞, S) ≤ N (Ldis, ϵ/2, | · |∞, Ŝ).

Now we finish the proofs of Lemma 4.4.

Lemma 4.4 utilizes the construction of covering number to control the complexity of Ladv , thus removing the maximization
on the adversarial loss, which is the first challenge of our work. The second challenge comes from the estimating of the
covering number of Ldis based on the extended dataset Ŝ. Inspired by Bartlett et al. (2017), we break the task of covering a
whole function class F̂ on Ŝ into a cover term of the first layer and other cover terms for the layers’ weights. We proceed
with the proofs as follows.

proof of Lemma 4.6. Firstly, based on Assumption 4.2 and Lemma C.1, we have

| max
X̃∈Aδ

ℓ(fi(A, X̃,W ), yi)− max
X̃∈Aδ

ℓ(f ′i(A, X̃,W ), yi)| ≤ Cℓ∥fi(A, X̃,W )− f ′i(A, X̃,W )∥∞.

By the definition of covering number, we can obtain

N (Ldis, ϵ/2, | · |∞, Ŝ) = N (ℓ̃ ◦ F , ϵ/2, | · |∞, Ŝ) ≤ N (F̂ , ϵ/2Cℓ, ∥ · ∥∞, Ŝ),

where ℓ̃ = maxX̃∈Aδ
ℓ(fi(A, X̃,W ), yi), and F̂ := {(xi, δ̂) → fi(A, X̂,W ) : δ̂ ∈ CB}. To decompose the covering

number of function class F̂ under dataset Ŝ, we construct covers E0 and E1 of the initial layer and the rest layers,
respectively, where the cover of the first part depends on the cardinality of CB, and covers of the rest parts depend on each
choice {W 1, . . . ,WL}. To facilitate our analysis, we consider the rest as a whole there, which will be analyzed in the next
section.

• For any xi ∈ X and δ̂ ∈ CB, choose an ϵ0-cover E0 of {xi + δ̂ : δ̂ ∈ CB}, thus

|E0| ≤ N ({xi + δ̂ : δ̂ ∈ CB}, ϵ0, ∥ · ∥∞, Ŝ) = |CB(ϵ/2CℓKf )|,

as the complexity of the adversarial examples {X̂} is controled by the cover set of the adversarial perturbations CB.

• For any xi ∈ X and fixed δ̂c ∈ CB, choose an ϵ1-cover E1 of F̂ . Recalling that

F̂ := {(xi, δ̂c)→ fi(A, X̂,W ) : δ̂c ∈ CB},

thus
|E1| ≤ N (F̂ , ϵ1, ∥ · ∥∞, S) = N (F̂ , ϵ/2Cℓ, ∥ · ∥∞, S),

where the last equality is because the changes of the perturbation cover won’t change the model function class.
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Lastly, as the complexity of class F̃ depends on the choices of the two parts, the following inequalities hold

N (Ldis, ϵ/2, ∥ · ∥∞, Ŝ) ≤N (F̂ , ϵ/2Cℓ, | · |∞, S̃)
≤|E0||E1|

≤|CB(ϵ/2CℓKf )|N (F̂ , ϵ/2Cℓ, ∥ · ∥∞, S)

≤
(6θCℓKf

ϵ

)dN (F̂ , ϵ/2Cℓ, ∥ · ∥∞, S),

where the last inequality is due to Lemma C.2.

Lemma 4.6 finally gets the covering number of the function class F̂ with fixed perturbations controlled by the constructed
cover CB on S. Next, we utilize transductive Rademacher complexity to derive the covering number-based generalization
bound over the adversarial loss.

Definition B.1 (Transductive Rademacher complexity). Let G be a set of vectors from Rm+u and p ∈ [0, 12 ]. Let
g = (g1, . . . , gm+u) ∈ Rm+u and σ = (σ1, . . . , σm+u)

T be a vector of i.i.d. random variables such that

σi =

 1 withprobability p;
−1 withprobability p;
0 withprobability 1− 2p.

The transductive Rademacher complexity with parameter p is

Rm+u(G) =
( 1

m
+

1

u

)
Eσ

{
sup
gi∈G

m+u∑
i=1

σigi

}
.

Proof of Theorem 4.8. Combining Lemma C.3 with C.4 and considering the adversarial learning, we can obtain

R̃u(f) ≤R̃m(f) + inf
µ>0

( 4µ√
n
+

12

n

∫ 2q
√
n

µ

√
logN (Ladv, ϵ, | · |∞, S)dϵ

)
+ qc0Q1

√
min(m,u) + 2q

√
Q1Q2

2
ln

1

δ
.

Then, we apply Lemma 4.4 and Lemma 4.6, the following inequalities hold

R̃u(f)− R̃m(f)

≤ inf
µ>0

( 4µ√
n
+

12

n

∫ 2q
√
m+u

µ

√
logN (Ladv, ϵ, | · |∞, S)dϵ+ qc0Q1

√
min(m,u) + 2q

√
Q1Q2

2
ln

1

δ

≤ inf
µ>0

( 4µ√
n
+

12

n

∫ 2q
√
m+u

µ

√
logN (Ldis, ϵ/2, | · |∞, S̃)dϵ+ qc0Q1

√
min(m,u) + 2q

√
Q1Q2

2
ln

1

δ

≤ inf
µ>0

( 4µ√
n
+

12

n

∫ 2q
√
m+u

µ

√
log

(6θCℓKf

ϵ

)dN (F̂ , ϵ/2Cℓ, ∥ · ∥∞, S)dϵ+ qc0Q1

√
min(m,u) + 2q

√
Q1Q2

2
ln

1

δ

≤ inf
µ>0

( 4µ√
n
+

24Cℓ

n

∫ q
√

m+u
Cℓ

µ
2Cℓ

√
log

(3θKf

ϵ

)dN (F̂ , ϵ, ∥ · ∥∞, S)dϵ+ qc0Q1

√
min(m,u) + 2q

√
Q1Q2

2
ln

1

δ
,

where the last inequality replaces ϵ/2Cℓ with ϵ and remains the complexity estimate of F̂ in the next section.

B.2. Proofs of Case Study.

Based on Theorem 4.8, we analyze the adversarial generalization of several classical GNNs via the lens of covering number.

Proof of Proposition 4.14. We first derive the Lipschitz constant Kf of GCN. Let the update rule of node xi with l ∈ [L] is
denoted by Zi∗(X̃,W 1, . . . ,W l) = σl(

∑n
j=1[g(A)]ijZj∗(X̃,W 1, . . . ,W l−1)W l), where Zi∗(·) means the i-th line of
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the output matrix. Thus we have h(zi, δ) = ℓ(fi(A, X̃,W ), yi) = ℓ(Zi∗(X̃,W 1, . . . ,WL), yi) hold for any δ ∈ B. The
following inequalities hold

|h(zi, δ)− h(zi, δ
′)|

≤Cℓ∥Zi∗(X̃,W 1, . . . ,WL)− Zi∗(X̃
′
,W 1, . . . ,WL)∥∞

≤Cℓ∥σL
( n∑
j=1

[g(A)]ijZj∗(X̃,W 1, . . . ,WL−1)WL

)
− σL

( n∑
j=1

[g(A)]ijZj∗(X̃
′
,W 1, . . . ,WL−1)WL

)
∥∞

≤CℓρL

n∑
j=1

[g(A)]ij∥Zj∗(X̃,W 1, . . . ,WL−1)WL − Zj∗(X̃
′,W 1, . . . ,WL−1)WL∥∞

≤CℓρL∥g(A)∥∞ max
j
∥Zj∗(X̃,W 1, . . . ,WL−1)− Zj∗(X̃

′
,W 1, . . . ,WL−1)∥∞∥WL∥∞

≤Cℓg
Lρ1

L∏
t=2

wtρt max
j
∥X̃j∗W 1 − X̃

′
j∗W 1∥∞

≤Cℓg
L

L∏
t=1

wtρt max
j
∥X̃j∗ − X̃

′
j∗∥∞

≤Cℓg
L

L∏
t=1

wtρt max
j
∥x̃j + δ − x̃j − δ′∥∞

≤Cℓg
L

L∏
t=1

wtρt∥δ − δ′∥∞

≜KGCN∥δ − δ′∥∞,

where the first inequality is due to Assumption 4.2, the third inequality is due to Assumption 4.10, the fourth inequality is
according to the compatibility of the matrix norm constraint, and the fifth inequality is based on Assumption 4.11.

Now we analyze the covering number of model function class F̂ . Denote by ∆l = ∥Zi∗(X̂c,W 1, . . . ,W l) −
Zi∗(X̂c,W

′
1, . . . ,W

′
l)∥∞, where i ∈ [n] and l ∈ [L]. Based on the Lipschitz property of activation function , we

first observe that

∆1 =∥Zi∗(X̂c,W 1)− Zi∗(X̂c,W
′
1)∥∞

≤∥σ1
( n∑
j=1

[g(A)]ijX̂c,j∗W 1

)
− σ1

( n∑
j=1

[g(A)]ijX̂c,j∗W
′
1

)
∥∞

≤ρ1
n∑

j=1

[g(A)]ij∥X̂c,j∗(W 1 −W ′
1)∥∞

≤ρ1gmax
j
∥X̂c,j∗∥2∥(W 1 −W ′

1)∥∞

≤ρ1gb̂∥W 1 −W ′
1∥∞

=b̂gρ1w1
∥W 1 −W 1∥∞

w1
,

where the third inequality is due to the fact that ∥x∥∞ ≤ ∥x∥2 holds for any vector x. For X̂c,j∗ = (xj , δ̂c), we have

b̂ = ∥X̂c,j∗∥2 ≤ ∥xj∥2 + ∥δ̂c∥2 ≤ b+
√
d∥δ∥∞ = b+

√
dθ. (3)
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Similarly, we have

∆2 =∥Zi∗(X̂c,W 1,W 2)− Zi∗(X̂c,W
′
1,W

′
2)∥∞

≤∥σ2
( n∑
j=1

[g(A)]ijZj∗(X̂c,W 1)W 2

)
− σ2

( n∑
j=1

[g(A)]ijZj∗(X̂c,W
′
1)W

′
2

)
∥∞

≤ρ2
n∑

j=1

[g(A)]ij∥Zj∗(X̂c,W 1)(W 2 −W ′
2) + (Zj∗(X̂c,W 1)− Zj∗(X̂c,W

′
1))W

′
2∥∞

≤ρ2∥g(A)∥∞
(
∥σ1

( n∑
j=1

[g(A)]ijX̂c,j∗W 1

)
(W 2 −W ′

2)∥∞ +∆1w2

)
≤ρ2∥g(A)∥∞

(
∥σ1

( n∑
j=1

[g(A)]ijX̂c,j∗W 1

)
∥∞∥W 2 −W ′

2∥∞ +∆1w2

)
≤ρ2∥g(A)∥∞

(
b̂gρ1w1∥W 2 −W ′

2∥∞ + b̂gρ1w2∥W 1 −W ′
1∥∞

)
=b̂g2ρ1ρ2w1w2

(∥W 1 −W ′
1∥∞

w1
+
∥W 2 −W ′

2∥∞
w2

)
,

where the second inequality follows by the triangle inequality and the last inequality is followed by the proofs of KGCN .
Then, for any l > 0, using the induction step, we have

∆l+1 =∥Zi∗(X̂,W 1, . . . ,W l+1)− Zi∗(X̂,W ′
1, . . . ,W

′
l+1)∥∞

≤∥σl+1(

n∑
j=1

[g(A)]ijZj∗(X̂c,W 1, . . . ,W l)W l+1)− σl+1(

n∑
j=1

[g(A)]ijZj∗(X̂c,W
′
1, . . . ,W

′
l)W

′
l+1∥∞

≤ρl+1g
(
∥Zj∗(X̂c,W 1, . . . ,W l)W l+1 − Zj∗(X̂c,W 1, . . . ,W l)W

′
l+1∥∞

+ ∥Zj∗(X̂c,W 1, . . . ,W l)W
′
l+1 − Zj∗(X̂c,W

′
1, . . . ,W

′
l)W

′
l+1∥∞

)
≤b̂ρl+1g

l+1
l∏

t=1

ρtwt∥W l+1 −W ′
l+1∥∞ + ρl+1g∆l

≤b̂gl+1
l+1∏
t=1

ρtwt

l+1∑
i=1

∥W i −W ′
i∥∞

wi
.

Now we proceed to upper bound the covering number for F̂ . For any fi(·) and f ′i(·), applying the above inequality, the
following hold

∥fi(A, X̂,W )− f ′i(A, X̂,W )∥∞ = ∆L ≤ b̂gL
L∏

t=1

ρtwt

L∑
j=1

∥W j −W ′
j∥∞

wj
.

Then, based on the definition of the covering number, we have the following relation of the cover between the class F̂ and
W = {W j : ∥W j∥∞ ≤ wj}

ϵ ≤ b̂gL
L∏

t=1

ρtwt

L∑
j=1

ϵj
wj
. (4)
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Thus, according to Theorem 4.8, we focus on∫ q
√

m+u
Cℓ

µ
2Cℓ

√
log

(3θKGCN

ϵ

)dN (F̂ , ϵ, ∥ · ∥∞, S)dϵ

≤
∫ q

√
m+u
Cℓ

µ
2Cℓ

√
log

(3θKGCN

ϵ

)d
+ logN (F̂ , ϵ, | · |∞, S)dϵ

≤
∫ q

√
m+u
Cℓ

µ
2Cℓ

{√
log

(3θKGCN

ϵ

)d
+

√
logN (F̂ , ϵ, | · |∞, S)dϵ

}

≤
∫ q

√
m+u
Cℓ

µ
2Cℓ


√
log

(3θKGCN

ϵ

)d
+

√√√√log

L∏
j=1

N ({W j : ∥W j∥∞ ≤ wj}, ∥ · ∥∞, ϵj)dϵ


≤
∫ q

√
m+u
Cℓ

µ
2Cℓ

√
d log

(3θKGCN

ϵ

)
dϵ+

∫ q
√

m+u
Cℓ

µ
2Cℓ

√√√√ L∑
j=1

log{N (W j : ∥W j∥∞ ≤ wj , ∥ · ∥∞, ϵj)}dϵ. (5)

where the second inequality follows by (
√
a+ b)2 ≤ (

√
a+
√
b)2, and the third inequality is followed by (Bartlett et al.,

2017; Tu et al., 2019). Next, we proceed to the proof of the first term as follows

√
d

∫ q
√

m+u
Cℓ

µ
2Cℓ

√
log

(3θKGCN

ϵ

)
dϵ ≤

√
d

∫ KGCNθ

0

√
log

(3θKGCN

ϵ

)
dϵ ≤ 3

√
dθKGCN

∫ 1/3

0

√
log

1

ϵ
dϵ, (6)

where the first inequality is based on the fact that ∥δ − δ′∥∞ ≤ ∥δ∥∞. Since W j ∈ Rdj×dj−1 , we can regard it as a
vector in Rv2

, where v = max{d0, . . . , dL}. Then the set {W j : ∥W j∥∞ ≤ wj} forms a wj-ball in Rv2

, and the covering
number for this ball can be upper bounded by the following inequality for 0 ≤ ϵj ≤ wj (Long & Sedghi, 2019)

N (W j : ∥W j∥∞ ≤ wj , ∥ · ∥∞, ϵj) ≤
(3wj

ϵj

)v2

, (7)

and N (W j : ∥W j∥∞ ≤ wj , ∥ · ∥∞, ϵj) = 1 for ϵj ≥ wj . Then, by applying equation (7), we focus on the second term in
equation (5) as follows. ∫ q

√
m+u
Cℓ

µ
2Cℓ

√√√√ L∑
j=1

log{N (W j : ∥W j∥∞ ≤ wj , ∥ · ∥∞, ϵj)}dϵ

≤
L∑

j=1

∫ q
√

m+u
Cℓ

µ
2Cℓ

√
v2 log

3wj

ϵj
dϵ

≤
L∑

j=1

v

∫ q
√

m+u
Cℓ

µ
2Cℓ

√
log

3wj

ϵj
dϵj

b̂gL
∏L

t=1 ρtwt

wj

≤
L∑

j=1

vb̂gL
∏L

t=1 ρtwt

wj

∫ ∞

0

√
log

3wj

ϵj
dϵj

≤
L∑

j=1

vb̂gL
∏L

t=1 ρtwt

wj

∫ sj

0

√
log

3wj

ϵj
dϵj

≤3vb̂gL
L∏

t=1

ρtwt

L∑
j=1

wj

wj

∫ 1/3

0

√
log

1

ϵj
dϵj

≤3vb̂gL
L∏

t=1

ρtwt

∫ 1/3

0

√
log

1

ϵj
dϵj , (8)

18



Adversarial Robust Generalization of Graph Neural Networks

where the second inequality is based on equation (4) and the forth inequality is due to the condition that ϵj ≤ wj . Then
combining equation (6) and (8), we can obtain∫ q

√
m+u
Cℓ

µ
2Cℓ

√
log

(3θKGCN

ϵ

)dN (F̂ , ϵ, | · |∞, S)dϵ

≤3
(√

dθKGCN

∫ 1/3

0

√
log

1

ϵ
dϵ+ vb̂gL

L∏
t=1

ρtwt

∫ 1/3

0

√
log

1

ϵj
dϵj

)
≤3

(√
dθKGCN + vb̂gL

L∏
t=1

ρtwt

)
,

where the last inequality uses
∫ 1/3

0

√
log 1

ϵdϵ =
1
6

(
2
√
log 3 + 2

√
πerfc

(√
log 3

))
≤ 1 (Tu et al., 2019). Finally, according

to Theorem 4.8, by setting µ to 1
n , we can obtain the final generalization gap

R̃u(f) ≤R̃m(f) +
( 4µ√

m+ u
+

72Cℓ√
m+ u

(√
dθKGCN + vb̂gL

L∏
t=1

ρtwt

)
+ qc0Q1

√
min(m,u) + 2q

√
Q1Q2

2
ln

1

δ

≤R̃m(f) + Cℓ

( 4

m+ u
+

72Cℓ√
m+ u

(√
dθKGCN + vb̂gL

L∏
t=1

ρtwt

)
+ qc0Q1

√
min(m,u) + 2q

√
Q1Q2

2
ln

1

δ
.

Now we complete the proofs of Proposition 4.14.

Proof of Proposition 4.16. Denote by Zi∗(X̂c,W 1, . . . ,W l) = σl(Zi∗(X̂c,W 1, . . . ,W l−1)W l) for l ∈ [L]. Note that
fi(A, X̂c,W ) = σL(

∑n
j=1[ĝ(A)]ijZj∗(X̂c,W 1, . . . ,WL−1)), where

∑n
j=1[ĝ(A)]ij =

∑K−1
k=0 γ(1−γ)kĝ(A)k+(1−

γ)K ĝ(A)K . Firstly, the Lipschitz constant KAPPNP is derived by

|h(z, δ)− h(z, δ′)|

≤Cℓ∥σL
( n∑
j=1

[ĝ(A)]ijZj∗(X̃,W 1, . . . ,WL−1)
)
− σL

( n∑
j=1

[ĝ(A)]ijZj∗(X̃
′
,W 1, . . . ,WL−1)

)
∥∞

≤CℓρLĝ∥Zj∗(X̃,W 1, . . . ,WL−1)− Zj∗(X̃
′
,W 1, . . . ,WL−1)∥∞

≤CℓρLĝ∥σL−1(Zj∗(X̃,W 1, . . . ,WL−2)WL−1)− σL−1(Zj∗(X̃
′
,W 1, . . . ,WL−2)WL−1)∥∞

≤CℓĝρL

L−1∏
t=1

ρtwt∥δ − δ′∥∞

≜KAPPNP∥δ − δ′∥∞,

where ĝ = ∥ĝ(A)∥∞ ≤ γ
(
1 +

∑K−1
k=1

(
(1− γ)g

)k)
+

(
(1− γ)g

)K
. Now we proceed to the covering number of F̂ . Let

∆l = ∥Zi∗(X̂c,W 1, . . . ,W l)− Zi∗(X̂c,W
′
1, . . . ,W

′
l)∥∞, we have

∆1 =∥Zi∗(X̂c,W 1)− Zi∗(X̂c,W
′
1)∥

=∥σ1(X̂c,i∗W 1)− σ1(X̂c,i∗W
′
1)∥∞

≤ρ1∥X̂c,i∗(W 1 −W ′
1)∥∞

≤b̂ρ1∥W 1 −W ′
1∥∞.

Similar to the proofs of Proposition 4.14, using the induction step, we derive that

∆l+1 =∥Zi∗(X̂c,W 1, . . . ,W l+1)− Zi∗(X̂c,W
′
1, . . . ,W

′
l+1)∥∞

≤ρl+1∥Zi∗(X̂c,W 1, . . . ,W l)W l+1 − Zi∗(X̂c,W
′
1, . . . ,W

′
l)W

′
l+1∥∞

≤b̂
l+1∏
t=1

ρtwt

l+1∑
j=1

∥W j −W ′
j∥∞

sj
.
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Then we can obtain the following inequalities

∥fi(A, X̂c,W )− f ′i(A, X̂c,W )∥∞

=∥σL
( n∑
j=1

[ĝ(A)]ijZj∗(X̂c,W 1, . . . ,WL−1)
)
− σL

( n∑
j=1

[ĝ(A)]ijZj∗(X̂c,W
′
1, . . . ,W

′
L−1)

)
∥∞

≤ρL∥ĝ(A)∥∞∆L−1

≤b̂ĝρL
L−1∏
t=1

ρtwt

L−1∑
j=1

∥W j −W ′
j∥∞

sj
,

which implies the following relation between ϵ and ϵj

ϵ ≤ b̂ĝρL
L−1∏
t=1

ρtwt

L−1∑
j=1

ϵj
sj
. (9)

By applying Equation (9), we can derive the covering number of F̂ below

∫ q
√

m+u
Cℓ

µ
2Cℓ

√
log

(3θKAPPNP

ϵ

)dN (F̂ , ϵ, ∥ · ∥∞, S)dϵ

≤
√
d

∫ q
√

m+u
Cℓ

µ
2Cℓ

√(
log

3θKAPPNP

ϵ

)
dϵ+

L∑
j=1

∫ q
√

m+u
Cℓ

µ
2Cℓ

√
v2 log

3wj

ϵj
dϵ

≤
√
d

∫ KAPPNPθ

0

√
log

(3θKAPPNP

ϵ

)
dϵ+

L−1∑
j=1

v

∫ q
√

m+u
Cℓ

µ
2Cℓ

√
log

3wj

ϵj
dϵj

b̂ĝρL
∏L−1

t=1 ρtwt

sj

≤3
√
dθKAPPNP

∫ 1/3

0

√
log

1

ϵ
dϵ+

L−1∑
j=1

vb̂ĝρL
∏L−1

t=1 ρtwt

sj

∫ sj

0

√
log

3wj

ϵj
dϵi

≤3
√
dθKAPPNP

∫ 1/3

0

√
log

1

ϵ
dϵ+ 3vb̂ĝρL

L−1∏
t=1

ρtwt

∫ 1/3

0

√
log

1

ϵj
dϵj

≤3
(√

dθKAPPNP + vb̂ĝρL

L−1∏
t=1

ρtwt

)
.

where the first inequality follows by the proofs of GCN. Finally, the adversarial generalization gap of APPNP is obtained by
applying the covering number of F̂ and setting µ to 1

n

R̃u(f) ≤R̃m(f) +
4µ√
m+ u

+
72Cℓ√
m+ u

(√
dθKAPPNP + vb̂ĝρL

L−1∏
t=1

ρtwt

)
+ qc0Q1

√
min(m,u) + 2q

√
Q1Q2

2
ln

1

δ

≤R̃m(f) +
4

m+ u
+

72Cℓ√
m+ u

(√
dθKAPPNP + vb̂ĝρL

L−1∏
t=1

ρtwt

)
+ qc0Q1

√
min(m,u) + 2q

√
Q1Q2

2
ln

1

δ
.

Now the proofs of Proposition 4.16 are finished.

Proof of Proposition 4.18. Denote by Zj∗(X̂c,W 0, . . . ,W l) = σl

[(
(1− α)

∑n
j=1[g(A)]ijZj∗(X̂c,W 0, . . . ,W l−1) +

αZj∗(X̂c,W 0)
)
ψ(W l)

]
, where Zi∗(X̂c,W 0) = σ0(X̂cW 0) and ψ(W l) = (1 − β)In + βW l . We define

fi(A, X̂c,W ) = σL(Zi∗(X̂c,W 0, . . . ,WL−1)WL). Now we first derive the Lipschitz constant KGCNII in the fol-
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lowing

|h(z, δ)− h(z, δ′)|

≤Cℓ

∥∥∥[σL(Zj∗(X̃,W 0, . . . ,WL−1)WL)− σL(Zj∗(X̃
′
,W 0, . . . ,WL−1)WL)

]∥∥∥
∞

≤CℓρLw̃L

∥∥∥σL−1

[(
(1− α)

n∑
j=1

[g(A)]ijZj∗(X̃,W 0, . . . ,WL−2) + αZj∗(X̃,W 0)
)
ψ(WL−1)

]
− σL−1

[(
(1− α)

n∑
j=1

[g(A)]ijZj∗(X̃
′
,W 0, . . . ,WL−2) + αZj∗(X̃

′
,W 0)

)
ψ(WL−1)

]∥∥∥
∞

≤Cℓ

L∏
t=L−1

ρtw̃t

[
(1− α)g

∥∥∥Zj∗(X̃,W 0, . . . ,WL−2)− Zj∗(X̃
′
,W 0, . . . ,WL−2)

∥∥∥
∞

+ α
∥∥Zj∗(X̃,W 0)− Zj∗(X̃

′
,W 0)

∥∥
∞

]
,

where the second inequality is based on Assumption 4.10 and 4.12, and the third inequality can be further expanded as∥∥∥Zj∗(X̃,W 0, . . . ,WL−2)− Zj∗(X̃
′
,W 0, . . . ,WL−2)

∥∥∥
∞

≤
∥∥∥σL−2

[(
(1− α)

n∑
j=1

[g(A)]ijZj∗(X̃,W 0, . . . ,WL−3) + αZj∗(X̃,W 0)
)
ψ(WL−2)

]
− σL−1

[(
(1− α)

n∑
j=1

[g(A)]ijZj∗(X̃
′
,W 0, . . . ,WL−3) + αZj∗(X̃,W 0)

)
ψ(WL−2)

]∥∥∥
∞

≤ρL−2w̃L−2

[
(1− α)g

∥∥∥Zj∗(X̃,W 0, . . . ,WL−3)− Zj∗(X̃
′
,W 0, . . . ,WL−3)

∥∥∥
∞

+ α
∥∥Zj∗(X̃,W 0)− Zj∗(X̃

′
,W 0)

∥∥
∞

]
.

Substituting the inequality back can obtain the final results as

|h(z, δ)− h(z, δ′)|

≤Cℓ

[ L∏
t=L−2

ρtw̃t(1− α)2g2
∥∥∥Zj∗(X̃,W 0, . . . ,WL−3)− Zj∗(X̃

′
,W 0, . . . ,WL−3)

∥∥∥
∞

+

L∏
t=L−2

ρtw̃t(1− α)gα
∥∥Zj∗(X̃,W 0)− Zj∗(X̃

′
,W 0)

∥∥
∞ +

L∏
t=L−1

ρtw̃tα
∥∥Zj∗(X̃,W 0)− Zj∗(X̃

′
,W 0)

∥∥
∞

]

≤Cℓ

[ L∏
t=1

ρtw̃t(1− α)L−1gL−1 + α

L−1∑
j=1

(1− α)j−1gj−1
L∏

t=L−j

ρtw̃t

]
∥Zj∗(X̃,W 0)− Zj∗(X̃

′
,W 0)

∥∥
∞

≤Cℓ

[ L∏
t=0

ρtw̃t(1− α)L−1gL−1 + αρ0w̃0

L−1∑
j=1

(1− α)j−1gj−1
L∏

t=L−j

ρtw̃t

]
∥δ − δ′∥∞

≤Cℓρ0w̃0

L∑
j=1

(1− α)j−1gj−1
L∏

t=L−j

ρtw̃t∥δ − δ′∥∞

≤KGCNII∥δ − δ′∥∞,

where the third inequality is due to that

∥Zj∗(X̃,W 0)− Zj∗(X̃
′
,W 0)

∥∥
∞ ≤ ρ0w̃0∥X̃ − X̃ ′∥ ≤ ρ0w̃0∥δ − δ′∥∞,

and w̃t is denoted by
∥ψ(W t)∥σ = ∥(1− β)In + βW t∥σ ≤ 1− β + βwt.
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Notably, we set β = 1 in w̃0 and w̃L. Then we turn to the covering number of F̂ . Let ∆l =

∥Zi∗(X̂c,W 0, . . . ,W l) − Zi∗(X̂c,W 0, . . . ,W l)∥∞. For brevity, let Ap = ∥Zi∗(X̂c,W 0, . . . ,W p)∥∞, and Bq
p =

∥Zi∗(X̂c,W 0, . . . ,W q, . . . ,W p)− Zi∗(X̂c,W 0, . . . ,W
′
q, . . . ,W p)∥∞, where q ≤ p. We make some preparation first

to facilitate the further derivations

Ap =∥Zj∗(X̂c,W 0, . . . ,W p)∥∞

=
∥∥∥σp[((1− α) n∑

j=1

[g(A)]ijZj∗(X̂c,W 0, . . . ,W p−1) + αZj∗(X̂c,W 0)
)
ψ(W p)

]∥∥∥
∞

≤ρpw̃p(1− α)g∥Zj∗(X̂c,W 0, . . . ,W p−1)∥∞ + ρpw̃pα∥Zj∗(X̂c,W 0)∥∞
≤ρpw̃pρp−1w̃p−1(1− α)2g2∥Zj∗(X̂c,W 0, . . . ,W p−2)∥∞ + ρpw̃pρp−1w̃p−1(1− α)g∥Zj∗(X̂c,W 0)∥∞
+ ρpw̃p∥Zj∗(X̂c,W 0)∥∞

≤((1− α)g)p
p∏

t=1

ρtw̃t∥Zj∗(X̂c,W 0)∥+
p−1∑
j=0

((1− α)g)j
p∏

t=p−j

ρtw̃t∥Zj∗(X̂c,W 0)∥∞

≤b̂ρ0w̃0

p∑
j=0

((1− α)g)j
p∏

t=p−j

ρtw̃t,

where the last inequality is according to ∥Zj∗(X̂c,W 0)∥∞ ≤ ρ0w̃0∥X̂c∥ ≤ b̂ρ0w̃0. Then, we repeat the proof procedure,
which starts with

∆1 =∥Zj∗(X̂c,W 0,W 1)− Zj∗(X̂c,W
′
0,W

′
1)∥∞

≤∥Zj∗(X̂c,W 0,W 1)− Zj∗(X̂c,W 0,W
′
1) + Zj∗(X̂c,W 0,W

′
1)− Zj∗(X̂c,W

′
0,W

′
1)∥∞

=B1
1 +B0

1

≤ρ1
[∥∥∥(1− α) n∑

j=1

[g(A)]ijZj∗(X̂c,W 0) + αZj∗(X̂c,W 0)
∥∥∥
∞

∥∥ψ(W 1)− ψ(W ′
1)
∥∥
∞ + w̃1

(∥∥∥((1− α)
n∑

j=1

[g(A)]ijZj∗(X̂c,W 0) + αZj∗(X̂c,W 0)
)
−

(
(1− α)

n∑
j=1

[g(A)]ijZj∗(X̂c,W
′
0) + αZj∗(X̂c,W

′
0)
)∥∥∥

∞

)]
≤ρ1

[(
(1− α)gA0 + αA0

)
∥ψ(W 1)− ψ(W ′

1)∥∞ + w̃1

(
(1− α)g∆0 + αB0

0

)]
≤ρ1

[(
(1− α)gA0 + αA0

)
β∥W 1 −W ′

1∥∞ + w̃1

(
(1− α)g∆0 + αB0

0

)]
.

where the last inequality is due to ∥ψ(W 1)− ψ(W ′
1)∥∞ ≤ ∥β1W 1 − β1W ′

1∥∞. Next, we derive that

∆2 =∥Zj∗(X̂c,W 0,W 1,W 2)− Zj∗(X̂c,W
′
0,W

′
1,W

′
2)∥∞ =

2∑
t=0

Bt
2

≤ρ2
[∥∥∥(1− α) n∑

j=1

[g(A)]ijZj∗(X̂c,W 0,W 1) + αZj∗(X̂c,W 0)
∥∥∥
∞

∥∥ψ(W 2)− ψ(W ′
2)
∥∥
∞

+ w̃2

∥∥∥(1− α) n∑
j=1

[g(A)]ijZj∗(X̂c,W 0,W 1)− (1− α)
n∑

j=1

[g(A)]ijZj∗(X̂c,W 0,W
′
1)
∥∥∥
∞

+ w̃2

∥∥∥(1− α) n∑
j=1

[g(A)]ijZj∗(X̂c,W 0,W
′
1)− (1− α)

n∑
j=1

[g(A)]ijZj∗(X̂c,W
′
0,W

′
1)
∥∥∥
∞

+ α
∥∥Zj∗(X̂c,W 0)− Zj∗(X̂c,W

′
0)
∥∥
∞

]
≤ρ2

[(
(1− α)gA1 + αA0

)
∥ψ(W 2)− ψ(W ′

2)∥∞ + w̃2(1− α)g(∆1 −B0
1) + w̃2

(
(1− α)gB0

1 + αB0
0

)]
≤ρ2

[(
(1− α)gA1 + αA0

)
β∥W 2 −W ′

2∥∞ + w̃2

(
(1− α)g∆1 + αB0

0

)]
.
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For the inductive step, the following inequalities hold with the fact that ∆0 = B0
0

∆l+1 =

l+1∑
t=0

Bt
l+1

≤ρl+1

[(
(1− α)gAl + αA0

)
β∥W l+1 −W ′

l+1∥∞ + w̃l+1

(
(1− α)g∆l + αB0

0

)]
≤ρl+1

(
(1− α)gAl + αA0

)
β∥W l+1 −W ′

l+1∥∞ + ρl+1ρlw̃l+1(1− α)g
(
(1− α)gAl−1 + αA0

)
β∥W l −W ′

l∥∞

+ ρl+1ρlw̃l+1w̃l(1− α)g
(
(1− α)g∆l−1 + αB0

0

)
+ ρl+1w̃l+1αB

0
0

≤ρl+1w̃l+1

(
(1− α)gAl + αA0

)
β
∥W l+1 −W ′

l+1∥∞
w̃l+1

+ ρl+1ρlw̃l+1w̃l(1− α)g
[
(1− αl−1)gAl−1 + αA0

)
β
∥W l −W ′

l∥∞
w̃l

+ ρl+1ρlw̃l+1w̃l(1− α)2g2∆l−1 +
(
ρl+1ρlw̃l+1w̃l(1− α)g + ρl+1w̃l+1

)
αB0

0

≤
l+1∑
j=1

((1− α)g)l+1−j
(
(1− α)gAj−1 + αA0

) l+1∏
t=j

ρtw̃tβ
∥W j −W ′

j∥∞
w̃j

+ ((1− α)g)l+1
l+1∏
t=1

ρtw̃t∆0

+

l+1∑
j=1

((1− α)g)l+1−j
l+1∏
t=j

ρtw̃tαB
0
0

≤
l+1∑
j=0

((1− α)g)l+1−j
(
(1− α)gAj−1 + αA0

) l+1∏
t=j

ρtw̃tβ
∥W j −W ′

j∥∞
w̃j

+

l+1∑
j=1

((1− α)g)l+1−j
l+1∏
t=j

ρtw̃tαB
0
0

≤2b̂
l+1∑
j=0

((1− α)g)l+1−j
(
(1− α)gAj−1 + αA0

) l+1∏
t=j

ρtw̃tβ
∥W j −W ′

j∥∞
w̃j

.

Finally, we can obtain

∥fi(A, X̂c,W )− fi(A, X̂c,W )′∥∞
=∥σL(Zi∗(X̂c,W 0, . . . ,WL−1)WL)− σL(Zi∗(X̂c,W

′
0, . . . ,W

′
L−1)W

′
L)∥∞

≤ρL(w̃L∆L−1 +AL−1∥WL −W ′
L∥∞)

≤ρLw̃L

(
2b̂

L−1∑
j=0

((1− α)g)L−j
(
(1− α)gAj−1 + αA0

) L−1∏
t=j

β∥W j −W ′
j∥∞

w̃j

)
+AL−1ρLw̃L

∥WL −W ′
L∥∞

w̃L

≤2b̂
L∑

j=0

((1− α)g)L−j
(
(1− α)gAj−1 + αA0

) L∏
t=j

ρtw̃t

β∥W j −W ′
j∥∞

w̃j
,

Similarly, by defining that

Tj =

L∑
j=0

((1− α)g)L−j
(
(1− α)gAj−1 + αA0

)
,

we have the relation between ϵ and ϵj as

ϵ ≤ 2b̂β

L∑
j=0

gL−j
(
(1− α)gAj−1 + αA0

) L∏
t=j

ρtw̃t
ϵj
w̃j

= 2b̂β

L∑
j=1

Tj

L∏
t=j

ρtw̃t
ϵj
w̃j
. (10)
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Then, the following inequalities hold∫ q
√

m+u
Cℓ

µ
2Cℓ

√
log

(3θKGCNII

ϵ

)dN (F̂ , ϵ, ∥ · ∥∞, S)dϵ

≤
√
d

∫ q
√

m+u
Cℓ

µ
2Cℓ

√(
log

3θKGCNII

ϵ

)
dϵ+

L∑
i=1

∫ q
√

m+u
Cℓ

µ
2Cℓ

√
v2 log

3si
ϵi
dϵ

≤3
√
dθKGCNII +

L∑
i=1

∫ q
√

m+u
Cℓ

µ
2Cℓ

√
v2 log

3si
ϵi
dϵ

≤3
√
dθKGCNII +

L∑
i=1

v

∫ q
√

m+u
Cℓ

µ
2Cℓ

√
log

3si
ϵi
dϵi

b̂β
∑L

j=1 Tj
∏L

t=j ρtw̃t

w̃j

≤3
√
dθKGCNII +

L∑
i=1

vb̂β
∑L

j=1 Tj
∏L

t=j ρtw̃t

w̃j

∫ q
√

m+u
Cℓ

µ
2Cℓ

√
log

3si
ϵi
dϵi

≤3
(√

dθKGCNII + vb̂β

L∑
j=1

Tj

L∏
t=j

ρtw̃t

∫ 1/3

0

√
log

1

ϵi
dϵi

)

≤3(
√
dθKGCNII + vb̂β

L∑
j=1

Tj

L∏
t=j

ρtw̃t).

where the third inequality is due to Equation (10). Finally, the generalization gap holds with µ = 1
n

R̃u(f) ≤R̃m(f) +
4µ√
m+ u

+
72Cℓ√
m+ u

(√
dθKGCNII + vb̂β

L∑
j=1

Tj

L∏
t=j

ρtw̃t

)
+ qc0Q1

√
min(m,u) + 2q

√
Q1Q2

2
ln

1

δ

≤R̃m(f) +
4

m+ u
+

72Cℓ√
m+ u

(√
dθKGCNII + vb̂β

L∑
j=1

Tj

L∏
t=j

ρtw̃t

)
+ qc0Q1

√
min(m,u) + 2q

√
Q1Q2

2
ln

1

δ
.

Now we complete the proofs of Proposition 4.18.

C. Additional Lemmas
Lemma C.1. (Xiao et al., 2022) Let g(w, z) be the loss function and h(w, z) = max∥z−z′∥≤β g(w, z

′) be the adversarial
loss. Assume that w → g(w, z) is ∥ · ∥-Lipschitz with constant L, we have

∥h(w, z)− h(w′, z)∥ ≤ L∥w −w′∥.

Lemma C.2. (Mohri et al., 2018) Let ∥ · ∥ be an arbitrary norm and B be a ball of radius η in Rd. Let C be a smallest
possible ξ-cover of B. Then,

|C| ≤
(3η
ξ

)d

.

Lemma C.3. (El-Yaniv & Pechyony, 2009) Let G be a set of real-valued vectors in [−q, q]m+u. Let Q1 = 1
u + 1

m ,

Q2 = m+u
(m+u−1/2)(10−1/2(max(m,u))) and c0 =

√
32log(4e)

3 < 5.05. Then with probability of at least 1 − δ, for all g ∈ G,
we have

Ru(g) ≤ Rm(g) +Rm+u(G,
mu

(m+ u)2
) + qc0Q1

√
min(m,u) + 2q

√
Q1Q2

2
ln

1

δ
.

Lemma C.4. (Bartlett et al., 2017) Let G be a real-valued function class taking values in [−q, q], where q > 0 is a constant,
and assume that 0 ∈ G. Then the transductive Rademacher complexity of G can be bounded as

Rm+u(G) ≤ inf
µ>0

( 4µ√
n
+

12

n

∫ 2q
√
n

µ

√
logN (G, ϵ, ∥ · ∥∞, S)dϵ

)
.
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Table 4. Summary of adversarial generalization analysis (m-number of training samples; u-number of test samples; NNs-Neural Networks;
⋆-expectation bound; ♯-optimization bound).

Reference Model Learning mode Analysis tool Convergence rate

Xing et al. (2021) Multi-layer NNs Inductive Uniform argument stability ⋆O(1/m)
Xiao et al. (2022) Multi-layer NNs Inductive Uniform stability ⋆O(1/m)
Yin et al. (2020) One-layer NN Inductive Rademacher complexity O(1/

√
m)

Awasthi et al. (2020) Multi-layer NNs Inductive Rademacher complexity O(1/
√
m)

Tu,Zhang, and Tao (2019) Multi-layer NNs Inductive Covering number O(1/
√
m)

Mustafa, Lei, and Kloft (2022) Multi-layer NNs Inductive Covering number ♯O
(
1/m

)
Ours Multi-layer GNNs Transductive Covering number O

(
max{ 1√

m
, 1√

u
}
)

D. Additional Related Work.
Adversarial generalization analysis. As a powerful tool to explain generalization in adversarial training, classical learning-
theoretic measures can provide encouraging inspiration in adversarial generalization analysis for GNNs. Xing et al. (2021)
and Xiao et al. (2022) utilize algorithm stability to derive adversarial stability bounds for NN models, which are based
on certain algorithms such as SGD ( stochastic gradient descent). Awasthi et al. (2020) and Yin et al. (2020) provide an
adversarial generalization bound via the lens of Rademacher complexity with a restricted NN model structure. By using
covering number, Tu, Zhang and Tao (2019) transform the adversarial expected risk over a distribution to the standard
expected risk over a new distribution; Mustafa, Lei and Kloft (2022) approximate the complexity of the adversarial loss
class by a finite discrete space. Table 4 summarizes the related works in adversarial learning using various techniques.

E. Limitations
Though this paper does not involve topology attacks, given the similar adversarial generation settings for topology attacks
and node attacks, our analytical framework could be expanded upon the topology attacks.

To be more specific, let the adversarial graph be generated from {Ã : ∥Ã∥ ≤ γ}, where Ã = A − A′ denotes the
perturbation matrix added to the original adjacency matrix. The adversarial loss w.r.t. adversarial graph is defined by
max∥Ã∥≤γ ℓ(fi(Ã,X,W), yi). Analyzing analogously to the node attacks, we could measure the complexity of the
adversarial loss function class by utilizing the covering number techniques, which is the main methodology developed in this
paper (Lemma 4.6). This requires an additional assumption that the adversarial loss is LA-Lipschitz continuous regarding
the adjacency matrix A, where the constant LA can be derived if given specific GNN models. Finally we can solve the
measurement difficulty caused by the graph topology perturbations and apply it to our main results (Theorem 4.8). The
remaining analysis will be left to future work.

F. Additional Experiments.
This section provides the detailed experimental configuration and results for adversarial training on GNNs. Unless otherwise
indicated, we adopt a two-layer GNN with the ELU activation in each layer and log-softmax activation for output, where the
number of hidden units is fixed to 64. γ and K in APPNP are set as 0.5 and 10, respectively. α in GCNII is set as 0.1 and
β = log(ξ/L+ 1), where L is the number of layers and ξ is fixed to 1. Notably, the learning rate of CoraFull is set as 0.2
with a weight decay of 1e-4. The implement is GeForce RTX 3080 GPU.

Next, we provide the numerical discussion for the experimental results of the remained datasets from the main text, other
influencing factors assessment (comparison of different GNNs and different feature dimensions), and other classical attack
methods (FGSM (Goodfellow et al., 2015) and BIM (Kurakin et al., 2017)).

Graph filter. Based on the default settings, when the unnormalized filter g(A) = A+ I is adopted, the learning rate η is
set by 0.01, where η = 0.001 for CS and T = 400 for CoraFull, and the aggregation hop K of APPNP is set as 1. Figure
7-8 show the experimental results of the remaining datasets from the main text, Figure 9-11 present the results of adversarial
training attacked by BIM, which exhibit a similar trend with PGD.

Model architecture. For a clearer comparison, we adopt the unnormalized filter, and the experimental setup is similar to the
experiments of the graph filter. Figure 12 shows the results of hyper-parameter γ in APPNP and α in GCNII of the remained
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(c) Experiments of adversarial training on DBLP

Figure 7. The generalization gap for different graph filters g(A) with increased perturbations θ (attacked by PGD).

datasets from the main text. Moreover, Figure 13-14 show the results of adversarial training attacked by FGSM, which
exhibit a similar trend with PGD.

Model selection. We compare the adversarial generalization gaps of three different GNN models. Figure 3 reveals that
GCN has the largest generalization gap in its deep version, as GCNII and APPNP can improve their performance by their
well-crafted architectures, especially by their optimizable parameters. Figure 16 and 17 present the results of adversarial
training attacked by BIM and FGSM, respectively, indicating that our analysis has a wide range of applications to attack
methods.

Number of layers. Based on the default settings, when the number of layers L is bigger than 5, the iteration T is set as 400
for CoraFull. Figure 18-19 display the experimental results of the remaining datasets from the main text, Figure 20-22 show
the results of adversarial training attacked by BIM.

Regularization parameter. Figure 23-24 present the experimental results of the remaining datasets from the main text,
Figure 25-27 show the results of adversarial training attacked by FGSM, which exhibit a similar trend with PGD.

Feature dimension. Based on the default settings, the number of hidden units is set as 128. Figure 28-29 present the
experimental results of the remaining datasets from the main text, Figure 30-32 show the results of adversarial training
attacked by BIM.
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(b) Experiments of adversarial training on CoraFull

Figure 8. The generalization gap for different graph filters g(A) with increased perturbations θ (attacked by PGD).
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Figure 9. The generalization gap for different graph filters g(A) with increased perturbations θ (attacked by BIM).
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(b) Experiments of adversarial training on DBLP

Figure 10. The generalization gap for different graph filters g(A) with increased perturbations θ (attacked by BIM).
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(b) Experiments of adversarial training on CoraFull

Figure 11. The generalization gap for different graph filters g(A) with increased perturbations θ (attacked by BIM).
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(b) Experiments of adversarial training for GCNII

Figure 12. The generalization gap for different hyper-parameter γ in APPNP and α in GCNII with increased perturbations θ (attacked by
PGD).
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Figure 13. The generalization gap for different hyper-parameter γ in APPNP with increased perturbations θ (attacked by FGSM).
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Figure 14. The generalization gap for different hyper-parameter α in GCNII with increased perturbations θ (attacked by FGSM).
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Figure 15. The generalization gap for different GNN models with increased perturbations θ (attacked by PGD).
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Figure 16. The generalization gap for different GNN models with increased perturbations θ (attacked by BIM).
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Figure 17. The generalization gap for different GNN models with increased perturbations θ (attacked by FGSM).

2 3 4 5 6 7

0 . 4 0

0 . 4 2

0 . 4 4

0 . 4 6
G C N

Ge
ner

ali
zat

ion
 G

ap

L

  q  =  0
  q  =  0 . 0 4
  q  =  0 . 0 8

2 3 4 5 6 7

0 . 3 9

0 . 4 2

0 . 4 5
A P P N P

Ge
ner

ali
zat

ion
 G

ap

L

  q  =  0
  q  =  0 . 0 4
  q  =  0 . 0 8

2 3 4 5 6 7

0 . 4 0

0 . 4 4

G C N I I

Ge
ner

ali
zat

ion
 G

ap

L

  q  =  0
  q  =  0 . 0 4
  q  =  0 . 0 8

(a) Experiments of adversarial training on Citeseer

2 3 4 5 6 7
0 . 2 2

0 . 2 4

0 . 2 6

0 . 2 8
  q  =  0
  q  =  0 . 0 4
  q  =  0 . 0 8

G C N

Ge
ner

ali
zat

ion
 G

ap

L

  q  =  0
  q  =  0 . 0 4
  q  =  0 . 0 8

2 3 4 5 6 7

0 . 2 4

0 . 2 6

0 . 2 8
  q  =  0
  q  =  0 . 0 4
  q  =  0 . 0 8

A P P N P

Ge
ner

ali
zat

ion
 G

ap

L

  q  =  0
  q  =  0 . 0 4
  q  =  0 . 0 8

2 3 4 5 6 7

0 . 2 4

0 . 2 6

0 . 2 8
  q  =  0
  q  =  0 . 0 4
  q  =  0 . 0 8

G C N I I

Ge
ner

ali
zat

ion
 G

ap

L

  q  =  0
  q  =  0 . 0 4
  q  =  0 . 0 8

(b) Experiments of adversarial training on Pubmed

2 3 4 5 6 7

0 . 3 0

0 . 3 3

0 . 3 6
G C N

Ge
ner

ali
zat

ion
 G

ap

L

  q  =  0
  q  =  0 . 0 4
  q  =  0 . 0 8

2 3 4 5 6 7

0 . 3 2

0 . 3 3

0 . 3 4

0 . 3 5

A P P N P

Ge
ner

ali
zat

ion
 G

ap

L

  q  =  0
  q  =  0 . 0 4
  q  =  0 . 0 8

2 3 4 5 6 7

0 . 3 4

0 . 3 6

0 . 3 8

G C N I I

Ge
ner

ali
zat

ion
 G

ap

L

  q  =  0
  q  =  0 . 0 4
  q  =  0 . 0 8
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Figure 18. The generalization gap for different adversarial perturbations θ (attacked by PGD) with increased number of layers L.
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(b) Experiments of adversarial training on CoraFull

Figure 19. The generalization gap for different adversarial perturbations θ (attacked by PGD) with increased number of layers L.
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Figure 20. The generalization gap for different adversarial perturbations θ (attacked by BIM) with increased number of layers L.
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(b) Experiments of adversarial training on DBLP

Figure 21. The generalization gap for different adversarial perturbations θ (attacked by BIM) with increased number of layers L.
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Figure 22. The generalization gap for different adversarial perturbations θ (attacked by BIM) with increased number of layers L.
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Figure 23. The generalization gap for different regularization parameter λ with increased perturbations θ (attacked by PGD).
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(b) Experiments of adversarial training on CoraFull

Figure 24. The generalization gap for different regularization parameter λ with increased perturbations θ (attacked by PGD).

34



Adversarial Robust Generalization of Graph Neural Networks

0 . 0 0 0 0 . 0 0 8 0 . 0 1 6 0 . 0 2 4
0 . 4 2

0 . 4 5

0 . 4 8

0 . 5 1
G C N

Ge
ner

ali
zat

ion
 G

ap

q

  l  =  0
  l  =  0 . 1
  l  =  0 . 2

0 . 0 0 0 0 . 0 0 8 0 . 0 1 6 0 . 0 2 4

0 . 3 9

0 . 4 2

0 . 4 5
A P P N P

Ge
ner

ali
zat

ion
 G

ap

q

  l  =  0
  l  =  0 . 1
  l  =  0 . 2

0 . 0 0 0 0 . 0 0 8 0 . 0 1 6 0 . 0 2 4

0 . 4 6

0 . 4 8

G C N I I

Ge
ner

ali
zat

ion
 G

ap

q

  l  =  0
  l  =  0 . 1
  l  =  0 . 2

(a) Experiments of adversarial training on Citeseer

0 . 0 0 0 0 . 0 0 8 0 . 0 1 6 0 . 0 2 4

0 . 2 5

0 . 2 6

0 . 2 7

G C N

Ge
ner

ali
zat

ion
 G

ap

q

  l  =  0
  l  =  0 . 1
  l  =  0 . 2

0 . 0 0 0 0 . 0 0 8 0 . 0 1 6 0 . 0 2 4

0 . 2 3

0 . 2 4

A P P N P

Ge
ner

ali
zat

ion
 G

ap

q

  l  =  0
  l  =  0 . 1
  l  =  0 . 2

0 . 0 0 0 0 . 0 0 8 0 . 0 1 6 0 . 0 2 4

0 . 2 6

0 . 2 8

G C N I I

Ge
ner

ali
zat

ion
 G

ap

q

  l  =  0
  l  =  0 . 1
  l  =  0 . 2

(b) Experiments of adversarial training on Cora

Figure 25. The generalization gap for different regularization parameter λ with increased perturbations θ (attacked by FGSM).
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Figure 26. The generalization gap for different regularization parameter λ with increased perturbations θ (attacked by FGSM).
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(b) Experiments of adversarial training on CoraFull

Figure 27. The generalization gap for different regularization parameter λ with increased perturbations θ (attacked by FGSM).
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(a) Experiments of adversarial training on Citeseer
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(b) Experiments of adversarial training on Pubmed
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(c) Experiments of adversarial training on DBLP

Figure 28. The generalization gap for different input feature dimension d with increased perturbations θ (attacked by PGD).
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(b) Experiments of adversarial training on CoraFull

Figure 29. The generalization gap for different input feature dimension d with increased perturbations θ (attacked by PGD).
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(b) Experiments of adversarial training on Cora

Figure 30. The generalization gap for different input feature dimension d with increased perturbations θ (attacked by BIM).
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(b) Experiments of adversarial training on DBLP

Figure 31. The generalization gap for different input feature dimension d with increased perturbations θ (attacked by BIM).
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(b) Experiments of adversarial training on CoraFull

Figure 32. The generalization gap for different input feature dimension d with increased perturbations θ (attacked by BIM).
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