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ABSTRACT

We initiate the study of Preference-Based Multi-Agent Reinforcement Learning
(PbMARL), exploring both theoretical foundations and empirical validations. We
define the task as identifying the Nash equilibrium from a preference-only of-
fline dataset in general-sum games, a problem marked by the challenge of sparse
feedback signals. Our theory establishes the upper complexity bounds for Nash
Equilibrium in effective PbMARL, demonstrating that single-policy coverage is
inadequate and highlighting the importance of unilateral dataset coverage. These
theoretical insights are verified through comprehensive experiments. To enhance
the practical performance, we further introduce two algorithmic techniques. (1)
We propose a Mean Squared Error (MSE) regularization along the time axis to
achieve a more uniform reward distribution and improve reward learning outcomes.
(2) We propose an additional penalty based on the distribution of the data set to
incorporate pessimism, improving stability and effectiveness during training. Our
findings underscore the multifaceted approach required for PbMARL, paving the
way for effective preference-based multi-agent systems.

1 INTRODUCTION

Large language models (LLMs) have achieved significant progress in natural language interaction,
knowledge acquisition, instruction following, planning and reasoning, which has been recognized as
the sparks for AGI (Bubeck et al., 2023). The evolution of LLMs fosters the field of agent systems,
wherein LLMs act as the central intelligence (Xi et al., 2023). In these systems, multiple LLMs
can interact with each other as well as with external tools. For instance, MetaGPT assigns LLM
agents various roles, akin to those in a technology company, enabling them to cooperate on complex
software engineering tasks (Hong et al., 2023).

Despite some empirical successes in agent systems utilizing closed-source LLMs, finetuning these
systems and aligning them with human preferences remains a challenge. Reinforcement learning from
human feedback (RLHF) has played an important role in aligning LLMs with human preferences
(Christiano et al., 2017; Ziegler et al., 2019). However, unexpected behavior can arise when multiple
LLMs interact with each other. In addition, reward design has been a hard problem in multi-agent
reinforcement learning (Devlin et al., 2011). Thus, it is crucial to further align the multi-agent system
from preference feedback.

We address this problem through both theoretical analysis and empirical experiments. Theoretically,
we characterize the dataset coverage condition for PbMARL that enables learning the Nash equilib-
rium, which serves as a favorable policy for each player. Empirically, we validate our theoretical
insights through comprehensive experiments utilizing the proposed algorithmic techniques.

1.1 CONTRIBUTIONS AND TECHNICAL NOVELTIES

1. Necessary and Sufficient Dataset Coverage Condition for PbMARL. In single-agent RLHF,
(Zhu et al., 2023) demonstrated that single policy coverage is sufficient for learning the optimal policy.
However, we prove that this condition no longer holds for PbMARL by providing a counterexample.
Instead, we introduce an algorithm that operates under unilateral coverage, a condition derived from

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Figure 1: The overall pipeline of offline PbMARL. D is the preference dataset where ⌧i, ⌧ 0i are
trajectories and yi 2 {1,�1}m indicates which trajectory is preferred by each agent. r� is the
learned reward. ⇡b is the learned reference policy using imitation learning.

offline MARL (Cui and Du, 2022a; Zhong et al., 2022). Specifically, this condition requires the
dataset to cover all unilateral deviations from a Nash equilibrium policy. For further details, see
Section 4.

2. Algorithmic Techniques for Practical Performance. As a foundational exploration into
PbMARL research, we focus on employing the simplest learning framework, incorporating only
the essential techniques necessary to ensure the approach’s feasibility. The framework consists of
three key components: 1) leveraging the preference dataset to learn a reward function, 2) mitigating
extrapolation errors with pessimism, and 3) determining the final policy. Figure 1 provides an
overview of the process.

However, additional algorithmic techniques are required to identify a robust policy, even when the
dataset demonstrates good coverage according to our theoretical insights.

• Reward regularization. We observed that the reward learned through standard Maximum
Likelihood Estimation (MLE) is sparse and spiky, making it difficult for standard RL
algorithms to utilize effectively (cf. Figure 2 (b2)). To address this, we introduce an
additional Mean Squared Error (MSE) loss between the predictions of adjacent time steps as
a form of regularization. This regularization helps to prevent the model from accumulating
reward signals solely at the final time step or relying on reward-irrelevant observation
patterns, which could otherwise result in the complete failure in producing meaningful
predictions.

• Dataset Distribution-Based Pessimism. To mitigate the extrapolation error in offline RL,
we add an extra reward term based on the density of a certain state-action pair in the dataset
to implement pessimism. In our approach, an imitation learning agent is trained to model the
density function. The final policy is then trained using a DQN-based Value Decomposition
Network (VDN) (Mnih et al., 2013; Sunehag et al., 2017). Our ablation study demonstrates
the critical role of appropriately tuning the reward coefficient to ensure training stability and
performance (see Table 4).

3. Experiment Results. Our experiments, following the pipeline described above, confirm the
theoretical necessity of unilateral coverage. We conducted comprehensive ablation studies on three
cooperative Multi-Agent Particle Environment (MPE) scenarios (Mordatch and Abbeel, 2017):
Spread-v3, Tag-v3, and Reference-v3. These studies focused on the hyperparameter selection for
the reward regularization coefficient ↵, pessimism coefficient �, and dataset diversity. The empirical
results (Table 2) demonstrate that: 1) simply adding trivial trajectories to expert demonstrations can
enhance performance, 2) unilateral datasets are advantageous, and 3) dataset diversity contributes to
lower variance.
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Our ablation experiments underscore the effectiveness of the proposed algorithmic techniques.
Additionally, we introduced a principled standardization technique that can efficiently tune hyperpa-
rameters across all environments and datasets.

2 RELATED WORKS

Reinforcement Learning from Human Feedback (RLHF). RLHF, or preference-based RL
(PbRL), plays a pivotal role in alignment with various tasks such as video games (Warnell et al., 2018;
Brown et al., 2019), robotics (Jain et al., 2013; Kupcsik et al., 2016; Christiano et al., 2023; Shin
et al., 2023), image augmentation (Metcalf et al., 2024), and large language models (Ziegler et al.,
2020; Wu et al., 2021; Nakano et al., 2022; Menick et al., 2022; Stiennon et al., 2022; Bai et al., 2022;
Glaese et al., 2022; Ganguli et al., 2022; Ouyang et al., 2022). Additionally, a body of work focuses
on the reward models behind preference data (Sadigh et al., 2017; Bıyık and Sadigh, 2018; Gao et al.,
2022; Hejna and Sadigh, 2023). Recent works like VIPO (Cen et al., 2024) incorporates uncertainty-
aware regularization into the reward model, while (Liu et al., 2024) address over-optimization using
adversarial regularization. Direct preference optimization (DPO, Rafailov et al. (2023)) and its
variants (Azar et al., 2023; Rafailov et al., 2024) approach RLHF without directly handling the reward
model. Theoretical studies have also explored guarantees, such as sample complexity and regret, and
the limitations of certain RLHF algorithms (Novoseller et al., 2020; Xu et al., 2020; Pacchiano et al.,
2023; Chen et al., 2022; Razin et al., 2023; Zhu et al., 2024a; Wang et al., 2023c; Xiong et al., 2024;
Zhu et al., 2024b).

Offline Reinforcement Learning. Offline RL (Lange et al., 2012; Levine et al., 2020) has achieved
success in a wide range of real-world applications, including robotics (Pinto and Gupta, 2015; Levine
et al., 2016; Chebotar et al., 2021; Kumar et al., 2023), healthcare (Raghu et al., 2017; Wang et al.,
2018), and autonomous driving (Shi et al., 2021; Lee et al., 2024). Key algorithms such as Behavior
Cloning, BRAC (Wu et al., 2019), BEAR (Kumar et al., 2019), and CQL (Kumar et al., 2020; Lyu
et al., 2024) have driven these successes. Theoretical research on offline RL has primarily focused
on sample complexity under various dataset coverage assumptions Le et al. (2019); Chen and Jiang
(2019); Yin et al. (2020); Rashidinejad et al. (2023); Yin et al. (2021; 2022); Shi et al. (2022);
Nguyen-Tang et al. (2022); Xie et al. (2022); Xiong et al. (2023b); Li et al. (2024); Xie et al. (2023);
Mete et al. (2021).

Multi-Agent Reinforcement Learning (MARL). Many real-world scenarios are naturally modeled
as multi-agent environments, whether cooperative or competitive. As a result, MARL has gained
popularity in video games (Tian et al., 2017; Vinyals et al., 2017; Silver et al., 2017; Vinyals et al.,
2019), network design (Shamsoshoara et al., 2018; Kaur and Kumar, 2020), energy sharing (Prasad
and Dusparic, 2018), and autonomous driving (Palanisamy, 2019; Yu et al., 2020; Zhou et al., 2022).
Prominent algorithms in MARL include IQL (Tan, 2003), MADDPG (Lowe et al., 2020), COMA
(Foerster et al., 2017), MAPPO (Yu et al., 2022), VDN (Sunehag et al., 2017), and QMIX (Rashid
et al., 2018). Theoretical research has made great process in reducing the sample complexity(Wang
et al., 2023b; Xiong et al., 2023a).

Offline MARL. Offline MARL is a practical solution for handling sophisticated multi-agent
environments. Empirically, to address issues related to out-of-distribution actions and complex
reward functions, previous works have developed algorithms such as MABCQ (Jiang and Lu, 2023),
ICQ-MA (Yang et al., 2021), OMAR (Pan et al., 2022), and OMIGA (Wang et al., 2023a), which
incorporate regularization or constraints on these actions and functions. MOMA-PPO (Barde et al.,
2024) is a model-based approach to offline MARL that generates synthetic interaction data from
offline datasets. Tseng et al. (2022) combines knowledge distillation with multi-agent decision
transformers (Meng et al., 2022) for offline MARL. Theoretical understanding of offline MARL,
particularly in the context of Markov games, has been advanced by works that provide sample
complexity guarantees for learning equilibria Sidford et al. (2019); Cui and Yang (2020); Zhang et al.
(2023a; 2020); Abe and Kaneko (2020); Cui and Du (2022a;b); Zhang et al. (2023b); Blanchet et al.
(2023); Shi et al. (2023); Zhong et al. (2022).
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3 PRELIMINARIES

General-sum Markov Games. We consider an episodic time-inhomogeneous general-sum Markov
game M, consisting of m players, a shared state space S, an individual action space Ai for each
player i 2 [m] and a joint action space A = A1 ⇥A2 ⇥ · · · Am. The game has a time horizon H ,
an initial state s1, state transition probabilities P = (P1,P2, · · · ,PH) with Ph : SA ! �(S), and
rewards R = Rh(· | sh, ah)Hh=1 where Rh,i 2 [0, 1] represents the random reward for player i at
step h. At each step h 2 [H], all players observe current state sh and simultaneously choose their
actions ah = (ah,1, ah,2, · · · , ah,m). The next state sh+1 is then sampled from Ph(· | sh,ah), and
the reward rh,i for player i is sampled from Rh,i(· | sh,ah). The game terminates at step H + 1,
with each player aiming to maximize the total collected rewards.

We use ⇡ = (⇡1,⇡2, · · · ,⇡m) to denote a joint policy, where the individual policy for player i is
represented as ⇡i = (⇡1,i,⇡2,i, · · · ,⇡H,i), with each ⇡h,i : S ! �(Ai) defined as the Markov
policy for player i at step h. The state value function and state-action value function for each player
i 2 [m] are defined as

V ⇡

h,i
(sh) := E⇡

"
HX

t=h

rt,i(st,at) | sh

#
, Q⇡

h,i
(sh) := E⇡

"
HX

t=h

rt,i(st,at) | sh,ah

#
,

where E⇡ = Es1,a1,r1,··· ,sH+1⇠⇡,M denotes the expectation over the random trajectory generated by
policy ⇡. The best response value for player i is defined as

V †,⇡�i

h,i
(sh) := max

⇡i

V ⇡i,⇡�i

h,i
(sh),

which represents the maximal expected total return for player i given that the other players follow
policy ⇡�i.

A Nash equilibrium is a policy configuration where no player has an incentive to change their policy
unilaterally. Formally, we measure how closely a policy approximates a Nash equilibrium using the
Nash-Gap:

Nash-Gap(⇡) :=
X

i2[m]

h
V †,⇡�i

1,i (s1)� V ⇡

1,i(s1)
i
.

By definition, the Nash-Gap is always non-negative, and it quantifies the potential benefit each player
could gain by unilaterally deviating from the current policy. A policy ⇡ is considered an ✏-Nash
equilibrium iff Nash-Gap(⇡)  ✏.

Offline Multi-agent Reinforcement Learning with Preference Feedback. In offline MARL with
Preference Feedback, the algorithm has access to a pre-collected preference dataset generated by an
unknown behavior policy interacting with an underlying Markov game. We consider two sampled
trajectories, ⌧ = (s1,a1, s2,a2, · · · , sH+1) and ⌧ 0 = (s01,a

0
1, s

0
2,a

0
2, · · · , s0H+1), drawn from distri-

bution P(s1,a1, s2, · · · , sH+1) = ⇧h⇡b(ah | sh)P(sh+1 | sh,ah) induced by the behavior policy
⇡b. In MARLHF, the reward signal is not revealed in the dataset. Instead, each player can observe a
binary signal yi from a Bernoulli distribution following the Bradley-Terry-Luce model (Bradley and
Terry, 1952):

P(yi = 1 | ⌧, ⌧ 0) =
exp(

P
H

h=1 ri(sh,ah))

exp(
P

H

h=1 ri(sh,ah)) + exp(
P

H

h=1 ri(s
0
h
,a0

h
))
, 8i 2 [m].

We make the standard linear Markov game assumption (Zhong et al., 2022):
Assumption 1. M is a linear Markov game with a feature map  : S ⇥A ! Rd if we have

Ph(sh+1 | sh,ah) = h (sh,ah), µh(sh+1)i , 8(sh,ah, sh+1, h) 2 S ⇥A⇥ S ⇥ [H],

ri(sh,ah) = h (sh), ✓h,ii , 8(sh,ah, h, i) 2 S ⇥A⇥ [H]⇥ [m],

where µh and ✓h,i are unknown parameters. Without loss of generality, we assume k (s,a)k  1 for
all (s,a) 2 S ⇥A and kµh(s)k 

p
d, k✓k

h


p
d for all h 2 [H].
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The one-hot feature map is defined as  
h
(s,a) := [0, · · · , 0, (s,a), 0, · · · , 0] 2 RHd, where

 (s,a) is at position (h� 1)d+ 1 to hd.

Value-Decomposition Network (VDN). In our experiments, we utilize VDN as an offline MARL
algorithm for its effectiveness and simplicity. VDN (Sunehag et al., 2017) is a Q-learning style
MARL architecture for cooperative games. It takes the idea of decomposing the team value function
into agent-wise value functions, expressed as: Qh(s,a) =

P
n

i=1 Qh,i(s, ai). In our experiments,
we applied Deep Q-Network (DQN) (Mnih et al., 2013) with VDN to learn the team Q function.
We chose DQN to maintain the simplicity and controllability of the experimental pipeline, which
facilitates a more accurate investigation of the impact of various techniques on the learning process.

4 DATASET COVERAGE THEORY FOR MARLHF

In this section, we study the dataset coverage assumptions for offline MARLHF. For offline single-
agent RLHF, Zhu et al. (2023); Zhan et al. (2023) show that single policy coverage is sufficient for
learning the optimal policy. However, we prove that this assumption is insufficient in the multi-agent
setting by constructing an counterexample. In addition, we prove that unilateral policy coverage is
adequate for learning the Nash equilibrium.

4.1 POLICY COVERAGES

We quantify the information contained in the dataset using covariance matrices, as the rewards and
transition kernels are parameterized by a linear model. With a slight abuse of the notation, for
trajectory ⌧ = (s1,a1, s2,a2, · · · , sH+1), we use  (⌧) := [ (s1,a1), (s2,a2), · · · , (sH ,aH)]
to denote the concatenated trajectory feature. The reward coverage is measured by the preference
covariance matrix:

⌃r

D = �I +
X

(⌧,⌧ 0)2D

( (⌧)�  (⌧ 0))( (⌧)�  (⌧ 0))>,

where  (⌧) �  (⌧ 0) is derived from the preference model. Similarly, the transition coverage is
measured by the covariance matrix:

⌃P
D,h

= �I +
X

(⌧,⌧ 0)2D

⇥
 (sh,ah) (sh,ah)

> +  (s0
h
,a0

h
) (s0

h
,a0

h
)>

⇤
.

For a given state and action pair (sh,ah), the term
�� 

h
(sh,ah)

��
[⌃r

D]�1 measures the uncertainty in
reward estimation and k (sh,ah)k[⌃P

D,h
]�1 measures the uncertainty in transition estimation. As a

result, the overall uncertainty of a given policy ⇡ with dataset D is measured by

UD(⇡) := E⇡

"
HX

h=1

�� 
h
(sh, ah)

��
[⌃r

D]�1 +
HX

h=1

k (sh, ah)k[⌃P
D,h

]�1

#
.

Definition 1. For a Nash equilibrium ⇡⇤, different policy coverages are measured by the following
quantities:

• Single policy coverage: UD(⇡⇤).

• Unilateral policy coverage: maxi,⇡i
UD(⇡i,⇡⇤

�i
).

• Uniform policy coverage: max⇡ UD(⇡).

Intuitively, small UD(⇡⇤) indicates that the dataset contains adequate information about ⇡⇤. A small
maxi,⇡i

UD(⇡i,⇡⇤
�i
) implies that the dataset covers all of the unilateral deviations of ⇡⇤, and small

max⇡ UD(⇡⇤) suggests that the dataset covers all possible policies.

4.2 SINGLE POLICY COVERAGE IS INSUFFICIENT

Our objective is to learn a Nash equilibrium policy from the dataset, which necessitates that the
dataset sufficiently covers the Nash equilibrium. In the single-agent scenario, if the dataset covers the

5
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optimal policy, pessimism-based algorithms can be employed to recover the optimal policy. However,
previous work (Cui and Du, 2022a; Zhong et al., 2022) has demonstrated that single policy coverage
is insufficient for offline MARL. We extend this result to the context of offline MARL with preference
feedback, as follows:

Theorem 1. (Informal) If the dataset only has coverage on the Nash equilibrium policy (i.e. small
UD(⇡⇤)), it is not sufficient for learning an approximate Nash equilibrium policy.

The proof is derived by a reduction from standard offline MARL to MARLHF. Suppose that MARLHF
with single policy coverage suffices, we could construct an algorithm for standard offline MARL,
which leads to a contradiction. The formal statement and the detailed proof are deferred to Ap-
pendix A.1.

4.3 UNILATERAL POLICY COVERAGE IS SUFFICIENT

While single policy coverage is too weak to learn a Nash equilibrium, uniform policy coverage,
though sufficient, is often too strong and impractical for many scenarios. Instead, we focus on
unilateral policy coverage, which offers a middle ground between single policy coverage and uniform
policy coverage.

Theorem 2. (Informal) If the dataset has unilateral coverage on the Nash equilibrium policy, there
exists an algorithm that can output an approximate Nash equilibrium policy.

The detailed proof is deferred to Appendix A.2. We leverage a variant of Strategy-wise Bonus and
Surrogate Minimization (SBSM) algorithm in (Cui and Du, 2022b) with modified policy evaluation
and policy optimization subroutines. Intuitively, the algorithm identifies a policy that minimizes a
pessimistic estimate of the Nash gap. As a result, if the dataset has unilateral coverage, the output
policywill have a small Nash gap and serves as a good approximation of the Nash equilibrium.

5 ALGORITHMIC TECHNIQUES FOR PRACTICAL PERFORMANCE

In Section 4, we provided a theoretical characterization of the dataset requirements for MARLHF.
However, the algorithm used in Theorem 2 is not computationally efficient. In this section, we propose
a practical algorithm for MARLHF and validate our theoretical findings through experiments.

5.1 HIGH-LEVEL METHODOLOGY

Our MARLHF pipeline consists of two phases: In the first step, we train a reward prediction model �
and approximate the behavior policy ⇡b using imitation learning; in the second step, we then apply an
MARL algorithm to maximize a combination of the KL-divergence-based reward and standardized
predicted reward r�, ultimately deriving the final policy ⇡w.

Step 1: Reward Training and Dataset Modeling. Given the preference signals of trajectories,
we use neural networks to predict step-wise rewards r�(sh, ah) for each agent, minimizing the loss
defined in (1). The objective is to map (s, ai)-pairs to reward values such that the team returns align
with the preference signals. At the same time, in order to utilize distribution-based penalty term
log ⇡b(s, a) to cope with the extrapolation error in offline learning, an imitation learner is trained
over the entire dataset to model the behavior policy ⇡b.

Step 2: Offline MARL. Although in this work, VDN is chosen as the MARL oracle, it should
be noted that other MARL architectures are also applicable. With the reward model r� and the
approximated dataset distribution learned in Step 1, we are now able to construct a virtual step-wise
reward for each agent. The agents are then trained to maximize the target defined in (3).

Given this framework, additional techniques are required to build a strong practical algorithm, which
we provide more details below.
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5.2 REWARD REGULARIZATION

Compared to step-wise reward signals, preference signals are H times sparser, making them more
challenging for a standard RL algorithm to utilize effectively. Concretely, this reward sparsity causes
the naive optimization of the negative log-likelihood (NLL) loss to suffer from two key problems:

1. Sparse and spiky reward output. When calculating NLL losses, spreading the reward
signal along the trajectories is equivalent to summing it at the last time step (Figure 2a).
However, a sparse reward signal is harder for traditional RL methods to handdle due to
the lack of continuous supervision. More uniformly distributed rewards across the entire
trajectory generally leads to more efficient learning in standard RL algorithms.

2. Over-reliance on irrelevant features. The model may exploit redundant features as
shortcuts to predict rewards. For instance, expert agents in cooperative games usually
exhibit a fixed pattern of collaboration from the very beginning of the trajectory (such as
specific actions or communication moves). The reward model might use these patterns
to differentiate them from agents of other skill levels, thereby failing to capture the true
reward-observation causal relationships.

To mitigate these problems, we introduce an extra Mean Squared Error (MSE) regularization along
the time axis (Equation 1, 2). By limiting the sudden changes in reward predictions between adjacent
time steps, this regularization discourages the reward model from concentrating its predictions on
just a few time steps. While these issues can also be mitigated by using more diversified datasets and
adding regularization to experts to eliminate reward-irrelevant action patterns, these approaches can
be costly and sometimes impractical in real-world applications. In contrast, our MSE regularization
is both easy to implement and has been empirically verified to be effective, creating more uniform
reward distribution (Figure 2) and better performances.

LRM(�) = �ED

"
mX

i=1

log �(yi(r�,i(⌧1)� r�,i(⌧2)))

#
+

↵

VarD(r�)
LMSE(�, ⌧), (1)

where the regularization term LMSE is defined as:

LMSE(�, ⌧) = ED

"
H�1X

h=1

kr�(sh,ah)� r�(sh+1,ah+1)k22

#
. (2)

Here ↵ is the regularization coefficient, which is set to be 1 in our experiments. The variance of r� is
calculated over the training set to adaptively scale the regularization term. During training, VarD(r�)
is detached to prevent gradients from flowing through it. The effectiveness of this method is validated
in the ablation study (cf. Section 6.3).

5.3 DATASET DISTRIBUTION-BASED PESSIMISM

There are various methods to mitigate the over-extrapolation errors in offline RL (Peng et al., 2019;
Nair et al., 2021), including conservative loss over the Q-function (Kumar et al., 2020) and directly
restricting the learned policy actions to those within within the dataset (Fujimoto et al., 2019). We
add a per-step dataset-based penalty term, log ⇡b(s,a), as pessimism towards less explored states.
Imitation learning is utilized to estimate the behavior policy ⇡b from the dataset distribution. To
stabilize training, we standardize predicted reward r� over D before combining it with the penalty
term to make them comparable:

objective(w) = E⌧⇠⇡w

"
HX

h=1

rstd(sh,ah,�) + clip(� log ⇡b(sh,ah),�10, 1)

#
, (3)

where � is the pessimism coefficient, set to be (1, 1, 10, 10) in Spread-v3, Reference-3, Tag-v3 and
Overcooked respectively in the main experiments. The clip operator is defined by clip(x, a, b) =
min(b,max(a, x)). The standardized reward rstd is defined as:

rstd(sh,ah,�) =
mX

i=1

r�(sh, ah,i)� ED(r�)p
VarD(r�)

. (4)
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Intuitively, the penalty term log ⇡b(sh,ah) discourages the agents from deviating from the most
preferred actions in the dataset. The effectiveness of this method is validated in the ablation study (cf.
Section 6.4).

6 EXPERIMENTS

We design a series of experiments to validate our theories and methods in common general-sum
games. Specifically, we first use online RL algorithms to train expert agents, and take intermediate
checkpoints as rookie agents. Then, we use these agents to collect datasets and use the Bradley-Terry
model over standardized returns to simulate human preference. Experiments are carried out to
verify the efficiency of our approach with unilateral policy dataset coverage (in Theorem 2) while
single policy coverage is insufficient (stated in Theorem 1). We also design ablation studies to
showcase the importance of our methods, particularly focusing on reward regularization and dataset
distribution-based pessimism.

6.1 ENVIRONMENTS

Our experiments involved 3 Multi-Agent Particle Environments (MPE), including Spread-v3, Tag-v3
and Reference-v3, and Overcooked environment implemented with JaxMARL codebase (Rutherford
et al., 2023). Spread-v3 contains a group of agents and target landmarks, where the objective is to
cover as many landmarks as possible while avoiding collisions. Tag-v3 contains two opposing groups,
where quicker "preys" need to escape from "predators". To ensure a fair comparison of different
predator cooperation policies, we fixed a pretrained prey agent. Reference-v3 involves two agents
and three potential landmarks, where the agents need to find each one’s target landmark to receive a
high reward. The target landmark of each agent is only known by the other agent at first. Overcooked
involves two agents moving and operating objects in a gridworld. A more detailed description of the
tasks and their associated challenges is provided in Appendix B.2.

6.2 THE IMPORTANCE OF DATASET DIVERSITY

To study the influence of diversity of dataset, we manually designed 4 kinds of mixed joint behavior
polices, and change their ratios to form different datasets.

• Expert policy: n expert agents. Trained with online RL algorithms till convergence.
• Rookie policy: n rookie agents. Trained with online RL algorithms with early stop.
• Trivial policy: n random agents. All actions are uniformly sampled from the action space.
• Unilateral policy: n� 1 expert agents and 1 rookie agent of different proficiency level.

Table 1 presents the ratio of trajectories collected by the four different policies. The experiments are
designed to hierarchically examine the roles of diversity (Diversified vs. Mix-Unilateral), unilateral
coverage (Mix-Unilateral vs. Mix-Expert), and trivial comparison (Mix-Expert vs. Pure-Expert).

The ranking of diversity follows the order:

Pure-Expert < Mix-Expert < Mix-Unilateral < Diversified

Due to the inherent limitations of offline reinforcement learning (RL) in action selection dictated
by the dataset, the effectiveness of learning is often strongly correlated with dataset quality, i.e. the
level of expertise demonstrated in the dataset. However, the results in preference-based MARL
experiments partially diverge from this conventional conclusion. While the quality of the dataset
remains critical, experiments on Reference-v3 and Overcooked (Table 2) indicate that diversity and
unilateral data can significantly enhance the performance of the reward model, thereby facilitating
learning.

The main experimental results are presented in Table 2 and Table 3.Among all the experiments,
apart from the experiments on Tag-v3, where the high operational precision requirements make data
quality more critical than diversity, the other three environments validate our conclusions across all
algorithms.
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Expert Unilateral Rookie Trivial

Diversified 1 1 1 1
Mix-Unilateral 2 1 0 1
Mix-Expert 3 0 0 1
Pure-Expert 4 0 0 0

Table 1: Final datasets mixed with various ratios. The overall dataset size is kept to 38400 trajectories
for MPE, and 960 trajectories for Overcooked. (cf. B.1)

Algorithm Dataset Spread-v3 Tag-v3 Reference-v3 Overcooked

VDN with Diversified -21.16 ± 0.54 29.28 ± 1.08 -18.89 ± 0.60 238.89 ± 3.50

Pessimism Penalty Mix-Unilateral -21.03 ± 0.44 36.65 ± 0.70 -18.80 ± 0.63 221.80 ± 26.66

Mix-Expert -20.98 ± 0.54 35.96 ± 0.86 -18.80 ± 0.44 35.26 ± 55.19

Pure-Expert -21.01 ± 0.57 39.55 ± 0.77 -28.97 ± 2.89 3.36 ± 7.19

Table 2: In the simplest environment, Spread-v3, different dataset gives similar performance. In Tag-
v3 environment, where precise actions are required, the quality of the dataset (proportion of expert
demonstration) is more important than diversity. In contrast, in Overcooked environment, which
focuses on strategy learning and demands less on precision, dataset diversity contributes to improved
stability, with Unilateral playing a particularly critical role. In the Reference-v3 environment, which
balances the need for precision and strategic, the importance of both factors is more balanced, but
non-expert data is still necessary.

6.3 EXPERIMENTS FOR REWARD REGULARIZATION

In Figure 2, we examined the effectiveness of our proposed reward regularization technique. Figure 2a
demonstrates that without regularization, the learned rewards tend to be sparse and spiky compared
to the ground truth rewards.

We also observe that the rewards often exhibit temporal continuity, which can create greater discrep-
ancies with the sparse, pulse-like ground truth. Notably, we found that adding stronger regularization
does not necessarily lead to underfitting of the reward model; in some cases, it even helps the model
converge to a lower training loss. Detailed parameters and experimental results are provided in the
appendix (cf. Table 8). We attribute this to the role of regularization in preventing the model from
overly relying on shortcuts.

6.4 OTHER ABLATION STUDIES

Pessimism coefficient Due to the clipping in 3, excessively large � values will not dominate the
entire reward function. As a result, larger � values almost never degrade the agent’s performance
in our experiments (Table 4). This allows us to increase � with relative confidence. Therefore, we
generally recommend setting � to a value between 10 and 100 for optimal performances.

Scalability We also tested the scalability on Spread-v3. While our current approach manages the
scaling of agents without introducing new problems, it does not specifically address the inherent issues
of instability and complexity that are well-documented in traditional MARL (cf. Appendix B.4).

7 DISCUSSION

In this paper, we proposed dedicated algorithmic techniques for offline PbMARL and provided
theoretical justification for the unilateral dataset coverage condition. We believe our work is a
significant step towards systematically studying PbMARL and offers a foundational framework for
future research in this area. The flexibility of our framework allows for application across a wide

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Algorithm Dataset Spread-v3 Reference-v3 Overcooked

MAIQL Diversified -25.33 ± 1.40 -22.15 ± 0.55 16.59 ± 11.22

Mix-Unilateral -23.25 ± 1.06 -23.22 ± 1.37 0.00 ± 0.00

Mix-Expert -23.26 ± 0.90 -24.21 ± 1.60 0.00 ± 0.00

Pure-Expert -26.01 ± 1.53 -29.47 ± 1.65 0.00 ± 0.00

MABCQ Diversified -20.02 ± 0.64 -17.64 ± 0.43 239.34 ± 1.67

Mix-Unilateral -19.47 ± 0.33 -17.64 ± 1.11 215.01 ± 65.43

Mix-Expert -19.42 ± 0.17 -17.88 ± 0.78 50.32 ± 82.82

Pure-Expert -20.56 ± 0.38 -25.90 ± 1.11 1.14 ± 3.46

Table 3: Test returns of MAIQL and MABCQ. In the experimental results, we can observe a clear
preference toward more diversified datasets. Compared to our method and BCQ, which directly
calculate maxa Q for Bellman updates, IQL employs expectile regression to estimate it. So MAIQL
demands higher accuracy of the reward model. Consequently, the performance improvements brought
by dataset diversity are also more pronounced in MAIQL experiments.

� = 0 � = 0.1 � = 1 � = 10 � = 100 ↵ = 0

Spread-v3 -22.56 ± 1.61 -22.03 ± 0.67 -20.82 ± 0.53 -20.46 ± 0.51 -20.35 ± 0.43 -22.21 ± 0.72

Tag-v3 4.11 ± 1.66 4.25 ± 0.53 10.96 ± 1.20 28.88 ± 1.02 29.53 ± 1.35 30.77 ± 0.57

Reference-v3 -19.69 ± 0.36 -19.37 ± 0.53 -18.89 ± 0.78 -18.33 ± 0.42 -18.54 ± 0.46 -21.86 ± 0.73

Overcooked 0.00 ± 0.00 0.00 ± 0.00 149.53 ± 86.74 238.89 ± 3.50 240 ± 0.00 240 ± 0.00

Table 4: Comparison of test return with different hyperparameters. Standard pipeline take pessimism
coefficient � = 1 for Spread-v3, Reference-v3 and � = 10 for Tag-v3, Overcooked, and the MSE
reward regularization coefficient ↵ is set to the optimal value for fixed �. All the agents are trained
on Diversified Dataset across 10 random seeds. Results show that larger � always gives better
performance and a proper positive ↵ can improve performance.

range of general games, and our empirical results validate the effectiveness of our proposed methods
in various scenarios.

Looking ahead, there is significant potential to extend this work to more complex, real-world
scenarios, particularly by integrating Large Language Models (LLMs) into multi-agent systems.
Future research will focus on fine-tuning and aligning LLMs within PbMARL, addressing challenges
such as increased complexity and the design of effective reward structures.

(a) Mix-Expert ↵ = 0 (spread-v3)

(b) reference-v3

(b1) Pure-Expert (b2) Diversified ↵ = 0 (b3) Diversified

Figure 2: (a) Averaged reward predictions and ground truth of a trajectory sample on spread-v3.
(b) Standardized reward predictions and ground truth of a trajectory sample in reference-v3. When
trained with expert data only (b1), � experiences a mode collapse, failing to give informative signals.
Reward function trained without regularization (b2) shows spiky patterns and tends to accumulate
predictions at certain time steps when trained with less diversified datasets as (a). Our method with
diversified dataset (b3) gives predictions that approximate the ground truth well.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

8 REPRODUCIBILITY STATEMENT

All code used for our experiments is included in the supplementary material (codebase.zip).
Appendix A provides detailed proofs of the theoretical bounds, along with necessary assumptions.
Key experimental details and hyperparameters are also outlined in Appendix B. We believe these
resources provide a comprehensive foundation for reproducing both the theoretical and empirical
results presented in this work.
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