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Abstract

Recent advancements in large language models
(LLMs) have showcased significant improve-
ments in mathematics. However, traditional
math benchmarks like GSM8k offer a unidi-
mensional perspective, falling short in provid-
ing a holistic assessment of the LLMs’ math
capabilities. To address this gap, we introduce
MathBench, a new benchmark that rigorously
assesses the mathematical capabilities of large
language models. MathBench spans a wide
range of mathematical disciplines, offering a
detailed evaluation of both theoretical under-
standing and practical problem-solving skills.
The benchmark progresses through five distinct
stages, from basic arithmetic to college math-
ematics, and is structured to evaluate models
at various depths of knowledge. Each stage
includes theoretical questions and application
problems, allowing us to measure a model’s
mathematical proficiency and its ability to ap-
ply concepts in practical scenarios. MathBench
aims to enhance the evaluation of LLMs’ math-
ematical abilities, providing a nuanced view
of their knowledge understanding levels and
problem solving skills in a bilingual context.

1 Introduction

Mathematical reasoning and problem-solving rep-
resent pivotal facets of human intelligence and have
captivated the interest of artificial intelligence (Al)
research for decades. The capability of machines
to grasp, interpret, and address mathematical chal-
lenges not only serves as a benchmark for their
cognitive prowess but also fulfills a critical role in
their deployment across various sectors.

The advent of modern Large Language Models
(LLMs) such as OpenAI’s ChatGPT and GPT-4
(Achiam et al., 2023) has marked a significant mile-
stone, showcasing an unparalleled ability to gener-
ate text that mirrors human-like discourse and to
unravel intricate mathematical conundrums (Liu
et al., 2023a).
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Figure 1: MathBench Overview. MathBench com-
prises multiple stages of progressively increasing chal-
lenges. Each stage encompasses bilingual theoretical
and application-oriented questions, with each question
precisely tagged with a three-level label to indicate its
fine-grained knowledge point.

Despite these advancements, the evaluation of
LLMs’ mathematical capabilities remains ham-
pered by some inherent limitations of exist-
ing benchmarks (GSMS8k (Cobbe et al., 2021),
MathQA(Amini et al., 2019), erc.). These re-
sources predominantly offer a singular perspective
on problem-solving abilities and lack comprehen-
sive difficulty grading. Math (Hendrycks et al.,
2021b) attempted to classify high-school math com-
petition problems into varying levels of complexity
based on annotators’ subjective evaluations, offer-
ing an incomplete picture of mathematical profi-
ciency. Such datasets, while valuable, fall short
in encapsulating the full spectrum of mathemat-
ical knowledge and overlook the importance of
fundamental theory understanding, which is essen-
tial for tackling application problems (Upadhyay
and Chang, 2017a). Those limitations make it dif-
ficult to conduct a comprehensive evaluation of
LLMs’ math capability (both theory and applica-
tion) across different levels and disciplines and
under a multilingual context.

In response to these challenges, we construct
MathBench, a novel and comprehensive multilin-
gual benchmark meticulously created to evaluate
the mathematical capabilities of LLMs across a di-
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Figure 2: Framework of MathBench, We first categorize the mathematical content into four main educational
stages and one basic arithmetic stage. Then, we extend from these to fill in two more fine-grained levels of
knowledge points, forming the final MathBench framework.

verse range of difficulties, from basic arithmetic
to challenging college-level mathematics. Math-
Bench sets itself apart with a unique five-stage tax-
onomy, mapped to the educational trajectory from
primary school through to college. This mecha-
nism is designed to assess LLMs’ mathematical
understanding in breadth and depth. The bench-
mark incorporates carefully curated questions that
cover basic theory knowledge and practical appli-
cations. This dual focus enables MathBench to
probe and interpret the models’ capabilities from a
foundational standpoint. Additionally, MathBench
supports bilingual evaluation in both Chinese and
English, which facilitates a more nuanced and com-
prehensive assessment of LLMs’ math capabilities,
offering a realistic reflection of the global land-
scape of mathematical knowledge.

In this paper, we detail the methodology behind
the creation of MathBench, including the hierarchi-
cal knowledge system that underpins the dataset,
the data collection process, and the criteria for ques-
tion selection. We hope that MathBench can serve
as a valuable resource for researchers and develop-
ers seeking to advance the mathematical abilities of
LLMs and to understand the limitations of existing
models in solving diverse and complex mathemati-
cal problems.

MathBench features the following contributions:
e We introduce MathBench, a comprehensive
dataset that features a five-level difficulty mech-
anism with a hierarchical knowledge system.
e MathBench includes a wide variety of question

types, from fundamental mathematical concepts to
practical application in real-world scenarios.

e We conduct extensive experiments on Math-
Bench across different models to identify bottle-
necks in current LLMs. The provided discussion
and analysis are expected to offer new avenues for
improving their mathematical capabilities.

2 Methodology

MathBench features a well-crafted difficulty hier-
archy and an emphasis on evaluating the theoret-
ical knowledge understanding of LLMs. Sec. 2.1
presents the tiered levels and the corresponding
knowledge foundations, explaining the ability tax-
onomy and design rationale. Sec. 2.2 details the
collection process and statistics of MathBench.

2.1 The Hierarchical Knowledge System

In MathBench, we define a knowledge framework
with five main stages and three levels in order to
obtain fine-grained evaluation results. Among five
stages, four stages are mapped to the four main
education stages: Primary, Middle, High, and Col-
lege, while the other stage is named Arithmetic,
serving as the foundation of the remaining four
stages.! Each Stage in MathBench is associated
with two fine-grained knowledge levels: Subject
Area and Topic, accordingly. As shown in Figure 2,
we extend MathBench from the basic stages to a
comprehensive range of mathematical concepts and

'The ‘Arithmetic’ stage evaluates the ability to perform
four basic math operations: add, subtract, multiply, divide.



Table 1: Overview of Datasets Included in Math-
Bench. MCQ stands for Multi-Choice Question.

Name Dataset Type  Question Type
GSM-X-CN Self-Collected  Open-ended QA
GSM-X-Plus Self-Collected ~ Open-ended QA
CEVAL-Math Open Source MCQ
MMLU-College-Math Open Source MCQ

Math401 Open Source MCQ
Hungarian-Math-MCQ Self-Collected MCQ

AMC-8 & 12 Self-Collected MCQ

SAT Self-Collected MCQ

Gaokao Self-Collected MCQ
Zhongkao Self-Collected MCQ

Kaoyan Self-Collected MCQ

SciBench Open Source MCQ
Arithmetic-HG Open Source Open-ended QA
Theory-Knowledge-Primary ~ Self-Collected MCQ
Theory-Knowledge-Middle  Self-Collected MCQ
Theory-Knowledge-High Self-Collected MCQ
Theory-Knowledge-College ~ Self-Collected MCQ

problem-solving skills. Such taxonomy is designed
to capture the depth and breadth of mathematical
knowledge, from foundational arithmetic to com-
plex, abstract college-level concepts.

Subject Areas include major mathematical dis-
ciplines such as Algebra, Geometry, Trigonometry,
Calculus, Statistics, Probability, etc.. This cate-
gorization allows for a wide range of questions,
facilitating an organized approach to covering the
diverse areas of mathematics. Within each subject
area, we further refine the classification into spe-
cific Topics. For example, under Algebra, topics
might include Linear Equations, Quadratic Equa-
tions, Polynomials, and Functions. The Topic-level
granularity ensures that the dataset can provide de-
tailed insights into a model’s understanding and
proficiency in specific areas of mathematics.

In MathBench, each question is tagged with
metadata indicating its stage (Primary, Middle,
High, College, or Arithmetic), subject area, and
topic. Such tags enable a fine-grained analysis of
models’ performance across different areas of math-
ematics and allow researchers to identify specific
strengths and weaknesses in mathematical under-
standing.

Moreover, the inclusion of the Arithmetic stage
emphasizes the importance of mastering basic math
operations, which is the foundation of all subse-
quent mathematical learning and problem-solving.

2.2 Data Collection and Statistics

With the pre-defined knowledge framework, we pri-
marily collect questions from two perspectives: (a).
theoretical knowledge questions, to test the model’s

grasp of basic formulas, theories, and their corollar-
ies, which are the foundation for solving mathemat-
ical problems; (b). practical application questions,
which often require a good understanding of the
fundamental theories, reflecting the ability to apply
these theories in practice.

Question Format Definition. During the evalu-
ation, some models struggle with open-ended ques-
tions and fail to follow instructions and provide
plain and concise answers. Therefore, we reformu-
late questions that could have complex answers”
into the multiple-choice format, typically with four
options. During collection and annotation, we en-
sure the uniqueness of the correct answer and the
high confusion-level of distractive options.

Theoretical Knowledge Questions.  For theoret-
ical knowledge questions, we collect the definition
and detailed corollaries of knowledge points topic
by topic from the math textbooks and the Internet.
We then transform them to multi-choice questions
with high-quality annotations.

Practical Application Questions.  On selecting
the practical application questions, we primarily
consider the following aspects: 1. The question
needs to match the corresponding education level;
2. The questions should comprehensively cover the
previously defined knowledge taxonomy; 3. The
questions should be well-formulated so that LLMs
can answer them properly. We primarily focus
on stage-based educational exams or competitions.
Those questions are comprehensive and representa-
tive, offering a certain degree of difficulty gradient,
such as ZhongKao, GaoKao in Chinese Math and
AMC, SAT in English math. Additionally, we in-
corporate open-source questions to enhance the
diversity and breadth of the questions. We list the
sources of questions in MathBench in Table 1.

Quality Screening. To enhance the quality
of the MathBench dataset, we implement a semi-
automated question filtering process to mitigate is-
sues such as intrinsic question errors and alignment
with educational stages utilizing GPT-4, details pre-
sented in Appendix A.3.

Dataset Summary. We curate 3709 questions
for the final MathBench, including both Chinese
and English languages across five stages with three-
level knowledge taxonomy. MathBench includes

2All theoretical knowledge questions and practical appli-
cation questions from middle school to college level



2209 theoretical questions and 1,500 practical ap-
plication questions, all of which have undergone
semi-automated screening. Detailed statistics can
be found in the Appendix A.1.

3 Experiments and Analysis

3.1 Configuration

Evaluation Protocols. = We employ CircularEval
(CE) (Liu et al., 2023b) as our principal evaluation
methodology. CE systematically assesses an N-
option multi-choice question by evaluating it N
times, each time permuting the order of the options.
To ensure uniformity across evaluations, we set the
maximum output length at 512 tokens and use the
greedy decoding strategy for all LLMs. We adopt
the few-shot setting for open-ended questions and
the zero-shot setting for multi-choice questions.

Evaluated Models. Our evaluation encom-
passes both API-based commercial LLMs and
open-source LLMs, covering a total of 20 mod-
els. Based on MathBench, we deliver a thorough
evaluation of the capabilities of current LLMs. We
list all evaluated LLMs below:

e API models: OpenAl GPT-3.5 and GPT-4°.

e OpenSource LLMs: We evaluate a wide spec-
trum of LLMs, including QWen (Bai et al., 2023),
InternLM (Team, 2023), Yi #, Baichuan2 (Yang
et al., 2023), DeepSeek(DeepSeek-Al et al., 2024)
and ChatGLM3 (Zeng et al., 2022).

e OpenSource Math LLMs: MetaMath-llemma(Yu
et al., 2023), DeepSeekMath(Shao et al., 2024),
MAmmoTH(Yue et al.,, 2023) and InternLM-
Math(Ying et al., 2024).

3.2 Main Results

The overall experimental results are shown in Ta-
ble 2. We report the average score of theoreti-
cal and application questions for all stages expect
Arithmetic, which only has application questions.
Among all evaluated models, GPT-4 consistently
outperforms the others, showcasing superior per-
formance across all metrics. The second best LLM
is Qwen-72B, its outstanding performance distin-
guishes itself as the leading player among all open-
source models. We also notice that DeepSeek-
Math-7B-RL, an LLM dedicated to mathematical
tasks, secures its position as the second-best open-

3GPT-4 version: gpt—4-0125-preview; GPT-3.5 ver-
sion: gpt—-3.5-turbo-0125
*https://github.com/01-ai/Yi

source model in mathematics, which is impressive
given its small parameter size.

Among Open-Source Chat Models, perfor-
mances across models with ~7B, ~20B, and ~70B
parameter size reveal distinct capabilities:
~7B Chat Models. InternLM2-Chat-7B emerges
as the superior model at the ~7B scale and outper-
forms other 7B Chat models across all stages. It’s
noteworthy that, as the difficulty of problems in-
creases, the gap between InternLM2-Chat-7B and
other models also grows. For instance, on the five
stages from Arithmetic to College Math, it outper-
forms ChatGLM3-6B by 29%, 67%, 92%, 157%,
and 258%, respectively. The trend indicates that
as the difficulty escalates, the performance dispar-
ity between models significantly increases since
higher-stage math problems often involve more
complex concepts and problem-solving strategies,
imposing greater demands on the models’ compre-
hension and reasoning abilities. All ~7B models
struggle with advanced mathematical problems, in-
dicating a challenge in smoothly resolving complex
questions for small-scale LLMs.
~20B Chat Models. Qwen-14B-Chat performs
the best at the ~20B scale, followed by InternLM2-
Chat-20B. Though Yi-34B-Chat has a much larger
parameter size, it lags behind other ~20B models.
Similar to ~7B models, models around ~20B also
struggle with more complex mathematical prob-
lems at the High School and College stage.
~70B Chat Models and Math Models. Large-
scale Open-Source LLMs demonstrate far bet-
ter performance compared to their small/medium-
scale counterparts. Qwen-72B-Chat, for instance,
achieves excellent results across all stages, which is
comparable to the state-of-the-art GPT-4. Among
Math LLMs, DeepSeek-Math-7B-RL excels in
both basic Arithmetic and College math, outper-
forming not only its peers but also the much heavier
DeepSeek-67B-Chat.

3.3 Detailed Analysis

With MathBench, we can easily assess the model’s
mathematical capabilities at different granularities
including education stage, language, subject area,
or even specific topics with questions on both theo-
ries and applications. Below, we will delve deeper
into the evaluation results and discuss about the
following questions:

How Models’ Scores on Application Problems
Vary Across Stages? Figure 3 presents the aver-



Table 2: Overall Comparison of Models on MathBench. Models are classified into three categories according to
their purpose and origin. The model name in bold indicates the top performer among Open-Source or API models,
while an underline signifies the leading model within a similar parameter size group.

Models Arithmetic Primary Middle High College Average
*API Models
GPT-3.5 70.3 67.9 39.3 30.6 322 48.1
GPT-4 76.3 82.9 69.8 56.6 59.0 68.9
QOpen-Source Chat Models
ChatGLM3-6B 41.0 40.5 21.4 11.5 6.3 241
Yi-6B-Chat 35.7 41.1 20.3 11.5 9.1 23.5
InternL.M2-Chat-7B 53.0 67.5 41.0 29.6 22.6 42.7
Qwen-7B-Chat 51.3 50.2 32.6 20.2 17.3 343
Deepseek-7B-Chat 46.0 393 15.5 9.6 9.2 23.9
Baichuan2-13B-Chat 46.0 54.2 29.5 16.6 14.3 32.1
Qwen-14B-Chat 64.7 66.1 49.2 32.8 27.2 48.0
InternLM2-Chat-20B 62.7 70.0 47.4 337 233 47.4
Yi-34B-Chat 51.0 64.8 38.0 23.2 17.8 39.0
Deepseek-67B-Chat 61.3 77.2 48.4 36.3 36.8 52.1
Qwen-72B-Chat 72.0 80.1 604.8 47.8 40.8 61.1
AMathematical Models
MammoTH-7B 26.7 53 4.8 3.7 11.7
Metamath-Llemma-7B 48.7 353 16.1 15.5 10.1 25.1
InternLM2-Chat-Math-7B 53.7 66.0 49.0 343 26.9 46.0
Deepseek-Math-7B-Instruct 61.0 73.7 42.2 34.9 29.9 48.3
Deepseek-Math-7B-RL 67.7 80.8 57.2 45.4 42.7 58.8
MammoTH-13B 35.0 34.8 10.7 9.9 10.6 20.2
InternLM2-Chat-Math-20B 58.7 71.1 55.5 41.8 31.9 51.8
MammoTH-70B 35.7 59.3 28.1 23.6 24.5 342
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Figure 3: Scores of Application Problems at Each
Stage. Models exhibit similar performances in Arith-
metic and Primary stages, while demonstrating a clear
performance decline from Primary to College stages.

age performance of all aforementioned models on
application questions in MathBench. Most models
perform reasonably well on Arithmetic and Pri-
mary math problems. However, their effectiveness
drastically declines when it comes to the Middle

Figure 4: Bilingual Comparison on MathBench.
showcasing scores in Chinese, English , and their aver-
age for the gray dashed line. The Arithmetic stage is not
include because there no impact of language in it.

stage or above. Such phenomenon suggests that
existing models are good at tasks that can be solved
through direct computation, pattern recognition, or
memorizing basic concepts. However, they show-
case inferior performance when solving more com-
plex math problems.

Is There A Gap between Theory Understanding
and Application Capabilities? Theories serve
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as the foundation for addressing the majority of
application problems. As illustrated in Figure 5,
we present the trend of LLMs in terms of theoret-
ical and application scores across different stages.
In the Primary stage, the two scores are highly
correlated for most LLMs, with only a few ex-
ceptions. Among top-ranked models, Qwen-72B-
Chat demonstrates the best theoretical ability, while
GPT-4 demonstrates superior application ability.
When it comes to more advanced stages, models
require better computational and reasoning capa-
bilities to achieve good application scores. GPT-
4 leads in the application track across all stages,
while the gap is larger in more advanced stages.
For example, comparing to Qwen-72B-Chat, the
difference in theoretical and application scores
(D¢, D) increases from (1.4,8.7) in the Middle
stage to (6.0, 11.7) in the High stage, and finally to
(13.5,23.0) in the College stage. Moreover, from
the Middle stage onwards, there is a general trend
of decline in both theoretical and application abili-
ties of models. Compared to theoretical scores, the
decline in application scores is more serious.

Which Model Performs Better under the Bilin-
gual Scenario? Figure 4 demonstrates the bilin-
gual capabilities of various LLMs on MathBench,
indicating the importance of linguistic versatility in
mathematical tasks that demand an understanding
of nuances in language and math concepts across
different languages. Among all LLMs, GPT-4 leads
with the highest bilingual score of 67.1, showing
a balanced performance between Chinese (65.2)
and English (69.0). This demonstrates GPT-4’s ad-
vanced bilingual processing abilities. Other models
including Qwen-72B-Chat and DeepSeek-Math-
7B-RL also exhibit significant bilingual capabil-
ities. It’s also noteworthy that among all LLMs
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Figure 6: Model Size vs. Average Score. The compari-
son chart of model parameter size versus performance
on MathBench for selected representative models, with
models from the same series connected by lines of the
same color. The horizontal red dotted line represents
the score of GPT-4.

evaluated, most of them feature a much larger per-
formance gap between Chinese and English, com-
pared to GPT-4.

4 Discussion

4.1 Effect of Model Size on Math Capabilities

We found that for models of different sizes within
the same series, most of them conform to the Scal-
ing Law (Kaplan et al., 2020) on MathBench. For
example, Qwen series, MammoTH series, and Yi
series have shown steady improvement in their
MathBench scores as the parameter size increases,
as shown in Figure 6. However, it doesn’t mean that
models with small parameter sizes can not achieve
good math performance. For instance, DeepSeek-
Math-7B demonstrates outstanding performance
on MathBench and outperforms models with 10x
parameters, including DeepSeek-72B and a larger
math model MammoTH-70B.
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4.2 Error analysis

In our study, we conduct a comprehensive error
analysis on a set of 80 theoretical and 100 applica-
tion questions random selected from every stages,
for models selected across different scales, as il-
lustrated in Figure 7. The error categories are
uniformly observed across all evaluated models,
indicating common challenges that transcend spe-
cific parameter scales. Our selection of models in-
cludes GPT-3.5, GPT-4, InternLM-Chat-7B, Qwen-
14B-Chat, Qwen-72B-Chat, Deepseek-Math-7B-
RL and MammoTH-70B. Detailed cases for error
analysis can be found in Appendix C.2.
Insufficiency of knowledge. For theoretical ques-
tions, 78% of model errors are due to misconcep-
tions about mathematical concepts, which notably
emerged as a significant concern in several models.
Such errors accounted for 49.5% of all mistakes,
underscoring a general challenge in grasping fun-
damental knowledge and terminology.
Deficiencies in reasoning. Furthermore, models
exhibited shortcomings in logical reasoning, with
33.4% of errors attributed to logically consistent
but flawed reasoning processes. Moreover, errors
such as reasoning that deviated from the intended
query accounting for 9.6%, underscored the mod-
els’ limitations in understanding user intentions
and providing pertinent responses. We also notice
that errors related to reasoning increased with task
difficulty.

Response length limit. Though statistically not
the primary error mode (4.0%), responses that ex-
ceeded the token limit shed light on the challenge
of reasoning complex tasks within limited length
and adhering to given instructions.

Other cases. Occasionally, models will generate
responses devoid of an explicit reasoning process,

obstructing additional scrutiny. Moreover, mod-
els endowed with enhanced reasoning capabilities
exhibit a greater capacity for critical thinking re-
garding the options presented, thereby offering al-
ternative answers that transcend the limitations of
predetermined choices.

4.3 Reasoning Path

Analyzing the reasoning paths of various models
across multiple difficulty levels reveals significant
performance disparities. We set a brief discussion
below and provide more detailed cases for reason-
ing path analysis in Appendix C.3.

Performance across diverse difficulties. In
straightforward scenarios, models swiftly solve the
problems with direct reasoning and yield logical
outcomes. Yet, complex issues, marked by dense
symbols, vast knowledge, and intricate links, neces-
sitate broader knowledge navigation, accentuating
divergences in deductive strategies.

Reasoning paths of chat models with different
parameter sizes. Small-scale chat models strive
for logical coherence in mathematics, yet may
make mistakes due to knowledge deficiencies, par-
ticularly in symbol interpretation and relational
understanding. In contrast, large-scale models fea-
ture expansive knowledge and nuanced insights,
which enhance symbol processing and minimizing
knowledge gaps. However, even with substantial
parameters, challenges in efficient knowledge man-
agement persist, occasionally leading to irrelevant
diversions and diminished reasoning efficacy.
Reasoning paths of math models. Specialized
math models, despite the smaller parameter sizes,
exhibit superior mathematical comprehension and
systematic logical reasoning. They excel in apply-
ing mathematical knowledge and notation to reason
through complex problems.

Superlative deductive navigation of API models.
GPT-4 stands out for its effective reasoning and
deep problem comprehension. It engages in logical,
coherent, and succinct discussions, adeptly navi-
gate complex reasoning paths, and manage math-
ematical symbols effectively. GPT-4 distinctively
recognizes problem statement ambiguities, show-
casing a detailed and nuanced reasoning process.

5 Related works

Solving math word problems through automated
methods has been a long-standing concern for re-
searchers. This section summarizes seminal studies



and delineates key evaluation datasets proposed
for assessing mathematical problem-solving ap-
proaches, tracing the field’s evolution from its ori-
gins to the present day.

Preliminary Mathematical Datasets Previous
works proposed datasets such as Alg514 (Kush-
man et al., 2014), SingleEq (Koncel-Kedziorski
etal.,2015), and DRAW-1K (Upadhyay and Chang,
2017b) are primarily concentrated on elementary
linear algebraic problems. Similarly, datasets like
AddSub (Hosseini et al., 2014) and SingleOp (Roy
et al., 2015) are exclusively dedicated to funda-
mental arithmetic operations: addition, subtraction,
multiplication, and division. These datasets are
very limited both in the form and content of their
assessments, focusing solely on a specific small
part of basic mathematics.

Benchmarks tailored to specific educational
tiers Some benchmarks are designed based on
educational levels. Math23k (Wang et al., 2017)
collects a corpus of real math word problems for
elementary school students. While ASDiv (Miao
et al., 2021) expands the textual patterns to encom-
pass most problem types found in elementary math-
ematics. GSM8K (Cobbe et al., 2021) presents a
high-quality collection of elementary mathematical
word problems that, on average, require multiple
steps to solve and provide solutions in natural lan-
guage annotations. These datasets mostly focus
on elementary mathematics and seldom examine
college-level knowledge.

Enriching the diversity of mathematical prob-
lem types within benchmarks MathQA (Amini
et al., 2019) seeks to categorize problems from
AQuA (Ling et al., 2017) into different mathemati-
cal domains based on the frequency of mathemati-
cal terminology used. Mathematics Dataset (Sax-
ton et al., 2019) expands the subject of mathematics
and this dataset covers a broader spectrum of math-
ematics, including arithmetic, algebra, probability,
and calculus. MATH (Hendrycks et al., 2021b) fea-
tures a higher level of complexity, comprising prob-
lems ranging from arithmetic to calculus, and aims
at testing models’ capabilities in understanding and
solving complex mathematical challenges. While
these efforts have enhanced the diversity of the data
in certain aspects, they are lacking in diversity in
other aspects such as question formulation (Saxton
etal., 2019).

Integrating mathematical problems with do-
main knowledge NumGLUE (Mishra et al.,
2022) not only assesses the ability of models to
solve mathematical problems given direct compu-
tational expressions, but it also designs multiple
tasks to comprehensively evaluate the models’ abil-
ities to use other reasoning skills, such as common
sense and reading comprehension. Lila (Mishra
et al., 2023) is developed through the extension of
20 datasets that cover a broad range of mathemat-
ical topics. This dataset exhibits varying degrees
of linguistic complexity and features diverse ques-
tion formats as well as background knowledge re-
quirements. These works inspire us to design more
diversified testing scenarios.

6 Conclusion

In summary, MathBench adopts structured ap-
proaches to categorize questions by stage and
knowledge level. It aims to provide a comprehen-
sive evaluation of LLMs’ mathematical proficiency.
By covering a wide range of subject areas and top-
ics across educational stages, MathBench offers
a unique resource for researchers and educators
interested in advancing the field of mathematical
learning and assessment.

7 Limitations

We have developed a comprehensive mathemati-
cal evaluation benchmark, MathBench, which in-
cludes a detailed knowledge framework and multi-
dimensional, fine-grained mathematical questions.
Despite its strengths, the benchmark currently has
several limitations, which are summarized as fol-
lows:

Data Source: To enhance diversity, some ques-
tions were sourced from open-source datasets(~
19%). However, these open-source questions may
be subject to data contamination, which could com-
promise the assurance that models have not been
exposed to these questions before. In future iter-
ations, we plan to automate the construction of
questions across various stages to more effectively
test the models’ genuine mathematical capabilities.

Lack of Detailed Reasoning Paths: Given the
diversity of questions and time constraints, Math-
Bench currently does not provide detailed reason-
ing paths for each question. This limitation makes
it challenging to unlock the full potential of the
questions. Moving forward, we aim to investigate
semi-automated methods to offer both natural lan-



guage and code-based reasoning approaches for
each question, thereby maximizing the value of
MathBench’s questions.

8 Ethical Considerations

For our benchmarks, we relied on reference ma-
terials and APIs that are accessible to the public,
thereby avoiding any potential harm to individuals
or groups. The data produced by the LLMs under-
went a meticulous human selection and processing
phase to ensure the protection of privacy and con-
fidentiality. We did not use any personally identi-
fiable information, and all data were anonymized
prior to analysis. Additionally, we employed Chat-
GPT and Grammarly to refine our manuscript’s
language.
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A MathBench Statistics

A.1 Dataset Statistics

The detailed statistics of MathBench questions, Ta-
ble 3 for the data distribution of theoretical and
application questions across various stages, Table 4
for fine-grained knowledge levels.

Table 3: Detailed Composition of the MathBench

Stage Type English  Chinese ‘ Total
. . Theoretical - - -
Arithmetic o ication 300 - 300
Primar Theoretical 109 208 317
Y Application 150 150 300
. Theoretical 175 334 509
Middle  \ olication 150 150 | 300
. Theoretical 281 470 751
High ..

Application 150 150 300
Collece Theoretical 316 316 632
g Application 150 150 | 300

A.2 Data collection details

For self-collected questions in MathBench, We pri-
marily collect through the following methods:

For the Primary stage GSM-X-CN and GSM-
X-Plus datasets, we semi-automatically generate
new questions using GPT-4. Specifically, the con-
struction of the GSM-X-CN Chinese question set
involved two steps:

We first translate English questions in GSM8k
test set into Chinese using GPT-4, resulting in a
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Table 4: MathBench Subject Area Statistics. Data is shown at the Subject Area level for conciseness, omitting the

more detailed Topic level due to its breadth.

Stage Subject Area English Chinese | Total
Introduction to Numbers and Algebra 44 73 117
Primary & Arith. Introduction to Geometry 10 62 72
Comprehensive Application 55 73 128
Basic Numbers and Algebra 133 182 315
Middle Basic Geometry 33 137 170
Basic Probability and Statistics 9 15 24
Intermediate Numbers and Algebra 146 189 335
High Intermediate Geometry 114 219 333
Intermediate Probability and Statistics 21 62 83
Advanced Mathematics 119 119 238
College Linear Algebra 99 99 198
Probability and Statistics 98 98 196

Chinese version of GSM8k. We then replace the
entity names under the Chinese context while en-
suring that the questions’ meanings remained un-
changed. This process creates elementary-level
questions suitable for Chinese Q&A.

For the GSM-X-Plus dataset, which is in English,
we generate new questions by first generating solu-
tion code for the original test set questions. We then
replace some numeric parameters (taken from the
original questions) in the question with multiples of
the variable k. By executing the modified solution
code, we obtain the new answers. In MathBench,
we set k € (2,10).

For exams such as AMC, GaoKao, ZhongKao,
etc., we initially collect relevant questions from the
Internet. These questions are then underwent pro-
cessing and annotation by domain experts. Ques-
tions for primary and secondary education levels
are handled and annotated by undergraduate stu-
dents, while questions for university-level exams
were processed and annotated by graduate students
specializing in mathematics or computer science.
The description of knowledge-based questions is
provided in Sec. 2.2.

In addition to the self-collected datasets de-
scribed above, we also incorporate questions
from the following open-source datasets: CE-
VAL (Huang et al., 2023), MMLU (Hendrycks
et al., 2021a), Arithmetic-HG, Math401 (Yuan
et al., 2023) and SciBench (Wang et al., 2024).
All open-source datasets we used are MIT License.
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A.3 Quality Screening

Given the wide variety of sources and types of
questions, we notice that the following issues may
affect the benchmark quality: 1. Intrinsic errors
in the questions, such as being unanswerable or
having multiple correct answers. 2. Questions of
low evaluation value, too difficult or too trivial for
the intended education stage.

All of the above situations can easily lead to
unstable model responses and increased probability
of incorrect answers in CircularEval. To address
these issues, we employ a novel semi-automated
question filtering approach for quality screening.

Specifically, we use GPT-4 to perform Circular
Evaluation (CE) on all questions. We then select
questions that GPT-4 answered incorrectly 0O, 1, or
2 times out of four attempts (CE — 0, CE — 1,
CE — 2) for manual review to ensure the overall
question quality.

B Detailed Experimental Results
B.1 THEORY AND APPLICATION

The corresponding results is presented in Table 5.

B.2 BILINGUAL

The corresponding prompt is presented in Table 6.



Table 5: Detailed Results of Theory and Application Score on MathBench (Theory/Application)

Models Primary Middle High College
*API Models
GPT-3.5 66.8/69.0 50.9/27.7 43.8/17.3 47.5/17.0
GPT4 85.4/80.3 78.3/61.3 70.9/42.3 79.8/38.3
QOpen-Source Chat Models
ChatGLM3-6B 38.4/427 31.2/11.7 20.0/3.0 12.0/0.5
Yi-6B-Chat 46.2/36.0  33.3/7.3  19.4/3.7 16.8/1.3
InternLM2-Chat-7B 67.3/67.7 57.0/25.0 44.9/143 38.8/6.3
Qwen-7B-Chat 51.7/48.7 43.3/22.0 30.7/9.7  29.1/5.5
Deepseek-7B-Chat 33.0/45.7 26.0/50 15.4/377 16.6/1.8
Baichuan2-13B-Chat 58.1/50.3 44.3/1477 29.9/3.3  25.0/3.7
Qwen-14B-Chat 70.9/61.3 61.8/36.7 45.9/19.7 46.5/7.8
InternLM2-Chat-20B 64.3/75.7 55.2/39.7 43.8/23.7 32.9/13.7
Yi-34B-Chat 69.3/60.3 52.2/23.7 39.0/7.3  32.9/2.7
Deepseek-67B-Chat 78.1/72.6  63.8/33.0 53.5/19.0 60.9/12.7
Qwen-72B-Chat 89.4/71.0 76.9/52.7 64.9/30.7 66.3/15.3
AMathematical Models

MammoTH-7B 11.8/24.3  7.6/3.0 8.3/1.3 6.3/1.0

Metamath-Llemma-7B 21.2/49.3 23.3/9.0 22.0/9.0 16.1/4.0
InternL.M2-Chat-Math-7B ~ 64.9/67.0 57.7/40.3 50.7/18.0  46.5/7.3
Deepseek-Math-7B-Instruct  73.3/74.0 54.7/29.7 48.5/21.3  50.2/9.7
Deepseek-Math-7B-RL 78.9/82.7 69.7/44.7 59.9/31.0 68.0/17.3
MammoTH-13B 27.9/41.7 16.4/5.0 15.7/40 16.8/4.3
InternLM2-Chat-Math-20B  72.2/70.0 68.0/43.0 59.4/24.3 52.5/11.3
MammoTH-70B 57.9/60.7 45.2/11.0 38.9/8.3  43.7/5.3

C Extra Analysis C.2.1 Misunderstandings of concepts

C.1 Prompts Demonstration

Please refer to the respective prompt block for a
detailed demonstration.

C.1.1 English Open-ended test

The corresponding prompt is presented in Fig-
ure 17.

C.1.2 Chinese Open-ended test

The corresponding prompt is presented in Fig-
ure 18.

C.1.3 English single choice with reasoning
The corresponding prompt is presented in Fig-
ure 19.

C.1.4 Chinese single choice with reasoning

The corresponding prompt is presented in Fig-
ure 20.
C.2 Error Types Demonstration

Please refer to the respective cases for a detailed
error types demonstration.
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The corresponding case is presented in Figure 8.

C.2.2 Flawed reasoning

The corresponding case is presented in Figure 9.

C.2.3 Misaligned with the question

The corresponding case is presented in Figure 10.

C.2.4 Exceed max out length

The corresponding case is presented in Figure 11.

C.2.5 Responses constrained to Options

The corresponding case is presented in Figure 12.

C.2.6 Non-adherence to the prompt

The corresponding case is presented in Figure 13.

C.3 Reasong Paths Demonstration
C.3.1 Small-scale chat model

The corresponding case is presented in Figure 14.

C.3.2 Large-scale chat model

The corresponding case is presented in Figure 15.



Table 6: Detailed Results of Bilingual Score on MathBench (EN/CN).

Models Primary Middle High College
*API Models
GPT-3.5 76.5/59.3 39.2/25.3 41.7/33.4 42.9/21.5
GPT-4 79.1/86.6  67.3/52.3 66.1/67.2 63.4/54.7
QOpen-Source Chat Models
ChatGLM3-6B 44.4/36.7 19.7/13.8 16.4/15.9  6.2/6.3
Yi-6B-Chat 42.9/39.2 19.5/17.5 13.0/13.7  9.6/8.5
InternLM2-Chat-7B 67.4/67.5 36.2/32.5 36.2/36.4 29.6/15.5
Qwen-7B-Chat 48.9/51.4 24.8/26.2 22.8/32.0 19.5/15.1
Deepseek-7B-Chat 43.4/352 16.3/11.7 12.9/9.2 9.7/8.7
Baichuan2-13B-Chat 54.9/53.6 25.3/23.0 18.5/254 17.6/11.1
Qwen-14B-Chat 64.8/67.4 36.9/42.6 33.1/51.4 27.6/26.8
InternLM2-Chat-20B 75.2/64.8 47.6/32.3 40.9/41.6 30.6/16.0
Yi-34B-Chat 62.0/67.6 28.6/31.6 26.3/35.7 16.5/19.1
Deepseek-67B-Chat 80.2/74.3 47.1/36.0 43.0/43.2 50.6/33.6
Qwen-72B-Chat 79.0/81.1 53.1/54.6 46.8/70.7 41.3/40.4
AMathematical Models
MammoTH-7B 26.8/9.4 8.2/1.1 8.5/2.5 6.7/0.7
Metamath-Llemma-7B 47.3/23.3  21.7/6.5 24.2/10.9 14.3/59
InternLM2-Chat-Math-7B 67.9/67.0 33.2/46.8 31.5/64.2 29.4/28.5
Deepseek-Math-7B-Instruct  71.5/75.8 33.6/39.1 32.8/48.7 27.8/32.0
Deepseek-Math-7B-RL 83.1/78.4 54.1/45.3 48.5/57.4 46.8/38.6
MammoTH-13B 49.6/19.9 17.7/3.4  15.1/5.0 15.9/5.2
InternLM2-Chat-Math-20B  69.4/69.9 36.4/47.2 33.7/68.3 30.8/29.1
MammoTH-70B 70.2/48.3 31.0/19.9 29.9/22.7 30.4/18.6

C.3.3 Math model

The corresponding case is presented in Figure 16.
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C.3.1 Misunderstandings of Concepts

Prompt:

Question: Let R be aring and let U and V' be (two-sided) ideals of R. Which of the following
must also be ideals of R?
L{ut+v:ueUandveV}
IL {uv:ueUandv eV}
M. {z:ze€Uandz € V}
Options:

(A) II only

(B) III only

(C) I and II only

(D) I and III only

> X X

Incorrect Model Answer:

1. {u+v:u € Uand v € V} is not necessarily an ideal of R. This is because the set may not be
closed under the ring operation. For example, if u € U andv € V,butu+v ¢ Uoru+v ¢ V,
then « + v may not be in the set {u +v:u € U andv € V'}.

2. {uv : w € Uandv € V} is an ideal of R. This is because for any r € R, u € U, and
v € V, we have r(uv) = (ru)v € UV, and (wv)r = u(vr) € UV. Thus, UV is closed under left
and right multiplication by elements of R. Also, if ujvi, ugvy € UV, then (ujv1) — (ugve) =
U1V — ugvy = uivy + (—ugvy) € UV, since —ugve € UV because V is an ideal. Therefore,
UV is anideal of R.

3. {x : x € U and x € V} is not necessarily an ideal of R. This is because the set may not be
closed under the ring operation. For example, if u € U and v € V, but uv ¢ U or uv ¢ V, then
uwv may notbeinthe set {x : x € U and z € V'}.

Therefore, the correct answer is option II. The answer is: A

Error Analysis:
In crafting its response, the model fails to accurately grasp the concept of an ideal within a ring.

Figure 8: An example of misunderstandings of mathematical concepts.
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C.3.2 Flawed Reasoning

Prompt:
Question: Which of the following circles has the greatest number of points of intersection with
the parabola 22 = 5 + 4?

Options:

A) 22 +y? =2 X
B)z?+42=9

(C) 2% +y* =16 X
D)z?+y*=1 X

Incorrect Model Answer:

Step 1: Understand the problem We are given a parabola, 22 = y + 4, and four circles. We need
to find which circle has the maximum number of points of intersection with the parabola.

Step 2: Analyze the options Let’s analyze each circle one by one:

Option A: 22 + 32 = 2 This equation represents a circle centered at the origin (0, 0) with radius
v/2. To find the points of intersection between this circle and the parabola, we can substitute
y = x2 — 4 into the circle’s equation and see if there are any real solutions for z.

Option B: 22 + 32 = 9 This equation represents a circle centered at the origin (0, 0) with radius 3.
We can follow the same process as in Option A to find the points of intersection.

Option C: 22 4 y? = 16 This equation represents a circle centered at the origin (0, 0) with radius
4. Again, we can substitute y = 22 — 4 into the circle’s equation and look for real solutions.
Option D: 22 + y? = 1 This equation represents a circle centered at the origin (0, 0) with radius 1.
We will follow the same process as before.

Step 3: Compare the results After analyzing all the options, we find that:

Option A has two points of intersection.

Option B has two points of intersection.

Option C has four points of intersection.

Option D has no points of intersection.

Step 4: Choose the best answer Based on our analysis, Option C has the greatest number of
points of intersection with the parabola. Therefore, the correct answer is option C.

Error Analysis:

The model accurately grasps the mathematics of parabolas and circles, using equations to identify
roots correctly. However, errors in subsequent reasoning led to inaccuracies in calculating the
intersections between circles of various sizes and the specified parabola. Therefore, we classify
this as a correct pathway of reasoning but with errors.

Figure 9: An example of flawed Reasoning despite logical consistency.
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C.3.3 Misaligned with the Question

Prompt:

Question: For how many positive integers k does the ordinary decimal representation of the
integer k! end in exactly 99 zeros? A. None B. One C. Four D. Five
Options:

(A) None

(B) One

(C) Four

(D) Five

> X X

Incorrect Model Answer:
Let the number of trailing zeros be m. The number is in the form of 10™ = (2™)(5™). m
must be a multiple of both 2 and 5. There are four such numbers: 0, 10, 20, and 30. The answer is C.

Error Analysis:
The model overlooks discussing the tails of the factorial of decimal numbers in the problem and
instead draws an irrelevant conclusion.

Figure 10: An example of reasoning misaligned with the query’s intent.
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C.3.4 Exceed max out length

Prompt:

Question: Let Y] < Ys < Y3 < Yy < Y5 < Yj be the order statistics of a random sample of size
n = 6 from a distribution of the continuous type having (100p)th percentile 7,. Compute

(@) P (Ya < mo5 < Y5).

Options:

(A)-2.7812 X
(B)0.7812

(©)0.7762 X
(D) -0.7028 X

Incorrect Model Answer:

1. The order statistics Y7 < Yo < Y3 <Yy < Y5 < Y5 of a random sample of size n = 6 from a
distribution of the continuous type having (100p) th percentile 7.

2. We want to compute P (Y2 < mp5 < Y5).

3. The probability P (Y, < mp5 < Y3) is equal to the probability that the 2nd order statistic is
less than the 50th percentile (median) and the 5th order statistic is greater than the 50th percentile
(median).

4. Using the concept of order statistics, we know that Y5 is the 2nd smallest value in the sample,
Y5 is the 5th smallest value in the sample, and 7g 5 is the median of the distribution.

5. The probability P (Ys < w5 < Y5) is equal to the probability that exactly 2 out of the 6 sample
values are less than the median and exactly 5 out of the 6 sample values are greater than the median.
6. This is a binomial probability problem with parameters n = 6, p = 0.5, and we want to find
P(X =2)and P(X = 5), where X is the number of sample values less than the median.

7. Using the binomial probability formula, P(X = 2) = (5)(0.5)2(0.5)* = 15 x 0.25 x 0.0625 =
0.234375.

8. Similarly, P(X = 5) = ($)(0.5)°(0.5)! = 6 x 0.03125 x 0.5 = 0.09375.

9. The probability P (Y2 < w5 < Y3) is the product of these two probabilities,

Error Analysis:

The model demonstrates a clear grasp of quartiles and probability distributions. However, due to
extensive reasoning rounds, responses often exceed the text length limit, resulting in truncation.
Additionally, there is an error in the model’s final statement concerning the probability product.

Figure 11: An example of responses exceeding the predefined character limit.
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C.3.5 Responses Constrained to Options

Prompt:
2 -1+

Question: If x = 3i andy = 4 , find (y,y).

1—12 —1—1
Options:
(A) 16.0
(B) 16.7 X
(C)-17.9 X
(D) -18.6 X

Incorrect Model Answer:
To find the dot product of two vectors, we take the sum of the products of their corresponding
components. Therefore, the correct answer is option B. 16.7

Error Analysis:
The model directly provides an answer without elaborating on the reasoning process behind it,
making it challenging to ascertain the cause of the incorrect response.

Figure 12: An example of responses constrained to options.
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C.3.6 Non-adherence to the Prompt

Prompt:

Question: Let M be a 5 x 5 real matrix. Exactly four of the following five conditions on M are
equivalent to each other. Which of the five conditions is equivalent to NONE of the other four?
Options:

(A) For any two distinct column vectors w and v of M, the set {u, v} is linearly

independent.

(B) The homogeneous system M x = 0 has only the trivial solution. X
(C) The system of equations Mx = b has a unique solution for each real 5 x 1 X
column vector b.

(D) The determinant of M is nonzero. X

Incorrect Model Answer:

Let’s analyze condition A. If for any two distinct column vectors u and v of M, the set {u, v} is
linearly independent, then it means that no column vector can be written as a linear combination of
the others. This implies that the columns of M are linearly independent.

Step 2: Now let’s consider condition B. The homogeneous system Mz = 0 has only the trivial
solution if and only if the null space of M consists only of the zero vector. This is equivalent to
saying that the columns of M are linearly independent.

Step 3: Next, we look at condition C. The system of equations Mx = b has a unique solution
for each real 5 x 1 column vector b if and only if the rank of M is equal to 5. Since Misa 5 x 5
matrix, this means that the columns of M must be linearly independent.

Step 4: We now examine condition D. The determinant of M is nonzero if and only if the columns
of M are linearly independent.

Step 5: From steps 1-4, we see that conditions A, B, C, and D are all equivalent to each other,
meaning they are all equivalent to the statement "the columns of M are linearly independent."”
Therefore, the condition that is equivalent to NONE of the other four is condition E, which is not
given in the options.

Therefore, the correct answer is option E (not given).

Error Analysis:

The model does not provide answers in the given options.

Figure 13: An example of non-adherence to the prompt.

19




C.4.1 Reasoning Path of the Small-Scale Chat Model

Prompt:

Question: Alma bought a laptop computer at a store that gave a 20 percent discount off its original
price. The total amount she paid to the cashier was p dollars, including an 8 percent sales tax on
the discounted price. Which of the following represents the original price of the computer in terms
of p?

Options:

(A) ks X
(B) (0.8)(1.08)p X
(© (0.8)2(71.08)

(D) 0.88p X

Model Answer:

The original price of the laptop is z. After the 20% discount, the price becomes 0.8x. We also
know that the total amount Alma paid to the cashier, including the 8% sales tax, was p. So we can
set up the equation:

0.8z +0.08z =p

Simplifying this equation, we get:

0.96z =p

Now we can solve for x:

x = p/0.96

x = 0.88p

Therefore, the original price of the computer in terms of p is 0.88p. Option D is the correct answer.
Reasoning Path Analysis:

The model’s reasoning is predicated on an inaccurate interpretation of the tax calculation. Neverthe-
less, the mathematical reasoning employed by the model is comprehensive and logically coherent
despite simple errors, indicating a sound mathematical logic within the reasoning trajectory of the
small-scale chat model.

Figure 14: An example of reasoning path of the small-scale chat model.
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C.4.2 Reasoning Path of the Large-Scale Chat Model

Prompt:

Question: It is known that log,(x) = 5. Give the value of log,(2x). Explain your answer.
Options:

(A)6

(B) 12

(©) 36

(D)7

> X X

Model Answer:

Step 1: We are given that log,(z) = 5.

Step 2: Our goal is to find the value of log, (2x).

Step 3: Let’s use the property of logarithms that says log, (mn) = log,(m) + logy(n).

Step 4: In our case, we can rewrite 2z as 2 - . So, we have:

logy (2r) = logy(2) + log(x)

Step 5: We know that log,(2) = 1, because 2! = 2. And we also know that log,(z) = 5 (from the
problem statement). So, we can substitute these values in:

logy(22) =1+5

Step 6: Adding 1 and 5 gives us:

log,(2x) =6

Therefore, the correct answer is option A.

Reasoning Path Analysis:

The model’s reasoning paths exhibit evident recursive relationships, cohesive logical connec-
tions, and well-defined objectives. Additionally, the model demonstrates adept utilization of
pertinent knowledge references while responding to questions, thereby enhancing its mathematical
comprehension and facilitating the provision of comprehensive and lucid reasoning paths.

Figure 15: An example of reasoning path of the large-scale chat model.
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C.4.3 Reasoning Path of the Math Model

Prompt:
Question: The first term of an arithmetic sequence is 18. The sum of the first six terms of the
sequence is equal to the sum of the first seven terms.

Show that the sum of the first 13 terms of the sequence is 0 and calculate the 13th term of the
sequence.
Options:
(A)-18
(B)-16
©)-14
(D) -20

> X X

Model Answer:

13th term of the sequence is 0.

Let a be the first term and d be the common difference.
The sum of the first 6 terms is:

S6 =6/2[2a + (6 — 1)d] = 3(2a + 5d) = 6a + 15d.
The sum of the first 7 terms is:

ST="7/2[2a+ (7T—1)d] =7/2(2a + 6d) = 7(a + 3d) = 7a + 21d.
Given that S6 = S7, we have:

6a + 15d = 7a + 21d.

Rearranging terms, we get:

a = —6d.

The sum of the first 13 terms is:

S13 =13/2[2a + (13 — 1)d] = 13/2(2a + 12d) = 13(a + 64d).
Substituting a = —6d, we get:

S13 =13(—6d +6d) =13 x 0 = 0.

The nth term of an arithmetic sequence is given by:

an =a+ (n —1)d.

Substituting a = —6d, we get:

an=—6d+ (n—1)d=d(—6+n—1)=d(n—7).
For the 13th term, we have:

al3 =d(13—7) = 6d.

But we know that a = —6d, so:

ald = 6d = —a.

Since the first term is 18, we have a = 18, so:
ald = —18.

Therefore, the correct answer is option A. The answer is .

Reasoning Path Analysis:

The mathematical model correctly invokes the formulas and properties of the equivariant series in
its reasoning path and uses mathematical reasoning to draw conclusions. It correctly applied the
summation and generalization formulas of the equal difference series and used algebraic operations
to derive the results. The model was derived without logical errors, each step was based on the
results of previous reasoning, and the derivation was consistent with the known conditions.

Figure 16: An example of reasoning path of the large-scale chat model.
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C.1.1 English Open-ended test

HUMAN:’Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today.
After they are done, there will be 21 trees. How many trees did the grove workers plant today?’

’A: We start with 15 trees. Later we have 21 trees. The difference must be the number of
trees they planted. So, they must have planted 21 - 15 = 6 trees. The answer is 6.’

HUMAN:’Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the
parking lot?’

"A: There are 3 cars in the parking lot already. 2 more arrive. Now there are 3 + 2 = 5 cars.
The answer is 5.

HUMAN:’Q: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do
they have left in total?”’

"A: Leah had 32 chocolates and Leah’s sister had 42. That means there were originally 32 +
42 =74 chocolates. 35 have been eaten. So in total they still have 74 - 35 = 39 chocolates. The
answer is 39."

HUMAN:’Q: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops.
How many lollipops did Jason give to Denny?’

’A: Jason had 20 lollipops. Since he only has 12 now, he must have given the rest to Denny.
The number of lollipops he has given to Denny must have been 20 - 12 = 8 lollipops. The answer
is 8.

HUMAN:’Q: Shawn has five toys. For Christmas, he got two toys each from his mom and dad.
How many toys does he have now?’

"A: He has 5 toys. He got 2 from mom, so after that he has 5 + 2 = 7 toys. Then he got 2
more from dad, so in total he has 7 + 2 =9 toys. The answer is 9.’

HUMAN:’Q: There were nine computers in the server room. Five more computers were installed
each day, from monday to thursday. How many computers are now in the server room?’

"A: There are 4 days from monday to thursday. 5 computers were added each day. That
means in total 4 * 5 =20 computers were added. There were 9 computers in the beginning, so now
there are 9 + 20 = 29 computers. The answer is 29.’

HUMAN:’Q: Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost
2 more. How many golf balls did he have at the end of wednesday?’

’A: Michael initially had 58 balls. He lost 23 on Tuesday, so after that he has 58 - 23 =35
balls. On Wednesday he lost 2 more so now he has 35 - 2 = 33 balls. The answer is 33.
HUMAN:’Q: Olivia has $23. She bought five bagels for $3 each. How much money does she
have left?’

’A: She bought 5 bagels for $3 each. This means she spent 5 * $3 = $15 on the bagels. She
had $23 in beginning, so now she has $23 - $15 = $8. The answer is 8.’

HUMAN:’Q: {question}’

’A: {answer}’

Figure 17: An example prompt of English Open-ended test.
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C.1.2 Chinese Open-ended test

HUMAN: "Q: MRHFE ISERI - K55 T A RS REGEMRPFAEM A - G, A28
e MRS T ARASRFE T 2 /D2

A BATIISERI TR - 5 RE 2100 - Z(E D E &M TR AR AREE - LA,
AT B T 21 - 15 = 61fH . ZREe
HUMAN: *Q: tHS = EG3ME, E2MEIHR, EEGEEL/DWHE?

A BEEGCEEIHE . JGERT2WE . EE3 +2=558%  BEXES
HUMAN: *Q: BEER2HITw 1, WEIREE425k - R M1z 7358, MilELq T
£/

A BREE3RHITE S, Leah MR IR H 428 . X BEWREFEARG32 + 42 = 7451757
TTo HENZHE T 358k o BT LABA TS 0T R 74 - 35 = 398RT5 78 77 - B HRZE39°
HUMAN: *Q: RZ&RE 20 Ml - 25 FHIB— it iE - T7ETason L) 12 b -
NERGFHRZ DA ek

A IRFRE20 B ERE o RO IERAE R T 124, B DU AR R T BIERSE T
W o LA FHRHIBE B E L E220-12=87. ZERES
HUMAN: "Q: WIFE RN IE - AR, MNP EEMEERESEE T It
. WEMmE L D010 ImAE?

A ES IR - MMNBEIREER T 21, FTUZ EMES +2=71tE - RE1
MNeEEI AR T2, LU MET7 +2=91t8 . HZEEY
HUMAN: °Q: RS 235 B B E LG EiK . WE—Z| USRI A & BN . IERSS
BEREZ/DEBEM?

A: WA —BIFINE4R . BREINSE B . XEKRESILEINT4 *5=205H
i o —HFIREIG HME, BTRAIRAER9 + 20 = 295 FLN - & ZRAE29°
HUMAN: °Q: i /RESS M R/RKRER . BT, MERT23ME/RREK. BEIH=, 1
ERT 24 BIAZEEREMIAR N 2 /D E RRER?

A AR —TFRESS N R . BEI M EKR 7234, TLLZ EMIEF TSS - 23 =
350 Ek . BEIZAMER T2, FrIIAEMIAT 35 -2 =338k BRE3S
HUMAN: °Q: BA#H23ETT . WHBEIM3ETHNHRET A ATV . Wb F £
e o

A L3R TN E TS EE . XEREWET S H AR TS *3 =
15870 W—HF1aHE23%ETT, rLAFEMILR 23 - 15=8%TC . BHRES
HUMAN: ’Q: {question}’

’A: {answer}’

Figure 18: An example prompt of Chinese Open-ended test.

C.1.3 English single choice with reasoning

"Here is a multiple-choice question about mathematics. Please reason through it step by step, and
at the end, provide your answer option with *Therefore, the correct answer is option X’, Where *X’
is the correct option you think from A, B, C, D. Here is the question you need to answer:
{question}

Let’s think step by step: "

Figure 19: An example prompt of English single choice with reasoning.
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C.1.4 Chinese single choice with reasoning

"IN R RTREMRIUEFE, BIR—P— P, HERERITUERNE
WX EHER, HP X RhEWA, B, C, DFRIAHIERAEDT - T2 /R EErR
i

{question}

EA—H—BEE.

Figure 20: An example prompt of Chinese single choice with reasoning.
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