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Abstract—Pose estimation is an essential technology for indus-
trial robots to perform precise gripping and assembly. The state-of-
the-art deep learning-based approach uses an indirect strategy, i.e.,
first finding local correspondence between the 2-D image and 3-D
model, and then using the perspective-n-point and RANSAC meth-
ods to calculate the poses of ordinary objects. However, the metal
parts in industry are reflective and textureless, making it difficult
to identify distinguishable point features to establish 2-D–3-D cor-
respondences. To address this problem, in this article, we propose
a novel deep learning based two-stage method for pose estimation
of reflective textureless metal parts, which accurately estimates the
target pose using monocular red green blue (RGB) images. Since
contours play an important role in both keypoints prediction and
pose estimation stages, our method is named ContourPose. First,
an additional contour decoder is adopted to implicitly constrain
the keypoints prediction in the former stage, which improves the
accuracy of the keypoints prediction. Then, the predicted contour
of the previous stage is taken as geometric prior that is used to
iteratively solve for the optimal pose. Experiments indicate that
the proposed approach for reflective textureless metal parts has a
significant improvement over the state-of-the-art approaches.

Index Terms—Deep learning, reflective textureless metal parts,
six degrees of freedom (6-D) pose estimation.

I. INTRODUCTION

S IX degrees of freedom (6-D) pose estimation, i.e., recov-
ering the rotation and translation of an object in the 3-D

Euclidean space, is a key task for robotic vision. With the
fast development of intelligent manufacturing, pose estima-
tion of industrial objects has become a crucial technology for
tasks such as part gripping, unit assembly, and human–machine
collaboration [1].
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Metal parts are the main components of machines and indus-
trial products. Although many pose estimation methods have
achieved promising results in recent years, the reflective and
textureless nature of metal parts poses a great challenge to them
due to their heavy reliance on surface features.

The existing methods to handle this task can be classified
as RGB image-based or red green blue–depth (RGB-D) image-
based methods. In terms of ordinary textured and nonreflective
objects, the RGB-D based method achieves higher accuracy
and robustness because they use additional depth information to
estimate the pose. However, RGB-D cameras have limited ability
to accurately capture depth information for non-Lambertian
materials, such as metal parts, which often produce fragmented
depth images [2]. In addition, it is expensive to acquire high pre-
cision point clouds of objects with industrial-grade depth camera
cameras or 3-D scanners, while the cost of consumer-grade depth
cameras is considerably low. Therefore, it is more appropriate
to use RGB monocular cameras for 6-D pose estimation of such
objects.

The RGB-based methods also have limitations. Traditional
pose estimation methods use various types of effective image
feature descriptors, such as SIFT [3], SURF [4], and ORB [5],
to establish 2-D–3-D correspondences based on the similarity
of these descriptors. Then, the target pose can be obtained
by solving the Perspective-n-Point (PnP) problem. However,
these methods are only applicable to objects with rich textures.
Reflective textureless metal parts barely show apparent gradient
variations in images and these descriptors will not be able
to find an exact correspondence. To address this issue, some
methods use geometric features such as lines [6], moments [7],
or edges [8] as templates to retrieve the best matching result.
However, these methods cannot achieve high accuracy because
the matched result is chosen from a limited number of samples.
Increasing the number of templates to enhance accuracy requires
more computational resources and may result in matching errors
when too many templates are used, consequently leading to pose
estimation errors.

In recent years, deep learning has been widely used in pose
estimation for its significant improvements compared to tradi-
tional methods. For example, some methods use convolutional
neural networks (CNNs) to regress 2-D keypoints, establish
2-D–3-D correspondences, and then use the PnP algorithm to
calculate the pose. If only sparse keypoints, e.g., several or tens
of keypoints, are selected to predict, such as BB8 [9], PVNet
[10], and YOLO-6D [11], these methods will be referred to
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as pose estimation methods using sparse keypoint predictions.
On the contrary, if it needs to establish pixelwise 2-D–3-D
correspondences of the objects in the image, such as CDPN
[12] and DPOD [13], these methods will be instead indicated
as pose estimation methods using dense keypoint predictions.
Although these methods work well on public benchmarks (e.g.,
LINEMOD [14] and YCB-Video [15]) of ordinary objects, they
have limitations in measuring metal parts. For example, PVNet
predicts the location of 2-D keypoints by pixelwise voting, but
the textureless surface of metal parts does not provide effective
semantic information. In addition, due to the reflective nature of
metal parts, slight changes in shooting angles can lead to large
color differences in the images, which can cause incorrect cor-
respondences with dense methods, such as DPOD and CDPN.

Although the current method of dense keypoints prediction
achieves superior performance for the pose estimation of ordi-
nary objects, the surface of reflective and textureless metal parts
can provide little semantic information. To address this issue,
we propose a novel method, called ContourPose. The proposed
method can be divided into two stages.

In the first stage, the proposed method uses the object con-
tours to implicitly constrain the prediction of keypoints. We
call this stage ContourNet. In the second stage, the proposed
method utilizes the contours predicted in the previous stage as
geometric priors to achieve higher accuracy in solving the pose.
Experiments show that it improves the accuracy of the final pose
estimation compared to the widely used RANSAC + PnP [16]
method.

In summary, this work has the following contributions.
1) A novel pose estimation approach is proposed for re-

flective textureless metal parts, which achieves superior
performance on industrial metal parts.

2) A new deep learning framework is proposed for the pose
estimation of reflective textureless metal parts. This frame-
work adopts an additional contour decoder to implic-
itly constrain the prediction of keypoints. The proposed
method does not need a predetector such as YOLO [17]
or RetinaNet [18] to locate the target object.

3) A new method is proposed to iteratively solve the optimal
pose using the contour as a geometric prior. The proposed
method improves the accuracy of final pose estimation
compared to widely used RANSAC-based methods.

II. RELATED WORK

This section introduces recent related deep learning-based
6-D pose estimation methods dealing with RGB images, which
can be divided into the following four categories.

A. Direct Pose Regression Methods

Given an input image, these methods output the 6-D pose of
the target object directly using CNNs; these methods are also
referred to as single-stage methods in some studies. Kendall
et al. [19] introduces a CNN architecture that regresses the
camera pose directly from an RGB image, which is similar
to object pose estimation. SSD-6D [20] extends the popu-
lar single-shot multibox detector (SSD) [21] object detection
framework to cover the full 6-D pose space by adding a

translation and orientation regression module. However, SSD-
6D predicts rotation by scoring the discrete views, so it needs to
add the pose refinement process to get better results. PoseCNN
[15] decouples translation and rotation prediction to predict
6-D object pose. The 3-D rotation of the object is represented
using unitary quaternions. However, predicting 3-D rotations
is difficult because the nonlinearity of the rotation space makes
CNNs less generalizable. The methods mentioned above all rely
on the feature extraction ability of CNNs, which cannot achieve
good results on textureless industrial objects and are difficult to
apply to more challenging reflective metal parts.

DenseFusion [22] designs a dense pixel-level fusion method
that integrates features of RGB data and point clouds in an
appropriate way to obtain good results. But these point cloud
based methods are not applicable to metal parts because it is
difficult to obtain reliable point clouds for this kind of objects
due to their reflective nature. EfficientPose [23] achieves end-
to-end multiobject pose estimation by extending an efficient
and accurate 2-D object detection method EfficientDet [24].
However, pose estimation methods based on object detection
usually depend on the results of prior detection, but the features
of reflective metal parts are different under different lighting and
viewing angles, making it difficult to train a detector for these
reflective parts.

B. Template Matching-Based Methods

These methods discretize the rotation space into sampled
templates. Given an input image, they match the closest template
from the database, thus bypassing the explicit labeling of pose
ambiguity. Some traditional methods [14] create features by
hand, which is very time consuming. Spares templated-based
(STB) method [6] uses high-level geometric features and the
correlation of straight contours to estimate the 6-D pose of metal
parts. But this method is sensitive to background noise. AAE [25]
trains an autoencoder with synthetic data, which encodes the
rotation of the object into a latent space. There, pose ambiguity
is implicitly handled through similar latent codes for symmetric
poses. Multipath-AAE [26] extends the AAE [25] to multiple
objects. However, these methods have some limitations, such as
the domain gap between real and synthetic data and the regularity
of the latent space. Although Wen et al. [27] introduce edges
to supervise the regularity of the latent space, addressing the
domain gap problem remains challenging, particularly for metal
parts, due to the difficulty in rendering realistic reflections of
these parts. The method [28] proposes an approach to estimate
pose by using YOLO [17] and LINEMOD [14]. But the accuracy
of this method is not high and can only be used for the bin picking
task. GFI [29] proposes a generative feature-to-image network
to generate edge templates for pose estimation by matching the
most consistent edges. This method achieves good results for
pose estimation of metal parts but is computationally slow.

C. Render and Compare Methods

Another category of methods is based on rendering synthetic
images of the object model under different poses and comparing
them with the observed image. These methods rely on iterative
procedures that consider previous estimate of a pose pk and
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predict an update Δpk+1 that will make current internal mesh
state to better fit the observed object. For example, BB8 [9]
designs an iterative refinement process step to compare the
input image and the rendering of the initial pose object using
another CNN, thereby improving the prediction of 2-D projec-
tions. Given an initial pose estimation, DeepIM [30] designs a
network to iteratively refine the pose by matching the rendered
image against the observed image, and gradually improves the
matching result by iteratively updating the rendered image.
CosyPose [31] optimizes the pose hypotheses using a multiview
consistency module that resolves conflicts and inconsistencies
and estimates the camera viewpoints. However, these methods
are not suitable for reflective metal parts because they rely on
renderers, which have difficulty in simulating the surface color
and texture changes of reflective parts under different lighting
conditions [32]. This variation results in significant differences
between rendered and real images, making it difficult to make
effective comparisons.

D. Keypoints Localization-Based Methods

These methods follow a two-stage pipeline for pose estima-
tion. They establish 2-D–3-D correspondence using a neural
network in the first stage, and then calculate the target pose using
the PnP and RANSAC methods in the second stage. The methods
for keypoints localization can be divided into two categories,
one is to select only several keypoints, e.g., several or tens of
keypoint for prediction, and this type of method is classified as
the sparse methods. The other category is to establish pixelwise
2-D–3-D correspondences of object in an image, and this type
of method is classified as the dense methods.

BB8 [9] uses CNN as a keypoints detector to output 2-D
coordinates of eight corner points of the object’s 3-D bounding
box. YOLO-6D [11] uses a YOLO [17] architecture to regress
keypoints. These methods output the keypoints directly through
a fully connected layer, which depend on the distribution of the
training images and lead to problems such as poor spatial gener-
alization and proneness to overfitting. Inspired by the success of
2-D human pose estimation [33], another category of methods
output pixelwise heatmaps of keypoints to improve accuracy.
The method [34] predicts heatmaps of multiple small blocks
independently and then overlays them to obtain accurate and
robust keypoints. PVNet [10] regresses pixelwise vectors point
at the keypoints and uses these vectors to vote for the location of
the keypoints. HybridPose [35] extends the approach of PVNet
[10] by utilizing a hybrid intermediate representation to express
different geometric information in the input image, including
keypoints, edge vectors, and symmetry correspondences. All
the above-mentioned methods preselect only a few keypoints,
classified as sparse methods. These methods are designed for
ordinary objects, and the selected keypoints usually do not have
semantic information. It is not appropriate for metal parts with
many semantic points, such as corner points and circle centers.

The methods where each pixel is used as a keypoint to
generate the corresponding prediction, we will refer to this as a
dense method. On some irregularly curved objects, the accuracy
and robustness of dense prediction are usually higher than that
of sparse prediction. Pix2Pose [40] outputs a 3-D coordinate

for each pixel of the object in the picture, thus establishing
dense 2-D–3-D correspondences. DPOD [13] considers that it
is difficult to directly predict 3-D coordinates, so it predicts UV
maps instead, and then establishes 2-D–3-D correspondence
through UV maps. CDPN [12] decouples the prediction of
rotation and translation; rotation is obtained by PnP calculation
and translation is determined by 2-D bounding box and depth
estimation, but the method requires a predetector. PSGMN [37]
utilizes the information from the 3-D model. First extracting the
features of the 3-D model using a graph convolutional neural
network, and then establishing the 2-D–3-D correspondences
through a pseudo-Siamese neural network.

However, due to the reflective nature of metal parts, the
colors of the object’s pixels in the image vary significantly
with the lighting conditions and the shooting angle. Moreover,
the surfaces of metal parts are less distinguishable than that
of textured objects. For this reason, methods regressing dense
keypoints might be less effective with this category of objects.
To handle this problem, we first predict sparse semantic points,
and then we use dense contour points for validation in the pose
estimation stage to iteratively solve for the optimal pose. Our
method combines the advantages of sparse and dense prediction.

III. PROPOSED APPROACH

In this article, we propose a novel 6-D pose estimation method
for reflective textureless metal parts in industry. The task of
6-D pose estimation is to detect the object and estimate its
3-D rotation and translation in the given image. The 6-D pose
represents a rigid transformation of the object coordinate system
to the camera coordinate system, where R denotes the 3-D
rotation and t denotes the 3-D translation.

At once at least three pairs of 2-D–3-D correspondences are
determined, [R|t] can be computed by solving the PnP problem.
Therefore, the key step of pose estimation is to obtain the precise
2-D–3-D correspondences. We estimate the object pose using
a two-stage pipeline: The first stage is a neural network that
predicts a heatmap representing the 2-D keypoints that we call
“ContourNet.” The second stage is an iterative pose optimization
algorithm that uses the object contours as prior information.
We call this stage Pose Evaluation using Contour as a Priori
(PECP). We observe that the contour of objects with sharp edges
is invariant to different viewing angles and lighting conditions.
In the first stage, with the constraint of contour, the keypoints
are constrained to be within the region of the target object in
the image, which allows our method to achieve high accuracy
without a predetector. In the second stage, the contour of the
previous stage is used as a geometric prior to iteratively solve
the optimal pose.

The architecture of ContourPose, which consists of two
stages, is shown in Fig. 1.

A. Keypoint Prediction With Implicit Constraints on Contour

1) Network Framework: The basic framework of the Con-
tourNet is shown in Fig. 1. In this stage, the input is an RGB
image of an object and a modified FCN model is proposed to
encode the image. To predict keypoints, the first step is to locate
the position of the target object in the image. Some methods
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Fig. 1. Overview of ContourPose. (a) Keypoints prediction with implicit constraints on contour, named ContourNet. In this stage, we predict the keypoints and
contours of the target object. (b) Pose estimation using contour as a priori. In this stage, the contour predicted in the previous stage is used as geometric priors to
eliminate outlier poses, and finally output the optimal pose in the result set.

[12], [13] use the result of the predetector as input so that
the input image contains only the target object. Other methods
[10], [35], [37] use masks and then locate keypoints within the
mask. We observe that for metal parts, the contour has richer
semantic information compared to mask. The contour can act
as a mask by restricting keypoints within the contour and also
establish implicit constraints with the predicted semantic points.
Therefore, we add a decoder for predicting contour to implement
implicit constraints on keypoints prediction. The predictions of
contour and keypoints heatmaps cotrain the parameters of the
encoder of this network, so the prediction of contour actually
affects the prediction of keypoints as well.

Many methods such as PVNet [10] and PSGMN [37] will
output both the keypoints information and the mask using only
one decoder. In other words, one part of the output tensor
represents the keypoints and the other part represents the mask.
However, our experiments in Section IV demonstrate that this
approach leads to the prediction of keypoints being completely
dependent on the contour. This means that the contours have a
very strong constraint on the keypoints. For example, in some
extreme cases, imprecise predictions of contours can result in
completely erroneous predictions of keypoints. Therefore, to
decouple the contour and the keypoints, we use one decoder to
output the contour and another decoder to output the heatmap
of the keypoints. This structure ensures that the contour has an
implicit constraint on the keypoints and prevents the keypoints
from being overly dependent on the contour.

Fig. 2 provides more detailed information about ContourNet.
Residual blocks [38] are utilized to convolute the input features.
To downsample the inputs and extract features at different scales,
we employ max pooling and stride convolutional layers. Dilated
convolution [39] can expand the receptive field and capture mul-
tiscale contextual information. The bilinear upsampling layer is
employed to increase the resolution of the low-resolution feature
map to the same size as the original input image. The skip
connection concatenates the feature maps of the residual blocks
before downsampling and after upsampling to preserve the raw
information of the image.

Fig. 2. ContourNet: keypoints prediction network with implicit constraints
on contours. Input a picture containing the target object, after the encoding–
decoding process, output the heatmap and contour of the keypoints of the object.
The design of decoder for heatmap and contour is identical, only the output
channels are different.

GivenC classes of objects andK keypoints for each class, our
network takes the H ×W × 3 RGB image as input, then pro-
cesses it with a fully convolutional architecture with ResNet-18
[38] as the backbone. When the resolution of the feature map
is downsampled to H/16×W/16, we discard the subsequent
downsampling and convolution steps of ResNet-18. Instead, we
add dilated convolutions to improve the receptive field of the
network. After that, we repeatedly apply upsampling and convo-
lution the feature map until its size is the same as that of the input
image, i.e., H ×W . Finally, we apply 1× 1 convolution on the
feature map to obtain the contour or keypoints heatmap. We im-
plement a skip connection between the decoder and the encoder
at the same resolution of the feature map. The predictions of key-
points and contours are obtained by two independent decoders.

ContourNet can be seen as a regression model for two tasks,
one is the regression of the keypoints heatmap, which we can
consider as a submodel of ContourNet, denoted by Φ, and the
other is the regression of the contour of the target object, which
is denoted by Λ. The heatmap follows a Gaussian distribution,
and each pixel of the heatmap represents the probability of the
keypoint being present at that location. The pixel with the highest
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probability is considered as the keypoint. To learn the heatmap,
we use �2 loss. The corresponding loss function is defined as

l(wE , wHD) =

K∑
k=1

�2(H̃k(wE , wHD)−Hk) (1)

H̃k = ΦwE ,wHD
(I) (2)

where wE represents the parameters of the encoder, wHD rep-
resents the parameters of the heatmap decoder, K is the number
of keypoints for each object, H represents the groundtruth of the
heatmap, H̃ represents the predicted heatmap, and I represents
the input image.

In the contour regression task, there is a problem of positive
and negative category imbalance in learning because the contour
of the object accounts for a small part. For this reason, we use the
weighted cross entropy as the loss function. The corresponding
loss function is defined as

l(wE , wCD) = − β
∑
p∈Y +

log(Ỹp = 1;wE , wCD)

− (1− β)
∑
p∈Y −

log(Ỹp = 0;wE , wCD) (3)

Ỹ = ΛwE ,wCD
(I) (4)

where wCD represents the parameters of the contour decoder,
Ỹ is the predicted contour, and p denotes each pixel in the
contour map. β = |Y −|/|Y + + Y −| and 1− β = |Y +|/|Y + +
Y −|, where |Y +| and |Y −| denote the edge and nonedge in the
contour ground truth. The final loss function of the ContourNet is
defined as

l(w) = l(wE , wHD) + ρl(wE , wCD) (5)

where w is the parameter of the whole network, which contains
the encoder wE , the heatmap decoder wHD, and the contour
decoder wCD. This shows that the contour and keypoints
heatmap regression tasks jointly train the network encoder, while
their respective decoders do not interfere with each other. ρ is a
hyperparameter to balance the two parts of the loss.

2) Keypoints Generation: Keypoints need to be defined
based on the model of the 3-D object. One simple approach is
to directly select the eight corner points of the 3-D bounding
box as keypoints. However, most of these points are not on
the objects and as such are less suited as prediction targets
[13], [15]. Common methods use the farthest point sampling
(FPS) [40] algorithm to select several points at the farthest
Euclidean distance on the model, such as PVNet [10]. However,
these methods are designed for ordinary object datasets, such
as LINEMOD [14] and YCB-Video [15], because most of these
objects are curved and it is difficult to manually select keypoints.
In contrast, Pavlakos [41] proposes to select semantic points as
keypoints, which is very suitable for metal parts, but the article
does not mention the specific details of how to select these points.

In fact, selecting appropriate keypoints is crucial for accu-
rate pose estimation. Unlike ordinary curved objects, metal
parts have more semantic points, such as corner points of con-
tours, the center of circles, midpoints of lines and arcs, among
others. Fig. 3 illustrates an intuitive and effective algorithm

Fig. 3. Keypoints generation process. (a) Establish 2-D–3-D correspondence
of candidate semantic points and store them in a hash table, N represents the
number of candidate semantic points. (b) Iterate through the training images
and record the frequency of candidate points with the semantic point detection
algorithm. (c) K points with the highest confidence are chosen as keypoints.

proposed for generating keypoints for metal parts. For each
class of parts, we traverse all its training images TS = {tsi|i =
1, 2, . . . , n} and then build a 2-D–3-D hash table for each image
H = {hi|i = 1, 2, . . . , n}, where n denotes the number of all
training images for each part. This hash table contains the 2-D–
3-D correspondence of candidate semantic points Scand. After
that, semantic point detection algorithms are applied to each
image to detect semantic points, such as circle centers, corner
points, and midpoints. Specifically, Hough transform is used to
detect circle centers and midpoints, while Shi–Tomasi corner
detection [42] is used to detect corner points. The semantic
points that appear most frequently in the perspective of the
training images are selected. Using the established hash table,
we locate the 3-D points corresponding to the 2-D semantic
points, and finally select K points into Spred as keypoints. The
keypoints selected by our method are evenly dispersed on the
object surface, which makes the PnP algorithm more stable.
It is worth noting that some previous methods have selected
a fixed number of keypoints, but since each metal part has a
different shape and its semantic points are not the same, K is
determined according to the part shape in our method. If the
object has less than eight semantic points, our method uses the
FPS algorithm to define the keypoints. Algorithm 1 shows the
flow of the keypoints generation algorithm.

B. Pose Estimation Using Contours as Geometric Priors

After obtaining the keypoints in the first stage, a common ap-
proach is to iteratively solve for the optimal pose by eliminating
the incorrect correspondence based on the RANSAC and PnP
methods. However, since RANSAC only uses the distribution
of points to distinguish between inner and outer points, the
RANSAC-based method works well for dense points but may
not be applicable when there are few points. To solve this issue,
we propose a method that utilizes the contour as geometric priors
to iteratively solve for the optimal pose.

Our approach is shown in Fig. 4. First, the proposed method
randomly samples four points from K points and uses the
EPnP [43] algorithm to calculate a temporary pose T in each
iteration.
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Fig. 4. Pose estimation using contours as geometric priors. (a) Randomly sample four correspondences. (b) Sampling dense contour points from the 3-D model.
(c) PECP. (d) Progressive sampling to solve the pose. (e) Output the optimal pose.

Algorithm 1: Keypoints Genration Process.

To validate our pose estimation, we sample dense points
on the contour of the 3-D model, which are referred to as
contour validation points S, as shown in Fig. 4(b). Specif-
ically, Si represents the set of all 3-D contour points. S =
{si|i = 1, 2, . . . ,m}, si = [xi, yi, zi, 1]

�, where m represents
the number of points. We calculate the image coordinate sys-
tem coordinates P of these points using the image projection
x model

P = κ[R|t]S (6)

κ =

⎡
⎣fx 0 cx
0 fy cy
0 0 1

⎤
⎦ (7)

where P denotes the projection of the contour validation points
S on the 2-D image, which is referred to as the projection
map. P = {pi|i = 1, 2, . . . ,m}, pi = [ui, vi, 1]

�, u, v denotes
its position in the pixel coordinate system. κ denotes the intrinsic
parameters of the camera, which represents the transformation
between the camera coordinate system to the image coordinate
system. R and t denote the 3-D rotation and translation of the
object coordinates, and [R|t] represents the object’s pose.

The accuracy of the pose is positively associated with the
overlap of the projection map and the contour image from
ContourNet. We refer to this algorithmic process as PECP.
Specifically, we convolve the contours predicted in the previous
stage. The convolution function is defined as

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (8)

H(u, v) = (G ∗ Ỹ )(u, v) =
∑
x

∑
y

G(x, y)Ỹ (u− x, v − y).

(9)

We use a Gaussian convolution kernel, where the size of the
convolution kernel size is 3, δ = 9. The probability distribution
map is modeled using a Gaussian function, where the closer a
pixel is to the contour, the higher its probability. With a given
pose, the confidence score can be calculated using the PECP
method

μT =
∑

p∈P (T )

H(ui(p), vi(p)), (10)

where μ represents the confidence score of the pose, H is the
probability distribution map, and P is the projection of the
contour validation points. If the confidence score is higher than
the threshold that we indicate with θ, we assign this score to the
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TABLE I
SYMBOLS AND DESCRIPTION IN THE POSE ESTIMATION STAGE

four correspondences which compute the pose

λi =

{
λi + μT − θ, μT > θ
λi, μT ≤ θ

(11)

where λ = {λi|i = 1, 2, . . . ,K} represents each corresponding
confidence. The value of θ is determined based on the number
of contour validation points, and in our experiments, it was
set to 1/3 m. We select four points from the correspondence
set obtained in the previous stage to calculate a temporary
pose T . Next, we calculate the confidence score μT of pose
T using PECP and (11), and assigned this score to the four
correspondences used to compute the pose. After I iterations,
the correspondence set sorted by confidence is obtained. The
number of iterations I can be calculated as follows:

I =
log(1− Pr)

log(1− r4)
(12)

where r denotes the probability that the sampled correspon-
dences are the correct ones. It is assumed that only four cor-
respondences are correct in the extreme cases, r = 4/K. Pr is
the probability of being correct at least once after I iterations.
After the iterations are completed, an initial pose is calculated
with the four highest confidence correspondences. PECP is used
to calculate the confidence of this pose, denoted as M . Then
the next highest confidence point is selected to solve for the
pose, and (11) is used to calculate its confidence, denoted as
Q. If Q > M , the point is kept and the value of M is updated;
otherwise, this point is discarded. When all the points in the
set λ are sampled, the optimal pose is obtained. All symbols in
this stage can be found in Table I. Our method improves the
robustness and accuracy of pose estimation compared to the
RANSAC-based method.

IV. EXPERIMENTAL RESULTS

In this section, we present the performance of ContourPose
compared to other models for 6-D pose estimation methods of
metal parts and describe the ablation experiments.

Fig. 5. Training dataset. Ten parts with different shapes are included.

Fig. 6. Test dataset with four background scenes. (a) Black background.
(b) Black background with texture. (c) Simulated rust background. (d) Reflective
metal background.

A. Experimental Setup

1) Dataset: We demonstrate our method on two datasets:
a dataset of reflective, textureless metal parts created by our
team, and the T-LESS [44] dataset. The reflective metal dataset
includes ten metal parts with varying shapes, as shown in Fig. 5.
Each part comprises 660 training images, and each image con-
tains only one object part. The test dataset comprises images with
multiple parts stacked up randomly, including some unrelated
parts, which increases the difficulty of pose estimation for the tar-
get object. The scenes in the test dataset are based on real indus-
trial scenes and can be divided into four cases: black background,
black textured background, rust background, and reflective metal
background, as shown in Fig. 6. Each type of background is
shot under four lighting cases, including bright artificial light-
ing, bright natural lighting, dim lighting, and artificial lighting.
Each category contains four scenes with different lighting and
different parts distribution, so we tested our method on a total
of 16 different scenes. The T-LESS dataset [44] contains 30
objects that lack color and texture information. Moreover, most
test images exhibit obvious occlusion or stacking.

The dataset used for evaluation resembles the actual environ-
ment of an industrial site and presents a challenging task for
pose estimation. Obtaining good results on these datasets would
demonstrate the feasibility of our approach in real industrial
settings.

2) Data Augmentation: Since there were only 660 training
images in reflective metal dataset, we rendered 6600 realistic
reflective and textureless synthetic images of the metal parts with
Blender [10]. Our network was trained at a ratio of 1:10 between
real and synthetic images. To create these synthetic images, we
first rendered the 3-D model surface to the glossy metal part
in the Blender GUI, and then distributed the sampled cameras
with viewpoints in a Fibonacci arrangement, with the camera
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Fig. 7. Synthetic picture of reflective metal parts. (a) Real images in the
training dataset. (b) Synthetic image rendered with blender.

pitch and azimuth angles covering the range of possible poses.
After that, we arrange multiple light sources randomly and vary
the light intensity randomly to simulate various scenarios of
possible reflections of metal parts. The rendered image is shown
in Fig. 7(b), and we render it as similar as possible to the
real image in Fig. 7(a). To prevent overfitting, we employed
a cut-and-paste strategy during training [45], i.e., the target
object was extracted and pasted onto a random background,
which was randomly sampled from SUN397 [46]. We also added
more data augmentation to the original image including random
cropping during training, random scaling, color dithering, and
3-D rotation.

3) Generating Contour Groundtruth: Since our network is
required to regress the contours, we need the groundtruth of
the contours to calculate the loss. However, the groundtruth of
the contours is not provided within the dataset. Therefore, we
use OpenGL to render the synthetic image corresponding to
each training image, and then apply the Canny edge detection
algorithm to extract the contours and obtain the ground truth.

4) Training Strategy: We set the initial learning rate as 0.1
and halve it every 20 epochs. All models are trained for 150
epochs using the AdamW optimizer with 2 Nvidia RTX 3090
GPUs. The weight decay of the optimizer is set to 0.1. The
hyperparameter ρ in the loss function is set to 100 to balance
the magnitudes of the two parts in the loss function. We train a
specific model for each metal part the same as in [10] and [37].

B. Metric

We evaluate our method using three standard metrics: the
pointwise mean 2-D projection metric [47], the average 3-D
distance of model points (ADD) metric [15], and the average
R/t error of the valid poses. The T-LESS dataset specifies that
the dataset is evaluated with the eVSD metric [48]. Therefore, our
experiments on the T-LESS dataset are evaluated with eVSD.

2-D Projection metric: This metric computes the mean dis-
tance in the 2-D image between the projections of the 3-D mesh
model from the estimated pose and the ground truth pose. It is
generally accepted that if this distance is less than 5 pixels, the
pose is considered correct. However, this assessment criterion is
not rigorous enough for accurate attitude estimation in industrial
environments. Thus, we gradually reduced the constraint from
5 pixels to 0 pixels and compared the performance variations of
each method.

ADD(-S) metric: This metric computes the mean distance
between two transformed model points using the estimated pose

Fig. 8. Ablation studies with iterations and threshold. (a) Accuracy and
computational speed under different iterations, where the value of θ is set to
1/3m. (b) Accuracy under different threshold θ, where the number of iterations
T is calculated by (12).

and the groundtruth pose. It is claimed that the estimated pose
is correct if the distance is less than 10% of the model diameter.
For symmetric objects, we use the ADD-S metric, where the
mean distance is computed based on the closest point distance.
R/t error metric: We specify that if the pose is correct under

the ADD metric, it is a valid pose, and the R/t error metric is
intended to quantify the actual error in the valid pose, where R
error denotes the error α, β, γ in 3-D rotation, while the t error
denotes the error x, y, z in 3-D translation.
eVSD metric: This metric is proposed by Hodan et al. [48],

and it evaluates the visible surface discrepancy (VSD) between
the target pose and the predicted pose. This metric was used
in most experiments evaluating the T-LESS dataset. In [48], an
estimated pose with eVSD <0.3 is defined as a valid pose.

C. Parameter Analysis

We conduct the parameter analysis experiment to investigate
the effect of two parameters: the number of iterations I and
the correct pose threshold θ. We gradually increase the number
of iterations I from 0 to 1000 while keeping θ set to 1/3 m,
and calculate the accuracy and computational speed at different
iterations. The accuracy is defined by the ADD(-S) metric,
and the computational speed is defined by FPS, as shown in
Fig. 8(a). When the number of iterations is 0, it corresponds
to no confidence ranking of the correspondence obtained in
the previous stage, which may lead to errors in the initial four
correspondences used to solve the pose, resulting in decreased
accuracy. As the number of iterations increases, the accuracy rate
gradually increases, but the computational speed of the method
decreases. To balance accuracy and computational speed, we set
the optimal number of iterations between 300 and 500. In fact,
the number of iterations calculated by (12) falls within this range.
θ is the threshold value of the correct pose, as shown in

Fig. 8(b). We evaluate the impact of different θ on accuracy,
where accuracy is defined by the ADD(-S) metric. Generally,
the value of θ is not sensitive to the accuracy of the final pose
estimation. As θ increases, accuracy and precision first slightly
increase and then decrease. This is because when θ is small,
it follows from (11) that the pose with higher accuracy con-
tributes to higher confidence. As the threshold value increases,
the influence of some incorrect poses on the confidence can be
avoided, thus improving accuracy and precision. However, if θ
is too large, many correct poses may be judged as incorrect,
ultimately leading to a decrease in accuracy and precision of the
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Fig. 9. Ablation study of network design. (a) Network1. Input an image and
output the heatmap of semantic points. (b) Network2. Input a four-channel
image, the first three channels is RGB channels, and the last channel is the
contour detected with canny. Output heatmap and noise reduced contour.
(c) Network3. Input an RGB image. Output a feature map with K + 1 channels,
K represents the number of keypoints, and the last channel is the predicted
contour. (d) Proposed method. Input an RGB image, output the heatmap by one
decoder, and the contour by another decoder. (a) Network 1. (b) Network 2.
(c) Network 3. (d) ContourNet.

Fig. 10. Pose estimation results in terms of ADD metric. Gradually increasing
the error correspondence, PECP is more robust than RANSAC-based methods.

Fig. 11. Evaluation on reflective metal parts dataset in terms of 2-D pro-
jection metric. (a) Mean 2-D projection metric compared with other methods.
(b) Performance of each object in terms of 2-D projection metric using our
method.

final pose estimation. As shown in Fig. 8(b), when the value of
θ is less than 0.4 m, the proposed method performs well.

D. Ablation Studies

1) Network Analysis: We conduct ablation studies in net-
work design schemes to demonstrate the effectiveness of our
introduction of contour decoders, as shown in Fig. 9. Table II
lists the performance of different networks for different inputs

TABLE II
COMPARING THE PERFORMANCE OF DIFFERENT NETWORK SCHEMES FOR

INPUT IMAGES IN TERMS OF ADD (-S) METRIC

in terms of ADD(-S) metrics, using obj5 as an example. In our
initial design, as shown in Fig. 9(a), only the semantic points of
the object are regressed by the heatmap. However, since the test
image contains multiple metal parts, each of which also has many
semantic points, it needs a predetector to achieve good results.

A common practice is to localize the target object by intro-
ducing the mask. However, for metal parts, the contour provides
more advanced mask with more semantic information, so we
chose to use the contour to constrain the prediction region of
keypoints. As shown in Fig. 9(b), the input is a four-channel
image, where the first three channels are RGB channels, and
the fourth channel is the contour obtained by Canny [49] detec-
tion. Since Canny does not detect contours well, we want the
network to implement a denoising autoencoder function, i.e.,
input a mutilated noisy contour and output a complete contour.
Through experiments, we found that this approach leads to a
“lazy” network because the contour and semantic points are
strongly associated, causing the network to only focus on the
input contour and ignore the RGB images. When the accuracy
of the input contour is high, the output keypoints can achieve
high accuracy, and once the input contour is less effective, the
performance of the method is degraded significantly.

The third scheme is to implement the prediction of contours
with a network, as shown in Fig. 9(c). In this scheme, the contour
and keypoints cotrain the model, and we expect to establish the
relationship between the keypoint prediction and the contour in
this way, thus achieving a constraint of the contour on the key-
points prediction. However, experiments show that this scheme
creates a strong constraint between contours and keypoints. If the
contour prediction is accurate, the keypoints are also accurate.
But in extreme cases where the contour prediction accuracy de-
creases, it results in decreased accuracy of keypoints prediction.

To decouple the contour and keypoints, the proposed network
architecture uses a separate decoder to predict the contour. The
predictions of contours and heatmaps train the encoder together,
but each trains its corresponding decoder. This scheme makes the
contour implicitly constrain the prediction of keypoints instead
of guiding it directly. When the contours are entirely incorrect,
the prediction of keypoints degrades to the network1. As given
in Table II, the ContourNet architecture significantly improves
the accuracy and robustness of pose estimation.

2) Comparison With the RANSAC-Based Pose Calculation:
To demonstrate the effectiveness of PECP in solving the optimal
pose, we compare it with RANSAC-based methods. Table III
presents the results of the comparison in terms of different
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Fig. 12. Qualitative results for reflective metal parts dataset, where the green edge line is a visualization of our predicted pose. We place each part in two–three
scenes, and each scene also contains one–three target parts. (a) obj1. (b) obj2. (c) obj3. (d) obj4. (e) obj5. (f) obj6. (g) obj7. (h) obj8. (i) obj9. (j) obj10.

Fig. 13. Qualitative results for different scenes. The scenes are divided into A,
B, C, and D according to the different backgrounds. Each scene has a different
lighting situation. (a) Scene A. (b) Scene B. (c) Scene C. (d) Scene D.

Fig. 14. Qualitative results for T-LESS dataset, where the green edge line is a
visualization of our predicted pose.

metrics. The proposed method outperforms the RANSAC-based
method in both accuracy and precision.

While RANSAC relies only on the point distribution to elimi-
nate outlier correspondences, our method uses the contour as
a geometric prior to compute the confidence score of each
correspondence, and then iteratively solve for the optimal pose
with progressive sampling. To investigate the robustness of
our method against outlier correspondences, we conducted an

TABLE III
COMPARE THE PERFORMANCE OF RANSAC AND PECP FOR SOLVING POSE IN

TERMS OF DIFFERENT METRICS

experiment where we systematically introduced outlier corre-
spondences and computed the pose. We altered the location of
the predicted keypoint so that it became an outlier, and then
solved the pose using the RANSAC-based and PECP-based
methods, respectively. We evaluated the results using the ADD
metric.

As shown in Fig. 10, we used obj5 as an example and sequen-
tially increased the number of error points. As the proportion of
errors gradually increased, PECP demonstrated higher accuracy
than RANSAC-based methods. Particularly, when the number
of error points exceeded half of all points, the performance of
RANSAC dropped sharply, whereas our method still achieved
good results.

E. Comparison With the State-of-the-Art Methods

We compared our method with BB8 [9], AAE [25], STB [6],
PSGMN [37], and GFI [29] on the reflective metal parts dataset,
while STB, PSGMN, and GFI were designed specifically for
pose estimation on metal parts. BB8 improves the end branch
of VGG [50] by directly outputting the 2-D coordinates of the
eight corner points of the 3-D bounding box. We adopted the
optimization method of BB8, which regresses the keypoints
by heatmap. AAE encodes object rotation into the latent space
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Fig. 15. Pose estimation of target parts in complex scenes. Each scene contains five target parts and several unrelated parts. (a) White background. (b) Wooden
background. (c) Metal background. (d) Black background. Our method can accurately estimate the pose of each target part. For the convenience of display, we
combine the pose estimation results of multiple parts in one figure.

Fig. 16. Illustration of grasping task of reflective metal parts in complex
scenes. (a) Metal part to grasp. (b) Initial position of the industrial robot.
(c) Image taken by the camera at the initial position. The proposed method
successfully estimates the 6-D pose of the target part. (d) Successful grasping
of the metal part.

using an augmented autoencoder, which only requires synthetic
data for training. This method can effectively learn the 6-D
pose of objects under different environmental backgrounds and
occlusion conditions. Given an image, AAE only predicts the
object’s rotation, while the object’s translation is estimated using
a 2-D bounding box. PSGMN is a dense matching method that
establishes the pixelwise correspondence between 3-D models
and 2-D images using graph neural networks, and then calcu-
lates the pose by RANSAC and PnP algorithms. STB and GFI
were specifically designed for pose estimation of metal parts.
STB uses high-level geometric features and linear contours to
represent metal part templates requiring only sparse templates
to obtain highly accurate poses. GFI proposed a feature-image
generation model. Given a feature representing a pose, it can
generate an image of the object in the exact same pose. This
method avoids extracting features from reflective metal parts.

We compared the 2-D projection metric with the other meth-
ods, as shown in Fig. 11. Our method is significantly better
than other methods. In addition to that, our method shows more
performance when the constraints are more rigorous. With a
pixel threshold of only 2 pixels, the proposed method achieves
87.46% in the 2-D projection metric. GFI [29] achieves better
results when the pixel threshold is less than 2 pixels. The method
achieves high accuracy by matching the most similar templates.

Table IV summarizes the comparison with other methods
using the ADD(-S) metric. BB8 [9] estimates the pose by
regressing the eight corner points of the object BBOX, which
can easily result in incorrect keypoints due to complex back-
grounds or interference from other parts. AAE [25] only encodes

TABLE IV
COMPARISON WITH DIFFERENT METHODS ON REFLECTIVE METAL PARTS

DATASET USING THE ADD(-S) METRIC

rotation information of the object and will suffer from decreased
accuracy when dealing with complex parts. STB [6] performs
well for individual parts but can encounter errors due to template
matching issues when there are interferences from other parts in
the dataset, as is the case with similar geometric features across
all parts. PSGMN [37] matches the object pixels in the image
with the nodes of the 3-D model However, in the test dataset,
there are multiple metal parts with similar surface features,
which can cause semantic segmentation errors and incorrect
matching results. Therefore, PSGMN requires a predetector
to achieve accurate pose estimation. GFI [29] has to do edge
detection on the target object in the image, and then generate
the image that is most similar to the edge detection result. After
that, this method can get the pose by the feature corresponding
to the image. The method relies on the result of edge detection,
and the performance of the method will be degraded when the
edges are inaccurate. STB [6] and GFI [29] rely on contours
to estimate the poses, and the accuracy of the pose estimation
decreases when the contours are not clear or accurate. In contrast,
our method only takes the contour as an implicit constraint,
establishes 2-D–3-D correspondence by predicting semantic
points, and then solves the poses with PnP. The contour only
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TABLE V
COMPARING THE PERFORMANCE OF DIFFERENT METHODS IN DIFFERENT

SCENARIOS IN TERMS OF ADD(-S) METRICS

TABLE VI
COMPARISON OF DIFFERENT METHODS USING THE R/T ERROR METRIC IN

VALID POSES

serves to improve the accuracy of the pose estimation not to de-
termine it. The comparison shows that our approach is superior
to the state-of-the-art method. Some qualitative results of pose
estimation are shown in Fig. 12.

Table V lists the performance of each method in differ-
ent scenes in terms of ADD(-S) metric. Scene A is a black
background, Scene B is a black textured background, Scene
C is a rusted background, and Scene D is a reflective metallic
background. Our method demonstrates robustness in various
scenes, including those with different lighting conditions. Fig. 13
provides some qualitative results of pose estimation in different
scenes.

Table VI summarizes the comparison of other methods in
terms of the R/t error metric. We only considered valid poses,
i.e., those that were correct under the ADD(-S) metric. The R
error represents the 3-D rotational error of the object, while the t
error represents the 3-D translation error. Our method achieved
an average error of less than 1 mm in 2-D translation and only
about 1° for Euler anglesα,β, and γ. This shows that our method
can achieve high accuracy for reflective textureless metal parts,
which can be implemented for practical applications in industrial
scenes.

To evaluate the effectiveness of our proposed method on gen-
eral industrial objects, we conducted experiments on the T-LESS
[44] dataset. We used the predetector provided by Pix2Pose [36]
to identify the target object and trained our model using real and
synthetic images, as was done in CosyPose [31], SurfEmb [51],
and CDPN [12]. We then estimated the 6-D pose of the target
object using our method. Fig. 14 shows the qualitative results of

TABLE VII
COMPARISON WITH DIFFERENT METHODS ON THE T-LESS DATASET

our method on the T-LESS dataset, demonstrating its applica-
bility even for objects without sharp edges. Table VII provides
a summary comparison of our method with other methods on
the T-LESS dataset, where all methods used RGB images as
input. Our method is designed for reflective metal parts with
sharp contours that can significantly improve the accuracy of the
proposed method. While our method did not achieve the best
performance on the T-LESS dataset, the experimental results
confirm that it can handle general industrial objects.

F. Pose Estimation for Metal Part Grasping

To further demonstrate the effectiveness of our proposed
method, we design some more challenging scenes. These scenes
are prevalent with parts stacked and placed in different back-
grounds, as well as interference from other similar parts. As
shown in Fig. 15, our method can accurately estimate the pose
of the target part in such complex scenes.

Moreover, we implemented our method in a real grasping task
for reflective textureless metal parts, as illustrated in Fig. 16.
The grasping task was performed using a six-axis industrial
robot with a CCD camera mounted on its end-effector, and the
intrinsic parameters of the camera and hand–eye matrix are well
calibrated. We place several parts in a plane with some stacking
as the target. The robot’s end-effector is first moved to the initial
position, where the picture is taken and the pose of the target part
is calculated, and then it is moved to the corresponding position
for grasping. Our proposed pose estimation method achieves a
real-time performance of 20 FPS on a single Nvidia RTX 3090
GPU.

V. CONCLUSION AND FUTURE WORK

In this article, we proposed a 6-D pose estimation method
of reflective textureless metal parts with contour constraints
and geometric prior. The ContourPose consists of two stages,
namely, the keypoints prediction stage and the pose estimation
stage. We achieve an implicit constraint on the keypoints pre-
diction by adding a decoder to predict the contour in the first
stage. In the pose estimation stage, we utilized the predicted
contours from the previous stage as a priori to iteratively solve
the optimal pose, which greatly enhances the accuracy and preci-
sion of the pose. Our proposed method for reflective textureless

Authorized licensed use limited to: Zhejiang University. Downloaded on February 26,2024 at 04:30:59 UTC from IEEE Xplore.  Restrictions apply. 



HE et al.: CONTOURPOSE: MONOCULAR 6-D POSE ESTIMATION METHOD FOR REFLECTIVE TEXTURELESS METAL PARTS 4049

metal parts outperforms current state-of-the-art pose estimation
methods. Furthermore, we demonstrated the effectiveness of
our method in an industrial application for grasping tasks. The
dataset and more information in this article can be found on
https://github.com/ZJU-IVI/RT-Less_10parts.

Our proposed method trains a specific network to estimate a
single object similar to PVNet [10], CDPN [12], and PSGMN
[37]. However, unlike these methods, our method does not
require a predetector if there is only one target object in the
scene. Currently, for multiple identical objects in one scene, our
method still relies on a predetector to locate each instance. In
future work, we plan to leverage topological constraints to group
the keypoints of each instance and enable detection of multiple
objects of the same class.
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