
REVOLVE: Optimizing AI Systems by Tracking Response Evolution in
Textual Optimization

Peiyan Zhang 1 Haibo Jin 2 Leyang Hu 3 Xinnuo Li 4 Liying Kang 5 Man Luo 6 Yangqiu Song 1

Haohan Wang 2

Abstract

Recent advancements in large language models
(LLMs) have significantly enhanced the ability
of LLM-based systems to perform complex tasks
through natural language processing and tool in-
teraction. However, optimizing these LLM-based
systems for specific tasks remains challenging,
often requiring manual interventions like prompt
engineering and hyperparameter tuning. Existing
automatic optimization methods, such as textual
feedback-based techniques (e.g., TextGrad), tend
to focus on immediate feedback, analogous to us-
ing immediate derivatives in traditional numerical
gradient descent. However, relying solely on such
feedback can be limited when the adjustments
made in response to this feedback are either too
small or fluctuate irregularly, potentially slowing
down or even stalling the optimization process. In
this paper, we introduce REVOLVE, an optimiza-
tion method that tracks how Responses EVOLVE
across iterations in LLM systems. By focusing on
the evolution of responses over time, REVOLVE
enables more stable and effective optimization
by making thoughtful, progressive adjustments at
each step. Experiments across three tasks demon-
strate the adaptability and efficiency of our pro-
posal. Beyond its practical contributions, RE-
VOLVE highlights a promising direction, where
the rich knowledge from established optimiza-
tion principles can be leveraged to enhance LLM
systems, which paves the way for further advance-
ments in this hybrid domain. Code is available at:
https://llm-revolve.netlify.app.

1Hong Kong University of Science and Technology 2University
of Illinois at Urbana-Champaign 3Brown University 4University of
Michigan - Ann Arbor 5Hong Kong Polytechnic University 6Intel
Lab. Correspondence to: Haohan Wang <haohanw@illinois.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
In recent years, Large Language Models (LLMs) have dra-
matically advanced AI’s ability to handle complex tasks
through natural language processing, enabling LLM-based
systems, often called language agents, to interact with ex-
ternal tools and solve problems once considered out of
reach (Brown et al., 2020; Achiam et al., 2023; Team et al.,
2023; Anthropic, 2023; Jin et al., 2024a; Xiao et al., 2024;
Jin et al., 2024b). However, developing these agents still
requires significant manual effort to break down tasks and
fine-tune prompts, tools, and APIs, limiting scalability and
adaptability (Zhou et al., 2024; Liu et al., 2025). This raises
the need for automated, scalable optimization techniques to
enhance language agents efficiently.

To this end, recent efforts have been made on automatic op-
timization of language agents. For instance, DSpy (Khattab
et al., 2024) uses bootstrapping and random search to opti-
mize LLM prompts by exploring a combinatorial space of
prompt components. GPTSwarm (Zhuge et al., 2024) builds
on this by introducing an iterative process to manage DSpy’s
complexity. Other methods like Agent-Pro (Zhang et al.,
2024) and AgentOptimizer (Zhang et al.) target specific
modules, refining prompts, and agent policies. However,
these approaches often suffer from local optimization, where
improvements in isolated components do not lead to overall
system performance gains—similar to early neural network
practices (Hinton & Salakhutdinov, 2006).

Building on these efforts, more advanced research has in-
troduced gradient descent-inspired techniques for automatic
prompt optimization. ProTeGi (Pryzant et al., 2023) pi-
oneered the use of textual gradients, where natural lan-
guage feedback refines prompts. Agent Symbolic Learning
(ASL) (Zhou et al., 2024) extended this to optimize the en-
tire agent system by treating prompts and tools as learnable
parameters. Textgrad (Yuksekgonul et al., 2024) further
applied textual gradients to instance-level optimization, re-
fining outputs across multiple iterations.

While effective, these methods all rely on what can be de-
scribed as first-order optimization. In this context, first-
order methods mean they adjust the agent’s behavior based

1

https://llm-revolve.netlify.app

REVOLVE: Optimizing AI Systems by Tracking Response Evolution in Textual Optimization

on immediate feedback from the current iteration, similar
to how numerical first-order gradient descent updates pa-
rameters using only the current gradient. This limits their
ability to account for how responses evolve across multiple
iterations, leading to potential stagnation in suboptimal so-
lutions. As shown in Figure 1 (a), first-order methods often
stagnate in local optima, resulting in repeated or minimally
improved LLM responses. This challenge motivates us to
explore LLM optimization techniques that consider how
responses evolve over time, enabling more adaptive and
refined adjustments that can break free from local optima
across iterations.

In this paper, we introduce an optimization method called
REVOLVE that builds upon TextGrad (Yuksekgonul et al.,
2024) by incorporating a deeper understanding of how
Responses EVOLVE over time. The optimization process
begins with a forward pass, where the system executes a
series of tasks, logging inputs, outputs, and any prompt
or tool usage. A language-based loss function then eval-
uates the quality of the generated responses, quantifying
how well they align with task objectives. In the backward
pass, feedback in the form of natural language critiques is
used to adjust system variables. Relove improves this stan-
dard process by focusing on how response patterns evolve
over multiple iterations, enabling the system to make more
informed and effective adjustments, ultimately leading to
improved performance in handling complex tasks.

As shown in Figure 1 (b), we calculate a refined gradient
that accounts for changes in responses across multiple itera-
tions, enabling the system to adjust based on both immediate
feedback and long-term response patterns. This parallels the
concept of second-order optimization in traditional methods,
where the Hessian matrix captures how the gradient itself
changes. In our case, we model the evolving relationship
between consecutive prompts and responses, enabling the
system to make more informed adjustments. By incorporat-
ing this additional layer of information, the system can avoid
stagnation in suboptimal patterns, a common limitation of
methods that rely solely on immediate feedback.

We test the proposed method on three tasks, Prompt Opti-
mization, Solution Optimization, and Code Optimization.
These tasks require handling complex reasoning, refining
solutions to scientific questions, and optimizing code un-
der challenging constraints. Experimental results show that
Relove consistently improves performance across all tasks,
showing its versatility and effectiveness in overcoming the
limitations of existing optimization methods.

2. Background
Our approach draws inspiration from several key areas of
research, particularly automated prompt engineering, agent

optimization, and gradient-based learning. Below, we high-
light foundational works in these areas and situate our
method within this broader context.

From Prompt Engineering to Agent Optimization.
Prompt engineering has become a key focus in both
academia and industry, leading to several methods aimed at
automating the process. Early works (Pryzant et al., 2020;
Yang et al., 2024) explored the use of structured prompts
that enable LLMs to optimize their own inputs. Other ap-
proaches (Prasad et al., 2022; Guo et al., 2023) use search
algorithms, like genetic algorithms, to automatically refine
prompts. Building on the success of automated prompt engi-
neering, researchers have extended these concepts to broader
agent optimization. Techniques like Agent-Pro (Zhang et al.,
2024) and AgentOptimizer (Zhang et al.) focus on opti-
mizing individual components, such as prompts or tools.
However, these methods often treat components in isolation,
which can result in local improvements without significantly
enhancing the overall system. Search-based approaches,
such as DSpy (Khattab et al., 2024) and GPTSwarm (Zhuge
et al., 2024), take a more comprehensive view by optimizing
across the combinatorial space of agent components. De-
spite their scope, these methods rely heavily on numerical
metrics that are often inadequate for real-world tasks like
software development or creative writing. Additionally, they
struggle to optimize multiple components simultaneously
or adapt dynamically to changes in the agent pipeline.

Gradient-Based Approaches for Agent Optimization.
Recent advancements have introduced gradient descent-
inspired techniques to optimize prompts more effectively.
ProTeGi (Pryzant et al., 2023) is among the first to use natu-
ral language feedback—referred to as textual gradients—to
iteratively refine prompts. However, as a first-order opti-
mization method, ProTeGi adjusts based only on immediate
feedback from a single iteration, limiting its capacity to
handle more complex, multi-step tasks. Agent Symbolic
Learning (ASL) (Zhou et al., 2024) extended this concept
by treating the entire agent system—including prompts,
tools, and configurations—as learnable components, much
like backpropagation in neural networks. This allows for a
more comprehensive optimization but remains dependent
on immediate feedback from each iteration. Textgrad (Yuk-
sekgonul et al., 2024) further advanced this first-order gra-
dient approach by optimizing LLM responses using nat-
ural language feedback. By treating feedback as a gradi-
ent, Textgrad refines responses without directly altering
the model’s parameters. While effective for simpler tasks,
Textgrad struggles with deeper, multi-step optimizations,
frequently getting stuck in suboptimal states.

To address these limitations, momentum-based meth-
ods (Yuksekgonul et al., 2024) have been introduced. These
techniques track feedback trends across iterations, adjusting

2

REVOLVE: Optimizing AI Systems by Tracking Response Evolution in Textual Optimization

Figure 1: The illustrative comparison between REVOLVE and first-order optimization methods. First-order methods rely solely on
immediate feedback, often leading to stagnation in local optima and limiting further improvement. In contrast, REVOLVE incorporates
both immediate feedback and response evolution over time, enabling continuous progress and the ability to escape stagnation.

step sizes when feedback becomes repetitive, which helps
break stagnation. However, while feedback provides im-
mediate guidance on how inputs should change, it doesn’t
directly reflect how model responses evolve over time. Feed-
back may remain constant as responses improve or fluctu-
ate despite stagnation, leading to suboptimal adjustments.
In complex tasks, where responses exhibit slow or subtle
shifts, this disconnection can make feedback misleading
or overly sensitive to temporary fluctuations, causing in-
stability. Therefore, while momentum-based methods pro-
vide more variation, they still lack the fine-grained control
needed for long-term improvement.

REVOLVE: Optimization Through Response Evolution.
REVOLVE enhances traditional optimization methods by
focusing on how responses evolve over multiple iterations,
enabling more refined adjustments throughout the process.
Instead of relying solely on immediate feedback, our ap-
proach tracks the evolving relationship between consecutive
prompts and their corresponding responses. This parallels
second-order methods in traditional optimization, where the
the Hessian matrix is used to capture changes in the gradient
to guide more precise adjustments. However, rather than
directly computing numerical second derivatives, we model
these iterative shifts in responses to inform our adjustments,
giving the system a broader understanding of response dy-
namics over time. The key advantages of our approach
include:

• Response Evolution Awareness: REVOLVE monitors
changes across iterations, allowing for more refined and
adaptive optimization, unlike first-order methods that rely
only on immediate feedback.

• Avoiding Local Optima: By tracking iterative changes,
REVOLVE prevents models from getting stuck in subop-
timal solutions, effectively overcoming a common limita-

tion of first-order methods.
• Stabilized Optimization: Unlike momentum methods,

which risk overshooting due to large adjustments, RE-
VOLVE applies carefully measured adjustments that en-
sure smoother and more consistent progress throughout
the optimization process.

3. REVOLVE: Optimizing AI Systems by
Tracking Response Evolution

3.1. Method Overview

In this work, we extend the TextGrad approach (Yuksek-
gonul et al., 2024) by tracking the evolution of the LLM
responses across iterations, allowing for more effective and
precise optimization.

3.2. Overview of Optimization Pipeline

Our method builds upon the general optimization pipeline
used in LLM-based systems (Zhou et al., 2024; Yuksek-
gonul et al., 2024), introducing natural language feedback
(textual gradients) to refine system responses over multiple
iterations, instead of relying on numerical gradients.

Forward Pass. In the forward pass, the AI system is mod-
eled as a computation graph where each node represents a
specific task. Inputs are processed sequentially through the
nodes, with each node generating outputs based on prior
results. These intermediate outputs are stored in a trajectory,
which is later used in the backward pass.

Language Loss Computation. After the forward pass,
an evaluator LLM assesses the system’s performance by
generating textual feedback, which serves as the loss. This
feedback reflects how well the system’s outputs align with
the task objectives and drives the subsequent optimization

3

REVOLVE: Optimizing AI Systems by Tracking Response Evolution in Textual Optimization

process.

Backward Pass. In the backward pass, similar to numerical
gradients in conventional deep learning, textual gradients
are backpropagated through the nodes of the system. These
gradients, in the form of natural language instructions, in-
dicate how the system’s variables—such as prompts, tools,
and decisions—should be adjusted to improve the objective
function. Starting from the final node, the system com-
putes the necessary updates for these variables as it moves
backward. This process mirrors backpropagation in neural
networks, but the adjustments are determined by language
feedback rather than numerical values.

While the above process sets the stage for optimizing the
system, the effectiveness of the optimization depends on
how well this feedback is utilized. In this context, different
gradient-based optimization methods come into play.

3.3. First-Order Optimization: Textgrad Approach

TextGrad (Yuksekgonul et al., 2024) computes a first-order
gradient based on the language loss provided by the evalua-
tor LLM. The first-order gradient captures the difference in
response quality between consecutive iterations. Mathemat-
ically, the first-order gradient is expressed as:

∇L
(
r(pt)

)
=

∂̃L
(
r(pt)

)
∂̃pt

(1)

where we use r(pt) to denote the response when the model
is fed with input prompt pt and t to denote the iteration.
Also, we use ∂̃ to denote the TextGrad-style derivative of
loss function with respective to the input prompt due to its
analogous nature to the actual derivative that is typically
denoted as ∂.

3.4. REVOLVE and Its Analogy to Second-Order
Gradient Optimization

We seek to extend the previous method by extending Eq. 1
to consider the history of previous prompts and their re-
sponses. Optimizing based on only the current response
can lead to short-term improvements but might results in
stagnation, especially in complex tasks where deeper issues
arise over time. For example, a LLM might slightly refine
responses with each iteration, yet without considering the
history of prompts and responses, it risks repeating similar
patterns. By factoring in the evolution of responses over
multiple iterations, we aim to uncover underlying issues that
cause stagnation and enable the system to break free from
suboptimal cycles.

Similarity Function. To quantify the differences between
previous responses, we need to firstly define a similarity
function. We use S

(
r(pt), r(pt−1)

)
to denote the similarity

between the responses triggered by prompts pt and pt−1.

This function plays a critical role in extending the optimiza-
tion process to account for the dynamics between successive
iterations.

REVOLVE. With this setup, to extend Eq. 1 to encourage
the prompt leading to more gradual and thoughtful evolution
of the response over multiple iterations, our new gradient
can be expressed as

REVOLVE
(
L
(
r(pt)

))
=

∂̃L
(
r(pt)

)
+ S

(
r(pt), r(pt−1)

)
∂̃pt

,

(2)

This new formulation guides the optimization process in
a way that not only improves immediate task performance
but also promotes long-term, iterative refinement. We name
our new method Eq. 2 REVOLVE. Practically, we rely on a
LLM to evaluate the similarity function S

(
r(pt), r(pt−1)

)
.

Analogy to Second-order Derivative. To understand the
intuition behind calling our approach an analogy to second-
order methods, consider how second-order derivatives (Hes-
sians) in classical optimization capture the rate of change of
the gradient. The second-order derivative provides deeper
insight into the curvature of the optimization landscape, al-
lowing for more informed adjustments that go beyond the
immediate gradient.

In our context, the similarity function S serves a parallel
role by tracking how the system’s responses shift from one
iteration to the next. We can formalize this by using a
generalized norm function (denoted ∥ · ∥) to quantify the
differences between two elements (either loss functions
or prompts). One way to concretely define the similarity
function S

(
r(pt), r(pt−1)

)
is as follows:

S
(
r(pt), r(pt−1)

)
=

∥L
(
r(pt)

)
− L

(
r(pt−1)

)
∥

∥pt − pt−1∥
.

This equation mirrors the classical definition of a derivative
when the difference between successive prompts ∥pt−pt−1∥
is sufficiently small. Thus, by assuming ∥pt − pt−1∥ to
be sufficiently small and instructing the LLM to evaluate
S
(
r(pt), r(pt−1)

)
as above, we can have

S
(
r(pt), r(pt−1)

)
=

∂̃L
(
r(pt)

)
∂̃pt

As a result, our REVOLVE in Eq. 2 can be rewritten as:

REVOLVE
(
L
(
r(pt)

))
=

∂̃L
(
r(pt)

)
∂̃pt

+
∂̃2L

(
r(pt)

)
∂̃pt2

,

(3)

which is a second-order derivative method. By considering
this higher-order information, REVOLVE allows the system
to escape from local optima and overcome the limitations
of approaches that rely solely on immediate feedback.

4

REVOLVE: Optimizing AI Systems by Tracking Response Evolution in Textual Optimization

3.5. Discussion on Simulating Second-Order Effects in
Textual Optimization

No Numerical Hessian Computation. REVOLVE focuses
on simulating second-order effects, not just computing real
second-order derivatives. Thus, the REVOLVE framework
does not compute the traditional Hessian matrix used in
numerical optimization. Instead, it simulates the effects of
second-order optimization within the textual optimization
framework.

No Reliance on LLMs’ Second-Order Derivatives. RE-
VOLVE combines structured first-order feedback with re-
sponse trajectory tracking to simulate the second-order opti-
mization effects. This approach enables it to identify stag-
nation and instability, refining responses without relying on
LLMs’ ability to compute second-order derivatives, distin-
guishing it from basic prompting strategies.

4. Experiments - Evaluation and
Understanding of Models

We evaluate REVOLVE on three challenging tasks: Prompt
Optimization for Reasoning, Solution Optimization, and
Code Optimization. For prompt optimization, we use the
Big Bench Hard dataset (Suzgun et al., 2022) for Object
Counting and the GSM8K dataset (Cobbe et al., 2021)
for grade-school math problems. In solution optimiza-
tion, we assess performance on the Google-proof Ques-
tion Answering (GPQA) benchmark (Rein et al., 2023),
which consists of expert-level multiple-choice questions,
and the Machine Learning and College Physics subsets of
MMLU (Hendrycks et al., 2020), a benchmark evaluating
LLMs’ human-level performance. For code optimization,
we use the LeetCode Hard dataset (Shinn et al., 2024), which
includes complex coding problems challenging both humans
and models. For all LLMs used, we allow a maximum of
2000 tokens, and use a top-p of 0.99. Across tasks, RE-
VOLVE consistently achieves leading reasoning accuracy
and strong code completion rates, demonstrating superior
performance. More details are in Appendix A.

4.1. Prompt optimization for reasoning

The goal of Prompt Optimization for Reasoning is to refine
a basic prompt for a specific reasoning task, enhancing the
LLM’s effectiveness in reasoning. This task is ideal for
evaluating optimization methods, as reasoning tasks often
involve large, complex search spaces where subtle prompt
adjustments can significantly influence the outcome.

Task Setup: We evaluate prompt optimization on two rea-
soning tasks: Object Counting from the Big Bench Hard
benchmark (Suzgun et al., 2022; Srivastava et al., 2022)
and grade-school math problem solving from the GSM8K

dataset (Cobbe et al., 2021). For each task, when using the
iterative optimization methods, we use a batch size of 3
across 12 optimization iterations, allowing the model to pro-
cess a total of 36 training examples, randomly sampled with
replacement. After each iteration, we validate the prompt us-
ing a validation set, and if the validation accuracy improves,
we update the prompt accordingly. We compare the model’s
accuracy on the test set after all 12 iterations, using prompts
generated by different optimization methods. Consistent
with (Yuksekgonul et al., 2024), for both tasks, we use the
string-based exact match metric, which looks at the final
numerical value provided in the answer, and compares it to
the ground truth answer. Detailed task setup is provided in
Appendix B.

Baselines and LLM Backends: We evaluate REVOLVE
against three key baselines:

• Zero-shot Chain-of-Thought (CoT) (Kojima et al., 2022;
Wei et al., 2022): This baseline initializes all prompts us-
ing a zero-shot CoT strategy, where the model is prompted
to "think step-by-step" before generating an answer. This
approach is widely regarded as a strong baseline for rea-
soning tasks.

• TextGrad (Yuksekgonul et al., 2024): Textual feedback
is treated as a first-order gradient to iteratively optimize
prompts.

• Momentum-Enhanced TextGrad (Yuksekgonul et al.,
2024): This method extends the original TextGrad frame-
work by incorporating momentum. This variant aims to
overcome potential stagnation in the optimization pro-
cess by enlarging updates to the prompt when previous
feedbacks on the variable are similar.

Our experiments perform prompt optimization separately
on four LLMs: gpt-3.5-turbo-0125, GPT-4-0125-preview,
Gemini 1.5 Pro, and Llama 3.1 8B Instruct, with GPT-4o
serving as the backend of the optimization system. This
multi-model setup allows us to evaluate the effectiveness
of the optimization methods across diverse architectures,
ensuring a comprehensive assessment of their capabilities.

Results: As evidenced by Table 1, in both reasoning tasks,
REVOLVE delivers a substantial improvement over the
Zero-shot CoT prompt, underscoring its effectiveness across
diverse datasets and model architectures. On the Object
Counting task, with Llama 3.1 8B Instruct as the base
model, REVOLVE outperforms TextGrad by achieving a 6%
higher accuracy, demonstrating its superior ability to refine
LLM responses. Similarly, on GSM8K, REVOLVE exceeds
both TextGrad and M-Textgrad across most LLM backends,
with an average performance increase of 2% over TextGrad.
These results suggest that REVOLVE not only enhances the
optimization process but also addresses the inherent limita-
tions of first-order feedback in TextGrad, leading to more
accurate and refined reasoning capabilities.

5

REVOLVE: Optimizing AI Systems by Tracking Response Evolution in Textual Optimization

Table 1: Prompt optimization results for reasoning tasks for various LLMs, with GPT-4o as the optimization engine. The
values in parentheses represent the relative improvement in accuracy of the method compared to TextGrad.

Dataset Models Accuracy % (Improv. over TextGrad)

CoT TextGrad M-TextGrad REVOLVE

Object Counting

GPT-3.5 77.8 (15.3%↓) 91.9 (-) 92.1 (0.2%↑) 95.5 ± 0.9% (3.9%↑)
GPT-4 92.1 (2.2%↓) 94.2 (-) 90.0 (4.5%↓) 96.3 ± 0.6% (2.2%↑)

Gemini 1.5 Pro 94.0 (0.0%) 94.0 (-) 94.0 (0.0%) 94.0 ± 0.0% (0.0%)
Llama 3.1 8B Instruct 65.0 (15.6%↓) 77.0 (-) 80.0 (3.9%↑) 83.0 ± 1.4% (7.8%↑)

GSM8k

GPT-3.5 72.9 (9.9%↓) 80.9 (-) 82.1 (1.5%↑) 85.9 ± 0.6% (6.2%↑)
GPT-4 92.6 (0.4%↓) 93.0 (-) 93.9 (1.0%↑) 94.5 ± 0.4% (1.6%↑)

Gemini 1.5 Pro 92.9 (0.4%↓) 93.3 (-) 93.9 (0.6%↑) 93.0 ± 0.3% (0.3%↓)
Llama 3.1 8B Instruct 84.6 (0.0%) 84.6 (-) 84.6 (0.0%) 84.6 ± 0.0% (0.0%)

Table 2: Solution optimization results for Llama 3.1 8B Instruct, with itself as the optimization engine. The values in
parentheses represent the relative improvement of the method compared to TextGrad.

Dataset Stage Accuracy % (Improv. over TextGrad)

CoT TextGrad M-TextGrad REVOLVE

Google-proof QA

Before Training 21.7 (0.0%) 21.7 (-) 21.7 (0.0%) 21.7 (0.0%)
1st Iteration - 25.8 (-) 26.5 (2.7%↑) 26.8 ± 0.2% (3.88%↑)
2nd Iteration - 26.8 (-) 29.3 (9.3%↑) 29.8 ± 0.5% (11.19%↑)
3rd Iteration - 24.8 (-) 25.7 (3.6%↑) 27.8 ± 0.5% (12.10%↑)
Final Results 21.7 (8.4%↓) 23.7 (-) 25.1 (5.9%↑) 28.3 ± 0.4% (19.41%↑)

MMLU-Machine Learning

Before Training 51.8 (0.0%) 51.8 (-) 51.8 (0.0%) 51.8 (0.0%)
1st Iteration - 43.8 (-) 46.9 (7.1%↑) 48.2 ± 0.3% (10.05%↑)
2nd Iteration - 43.8 (-) 45.2 (3.2%↑) 47.3 ± 0.5% (7.99%↑)
3rd Iteration - 43.8 (-) 44.4 (1.4%↑) 46.4 ± 0.6% (5.94%↑)
Final Results 51.8 (9.5%↑) 47.3 (-) 47.4 (0.2%↑) 57.1 ± 0.6% (20.72%↑)

MMLU-College Physics

Before Training 54.7 (0.0%) 54.7 (-) 54.7 (0.0%) 54.7 (0.0%)
1st Iteration - 51.1 (-) 55.9 (9.4%↑) 58.3 ± 0.2% (14.09%↑)
2nd Iteration - 51.1 (-) 61.0 (19.4%↑) 62.0 ± 0.4% (21.33%↑)
3rd Iteration - 55.7 (-) 60.3 (8.3%↑) 65.7 ± 0.5% (17.95%↑)
Final Results 54.7 (9.3%↓) 60.3 (-) 61.6 (2.2%↑) 66.4 ± 0.5% (10.12%↑)

Universality: REVOLVE’s universality is evidenced by its
consistent performance across all LLMs, including gpt-3.5-
turbo-0125, GPT-4, and Llama 3.1 8B Instruct, where it
delivers the highest accuracy with an average improvement
of 5-7% compared to the baselines. However, there is one
exception on the Gemini-1.5-Pro model, where REVOLVE
slightly trails behind TextGrad. This small performance
gap may be due to the use of GPT-4o to guide the Gemini-
1.5-pro in the prompt optimization reasoning task. Given
that Gemini-1.5-pro may exhibit more sophisticated reason-
ing capabilities than GPT-4o in this specific scenario, the
transfer of guidance from GPT-4o could have introduced
suboptimal adjustments, leading to a slight degradation in
performance. Despite this, REVOLVE remains highly adapt-
able and effective across diverse LLM backends, reaffirming
its versatility as a powerful optimization tool.

We observe that on the GSM8K dataset with Llama 3.1, all
methods stagnate, likely due to the model’s saturation on
this task, leaving little room for improvement. Despite this,
REVOLVE excels in enhancing weaker, cost-effective mod-
els like gpt-3.5-turbo-0125 using feedback from stronger
models such as gpt-4o. By incurring a one-time optimization
cost, REVOLVE provides optimized prompts for weaker
models, delivering significant performance gains without
the high inference costs of stronger models. This efficiency

makes it ideal for cost-sensitive AI deployment.

4.2. Solution optimization

We evaluate REVOLVE on the solution optimization task,
which aims to refine solutions to complex scientific or techni-
cal problems, such as quantum mechanics or organic chem-
istry questions. The solution evolves dynamically through
self-evaluation and critique, challenging the LLM to re-
fine responses continually. This process aligns with test-
time training (Sun et al., 2020; 2024), where models refine
during testing, and with recent progress in self-refinement
for reasoning tasks (Yao et al., 2022; Madaan et al., 2024;
Shinn et al., 2024), which have proven effective in iterative
problem-solving.

Task Setup: We evaluate solution optimization on
two benchmarks: Google-proof Question Answering
(GPQA)(Rein et al., 2023), which consists of expert-level
multiple-choice questions in physics, biology, and chemistry,
and two subsets of the MMLU benchmark(Hendrycks et al.,
2020), specifically focused on Machine Learning and Col-
lege Physics. GPQA is a highly difficult benchmark, with
experts achieving 81% accuracy and skilled non-experts
reaching only 22%, highlighting the challenge of the ques-
tions. Performance of LLMs on these benchmarks has not

6

REVOLVE: Optimizing AI Systems by Tracking Response Evolution in Textual Optimization

yet saturated, making them ideal for benchmarking solution
refinement. We use three iterations of optimization for each
question when using the iterative optimization methods. The
final answer is determined through majority voting across
all iterations. Following (Yuksekgonul et al., 2024), we use
the string-based exact match metric. The detailed task
setup is in Appendix C.

Baselines and LLM Backends: We compare REVOLVE
against three primary baselines for solution optimization:
Chain-of-Thought (CoT) (Kojima et al., 2022; Wei et al.,
2022), TextGrad (Yuksekgonul et al., 2024) and Momentum-
Enhanced TextGrad. All methods are applied separately on
three LLMs: GPT-4o, GPT-4-0125-preview, and Llama 3.1
8B Instruct, with themselves serving as the backend of the
optimization system.

Detailed baseline configurations and prompting exemplars
can be found in Appendix C.

Results: As shown in Table 2, across all benchmarks, RE-
VOLVE significantly improves the performance of Llama
3.1 8B Instruct compared to all baselines. On average,
across the three benchmarks, REVOLVE achieves a 17.79%
relative improvement in final accuracy over TextGrad. This
substantial gain highlights the effectiveness of incorporat-
ing second-order gradients into the optimization process,
enabling more precise adjustments and greater performance
gains on solution optimization tasks. More experimental
results are shown in Appendix D.

Deterioration in TextGrad: Interestingly, we observe per-
formance deterioration with TextGrad on the MMLU bench-
mark, where both intermediate and final results are worse
than the initial state. This highlights a key limitation of
first-order optimization: relying solely on immediate feed-
back without accounting for curvature can lead to unstable
optimization, potentially causing the model’s performance
to degrade over time.

Fluctuations in Momentum-Based TextGrad: While
Momentum-Based TextGrad avoids stagnation seen in
TextGrad method, its performance fluctuates significantly
across iterations. This is due to its reliance on larger, varied
changes when feedback becomes repetitive, which can lead
to overshooting and destabilization. Though it helps break
feedback loops, momentum-based methods often amplify
change without tracking the precise evolution of responses.

In contrast, REVOLVE overcomes these limitations by cap-
turing gradient curvature, enabling better global adjustments
and avoiding stagnation, proving its superiority in com-
plex optimization scenarios. These results illustrate that
by spending additional computational resources during test-
time, REVOLVE significantly enhances performance, even
for advanced models. Its iterative, second-order optimiza-
tion approach makes it highly effective across diverse tasks,

ensuring robust and versatile optimization for AI systems
requiring high performance and accuracy.

Before training1 2 3 4 5 6 Final Results
Stage

20

22

24

26

28

30

32

34

Ac
cu

ra
cy

 (%
)

TextGrad
M-TextGrad
REVOLVE

(a) Google-proof QA

Before training1 2 3 4 5 6 Final Results
Stage

40.0

42.5

45.0

47.5

50.0

52.5

55.0

57.5

60.0

Ac
cu

ra
cy

 (%
)

TextGrad
M-TextGrad
REVOLVE

(b) MMLU-Machine
Learning

Before training1 2 3 4 5 6 Final Results
Stage

45

50

55

60

65

70

75

Ac
cu

ra
cy

 (%
)

TextGrad
M-TextGrad
REVOLVE

(c) MMLU-College
Physics

Figure 2: Loss curves w.r.t. accuracy on solution optimiza-
tion task.

Empirical Analysis of Loss Curves. To evaluate RE-
VOLVE’s second-order-inspired behavior, we analyze op-
timization curves for solution optimization. Since explicit
numerical loss values are unavailable, we use test accuracy
as a proxy for loss and extend the iterations to 6 for clearer
trends. Figure 2 illustrates three key effects:

• Escaping Local Optima: REVOLVE surpasses perfor-
mance plateaus by leveraging cumulative response dy-
namics (Figure 2b).

• Stabilizing Updates: Unlike M-TextGrad, which ex-
hibits oscillations (e.g., Figure 2c), REVOLVE ensures
smoother optimization.

• Enhanced Performance: Loss curves show REVOLVE’s
effectiveness in refining solutions iteratively across all
datasets.

These results confirm REVOLVE’s ability to simulate
second-order effects, improving optimization without ex-
plicit Hessian computations.

4.3. Code Optimization

The Code Optimization task aims to refine code snippets
to improve their correctness and runtime efficiency, often
with limited supervision from local tests and iterative self-
evaluation. This task is also well-suited for evaluating opti-
mization techniques as it requires handling intricate problem
constraints and optimizing through iterative adjustments.

Task Setup: We evaluate code optimization using the Leet-
Code Hard dataset (Shinn et al., 2024), an online platform
featuring coding challenges commonly used for technical
interview preparation. The primary metric for this task is
the Completion Rate, which measures the percentage of
problems for which all test cases are passed, calculated as
Number of problems passed
Total number of problems . Since LeetCode test cases are not pub-

licly available, generated code is submitted to the LeetCode
platform for evaluation on these unseen test cases. Results
are averaged over multiple runs for robustness. Additional
details of the task setup are provided in Appendix E.

Baselines and LLM Backends: We evaluate REVOLVE
against four key baselines on the LeetCode Hard dataset
using Llama 3.1 8B Instruct model as the backend:

7

REVOLVE: Optimizing AI Systems by Tracking Response Evolution in Textual Optimization

Table 3: Code optimization results (averaged over 5 seeds) on LeetCode Hard for various LLMs, with themselves as the
optimization engine. Values in parentheses show the relative improvement in completion rate over TextGrad.

Models Method Completion Rate (Improv. over TextGrad)

GPT-4o

Zero-shot 0.38 (25.49%↓)
Reflexion (1 demonstration, 5 iterations) 0.42 ± 0.003 (17.65%↓)
TextGrad (0 demonstrations, 5 iterations) 0.51 ± 0.005 (-)

M-TextGrad (0 demonstrations, 5 iterations) 0.49 ± 0.005 (3.92%↓)
REVOLVE (0 demonstrations, 5 iterations) 0.52 ± 0.002 (1.96%↑)

GPT-4-0125-preview

Zero-shot 0.33 (35.29%↓)
Reflexion (1 demonstration, 5 iterations) 0.41 ± 0.002 (19.61%↓)
TextGrad (0 demonstrations, 5 iterations) 0.51 ± 0.003 (-)

M-TextGrad (0 demonstrations, 5 iterations) 0.45 ± 0.006 (11.76%↓)
REVOLVE (0 demonstrations, 5 iterations) 0.56 ± 0.003 (9.80%↑)

Llama 3.1 8B Instruct

Zero-shot 0.12 (50%↓)
Reflexion (1 demonstration, 5 iterations) 0.20 ± 0.002 (16.67%↓)
TextGrad (0 demonstrations, 5 iterations) 0.24 ± 0.005 (-)

M-TextGrad (0 demonstrations, 5 iterations) 0.25 ± 0.003 (4.17%↑)
REVOLVE (0 demonstrations, 5 iterations) 0.31 ± 0.006 (29.17%↑)

• Zero-shot Baseline: We follow the zero-shot setup
in (Shinn et al., 2024).

• Reflexion (Shinn et al., 2024): The state-of-the-art
method for code optimization, which prompts an LLM to
self-reflect on generated code snippets and errors based
on candidate unit tests. Reflexion then prompts the LLM
to update the code based on this self-reflection. We run
Reflexion using a one-shot setting, with one in-context
demonstration to guide its behavior.

• TextGrad and Momentum-Enhanced TextGrad: We
run TextGrad, M-TextGrad, and REVOLVE in a zero-shot
setting without demonstrations, refining the code based
solely on feedback from each iteration.

Results: As shown in Table 3, REVOLVE achieves the
highest performance on LeetCode Hard. With Llama 3.1
8B Instruct, it attains a 31% completion rate, a 29.17%
improvement over TextGrad, surpassing Reflexion (16.67%)
and Momentum-Enhanced TextGrad (4.17%). These results
underscore REVOLVE’s effectiveness in refining code for
complex problems.

4.4. Ablation Study

Given the simplicity of our method, there are no complex
components that can be eliminated for a traditional ablation.
Instead, we conduct an ablation study by testing different
prompt designs to evaluate their impact on performance.
Specifically, we compare our REVOLVE prompt, a variant
of this prompt, and the prompt used in TextGrad to high-
light the effectiveness of our approach. More details on the
prompts can be found in Appendix F.

Table 4: Prompt optimization results for reasoning tasks for
various LLMs, with gpt-4o as the optimization engine.

Dataset Method Accuracy %

Object Counting
TextGrad 77.0
Variant 80.0

REVOLVE 83.0

• REVOLVE Prompt: This prompt is carefully designed

for REVOLVE, considering both immediate feedback and
response evolution across iterations.

• Variant Prompt: It differs from our method by directly
instructing the LLM to generate more diverse responses,
effectively pushing it towards greater variation with each
iteration.

• TextGrad Prompt: Serving as the baseline, TextGrad’s
prompt focuses primarily on immediate feedback, making
adjustments based solely on the latest response.

We evaluated object counting in prompt optimization (Ta-
ble 4). The Variant prompt outperforms TextGrad by encour-
aging broader shifts, while REVOLVE improves accuracy
through stable, iterative refinement, avoiding abrupt changes
and ensuring controlled optimization.

Moreover, to assess REVOLVE’s computational efficiency,
we compare its GPU memory usage and runtime with base-
line methods across three task categories. Detailed results
are provided in Appendix G.

5. Conclusion
In this paper, we introduced REVOLVE, an optimization
framework that extends traditional methods by consider-
ing the evolution of responses over multiple iterations. In-
stead of focusing only on immediate feedback, REVOLVE
incorporates insights from the similarity between consec-
utive responses, akin to how second-order information is
used in optimization. By capturing these iterative changes,
REVOLVE achieves more stable, consistent improvements
across various tasks. More broadly, REVOLVE represents
more than just performance gains, it highlights the growing
potential of integrating established optimization principles
with LLMs. By bridging these domains, it demonstrates
how the rich knowledge from traditional optimization can
be adapted to unleash the power of LLMs. We envision
future research exploring adaptations of other advanced op-
timization techniques in a textual manner, further unlocking
the synergy between optimization and AI systems.

8

REVOLVE: Optimizing AI Systems by Tracking Response Evolution in Textual Optimization

Impact Statement
This work introduces REVOLVE, an optimization frame-
work that improves LLM adaptability by incorporating
response evolution over multiple iterations. By address-
ing stagnation in local optima, it enhances performance in
prompt refinement, solution optimization, and code genera-
tion. While our method strengthens AI efficiency and robust-
ness, we acknowledge its potential for adversarial misuse.
Our goal is to advance AI optimization while promoting re-
sponsible and secure applications. This research contributes
to scalable AI systems, reducing manual engineering efforts
and supporting safer, more reliable AI deployment. More
broadly, REVOLVE pioneers the integration of established
optimization principles into the textual domain, which opens
new avenues for enhancing LLM systems.

References
Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,

Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Anthropic. Introducing claude. 2023. URL
https://www.anthropic.com/index/
introducing-claude.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., et al. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168, 2021.

Guo, Q., Wang, R., Guo, J., Li, B., Song, K., Tan, X., Liu,
G., Bian, J., and Yang, Y. Connecting large language mod-
els with evolutionary algorithms yields powerful prompt
optimizers. arXiv preprint arXiv:2309.08532, 2023.

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika,
M., Song, D., and Steinhardt, J. Measuring mas-
sive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Hinton, G. E. and Salakhutdinov, R. R. Reducing the di-
mensionality of data with neural networks. science, 313
(5786):504–507, 2006.

Jin, H., Chen, R., Zhou, A., Zhang, Y., and Wang, H. Guard:
Role-playing to generate natural-language jailbreakings
to test guideline adherence of large language models.
arXiv preprint arXiv:2402.03299, 2024a.

Jin, Y., Zhao, Q., Wang, Y., Chen, H., Zhu, K., Xiao, Y., and
Wang, J. Agentreview: Exploring peer review dynamics
with llm agents. In EMNLP, 2024b.

Khattab, O., Singhvi, A., Maheshwari, P., Zhang, Z., San-
thanam, K., Haq, S., Sharma, A., Joshi, T. T., Moazam,
H., Miller, H., et al. Dspy: Compiling declarative lan-
guage model calls into state-of-the-art pipelines. In The
Twelfth International Conference on Learning Represen-
tations, 2024.

Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., and Iwasawa,
Y. Large language models are zero-shot reasoners. Ad-
vances in neural information processing systems, 35:
22199–22213, 2022.

Liu, B., Li, X., Zhang, J., Wang, J., He, T., Hong, S., Liu,
H., Zhang, S., Song, K., Zhu, K., et al. Advances and
challenges in foundation agents: From brain-inspired in-
telligence to evolutionary, collaborative, and safe systems.
arXiv preprint arXiv:2504.01990, 2025.

Madaan, A., Tandon, N., Gupta, P., Hallinan, S., Gao,
L., Wiegreffe, S., Alon, U., Dziri, N., Prabhumoye, S.,
Yang, Y., et al. Self-refine: Iterative refinement with self-
feedback. Advances in Neural Information Processing
Systems, 36, 2024.

Prasad, A., Hase, P., Zhou, X., and Bansal, M. Grips:
Gradient-free, edit-based instruction search for prompting
large language models. arXiv preprint arXiv:2203.07281,
2022.

Pryzant, R., Martinez, R. D., Dass, N., Kurohashi, S., Juraf-
sky, D., and Yang, D. Automatically neutralizing subjec-
tive bias in text. In Proceedings of the aaai conference
on artificial intelligence, volume 34, pp. 480–489, 2020.

Pryzant, R., Iter, D., Li, J., Lee, Y. T., Zhu, C., and Zeng, M.
Automatic prompt optimization with" gradient descent"
and beam search. arXiv preprint arXiv:2305.03495, 2023.

Rein, D., Hou, B. L., Stickland, A. C., Petty, J., Pang,
R. Y., Dirani, J., Michael, J., and Bowman, S. R. Gpqa:
A graduate-level google-proof q&a benchmark. arXiv
preprint arXiv:2311.12022, 2023.

Shinn, N., Cassano, F., Gopinath, A., Narasimhan, K., and
Yao, S. Reflexion: Language agents with verbal rein-
forcement learning. Advances in Neural Information
Processing Systems, 36, 2024.

Srivastava, A., Rastogi, A., Rao, A., Shoeb, A. A. M., Abid,
A., Fisch, A., Brown, A. R., Santoro, A., Gupta, A.,
Garriga-Alonso, A., et al. Beyond the imitation game:
Quantifying and extrapolating the capabilities of language
models. arXiv preprint arXiv:2206.04615, 2022.

9

https://www.anthropic.com/index/introducing-claude
https://www.anthropic.com/index/introducing-claude

REVOLVE: Optimizing AI Systems by Tracking Response Evolution in Textual Optimization

Sun, Y., Wang, X., Liu, Z., Miller, J., Efros, A., and Hardt,
M. Test-time training with self-supervision for generaliza-
tion under distribution shifts. In International conference
on machine learning, pp. 9229–9248. PMLR, 2020.

Sun, Y., Li, X., Dalal, K., Xu, J., Vikram, A., Zhang, G.,
Dubois, Y., Chen, X., Wang, X., Koyejo, S., et al. Learn-
ing to (learn at test time): Rnns with expressive hidden
states. arXiv preprint arXiv:2407.04620, 2024.

Suzgun, M., Scales, N., Schärli, N., Gehrmann, S., Tay,
Y., Chung, H. W., Chowdhery, A., Le, Q. V., Chi,
E. H., Zhou, D., et al. Challenging big-bench tasks and
whether chain-of-thought can solve them. arXiv preprint
arXiv:2210.09261, 2022.

Team, G., Anil, R., Borgeaud, S., Wu, Y., Alayrac, J.-B., Yu,
J., Soricut, R., Schalkwyk, J., Dai, A. M., Hauth, A., et al.
Gemini: a family of highly capable multimodal models.
arXiv preprint arXiv:2312.11805, 2023.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi,
E., Le, Q. V., Zhou, D., et al. Chain-of-thought prompting
elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837,
2022.

Xiao, Y., Jin, Y., Bai, Y., Wu, Y., Yang, X., Luo, X., Yu, W.,
Zhao, X., Liu, Y., Chen, H., et al. Large language models
can be good privacy protection learners. In EMNLP,
2024.

Yang, C., Wang, X., Lu, Y., Liu, H., Le, Q. V., Zhou, D., and
Chen, X. Large language models as optimizers. In The

Twelfth International Conference on Learning Represen-
tations, 2024. URL https://openreview.net/
forum?id=Bb4VGOWELI.

Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan,
K., and Cao, Y. React: Synergizing reasoning and acting
in language models. arXiv preprint arXiv:2210.03629,
2022.

Yuksekgonul, M., Bianchi, F., Boen, J., Liu, S., Huang,
Z., Guestrin, C., and Zou, J. Textgrad: Automatic" dif-
ferentiation" via text. arXiv preprint arXiv:2406.07496,
2024.

Zhang, S., Zhang, J., Liu, J., Song, L., Wang, C., Krishna,
R., and Wu, Q. Offline training of language model agents
with functions as learnable weights. In Forty-first Inter-
national Conference on Machine Learning.

Zhang, W., Tang, K., Wu, H., Wang, M., Shen, Y., Hou, G.,
Tan, Z., Li, P., Zhuang, Y., and Lu, W. Agent-pro: Learn-
ing to evolve via policy-level reflection and optimization.
arXiv preprint arXiv:2402.17574, 2024.

Zhou, W., Ou, Y., Ding, S., Li, L., Wu, J., Wang, T.,
Chen, J., Wang, S., Xu, X., Zhang, N., et al. Symbolic
learning enables self-evolving agents. arXiv preprint
arXiv:2406.18532, 2024.

Zhuge, M., Wang, W., Kirsch, L., Faccio, F., Khizbullin,
D., and Schmidhuber, J. Language agents as optimizable
graphs. arXiv preprint arXiv:2402.16823, 2024.

10

https://openreview.net/forum?id=Bb4VGOWELI
https://openreview.net/forum?id=Bb4VGOWELI

REVOLVE: Optimizing AI Systems by Tracking Response Evolution in Textual Optimization

A. System Prompt Details for REVOLVE
In REVOLVE, we use system prompts designed to guide iterative response refinement. The prompts focus on comparing the
current response with previous iterations, emphasizing gradual, thoughtful evolution. They request the model to provide
feedback not only on immediate changes but also on patterns observed across multiple iterations.

we use the following glossary to the system prompt:

GLOSSARY TEXT

Glossary of tags that will be sent to you:
- <LM_SYSTEM_PROMPT>: The system prompt for the language model.
- <LM_INPUT>: The input to the language model.
- <LM_OUTPUT>: The output of the language model.
- <FEEDBACK>: The feedback to the variable.
- <CONVERSATION>: The conversation history.
- <FOCUS>: The focus of the optimization.
- <ROLE>: The role description of the variable.

The Optimize Prompts details are as follows:

OPTIMIZER SYSTEM PROMPT

"You are part of an optimization system that improves text (i.e., variable) by analyzing how the responses evolve
across multiple iterations. "
"Your goal is not just to make a single improvement, but to ensure that the variable evolves naturally and meaningfully
over time. "
"Focus on adjusting the variable in a way that each step introduces thoughtful, measured changes based on past
iterations, rather than drastic shifts. "
"The feedback provided will help guide these adjustments, but ensure that your improvements maintain coherence
and contextual alignment. "
"You MUST give your response by sending the improved variable between {new_variable_start_tag} {{improved
variable}} {new_variable_end_tag} tags. "
f"{GLOSSARY_TEXT}"

Textual Gradient Descent Prompt Prefix

"Here is the role of the variable you will improve: <ROLE>{variable_desc}</ROLE>."
"The variable is the text within the following span: <VARIABLE> {variable_short} </VARIABLE>" "Here is the
context and feedback we received for the variable:"
"<CONTEXT>{variable_grad}</CONTEXT>"
"Additionally, reflect on how the responses to this variable have evolved across iterations:"
"<PAST_ITERATIONS>{past_values}</PAST_ITERATIONS>"
"Make nuanced improvements, keeping in mind that too-similar responses suggest insufficient change, but avoid
making overly large changes. "
"Ensure that the response evolves in a coherent and thoughtful manner that aligns with the context, feedback, and
past responses."

The following is how we save gradients to the variable.

11

REVOLVE: Optimizing AI Systems by Tracking Response Evolution in Textual Optimization

GRADIENT TEMPLATE

"Here is a conversation:<CONVERSATION>{context}</CONVERSATION>"
"This conversation is part of a larger system. The output is used as {response_desc}. "
"Here is the feedback we received for {variable_desc} in the conversa-
tion:<FEEDBACK>{feedback}</FEEDBACK>"
"Additionally, consider how the responses to this variable have changed across previous iterations:"
"<PAST_ITERATIONS>{past_values}</PAST_ITERATIONS>"
"Make sure future responses reflect a meaningful, gradual evolution based on these past iterations, encouraging
thoughtful progress rather than drastic shifts."

B. Prompt Optimization
For the dataset split, we follow the settings used in TextGrad (Yuksekgonul et al., 2024). The Big Bench Hard Object
Counting dataset is divided into 50/100/100 samples for train/validation/test, respectively. For GSM8K, we adopt the split
from DSPy (Khattab et al., 2024), using 200/300/1399 samples for train/validation/test. In each task, we limit the training
set to 36 samples, consistent with the TextGrad setup. Example queries for each dataset are shown below:

Example Query for Big Bench Hard Object Counting

I have an apple, three bananas, a strawberry, a peach, three oranges, a plum, a raspberry, two grapes, a nectarine, and
a blackberry. How many fruits do I have?

Example Query for GSM8K

Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May. How many clips did
Natalia sell altogether in April and May?

For the momentum-enhanced TextGrad baseline, to ensure a fair comparison with REVOLVE, which accounts for responses
from all previous iterations, we set the momentum window to 12 so that momentum-enhanced TextGrad has access to
gradients from all prior iterations.

Regarding specific hyperparameters for the LLMs, we set the temperature to 0 (1× 10−6 for Llama 3.1 8B Instruct), allow a
maximum of 2000 new tokens, and use a top-p value of 0.99.

C. Solution Optimization
For the solution optimization task, we follow the experimental setup outlined by TextGrad (Yuksekgonul et al., 2024). This
ensures fair comparisons across all experiments. We evaluate on two benchmarks: Google-Proof Question Answering
(GPQA) (Rein et al., 2023) and two subsets from the MMLU benchmark (Hendrycks et al., 2020), Machine Learning and
College Physics. Following the simple-evals repository practice, we employ string matching to extract the final answer (one
of ABCD) and compare it to the ground truth. The datasets comprise 198 questions in the GPQA Diamond subset, 112 in
MMLU Machine Learning, and 92 in MMLU College Physics. We compare REVOLVE against three primary baselines for
solution optimization:

• Chain-of-Thought (CoT) (Kojima et al., 2022; Wei et al., 2022): This baseline serves as our initial baseline. This method
employs a step-by-step reasoning process, providing a strong foundation for comparison in complex problem-solving
tasks.

• TextGrad (Yuksekgonul et al., 2024): This method leverages textual gradients to iteratively refine solutions. For the
solution optimization task, we apply three iterations of test-time updates using TextGrad, refining the solution at each step.
The process involves making one call to GPT-4o to evaluate the test-time loss, another call to collect gradients, and a final
call to update the solution accordingly.

12

https://github.com/openai/simple-evals/

REVOLVE: Optimizing AI Systems by Tracking Response Evolution in Textual Optimization

• Momentum-Enhanced Textgrad: This model builds upon the original TextGrad framework by incorporating momentum.
This variant aims to overcome potential stagnation in the optimization process by adjusting the magnitude of updates
based on the history of previous iterations. Like TextGrad, we apply three iterations of test-time updates for this method.

For TextGrad, Momentum-Enhanced TextGrad, and our proposed REVOLVE method, we determine the final answer through
majority voting across all iterations. This approach ensures that we capture the best performance from each method over
multiple refinement steps.

Example Query for GPQA Diamond

Answer the following multiple choice question. The last line of your response should be of the following format:
’Answer: $LETTER’ (without quotes) where LETTER is one of ABCD. Think step by step before answering.
A) A = cyclohexane-1,3,5-trione, B = dimethyl fumarate
B) A = benzoquinone, B = dimethyl fumarate
C) A = benzoquinone, B = methyl 2-hydroxypropanoate
D) A = cyclohexane-1,3,5-trione, B = methyl 2-hydroxypropanoate

Example Comparison of TextGrad and REVOLVE

Answer the following multiple-choice question... Select the suitable reagents for the following mentioned reactions.
butan-2-one + NaCN + A —> 2-hydroxy-2-methylbutanenitrile 2-(4-benzylphenyl)-2-hydroxybutanenitrile + B
(H2O) —> 2-(4-benzylphenyl)-2-hydroxybutanoic acid.
A) A = NaHSO3, B = CH3COOH
B) A = H3O+, B = HCl
C) A = NaHSO3, B = HCl
D) A = H3O+, B = CH3COOH
(Ground Truth Answer: C)
TextGrad Response: ...let’s evaluate the options: ... Option B: A = H3O+, B = HCl - H3O+ (hydronium ion) is a
suitable proton source for cyanohydrin formation. HCl is a strong acid and commonly used for hydrolyzing nitriles
to carboxylic acids. Option C: A = NaHSO3, B = HCl NaHSO3 is not typically used in cyanohydrin formation.
HCl is suitable for hydrolyzing nitriles. ... Based on the analysis, the most suitable reagents for the reactions are: A
= H3O+ for the cyanohydrin formation. B = HCl for the hydrolysis of the nitrile to a carboxylic acid. Therefore, the
correct answer is: Answer: B.
REVOLVE Response: ...The first reaction is the addition of cyanide ion (CN-) to butan-2-one to form 2-hydroxy-2-
methylbutanenitrile. This is an example of a cyanohydrin reaction, which typically involves the addition of cyanide
ion to an aldehyde or ketone in the presence of a catalyst such as sodium bisulfite (NaHSO3).The second reaction is
the hydrolysis of 2-(4-benzylphenyl)-2-hydroxybutanenitrile to form 2-(4-benzylphenyl)-2-hydroxybutanoic acid.
This is an example of a hydrolysis reaction, which typically involves the addition of water (H2O) in the presence of
a strong acid such as hydrochloric acid (HCl). Based on this analysis, the suitable reagents for the reactions
are:A = NaHSO3 (sodium bisulfite) for the first reaction. B = HCl (hydrochloric acid) for the second reaction.
So, the correct answer is: Answer: C.

Case Study: In this example, TextGrad incorrectly selects H3O+ for cyanohydrin formation, misunderstanding the role of
NaHSO3, which is a typical catalyst in such reactions. Its reliance on first-order feedback leads to an erroneous conclusion.
In contrast, REVOLVE correctly identifies NaHSO3 as the catalyst for the first reaction and HCl for the hydrolysis in
the second reaction. By leveraging second-order gradients, REVOLVE better captures the complexities of the chemical
mechanisms, leading to the correct answer.

13

REVOLVE: Optimizing AI Systems by Tracking Response Evolution in Textual Optimization

D. Detailed Experiments on Solution Optimization

Table 5: Solution optimization results for various LLM, with themselves as the optimization engine. The values in
parentheses represent the relative improvement of the method compared to TextGrad.

Dataset Models Stage Accuracy % (Improv. over TextGrad)

CoT TextGrad M-TextGrad REVOLVE

Google-proof QA

GPT-4o

Before Training 50.4 (0.0%) 50.4 (-) 50.4 (0.0%) 50.4 (0.0%)
1st Iteration - 50.4 (-) 51.1 (1.3%↑) 50.9 ± 0.4% (0.99%↑)
2nd Iteration - 50.5 (-) 50.7 (0.4%↑) 51.3 ± 0.5% (1.58%↑)
3rd Iteration - 50.5 (-) 51.9 (2.7%↑) 52.9 ± 0.6% (4.75%↑)
Final Results 50.4 (2.1%↓) 51.5 (-) 52.4 (1.7%↑) 53.0 ± 0.7% (2.91%↑)

GPT-4-0125-preview

Before Training 38.8 (0.0%) 38.8 (-) 38.8 (0.0%) 38.8 (0.0%)
1st Iteration - 38.5 (-) 39.3 (2.0%↑) 39.5 ± 0.3% (2.60%↑)
2nd Iteration - 38.3 (-) 40.1 (4.7%↑) 40.3 ± 0.5% (5.22%↑)
3rd Iteration - 38.2 (-) 40.4 (5.7%↑) 41.0 ± 0.4% (7.33%↑)
Final Results 38.8 (1.8%↑) 38.1 (-) 41.5 (8.9%↑) 42.2 ± 0.6% (10.76%↑)

Llama 3.1 8B Instruct

Before Training 21.7 (0.0%) 21.7 (-) 21.7 (0.0%) 21.7 (0.0%)
1st Iteration - 25.8 (-) 26.5 (2.7%↑) 26.8 ± 0.2% (3.88%↑)
2nd Iteration - 26.8 (-) 29.3 (9.3%↑) 29.8 ± 0.5% (11.19%↑)
3rd Iteration - 24.8 (-) 25.7 (3.6%↑) 27.8 ± 0.5% (12.10%↑)
Final Results 21.7 (8.4%↓) 23.7 (-) 25.1 (5.9%↑) 28.3 ± 0.4% (19.41%↑)

MMLU-Machine Learning

GPT-4o

Before Training 85.5 (0.0%) 85.5 (-) 85.5 (0.0%) 85.5 (0.0%)
1st Iteration - 85.5 (-) 85.5 (0.0%) 85.8 ± 0.5% (0.35%↑)
2nd Iteration - 85.6 (-) 85.4 (0.2%↓) 86.1 ± 1.0% (0.58%↑)
3rd Iteration - 85.6 (-) 85.3 (0.3%↓) 86.4 ± 1.1% (0.93%↑)
Final Results 85.5 (0.3%↓) 85.8 (-) 85.0 (0.9%↓) 86.7 ± 0.8% (1.05%↑)

GPT-4-0125-preview

Before Training 76.3 (0.0%) 76.3 (-) 76.3 (0.0%) 76.3 (0.0%)
1st Iteration - 76.4 (-) 77.2 (1.0%↑) 77.1 ± 0.4% (0.92%↑)
2nd Iteration - 76.6 (-) 77.8 (1.5%↑) 77.9 ± 0.6% (1.70%↑)
3rd Iteration - 77.0 (-) 78.1 (1.4%↑) 79.2 ± 0.7% (2.86%↑)
Final Results 76.3 (3.3%↓) 78.9 (-) 79.2 (0.3%↑) 81.0 ± 0.8% (2.66%↑)

Llama 3.1 8B Instruct

Before Training 51.8 (0.0%) 51.8 (-) 51.8 (0.0%) 51.8 (0.0%)
1st Iteration - 43.8 (-) 46.9 (7.1%↑) 48.2 ± 0.3% (10.05%↑)
2nd Iteration - 43.8 (-) 45.2 (3.2%↑) 47.3 ± 0.5% (7.99%↑)
3rd Iteration - 43.8 (-) 44.4 (1.4%↑) 46.4 ± 0.6% (5.94%↑)
Final Results 51.8 (9.5%↑) 47.3 (-) 47.4 (0.2%↑) 57.1 ± 0.6% (20.72%↑)

MMLU-College Physics

GPT-4o

Before Training 91.0 (0.0%) 91.0 (-) 91.0 (0.0%) 91.0 (0.0%)
1st Iteration - 91.6 (-) 91.6 (0.0%) 91.8 ± 0.5% (0.22%↑)
2nd Iteration - 92.1 (-) 92.3 (0.2%↑) 92.5 ± 0.7% (0.43%↑)
3rd Iteration - 92.8 (-) 91.2 (1.7%↓) 93.2 ± 0.8% (0.43%↑)
Final Results 91.0 (2.7%↓) 93.5 (-) 91.3 (2.3%↓) 94.1 ± 0.9% (0.64%↑)

GPT-4-0125-preview

Before Training 81.6 (0.0%) 81.6 (-) 81.6 (0.0%) 81.6 (0.0%)
1st Iteration - 82.4 (-) 81.9 (0.6%↓) 82.5 ± 0.3% (0.12%↑)
2nd Iteration - 83.1 (-) 82.4 (0.8%↓) 83.4 ± 0.4% (0.36%↑)
3rd Iteration - 84.1 (-) 82.1 (2.4%↓) 84.5 ± 0.6% (0.48%↑)
Final Results 81.6 (4.7%↓) 85.6 (-) 82.3 (3.8%↓) 85.9 ± 0.7% (0.35%↑)

Llama 3.1 8B Instruct

Before Training 54.7 (0.0%) 54.7 (-) 54.7 (0.0%) 54.7 (0.0%)
1st Iteration - 51.1 (-) 55.9 (9.4%↑) 58.3 ± 0.2% (14.09%↑)
2nd Iteration - 51.1 (-) 61.0 (19.4%↑) 62.0 ± 0.4% (21.33%↑)
3rd Iteration - 55.7 (-) 60.3 (8.3%↑) 65.7 ± 0.5% (17.95%↑)
Final Results 54.7 (9.3%↓) 60.3 (-) 61.6 (2.2%↑) 66.4 ± 0.5% (10.12%↑)

E. Code Optimization
In the code optimization task, we primarily rely on the settings from previous work, particularly TextGrad(Yuksekgonul
et al., 2024), to ensure a fair comparison across experiments. Specifically, we adopt the version of Reflexion(Shinn et al.,
2024) as used in TextGrad, which includes minor modifications for compatibility within the TextGrad framework.

For the baselines, we employ two key approaches:

• Reflexion (Shinn et al., 2024): In this setup, the language model is guided by a one-shot prompt instructing it to provide
feedback on the code it generates. The process begins by generating an initial solution based on a provided code prompt.

14

REVOLVE: Optimizing AI Systems by Tracking Response Evolution in Textual Optimization

The solution is first tested locally, and if it passes, it is then submitted to the LeetCode platform for a more rigorous
evaluation using harder test cases. If the local tests fail, Reflexion is used to request feedback from the model to refine the
code. This feedback-guided optimization is repeated for up to 5 iterations, during which the model continuously improves
the code until it successfully passes local tests and is ready for submission.

• TextGrad (Yuksekgonul et al., 2024): This baseline runs 5 independent trials, each with five seeds with [15, 17, 21, 55,
91], and averages the results to ensure consistency. During each optimization iteration, TextGrad performs three key
operations: first, it makes a call to GPT-4o to evaluate the test time loss; next, it collects gradients based on the loss;
finally, the code snippet is updated according to the gradients. This process repeats, optimizing the code over several
iterations to minimize the test time loss and improve performance on the test cases.

By following the setup from TextGrad, we ensure that both Reflexion and TextGrad are evaluated under the same conditions,
facilitating a fair and consistent comparison with these two baselines and REVOLVE.

Example Query for LeetCode Hard

def minimumTime(grid: List[List[int]]) -> int:
"""
You are given a ‘m x n’ matrix ‘grid’ consisting of non-negative integers where ‘grid[row][col]‘ represents the
minimum time required to be able to visit the cell ‘(row, col)’, which means you can visit the cell ‘(row, col)’ only
when the time you visit it is greater than or equal to ‘grid[row][col]’.
You are standing in the top-left cell of the matrix in the ‘0th’ second, and you must move to any adjacent cell in the
four directions: up, down, left, and right. Each move you make takes 1 second. Return the minimum time required
in which you can visit the bottom-right cell of the matrix. If you cannot visit the bottom-right cell, then return ‘-1’.
Example 1:
Input: grid = [[0,1,3,2],[5,1,2,5],[4,3,8,6]]
Output: 7
Explanation:
One of the paths that we can take is the following:
- at t = 0, we are on the cell (0,0).
- at t = 1, we move to the cell (0,1). It is possible because grid[0][1] <= 1.
- at t = 2, we move to the cell (1,1). It is possible because grid[1][1] <= 2.
- at t = 3, we move to the cell (1,2). It is possible because grid[1][2] <= 3.
- at t = 4, we move to the cell (1,1). It is possible because grid[1][1] <= 4.
- at t = 5, we move to the cell (1,2). It is possible because grid[1][2] <= 5.
- at t = 6, we move to the cell (1,3). It is possible because grid[1][3] <= 6.
- at t = 7, we move to the cell (2,3). It is possible because grid[2][3] <= 7.
The final time is 7. It can be shown that it is the minimum time possible.
Example 2:
Input: grid = [[0,2,4],[3,2,1],[1,0,4]]
Output: -1
Explanation:
There is no path from the top left to the bottom-right cell. Constraints:
* ‘m == grid.length’
* ‘n == grid[i].length’
* ‘2 <= m, n <= 1000’
* ‘4 <= m * n <= 105’
* ‘0 <= grid[i][j] <= 105’
* ‘grid[0][0] == 0’
"""

15

REVOLVE: Optimizing AI Systems by Tracking Response Evolution in Textual Optimization

Example Comparison of TextGrad and REVOLVE

Task Description:
"""
You have k bags. You are given a 0-indexed integer array weights where weights[i] is the weight of the ith marble.
You are also given the integer k.
Divide the marbles into the k bags according to the following rules:
• No bag is empty.
• If the ith marble and jth marble are in a bag, then all marbles with an index between the ith and jth indices should

also be in that same bag.
• If a bag consists of all the marbles with an index from i to j inclusively, then the cost of the bag is weights[i] +
weights[j].

The score after distributing the marbles is the sum of the costs of all the k bags.
Return the difference between the maximum and minimum scores among marble distributions.
Example 1:
Input: weights = [1,3,5,1], k = 2
Output: 4
Explanation:
The distribution [1],[3,5,1] results in the minimal score of (1+1) + (3+1) = 6.
The distribution [1,3],[5,1], results in the maximal score of (1+3) + (5+1) = 10.
Thus, we return their difference 10 - 6 = 4.
Example 2:
Input: weights = [1, 3], k = 2
Output: 0
Explanation:
The only distribution possible is [1],[3].
Since both the maximal and minimal score are the same, we return 0.
"""
def putMarbles(weights: List[int], k: int) -> int:
Code Generated by TextGrad: from typing import List
def putMarbles(weights: List[int], k: int) -> int: n = len(weights) if k == 1: return 0
Calculate the cost of each possible bag costs = [weights[i] + weights[i + 1] for i in range(n - 1)]
Sort the costs to find the minimum and maximum possible scores costs.sort()
The minimum score is the sum of the smallest k-1 costs minscore = sum(costs[: k − 1])
The maximum score is the sum of the largest k-1 costs maxscore = sum(costs[−(k − 1) :])
return maxscore−minscore Tests that the code passed: No tests passed.
Tests that the code failed:
assert putMarbles([1,3,5,1], 2) == 4 ERROR: This unit test fails. Output was 2, but expected value was: 4 assert
putMarbles([1,3], 2) == 0 ERROR: This unit test fails. Output was -1, but expected value was: 0
Code Generated by REVOLVE from typing import List
def putMarbles(weights: List[int], k: int) -> int: n = len(weights) if k == 1 or k == n: return 0
Calculate the cost of each possible bag costs = [weights[i] + weights[i + 1] for i in range(n - 1)]
Sort the costs to find the minimum and maximum possible scores costs.sort()
The minimum score is the sum of the smallest k-1 costs minscore = sum(costs[: k − 1])
The maximum score is the sum of the largest k-1 costs maxscore = sum(costs[−(k − 1) :])
return maxscore−minscore
Tests that the code passed: assert putMarbles([1,3,5,1], 2) == 4 assert putMarbles([1,3], 2) == 0
Tests that the code failed:
No tests failed.

16

REVOLVE: Optimizing AI Systems by Tracking Response Evolution in Textual Optimization

F. Abaltion Study
F.1. Ablation Study

Given the simplicity of our method, there are no complex components that can be eliminated for a traditional ablation. Instead,
we conduct an ablation study by testing different prompt designs to evaluate their impact on performance. Specifically, using
Llama-3.1-8B-Instruct as the LLM backend, we compare our REVOLVE prompt, a variant of this prompt, and the prompt
used in TextGrad to highlight the effectiveness of our approach.

• REVOLVE Prompt: This is the prompt carefully designed for REVOLVE, which takes into account both immediate
feedback and the evolution of responses across iterations.

• Variant Prompt: It differs from our method by directly instructing the LLM to generate more diverse responses,
effectively pushing it towards greater variation with each iteration.

• TextGrad Prompt: Serving as the baseline, TextGrad’s prompt focuses primarily on immediate feedback, making
adjustments based solely on the latest response.

The detailed prompts for the variant are as follows:

OPTIMIZER SYSTEM PROMPT

"You are part of an optimization system that improves text (i.e., variable). "
"You will be asked to creatively and critically improve prompts, solutions to problems, code, or any other text-based
variable. "
"You will receive some feedback, and use the feedback to improve the variable. "
"Pay attention to the role description of the variable, and the context in which it is used. "
"Importantly, focus on creating responses that are varied and diverse in nature. "
"You MUST give your response by sending the improved variable between {new_variable_start_tag} {{improved
variable}} new_variable_end_tag tags. "
"The text you send between the tags will directly replace the variable."
f"{GLOSSARY_TEXT}"

Textual Gradient Descent Prompt Prefix

"Here is the role of the variable you will improve: <ROLE>{variable_desc}</ROLE>."
"The variable is the text within the following span: <VARIABLE> {variable_short} </VARIABLE>"
"Here is the context and feedback we got for the variable:"
"<CONTEXT>{variable_grad}</CONTEXT>"
"Improve the variable ({variable_desc}) using the feedback provided in <FEEDBACK> tags. "
"Ensure that your response introduces new and diverse ways of solving the problem or addressing the prompt."

The following is how we save gradients to the variable.

GRADIENT TEMPLATE

"Here is a conversation:<CONVERSATION>{context}</CONVERSATION>"
"This conversation is part of a larger system, where varied and creative outputs are important. "
"The output is used as {response_desc}. Here is the feedback we received for {variable_desc} in the conversation:"
"<FEEDBACK>{feedback}</FEEDBACK>"
"Encourage diversity in your improvements."

We conducted experiments on objective counting in the prompt optimization task, with results shown in Table 6.

On the Object Counting task, the Variant prompt surpasses TextGrad by encouraging larger, more diverse shifts in the
response space, enabling the model to explore more distinct outputs with each iteration. REVOLVE, on the other hand,

17

REVOLVE: Optimizing AI Systems by Tracking Response Evolution in Textual Optimization

Table 6: Prompt optimization results for reasoning tasks for various LLMs, with gpt-4o as the optimization engine.

Dataset Method Accuracy %

Object Counting
TextGrad 77.0
Variant 80.0

REVOLVE 83.0

Table 7: Comparison of computational resources (GPU memory and runtime) for REVOLVE and baseline methods across
tasks.

Task Dataset Method Time per Iteration (s) Total Time to Converge (s) GPU Usage (GB)

Prompt Optimization

Objective Counting
TextGrad 92.144 276.450 3.23

M-TextGrad 110.721 110.732 3.24
REVOLVE 137.815 137.821 3.23

GSM8K
TextGrad 135.184 1351.85 3.23

M-TextGrad 152.423 1219.393 3.23
REVOLVE 176.538 1235.774 3.23

Solution Optimization

Google-proof QA
TextGrad 153.522 614.216 3.24

M-TextGrad 178.879 1091.162 3.23
REVOLVE 197.235 453.461 3.24

MMLU-Machine Learning
TextGrad 172.429 896.631 3.24

M-TextGrad 207.819 685.803 3.24
REVOLVE 223.807 626.659 3.24

MMLU-College Physics
TextGrad 188.116 1636.612 3.24

M-TextGrad 225.631 1308.662 3.24
REVOLVE 245.167 1054.229 3.24

Code Optimization Objective Counting
TextGrad 1078.783 18986.655 6.46

M-TextGrad 1241.917 18472.411 6.46
REVOLVE 1352.174 15820.489 6.46

achieves even better results by promoting stable, iterative refinement rather than abrupt changes. While the Variant’s
strategy can lead to sudden, exaggerated shifts, REVOLVE ensures smoother, controlled optimization, gradually fine-tuning
responses for greater accuracy.

G. Comparison of Computational Resources
To analyze the computational efficiency of REVOLVE, we compare its GPU memory usage and runtime against baseline
methods across three task categories. We use Llama 3.1 8B Instruct as the base LLM, running on a setup with 4 NVIDIA
3090 GPUs. The results are shown in Table 7.

We observe that while REVOLVE involves slightly higher per-iteration runtime due to its second-order optimization-inspired
design, it converges in fewer iterations, resulting in significant overall savings. The detailed findings are as follows:

• On Object Counting dataset, REVOLVE reduces total runtime by 50% compared to TextGrad by converging in fewer
iterations despite slightly higher per-iteration costs.

• For solution optimization task, REVOLVE achieves 26.14% lower total runtime than TextGrad, while M-TextGrad incurs
77.65% higher runtime due to instability.

• For code optimization task, REVOLVE reduces total runtime by 16.67% compared to baselines.
• For GPU memory usage, REVOLVE demonstrates similar requirements to baseline methods, indicating no significant

increase in computational resources.

18

