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ABSTRACT

Inverse reinforcement learning (IRL) has made significant progress in recovering
reward functions from expert demonstrations. However, a key challenge remains:
how to extract reward functions that generalize across related but distinct task
instances. In this paper, we address this by focusing on transferable IRL—learning
intrinsic rewards that can drive effective behavior in unseen but structurally aligned
environments. Our method leverages a variational autoencoder (VAE) to learn
an abstract representation of the state space shared across multiple source task
instances. This abstracted space captures high-level features that are invariant
across tasks, enabling the learning of a unified abstract reward function. The
learned reward is then used to train policies in a separate, previously unseen target
instance without requiring new demonstrations in the target instance. We evalu-
ate our approach on multiple environments from Gymnasium and AssistiveGym,
demonstrating that the learned abstract rewards consistently support successful
policy learning in novel task settings.

1 INTRODUCTION

The objective of inverse reinforcement learning (IRL) is one of abductive reasoning: to infer the
reward function that best explains the observed trajectories. This is challenging because the available
data is often sparse, which admits many potential solutions (some degenerate), and the learned reward
functions may not generalize for use in target instances that could be slightly different. Despite these
challenges, significant progress has been made in the last decade toward learning the underlying
reward functions in both discrete and continuous domains. A key advance in IRL next is to learn
reward functions that represent intrinsic preferences, which become relevant in aligned task instances
not seen previously. This contributes to the transferability of the learned rewards – an important
characteristic of a general solution.

In this paper, we introduce a new method that generalizes IRL to previously unseen tasks but
which exhibit commonality with the observed ones in terms of shared intrinsic (or core) preferences.
Abstractions offer a powerful representation toward generalization (Allen et al., 2021), and so we
introduce the novel concept of an abstract reward function. To illustrate, consider the Ant domain
from OpenAI Gymnasium (Schulman et al., 2016) and two Ant environments with differing pairs of
disabled legs as the source environments and an Ant environment with another pair of disabled legs as
the target. As the source and target ants have different disabled legs, the marginal state distributions
of the sources are different from the target’s, which makes it difficult to transfer a learned reward
function. However, if we focus on the ant’s torso instead of its legs, the marginal state distribution of
the torso remains mostly the same across both the sources and the target environment. So, inversely
learning a reward function based on the torso, which is the abstraction, allows the function to be
transferred across any disabled leg. Our method utilizes observed behavior data from two or more
differing task instances of a domain as input to a variational autoencoder (VAE). A single encoder is
coupled with multiple decoders, one for each source instance, to reconstruct the instance trajectories.
We show how the common latent variable(s) of this distinct VAE model can be interpreted and shaped
as an abstract reward function that governs the input task behaviors. Note that two or more aligned
task behaviors are needed to learn the shared intrinsic preferences to perform the tasks.

We evaluate our method for transferable IRL, labeled TraIRL, on multiple benchmarks: Gymnasium
domains (Schulman et al., 2016) and the robotic AssistiveGym (Erickson et al., 2019). We utilize
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trajectories from two differing instances in each domain as input to the VAE and show how the
inversely learned abstract reward function can help successfully learn a high-quality behavior in a
third aligned instance of the domain. These results open a new frontier for methods that may learn
abstract rewards via IRL to offer a level of generalizability not previously seen in the literature.

2 RELATED WORK

Extant transfer learning for IRL struggles with mismatches in environment dynamics, which
limits reward transferability. Tanwani & Billard (2013) introduce an approach to learn diverse
strategies from multiple experts, focusing on shared knowledge. However, it assumes unchanged
dynamics between experts, which limits its applicability to dynamic environments. I2L (Gangwani
& Peng, 2020) is designed for state-only imitation learning and addresses transition dynamics
mismatches by using a prioritized trajectory buffer and optimizing a lower bound on the expert’s state-
action visitation distribution. While empirically effective, it lacks theoretical guarantees on reward
transferability and does not formally justify how the learned reward generalizes across different
dynamics. Viano et al. (2024) analyzes maximum causal entropy (MCE) IRL under transition
dynamics mismatch, deriving necessary and sufficient conditions for its transferability and providing
a tight bound on performance degradation. It proposes a robust MCE IRL algorithm but struggles to
generalize under action space shifts due to its reliance on matching state-action occupancy measures.

Rewards learned by adversarial IRL and IL methods may not transfer across environments.
AIRL (Fu et al., 2018), f -MAX (Ghasemipour et al., 2020) and f -IRL (Ni et al., 2021) claim that
their learned reward functions generalize to unseen or dynamically different environments. But,
these claims are not supported by explicit structural frameworks or theoretical guarantees, leaving
the transferability unpredictable. Furthermore, the learned rewards are tied to specific expert policy
trajectories, preventing their use in training new policies from scratch. In contrast, IQ-Learn (Garg
et al., 2021) is non-adversarial and learns soft Q-functions from expert data, which offers improved
stability and efficiency. However, its reliance on action-dependent Q-functions limits generalization
to state-only reward functions.

Reward identification or identifiability may not be sufficient to learn a transferable reward
function, as it focuses only on recovery the true reward function from expert demonstrations. Cao
et al. (2024) mitigates reward ambiguity using an entropy-regularized framework. It relies on multiple
optimal policies under varying dynamics, but the method does not focus on transferability and is
not suitable for scenarios that do not have such policies.Rolland et al. (2024) presents a reward
identification approach for discrete state-action spaces, utilizing variations across environments.
However, the method struggles with continuous states and prioritizes identifiability over transferability.
Kim et al. (2021) formalize reward identifiability in deterministic MDPs using the maximum entropy
objective, and provide conditions for identifiability. But, it does not address the challenge of creating
transferable reward representations as we do in this paper through abstraction.

Existing successor feature matching algorithms lack transferable feature functions, which limits
their ability to generalize to unseen tasks. SFM (Jain et al., 2025) introduces successor feature
matching into IRL while avoiding adversarial training. However, its feature functions are not designed
for transfer learning. Our method can be viewed as an extension of SFM, where we incorporate a
transferable abstract feature function. In Appendix D.2, we compare SFM as a backbone with f -IRL
as a backbone.

3 BACKGROUND

We briefly review MCE IRL (Ziebart et al., 2010) as it informs our method. The entropy-regularized
Markov decision process (MDP) is characterized by the tuple (S,A, T , r, γ, ρ0). Here, S and A
denote the state and action spaces, respectively, while γ ∈ (0, 1) is the discount factor. In the standard
RL context, the dynamics modeled by the transition distribution T (s′|a, s), the initial state distribution
ρ0(s), and the reward function r(s, a) are unknown, and can only be determined through interaction
with the environment. Optimal policy π under the maximum entropy framework maximizes the
objective π∗ = argmaxπ Eτ∼π

[∑T
t=0 γ

t(r(st, at) +H(π(·|st)))
]
, where τ ≜ (s0, a0, ..., sT , aT )
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denotes a sequence of states and actions induced by the policy and transition function, and H(π(·|s))
is the entropy of the action distribution from policy π for state s.

Another method, f -IRL (Ni et al., 2021), integrates f -divergence to improve scalability and robustness.
f -IRL relies on a generator-discriminator schema to recover a stationary reward function by matching
the expert’s state marginal distribution (also called state density or occupancy distribution) – an
approach that builds and improves on the state marginal matching (SMM) algorithm (Lee et al., 2019).
We rely on a variant of f -IRL that minimizes the 1-Wasserstein distance between the state marginals,
as this distance is an integral probability metric:

LF (θ) = DF (ρE ||ρθ) =W1(ρE(s) , ρθ(s)), (1)

where DF is a divergence measure between distributions, W1 is the 1-Wasserstein distance, ρE and
ρθ denote the state densities of the expert and the soft-optimal learner under the reward function Rθ .
Another advantage of f -IRL is its separation of the reward and discriminator networks, effectively
forming a distillation model. The discriminator serves as the stronger model, while the reward
function distills its information, yielding better generalization than the single-discriminator design
used in most adversarial IRL methods.

4 LEARNING TRANSFERABLE REWARDS VIA ABSTRACTION

We introduce our method for transferable IRL, labeled TraIRL, in this section. The approach learns a
state-only abstracted reward function optimized for transfer from expert trajectories in source tasks.
This reward function is then employed to learn a well-performing policy in the target tasks.

4.1 PROBLEM DEFINITION

We are provided with a set of expert trajectories induced by policies of multiple source MDPs
{Mi}ni=1, each corresponding to a distinct but related task. The goal is to infer a shared intrinsic
reward function that also generalizes to a previously unseen target MDP MT , allowing an agent to
perform the task effectively in a target task without access to expert demonstrations there.

To support such transfer, we define a shared abstracted state space S̄ that captures common, task-
invariant features across the source MDPs. This is formalized below:

Definition 1 (Cross-Task Abstraction). Let Mi = (Si,Ai,Pi,Ri, γi, ρi0) be the ground MDP for
task i . A cross-task abstraction is defined by a mapping ϕ : Si → S̄, where ϕ(si) ∈ S̄ denotes the
abstracted state corresponding to the ground state si. The inverse mapping ψi(s̄) denotes the set of
ground states in task i that are mapped to the abstract state s̄ ∈ S̄.

Our objective is to learn a state-only abstract reward function R̄ : S̄ → R and a cross-task abstraction
ϕ such that R̄◦ϕ : Si → R when used to substitute Ri in Mi induces expert behaviors across source
tasks i = 1 to n. The abstract reward function R̄ and the cross-task abstraction ϕ can be transferred
to a target task where expert demonstrations are not available.

4.2 LEARNING ABSTRACTION VIA MULTI-HEAD VAE

To enable reward transfer across different tasks, it is essential to extract an abstract representation that
captures intrinsic, task-invariant structure from expert demonstrations. In TraIRL, we implement the
cross-task abstraction function ϕ, introduced in Def. 1, using the encoder of a variational autoencoder
(VAE) (Kingma & Welling, 2014). Specifically, the encoder pϕ(z|s) maps a ground state s ∈ Si to a
latent variable z ∈ S̄ , which serves as the abstracted state ϕ(s). The corresponding decoder, denoted
qψ(s|z), approximates the inverse mapping ψ(z), reconstructing the original ground state from its
abstracted state.

To generalize across tasks, we employ a single task-agnostic encoder pϕ, which is shared across all
source tasks, and n task-specific decoders {qψi}ni=1, where each decoder specializes in reconstructing
states in the i-th source task. During training, the shared encoder learns to extract abstract states
across tasks, while each decoder captures task-specific reconstruction from the shared abstraction.

3
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Figure 1: TraIRL framework overview. Expert and learner trajectories in multiple source tasks are
mapped to shared abstract states via a shared encoder. A discriminator compares the abstracted state
densities to estimate the 1-Wasserstein distance between expert and learner, which guides learning a
reward function over the abstract space through a covariance-based objective. The learned reward
function then optimizes the learner policy.

The VAE is trained by maximizing the evidence lower bound (ELBO), which balances reconstruction
accuracy with latent space regularization. For our multi-task setting, the overall VAE objective is:

LVAE(ϕ,ψ
1, . . . ,ψn; τ ) =

∑n

i=1
LiVAE(ϕ,ψ

i; τ i)

=
∑n

i=1

(
Ez∼pϕ(z|si)

[
log qψi(s

i|z)
]
− λD DKL

(
pϕ(z|si) ∥ p(z)

))
, (2)

where τ ≜ ⟨τ1, . . . , τn⟩ denotes the collection of expert trajectories from n source tasks, and each
trajectory τ i = {si0, si1, . . . , siT } consists of a sequence of states from the i-th source environment.
In the rest of the paper, we use si to denote a state from the i-th environment. The prior p(z) is a
normal distribution N (0, I), and λD controls the weight of the KL regularization term.

4.3 STRUCTURING THE ABSTRACT STATE SPACE

While the VAE compresses the high-dimensional state space into a lower-dimensional abstraction, it
does not incorporate information about optimality, which in IRL refers to whether a state is part of an
expert trajectory. The learned abstraction focuses on reconstruction and distributional coherence but
lacks structure related to optimality. To address this, we introduce a discriminator-guided mechanism
that encourages the abstracted state space to capture optimality by distinguishing between expert and
learner trajectories.

We use Wasserstein GAN with gradient penalty (WGAN-GP) (Gulrajani et al., 2017) to estimate the
1-Wasserstein distance between the abstracted state distributions of the expert and the learner. The
objective function of WGAN-GP in our multi-task setting is:

LWGAN(ϕ,ω ; τ ) =
∑n

i=1
LiWGAN(ϕ,ω ; τ i) =

∑n

i=1

(
Ez∼pϕ(z|s),s∼ρL(si)[Dω(z)]

− Ez∼pϕ(z|s),s∼ρE(si)[Dω(z)] + λGP Ez∼ρ̂(z)
[
(∥∇zDω(z)∥2 − 1)

2
] )
, (3)

where ρL(si) and ρE(si) denote the state densities of the learner and expert in the i-th source task,
respectively, and ρ̂(z) is the distribution of points z sampled uniformly along a straight line between
the abstract states of experts and the abstract states of learner.

A discriminator trained to distinguish between expert and learner trajectories in the abstract space
imposes optimality awareness on the learned abstract state space. This structure facilitates learning a
generalizable reward function and improves its transferability to target tasks.
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4.4 ROBUST TRANSFERABLE REWARD LEARNING VIA ABSTRACTED STATES

Once the abstracted state space is learned, we can recover the reward function on top of it. It is
worth noting that TraIRL is not constrained to f -IRL; the abstracted states can be integrated with any
adversarial IRL algorithm (Appendix D.2). We choose f-IRL in this work because its separate reward
and discriminator networks naturally induce a distillation process, leading to better generalization,
which is crucial for transfer learning. In f -IRL, the discriminator maximizes the 1-Wasserstein
distance between the expert and learner state densities in the ground state space, Eqn.1. The reward
function is then learned by minimizing this distance with respect to its parameters θ. In TraIRL, we
adapt this formulation to operate over the abstracted state space. Accordingly, the reward function is
defined over the abstracted state space, i.e., Rθ(z), where z ∼ pϕ(z|s). The reward function Rθ(z)
is trained to minimize the 1-Wasserstein distance between the abstracted state densities induced by
the learner and the expert, thus driving the learner’s occupancy measure in the abstracted space to
match that of the expert. The abstracted state density is defined as ρ(z) =

∫
S pϕ(z|s) ρ(s) ds. Thus,

the objective function of the reward function is:

LF (θ) =
∑n

i=1
W1(ρE(z

i), ρL(z
i))

=
∑n

i=1

(
Ez∼pϕ(z|s),s∼ρE(si)[Dω(z)]− Ez∼pϕ(z|s),s∼ρL(si)[Dω(z)]

)
. (4)

Theorem 1 (Gradient of Reward Function). The analytic gradient of our objective function LF (θ)
presented in Eq.4 w.r.t θ can be derived as:

∇θLF (θ) =
∑n

i=1
covs∼ρ̂(si),z∼pϕ(z|s) (Dω(z),∇θRθ(z)) , (5)

where ρ̂(si) = 1
2 (ρL(s

i) + ρE(s
i)).

We derive the gradient in Appendix B.1. Theorem 1 shows that the gradient of LF (θ) with respect to
the reward parameters is given by the covariance between the discriminator output and the reward
value. Since the gradient is taken only with respect to θ, the encoder pϕ remains fixed during reward
optimization. This design is critical for generalization to the target task for two reasons. First, the
covariance aligns the reward function with the dominant structure captured by the discriminator,
which reflects differences between expert and learner behaviors in the abstracted space, while ignoring
outliers or overfitted features, similar to a distillation process (Hinton et al., 2015). Second, decoupling
the reward function from the encoder ensures it operates on a fixed abstracted space learned from
multiple source domains, preventing overfitting to source tasks and improving its transferability to
the target domain.

The overall objective function for TraIRL involving n source tasks is a linear combination of the three
objective functions defined previously:

L(θ,ω,ϕ,ψ1, . . . ,ψn) = λVAELVAE(ϕ,ψ
1, . . . ,ψn)− λFLF (θ) + λWGANLWGAN(ϕ,ω), (6)

where λVAE, λF and λWGAN are the hyperparameters for LVAE,LF ,LWGAN, respectively.

Fu et al. (2018) highlight that disentangling rewards from task dynamics is crucial for transfer. A
state-only reward is dynamics-agnostic when the decomposability condition holds. In our approach,
abstracted states are trained to be invariant to dynamics and satisfy decomposability by jointly
optimizing the VAE and discriminator across multiple source tasks. This enables TraIRL to learn
state-only rewards that induce dynamics-agnostic behavior, improving transferability. Appendix B.3
provides proofs and an example where decomposability fails in the ground MDP but holds in the
abstract MDP.

4.5 ANALYTICAL FRAMEWORK FOR REWARD TRANSFERABILITY

We aim to formally characterize when a reward function learned using TraIRL can be expected to
generalize to an unseen target task.
Definition 2 (Reward Transferability). Define a reward function Rθ learned for states Si of the
source task T i as transferable to a target task T t iff for a small positive constant ϵ > 0,

W1(ρ
∗
T t(z), ρT i(z)) ≤ ϵ, (7)
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where ρ∗T t(z) is the abstract state density induced by the (soft-)optimal policy π∗
T t in the target task

and ρT i(z) is the abstract state density induced by the policy πT i obtained by optimizing for Rθ in
the source task T i.

Definition 2 states that the reward function Rθ is transferable if the policy obtained by optimizing
Rθ in the source task yields an abstract state density that closely matches the one induced by the
(soft-)optimal policy in the target task. Next, Theorem 2 delineates the conditions under which the
reward function learned using TraIRL is transferable from source tasks to a target task.
Theorem 2 (Applicability of TraIRL). Let Rθ denote the reward function learned by optimizing Eq.
4, ρ∗T i(z) denote the abstract state density of the expert in the i-th source task T i, ϵ be the positive
threshold from Def. 2, and α ∈ (0, 1). If, for every i,

W1(ρ
∗
T t(z), ρ∗T i(z)) ≤ αϵ (8)

W1(ρT i(z), ρ∗T i(z)) ≤ (1− α)ϵ (9)

then the reward function Rθ is transferable to the target task, enabling effective policy learning.

Sketch of Proof. Wasserstein distance, W1, satisfies the triangle inequality. Applying it to Eqs. 8
and 9, we derive Eq. 7. This satisfies the transferable reward condition in Def 2.

Theorem 2 highlights two conditions to ensure the transferability of rewards under TraIRL. First,
Eq. 8 captures the generalizability of the abstract state space (structural alignment assumption), i.e.,
whether optimality in the source and target tasks induce similar distributions over the shared abstract
space. Second, Eq. 9 addresses the correctness of the abstraction, i.e., the optimal policy using the
learned rewards in a source task induces an abstract state density that closely matches that induced by
the expert policy.

5 EXPERIMENTS

We implement Algorithms 1 and 2 in PyTorch, and empirically evaluate the performance of TraIRL
across MuJoCo benchmark domains (Todorov et al., 2012) and across the human-robot Assistive
Gym domains (Erickson et al., 2019). TraIRL is run on 50 trajectories of two distinct source tasks
with different dynamics, from these domains. It is run until convergence on each task. To evaluate
TraIRL’s reward transferability, we use forward RL in the target task with the inversely learned
rewards to obtain the policy. Note that we do not have expert trajectories in the target task and we
do not use the target’s true rewards and utilize the learned reward function only. We measure how
well the policy performs by simulating it for 10 episodes and reporting the mean and variance of the
accumulated rewards.

We adopt a similar procedure for three state-of-the-art baseline techniques: AIRL-ME (Buening
et al., 2022), RIME (Chae et al., 2022), and I2L. AIRL-ME is an extension from AIRL to adapt
to various environments. RIME and I2L are designed to handle dynamics changes specifically and
potentially offers a better generalization across tasks, though without any abstraction mechanisms, as
used by TraIRL. The input to all algorithms is the default observation returned by the Gymnasium
environment, including velocity, joint values, angular velocity of joints and etc.

Model architecture and implementation We employ a multilayer perceptron with Tanh as the
activation function for both the encoder and decoder in VAE and to represent the reward function.
TraIRL and all baselines have been implemented in PyTorch. We choose reverse KL divergence as
the objective function in f -IRL because it has been shown to be robust and faster to converge for
IRL compared to regular KL divergence (Ni et al., 2021; Ghasemipour et al., 2020). We use Soft
Actor-Critic (SAC) (Haarnoja et al., 2018) as the backbone RL algorithm. Further details regarding
the model architecture and hyperparameters to aid reproducibility are available in Appendix C.

5.1 EVALUATIONS IN MUJOCO-GYM

Two source tasks and one target task from each of the Half Cheetah and Ant domains in MuJoCo-
Gym are used. Figure 2 illustrates the source and target tasks, which differ in dynamics between the
sources and between the sources and the target. Specifically, these differences in dynamics arise from
disabling different pairs of legs. Disabled legs are indicated in red in the frames of Fig. 2. While the
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action space remains unchanged across the environments, as the input actions are directly applied to
all joints regardless of whether a leg is disabled, the dynamics differ because the disabled legs cannot
respond to the input actions.

Although the original reward functions across source and target tasks are similar in structure, IRL
focuses on recovering a reward that matches the expert’s state density. Since each task exhibits
distinct dynamics, the resulting expert state densities differ. Consequently, learning reward functions
independently in each task yields task-specific rewards that are not directly transferable. The
experiments support this claim are reported in the Appendix D.4.

(a) (b) (c) (d) (e) (f)

Figure 2: Source and target tasks from MuJoCo-Gym domains. Red legs are the disabled legs of the
robots. Frames (a,b) depict source tasks of running with a disabled leg in Half Cheetah while (c)
represents the target environment with no disability. Similarly, frames (d,e) show the source tasks
of running with different pairs of disabled legs in Ant, whereas (f) shows the target of running with
another pair of disabled legs.

5.1.1 REWARD TRANSFERABILITY

Tables 1 and 2 report our results using TraIRL and the baselines on Half Cheetah and Ant domains,
respectively. These show the mean cumulative rewards obtained in the target environment as well as
in the two source environments. The optimal policy’s (expert) rewards for each are reported as well.

Table 1: Mean cumulative rewards with standard deviation for the Half Cheetah domain.

Sources Target
Run (rear disabled) Run (front disabled) Run (no disability)

AIRL-ME 4,014.52 ± 79.3 3,905.38 ± 73.1 3,725.63 ± 80.9
RIME 4,271.67 ± 36.1 4,129.19 ± 83.4 4,061.22 ± 58.6

I2L 4,396.43 ± 45.4 4,518.66 ± 52.2 4,512.71 ± 66.4
TraIRL 4,404.07 ± 57.6 4,359.35 ± 99.2 5,835.11 ± 74.0

Expert 5,052.25 ± 25.4 5,499.07 ± 156.1 6,420.38 ± 37.9

Table 2: Mean cumulative rewards with standard deviation for the Ant domain.

Sources Targets
Leg 1,2 disabled Leg 0,3 disabled Leg 1,3 disabled Leg 0,2 disabled Half Cheetah

AIRL-ME 2,389.65 ± 52.0 2,231.09 ± 87.6 2,098.11 ± 99.3 2,190.12 ± 50.2 -
RIME 2,681.67 ± 49.9 2,708.14 ± 81.5 2,190.71 ± 61.9 2,188.00 ± 59.8 -

I2L 2,831.28 ± 36.4 2,786.90 ± 79.4 2,585.32 ± 84.5 2,618.32 ± 92.4 -
TraIRL 2,714.18 ± 35.9 2,936.52 ± 95.5 2,917.92 ± 79.3 3,156.54 ± 63.1 5,378.78 ± 61.7

Expert 3,312.12 ± 304.3 3,303.99 ± 341.0 3,369.05 ± 216.8 3,590.57 ± 158.2 6,420.38 ± 37.9

Observe that the rewards learned by TraIRL achieve the highest average return compared to all
baselines in the target tasks for both domains. As such, the abstracted rewards learned by TraIRL
from the two sources are most transferable and correct. I2L achieves the next best performance on
the target task but remain significantly lower than TraIRL’s (Student’s paired t-test, p < 0.01). More
detailed experiments, including 10 source and 5 target tasks, are provided in the Appendix D.10.
Please refer to Appendix D.9 for the failure case of TraIRL where the structural alignment assumption
(Eq. 8) is violated.

We ambitiously evaluate TraIRL in a more challenging cross-domain setting: transfer from Ant to
the Half Cheetah domain. To our knowledge, this is the first empirical study of the transferability
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between domains with different dynamics and states of inversely learned rewards. Despite these
differences, TraIRL shows strong performance in the target task with zero or one shot transfer, as
shown in the last column of Table 2. Details of this experiment are provided in Appendix D.6.
Furthermore, Appendix D.1 provides a semantic analysis of the abstract state space, showing that
an abstraction trained on quadrupeds captures transferable structure useful for bipedal locomotion,
rather than merely encoding peculiarities of the expert data such as joint angles.

5.1.2 BENEFIT OF ABSTRACTION AND ITS VISUALIZATION

To understand why TraIRL performs better, we aim to gain some insight into our novel abstraction
concept. In Table 3, we report the 1-Wasserstein distance (W1) between the abstracted state densities
of the two source tasks and between the densities of the target and each source, W1(ρ

∗
T i(z), ρ∗T t(z)),

for the Half Cheetah and Ant. We compare these to the corresponding W1 distances between the
ground state densities. To obtain the W1 between ground state densities, we train a variant of f -IRL
that replaces the f -divergence with the W1 (see Appendix A.2 of Ni et al. (2021)).

Table 3: Abstraction yields a smaller W1 in the Half Cheetah and Ant, which is desirable.

1-Wasserstein Distance
Abstractions Ground

Source (rear disabled) and Source (front disabled) 0.36 1.37
Source (rear disabled) and Target (no disability) 0.62 2.83
Source (front disabled) and Target (no disability) 0.55 2.10

Source (Leg 1, 2 disabled) and Source (Leg 0, 3 disabled) 0.33 1.78
Source (Leg 1, 2 disabled) and Target (Leg 1, 3 disabled) 0.71 2.82
Source (Leg 1, 2 disabled) and Target (Leg 0, 2 disabled) 0.79 2.97

For each comparison in Table 3, the abstracted state densities yield a consistently lower 1-Wasserstein
distance compared to the ground state densities. This indicates that the abstraction reduces task-
specific variability in the abstract state space, bringing the source and target closer in terms of their
occupancy measures. In particular, the 1-Wasserstein distance between the abstract state densities
of optimal policies in the source and target tasks, W1(ρ

∗
T i(z), ρ∗T t(z)), corresponds to Eq. 8 in

Theorem 2. A smaller distance implies a tighter bound on the transfer error ϵ, and therefore reflects
better generalization of the abstract state space across tasks.

(a) Abstraction (b) Ground (c) Abstraction (d) Ground

Figure 3: Visualization by t-SNE of (a) sampled abstractions and (b) ground states for Half Cheetah,
and analogously for Ant (c,d) source environments. Details of these visualizations are in Appendix F

Next, Figure 3 visualizes the t-SNE (Van der Maaten & Hinton, 2008) of the abstract and ground
states for our two source tasks in both Half Cheetah and Ant domains. There is a clear separation
between the abstract states of the expert and the learner in Fig. 3a and Fig. 3c. More importantly,
abstract states of the two source tasks are intermingled due to the abstraction, which is another
indication of a dynamics-agnostic abstract state space. In contrast, Fig. 3b and Fig. 3d show that
the ground states of the two source tasks appear in separate clusters. Furthermore, there is no single
plane separating the embeddings of the expert and learner-induced states from their trajectories.

We also explored the sensitivity of TraIRL performance to hyperparameter values and conducted
ablation studies on each part of TraIRL. The results are reported in Appendix D.3.
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5.2 EVALUATION IN HUMAN-ROBOT ASSISTIVE GYM

To give an indication of the utility of TraIRL in the real-world, we illustrate its use in human-robot
collaboration using the highly realistic Assistive Gym testbed (Erickson et al., 2019). Similar to
MuJoCo, Assistive Gym is a physics-based simulation framework but for studying human-robot
interaction and robotic assistance by the collaborative robot Sawyer. It consists of a suite of simulation
environments for six tasks associated with activities of daily living such as itch scratching, bed bathing,
drinking water, feeding, dressing, and arm manipulation.

For the source tasks, we select FeedingSawyer, a simulation environment in which the collaborative
robot is tasked with feeding a disabled human. The two source tasks differ in the condition of
the disabled human. The human is static in one, while the human has tremors in the other, which
cause the target area to move resulting in a shifting goal. The robot’s challenge is to adapt to these
differing human conditions while executing the feeding task. Our target task is a different task,
ScratchItchSawyer, in which Sawyer is tasked with scratching a disabled human’s itch. Although this
task differs from feeding in terms of its specific goal, it is also similar in that the robot must move its
end effector precisely to a designated target area. This abstract information should be represented by
the learned reward function. However, the distributions of goal states differ between source and target
tasks. Thus, reward shaping is on top of the learned reward function Rθ in the target task by adding
positive reward when goal states are reached: R̂(s) = Rθ(ϕ(s))+ I(s ∈ G) · c, where I(s ∈ G) is the
indicator function, G is the set of goal states, and c is a positive constant. An experiment motivating
this reward shaping is reported in Appendix D.7. Note that this reward shaping is applied consistently
to TraIRL as well as to all baseline methods to ensure a fair and comparable evaluation.

(a) FeedingSawyer (b) ScratchItchSawyer

Sources Target
Feeding task 1 Feeding task 2 Scratch itch

AIRL-ME -6.35 ± 25.1 3.59 ± 17.3 -17.32 ± 11.6
RIME 8.01 ± 6.0 8.66 ± 9.7 -11.64 ± 4.2

I2L 9.32 ± 11.8 9.11 ± 11.4 -10.07 ± 8.0
TraIRL 8.32 ± 7.9 9.56 ± 10.5 -3.82 ± 3.3

Expert 11.29 ± 5.3 12.77 ± 4.2 -1.18 ± 5.7

(c)

Figure 4: Two tasks in the feeding domain (a) are used as sources to learn a reward function that
is transferred to perform the task of scratching an itch (b). (c) Cumulative reward with standard
deviation in the Assistive Gym environments. TraIRL has the highest reward in the target task.

We report the performance of TraIRL and the baselines in transferring the reward function inversely
learned from the two feeding tasks, to learn how to scratch the person’s itch. Table 4c gives the
mean cumulative reward from forward RL in the target using the learned rewards. Notice that
TraIRL yields the policy with the highest reward and close to the optimal, indicating transferable
rewards. The transferred reward function exhibits a strong positive linear relationship with the
ground-truth rewards, as indicated by a Pearson correlation coefficient of 0.86 (p < .001). This
high correlation suggests that TraIRL’s learning process effectively approximates the true reward
function of ScratchItchSawyer, demonstrating the generalizability of the learned rewards in the target
task. Among the baselines, I2L and RIME achieve comparative transfer, with performance close to
each other on the source tasks but still weaker on the target. AIRL-ME lags further behind, showing
limited ability to generalize. In contrast, TraIRL consistently outperforms all three, indicating that
the abstracted reward function provides superior transferability.

6 CONCLUSION

TraIRL represents a significant advancement of IRL by introducing a principled approach to inversely
learn transferable reward functions from demonstrations in multiple aligned tasks. The key contribu-
tion lies in its ability to extract invariant abstractions that model the structure intrinsic to multiple
tasks, which makes them transferable to aligned target tasks. TraIRL’s analytical properties delineate
the transfer applicability of the abstracted rewards and the experiments validate the transferability
in both formative and use-inspired contexts. Future work could investigate general ways of quickly
fine-tuning the transferred reward function to improve its fit for a broader set of target tasks.
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A ALGORITHM

Algorithm 1 demonstrates the training procedure for TraIRL. During each iteration, trajectories
are uniformly sampled from each source environment and policy, and added to the buffer (lines 6-7).
The encoder pϕ, decoders qψ1 , ..., qψn , discriminator Dω , and the reward function Rθ are updated
(line 8). Then, the learner policies πξ1 , ..., πξn are updated in the source tasks T 1, ..., T n using the
updated reward function Rθ, respectively (line 9).

Algorithm 1 TraIRL: Training Phase

Require: Expert trajectories τ1
E , ..., τ

n
E ; Source tasks: T 1, ..., T n

1: Initialize learner policies πξ1 , ..., πξn ; Trajectory buffer B; Discriminator Dω; Reward function Rθ;
encoder pϕ; and decoders qψ1 , ..., qψn

2: Add expert trajectories τ1
E , ..., τ

n
E into trajectory buffer B

3: while πξ1 , ..., πξn continue improving within k steps do
4: for task i in 1, ..., n do
5: Collect state-only trajectories τ i = (s0, ..., sT )
6: Add trajectories τ i into trajectory buffer B
7: Uniformly sample trajectories τ from Buffer B
8: Update Rθ; Dω; pϕ; and qψ1 , ..., qψn using τ by Eq. 6
9: Update πξ1 , ..., πξn using Rθ

Algorithm 2 TraIRL: Transfer Testing Phase

Require: Reward function Rθ learned by Algorithm 1, Target task T t

1: Initialize policy πξ
2: while πξ continues improving within k steps do
3: Update πξ only using the learned reward function Rθ in target task T

B PROOF OF THEOREMS

B.1 ANALYTICAL GRADIENT OF TRAIRL (THEOREM 1)

Proof. In this section, we derive the analytic gradient of the proposed TraIRL (Theorem 1). From
(Ni et al., 2021), we have the following equations:

dρL(s)

dθ
=

∫
dρL(s)

dRθ(s∗)

dRθ(s
∗)

dθ
ds∗

=
1

Z

∫
p(τ)e

∑T
t=1 Rθ(st)ητ (s)

T∑
t=1

dRθ(st)

dθ
dτ − TρL(s)

∫
ρL(s

∗)
dRθ(s

∗)

dθ
ds∗,

(10)

where Z is the normalization constant, and ηπ(s) denotes the number of times a state occurs in a
trajectory τ .

The joint distribution over states and abstracted states is defined as:

p(z, s) = pϕ(z|s)ρ(s), (11)

where pϕ(z|s) is the encoder parameterized by ϕ.

The marginal distribution of the abstraction z, denoted as the abstract state density ρ(z), is obtained
by integrating out the state s from Eq. 11:

ρ(z) =

∫
S
p(z, s)ds

=

∫
S
pϕ(z|s)ρ(s)ds.
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When operating in the abstracted state space, Eq. 10 becomes:

dρL(z)

dθ
=

∫
dρL(z)

dRθ(z∗)

dRθ(z
∗)

dθ
dz∗

=
1

Z

∫
p(τ)e

∑T
t=1 Rθ(zt)ητ (z)

T∑
t=1

dRθ(zt)

dθ
dτ − TρL(z)

∫
ρL(z

∗)
dRθ(z

∗)

dθ
dz∗,

(12)

When optimizing the abstract state density matching objective between the expert density ρE(z)
and the learner density ρL(z) in the i-th source environment, we measure their discrepancy using
1-Wasserstein distance. The objective is formulated as:

LF (θ) =

n∑
i=1

W1(ρE(z), ρL(z))

=

n∑
i=1

sup
||f ||L≤1

∣∣Ez∼ρE(z)[f(z)]− Ez∼ρL(z)[f(z)]
∣∣

=

n∑
i=1

max
Dω

Ez∼ρE(z)[Dω(z)]− Ez∼ρL(z)[Dω(z)]

=

n∑
i=1

max
Dω

∫
S̄
Dω(z)ρE(z)dz −

∫
S̄
Dω(z)ρL(z)dz.

The objective is derived using the Kantorovich–Rubinstein duality, which reformulates the 1-
Wasserstein distance as a supremum over all 1-Lipschitz functions. To approximate this function,
we introduce a discriminator Dω(z) and express the optimization as a maximization of the expected
difference between expert and learner distributions. To ensure that Dω(z) satisfies the 1-Lipschitz
constraint required by the duality, we apply a gradient penalty, which also stabilizes optimization
while preserving theoretical correctness.

The gradient of the objective, Eq. 4, w.r.t θ is derived as:

∇θLF (θ) = −
n∑
i=1

∫
S̄
Dω(z)∇θρL(z)dz (13)

Substituting the gradient of abstract state density ρL(z) w.r.t θ with Eq.12, we have:

∇θLF (θ) ∝ 1

T

n∑
i=1

∫
ρL(τ

i)

T∑
t=1

Dω(zt)

T∑
t=1

dRθ(zt)

dθ
dτ i

− T

n∑
i=1

∫
S̄
Dω(z)ρL(z)

(∫
S̄
ρL(z

∗)
dRθ(z

∗)

dθ
dz∗
)
dz

=
1

T

n∑
i=1

Eτ∼ρL(τi)

[
T∑
t=1

Dω(z)

]
T∑
t=1

dRθ(zt)

dθ

− T

n∑
i=1

Ez∼ρL(z) [Dω(z)]Ez∼ρL(z)

[
dRθ(z)

dθ

]
. (14)
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To gain further intuition about this equation, we can express all the expectations in terms of trajecto-
ries:

∇θLF (θ) ∝ 1

T

n∑
i=1

(
T∑
t=1

Dω(zt)

T∑
t=1

∇θRθ(zt)

− EρL(τi)

[
T∑
t=1

Dω(zt)

]
EρL(τi)

[
T∑
t=1

∇θRθ(zt)

])

∝
n∑
i=1

T∑
t=1

covτ∼ρL(τi)

(
Dω(zt),∇θRθ(zt)

)
.

=

n∑
i=1

covz∼ρL(z)

(
Dω(z),∇θRθ(z)

)
.

=

n∑
i=1

covs∼ρL(si),z∼pϕ(z|s) (Dω(z),∇θRθ(z)) . (15)

When operating in high-dimensional observation domains, a significant impediment arises if the
state visitation distributions induced by the learner’s current policy substantially diverge from the
expert demonstration trajectories. Under such conditions of distributional mismatch, we empirically
find that the gradient signal derived from our proposed objective function, Eq. 15, provides limited
supervisory information to guide the policy optimization process. We follow the technique introduced
by (Finn et al., 2016), mixing the data samples from expert trajectories with the learner trajectories.
The revised objective function is given in the following.

∇θLF (θ) =

n∑
i=1

covs∼ρ̂(si),z∼pϕ(z|s) (Dω(z),∇θRθ(z)) , (16)

where ρ̂(si) = 1
2 (ρL(s

i) + ρE(s
i)).

B.2 PROOF OF THEOREM 2

Proof. We begin by noting that the 1-Wasserstein distance is a metric and therefore satisfies the
triangle inequality:

W1(ρ1, ρ3) ≤W1(ρ1, ρ2) +W1(ρ2, ρ3).

Apply the triangle inequality to the three distributions:

• ρ∗T t(z) - abstract state density of the expert in the target task.

• ρ∗T i(z) - abstract state density of the expert in the i-th source task.

• ρT i(z) - abstract state density of the learner in the i-th source task.

By the triangle inequality:

W1(ρ
∗
T t(z), ρT i(z)) ≤W1(ρ

∗
T t(z), ρ∗T i(z)) +W1(ρ

∗
T i(z), ρT i(z))

≤ αϵ+ (1− α)ϵ

= ϵ.

This satisfies the condition in Def 2, which requires that the abstract state density induced by the
learned reward function Rθ in a source task is close (within ϵ) to the optimal policy’s abstract state
density in the target task.

Hence, Rθ is transferable.

B.3 DYNAMICS DISENTANGLED STATE-ONLY REWARD FUNCTION

In this section, we follow the derivations and definitions of Fu et al. (2018) to establish that TraIRL
learns disentangled reward functions. For completeness, we restate the key definitions and theorems
here. We first define the induced ground-level reward function using the abstract reward function in
TraIRL.
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Definition 3 (Induced ground-level reward function). Let ϕ : S → Z be TraIRL’s abstraction
function and let rabs : Z → R be TraIRL’s abstract reward function. Define the induced ground-level
reward function

rϕ(s) := rabs(ϕ(s)).

Then we borrow the definition of "disentangled rewards" from Fu et al. (2018).
Definition 4 (Disentangled rewards). A reward function r′(s, a, s′) is (perfectly) disentangled with
respect to a ground-truth reward r(s, a, s′) and a set of dynamics T such that under all dynamics
T ∈ T , the optimal policy is the same: π∗

r′,T (a | s) = π∗
r,T (a | s).

Disentangled rewards can be informally understood as reward functions that induce the same optimal
policy as the ground truth reward under any admissible dynamics. To demonstrate how TraIRL
recovers such a reward, we first recall the definition of the decomposability condition.
Definition 5 (Decomposability condition). Two states s1, s2 are defined as "1-step linked" under
a dynamics or transition distribution T (s′ | a, s) if there exists a state s that can reach s1 and s2
with positive probability in one time step. Also, we define that this relationship can transfer through
transitivity: if s1 and s2 are linked, and s2 and s3 are linked, then we also consider s1 and s3 to be
linked.
A transition distribution T satisfies the decomposability condition if all states in the MDP are linked
with all other states.

Theorem 3 and 4 formalize that TraIRL recovers reward functions disentangled from the dynamics.
Theorem 3. Let r(s) be a ground-truth reward, and T be a dynamics model satisfying the decompos-
ability condition. Suppose IRL recovers a state-only reward r′(s) such that it produces an optimal
policy in T :

Q∗
r′,T (s, a) = Q∗

r,T (s, a)− f(s).

Then, r′(s) is disentangled with respect to all dynamics.

Proof. Refer to Theorem 5.1 in Fu et al. (2018).

Theorem 4. If a reward function r′(s, a, s′) is disentangled for all dynamics functions, then it must
be state-only, i.e. if for all dynamics T ,

Q∗
r,T (s, a) = Q∗

r′,T (s, a) + f(s) ∀s, a.
Then r′ is only a function of state.

Proof. Refer to Theorem 5.2 in Fu et al. (2018).

Next, we demonstrate an example where the decomposability condition is not satisfied, whereas in
the TraIRL, a disentangled reward function can still be learned. Consider the following 3-state MDP
with deterministic dynamics and starting state A:

A B C
b, 0

c, +1

b, 0

State A cannot be reached from any other states in the MDP, thus, the decomposability condition is
not satisfied. However, if there exists an abstraction ϕ, where ϕ(A) = ϕ(B) = Z, then the abstract
MDP becomes:

B Z

c, +1

b, 0

Thus, the new abstract MDP satisfies the decomposability condition and there exists a disentangled
reward function as list above.
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C TRAINING DETAILS AND HYPERPARAMETERS

In this section, we show the comprehensive training details and hyperparameters. We use Soft
Actor-Critic (SAC) as our Maximum Entropy Reinforcement Learning (MaxEnt RL) algorithm due
to its efficient exploration, stability in continuous control tasks, and improved sample efficiency. By
maximizing both cumulative reward and entropy, SAC promotes diverse and robust policies. For
implementation, we use the SAC provided by the widely adopted Python library Stable-Baselines 3.

To generate expert demonstrations, we first train SAC agents with 5 different random seeds in each
source domain until convergence. The hyperparameters used for SAC training are listed in Table 4.
The unlisted hyperparameter remains the default setting in Stable-Baselines 3. After convergence, we
collect 50 expert trajectories from each source domain. These expert trajectories are then used for
training the transferable reward function via TraIRL as well as other baseline methods.

Table 4: Hyperparameter setting of SAC.

Ant HalfCheetah FeedingSawyer ScratchItchSawyer

Learning rate 3e−4 3e−4 3e−4 3e−4

Gamma 0.99 0.99 0.99 0.99
Batch size 256 256 256 256
Net arch [400, 300] [400, 300] [400, 400] [400, 400]

Buffer size 1, 000, 000 1, 000, 000 1, 000, 000 100, 000
Action noise N (0, 0.2) N (0, 0.2) N (0, 0.2) N (0, 0.25)

Next, we begin training TraIRL and baselines. The hyperparameters used in each source domain are
listed in Table 5-8. Notably, the SAC in TraIRL adopts the same hyperparameters specified in Table 4.
The net arch represents the dimensions of the model for each layer, excluding the output layer. The
reward function produces a single scalar value, which is activated by a Tanh function. The update
step refers to the number of gradient updates performed during each iteration of the training process.
All baselines are evaluated using their default hyperparameters. The only modification is for RIME,
where the input to the discriminator is restricted to state-only features to ensure a fair comparison
with our approach.

After training TraIRL, we obtain a trained transferable reward function, which is then applied to the
target task by replacing the original reward function. Consequently, when the agent interacts with
the target task, it only has access to the trained reward function. We continue to use SAC with the
hyperparameters specified in Table 4 for policy optimization in the target domain.

(a) Training curve in Half Cheetah (rear disabled). (b) Training curve in Half Cheetah (front disabled)

Figure 5: Smoothed training curve for Half Cheetah in two source tasks. AIRL-ME and f -IRL perform poorly
in the experiments and are therefore excluded from the comparison.
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Table 5: Hyperparameter setting of TraIRL (Algorithm 1).

Ant HalfCheetah FeedingSawyer

λGP 10 10 0.1
λD 0.1 0.1 0.1
λVAE 1.0 1.0 1.0
λWGAN 1.0 1.0 1.0
λF 1.0 1.0 1.0

Reward Function Hyperparameter

Learning Rate 3e-4 3e-4 5e-4
Batch Size 256 256 256

Weight Decay 1e-3 1e-3 1e-3
Net arch [16, 16] [16, 16] [16, 16]

Activation Tanh Tanh Tanh
Reward Update Steps 10 10 10

VAE and Discriminator Hyperparameter

Learning Rate 3e-4 3e-4 5e-4
Batch Size 256 256 256

Weight Decay 1e-3 1e-3 1e-3
Encoder Net Arch [32, 32, 32] [32, 32, 32] [16, 16]
Encoder Activation Tanh Tanh Tanh

Abstraction Dimension 16 10 4
Decoder Net Arch [64, 64, 64] [64, 64, 64] [16, 16, 16]
Decoder Activation Tanh Tanh Tanh
VAE Update Steps 10 10 10

Discriminator Net Arch [32, 32] [32, 32] [16, 16]
Discriminator Activation Tanh Tanh Tanh

Disc Update Steps 10 10 10

Table 6: Hyperparameter setting of AIRL-ME.

Ant HalfCheetah FeedingSawyer

gθ(s) network [64, 64, 64] [64, 64, 64] [64, 64, 64]
hϕi(s) network [64, 64, 64] [64, 64, 64] [64, 64, 64]
Learning rate 3e-4 3e-4 3e-4

Batch size 256 256 256
Weight Decay 1e-3 1e-3 1e-3

Activation Tanh Tanh Tanh
Discriminator gradient steps 10 10 10

Table 7: Hyperparameter setting of RIME.

Ant HalfCheetah FeedingSawyer

Policy network [400, 300] [400, 300] [400, 300]
Policy algorithm, lr, gradient-steps PPO, 3e-4, 5 PPO, 3e-4, 5 PPO, 3e-4, 5

Discriminator network [100, 100] [100, 100] [100, 100]
Input to the discriminator State-only State-only State-only

Discriminator gradient-steps 5 5 5
Gradient penalty term 10 10 10

Batch size 256 256 256
Activation Tanh Tanh Tanh

D EXTRA EXPERIMENTS AND CLARIFICATIONS

D.1 SEMANTIC ANALYSIS OF ABSTRACTED STATES

In this section, we conduct a semantic analysis of the abstracted states, which analyzes the effect of
each ground state dimension on the learned abstract state. Algorithm 3 demonstrates the experiment
procedure for semantic analysis.
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Table 8: Hyperparameter setting of I2L.

Ant HalfCheetah FeedingSawyer

Wasserstein critic network [64, 64, 64] [64, 64, 64] [64, 64, 64]
Discriminator network [64, 64, 64] [64, 64, 64] [64, 64, 64]

Policy network [400, 300] [400, 300] [400, 300]
Wasserstein critic optimizer, lr, gradient-steps Adam, 5e-5, 20 Adam, 5e-5, 20 Adam, 5e-5, 20

Discriminator optimizer, lr, gradient-steps Adam, 3e-4, 5 Adam, 3e-4, 5 Adam, 3e-4, 5
Policy algorithm, lr PPO, 1e-4 PPO, 1e-4 PPO, 1e-4

Batch size 256 256 256
Activation Tanh Tanh Tanh

Table 9: Source codes of baselines.

Algorithm URL

AIRL-ME https://github.com/Ojig/Environment-Design-for-IRL
RIME https://github.com/JongseongChae/RIME

I2L https://github.com/tgangwani/RL-Indirect-imitation

(a) Training curve in Ant (Leg 1 & 2). (b) Training curve in Ant (Leg 0 & 3).

Figure 6: Smoothed training curve for Ant in two source tasks. AIRL-ME and f -IRL perform poorly in the
experiments and are therefore excluded from the comparison.

Algorithm 3 Semantic Analysis
Require: Learned Encoder pϕ, Trajectory buffer B.
1: Sample states s from Trajectory buffer B.
2: for each dimension d of the states do
3: Create two perturbed states s+, s− by adding and subtracting 1.0 to dimension d.
4: Encode s+, s− using the learned encoder pϕ.
5: Compute Cosine similarity between the resulting abstracted states: cos_similarity

(
pϕ(s

+), pϕ(s
−)
)
.

Figure 7 shows the absolute value of cosine similarity. A high cosine similarity indicates the abstract
representation is insensitive to perturbation in that dimension, implying it may be semantically less
important. Conversely, a low similarity suggests that the dimension is critical in shaping the latent
abstraction. For the Ant task, the lowest similarity consistently appears at dimension 13 across all
tasks, indicating its high semantic importance in the abstract representation. According to Gymnasium
documentation1, dimension 13 corresponds to the x-velocity of the torso, i.e., the forward movement.
Similarly, for the Half Cheetah task2, the lowest similarity appears at dimension 8, corresponding
to the velocity of the x-coordinate of the front tip. In both cases, the critical feature corresponds to
forward speed, which emerges as a common and invariant component across tasks. These findings

1https://gymnasium.farama.org/environments/mujoco/ant/#observation-space
2https://gymnasium.farama.org/environments/mujoco/half_cheetah/#observation-space
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Figure 7: Visualization result for the semantic analysis via Cosine similarity.

support the claim that the learned abstraction not only captures semantically relevant information but
also emphasizes task-invariant features that are essential for generalization.

D.2 INTEGRATE ABSTRACT STATES INTO OTHER IRL ALGORITHMS

In this section, we evaluate whether the abstraction representation ϕ can be plugged into other IRL
algorithms.

Table 10: Comparison of TraIRL, AIRL with abstraction, and SFM with abstraction as the feature
function on source and target tasks.

Sources Targets
Source 1 Source 2 Target 1 Target 2

AIRL with abstraction 2579.61 ± 68.3 2966.92 ± 67.8 2271.65 ± 127.7 2766.01 ± 132.7
SFM with abstraction 3002.88 ± 51.2 2851.09 ± 71.4 72.09 ± 18.3 52.78 ± 10.1

TraIRL 2714.18 ± 35.9 2936.52 ± 95.5 2917.92 ± 84.5 3156.54 ± 63.1

Expert 3312.12 ± 304.3 3303.99 ± 341.0 3369.05 ± 216.8 3590.57 ± 158.2

As shown in Table 10, both AIRL with abstraction and SFM with abstraction achieve higher returns
than TraIRL on the source tasks, demonstrating their ability to fit the training distributions more
closely. However, these methods fail to preserve this advantage in the target tasks: SFM collapses
almost entirely, and AIRL suffers a large drop in performance. In contrast, TraIRL maintains strong
generalization across targets. Compared to AIRL, f -IRL benefits from its separate reward function
network, independent of the discriminator. The reward function is trained to maximize covariance with
the discriminator’s output, effectively serving as a distillation process. This distillation enables the
reward function to capture transferable information rather than overfitting to the source distributions,
thereby improving generalization. For SFM with abstraction, the successor feature function is updated
using the temporal consistency loss

E(s,a,s′)∼D, a′∼πµ(·|s′)

[
∥ ϕ(s) + ψθ(s

′, a′)− ψ(s, a) ∥22
]
,

where D is the buffer, ϕ(s) is the base feature function, and ψθ(s, a) is the successor feature function.
Because this update depends directly on the current policy and state distribution, the learned successor
features are tied to the specific dynamics and current policy. When the policy or state distribution
shifts, as in the target tasks, the successor feature function becomes inaccurate. Since we do not
retrain the successor features in the transfer setting, this mismatch results in poor generalization
performance on unseen tasks.
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D.3 HYPERPARAMETER SENSITIVITY ANALYSIS

In this section, we evaluate the sensitivity of TraIRL’s performance on the coefficients λGP and λD.
The coefficient λGP controls the magnitude of the gradient penalty when updating the discriminator
(Eq. 3), while λD regulates the strength of the regularization term when updating the encoder (Eq. 2).

Hyperparameter λGP The coefficient λGP controls the magnitude of the gradient penalty when

Table 11: Mean cumulative reward with standard deviation in the Half Cheetah domain. λGP = 10 yields the
highest cumulative reward in the target domain.

Sources Target
Run (rear disabled) Run (front disabled) Run (no disability)

λGP = 1 4,646.12 ± 40.6 4,602.13 ± 24.1 3,228.27 ± 185.5
λGP = 5 4,498.74 ± 59.5 4,313.89 ± 54.4 3,989.06 ± 61.6
λGP = 10 4,404.07 ± 57.6 4,359.35 ± 99.2 5,835.11 ± 74.0
λGP = 100 172.69 ± 191.9 155.66 ± 159.5 150.41 ± 102.6

Expert 5,052.3 ± 25.4 5,499.07 ± 156.1 6,420.38 ± 37.9

updating the discriminator (Eq. 3). Table 11 presents the mean cumulative reward with standard
deviation for different values of λGP in the Half Cheetah domain. The results demonstrate that λGP
significantly influences performance across both the source and target environments. Notably, when
λGP = 10, the model achieves the highest cumulative reward in the target domain, indicating that
this setting balances the regularization effect of the gradient penalty. In contrast, setting λGP too low
(λGP = 1) results in suboptimal performance, likely due to insufficient constraint on the discriminator.
Recall that the 1-Lipschitz constraint is a crucial condition for the discriminator to approximate the
1-Wasserstein distance. If λGP is too small, it may lead to a violation of this constraint, preventing
an accurate approximation of the 1-Wasserstein distance. Consequently, Theorem 2 is not satisfied,
undermining the theoretical guarantees of TraIRL. Conversely, an excessively large λGP (λGP = 100)
drastically degrades performance across all environments, suggesting that an overly strong gradient
penalty hinders learning by excessively constraining the discriminator. These findings emphasize the
importance of tuning λGP to maintain theoretical validity while achieving optimal generalization in
the target domain.

Hyperparameter λD

Table 12: Mean cumulative reward with standard deviation in the Half Cheetah domain. λD = 0.1 yields the
highest cumulative reward in the target domain.

Sources Target
Run (rear disabled) Run (front disabled) Run (no disability)

λD = 0.05 4,323.23 ± 29.58 4,471.05 ± 56.21 4,541.09 ± 96.30
λD = 0.1 4,404.07 ± 57.6 4,359.35 ± 99.2 5,835.11 ± 74.0
λD = 0.25 4,430.26 ± 62.7 4,234.33 ± 84.0 4,548.23 ± 44.5
λD = 0.5 3,806.92 ± 85.3 3,888.79 ± 52.5 4,088.95 ± 83.8

Expert 5,052.25 ± 25.4 5,499.07 ± 156.1 6,420.38 ± 37.9

λD regulates the strength of the regularization term when updating the encoder (Eq. 2), leading to
a compact and generalizable abstracted state space. Table 12 reports the mean cumulative reward
across different values of λD in the Half Cheetah domain. At λD = 0.1, the model achieves the
highest cumulative reward in the target environment (4745.59 ± 48.56), indicating that this value
provides a balance for learning effective latent representations. Lowering λD to 0.05 slightly reduces
performance in the target domain, suggesting that insufficient regularization may lead to suboptimal
feature extraction. Increasing λD beyond 0.1 results in a noticeable performance degradation. At
λD = 0.25, the reward declines to 4548.23 ± 44.49, and at λD = 0.5, it further drops to 4088.95 ±
83.82. This decline suggests that excessive regularization constrains the encoder, limiting its ability
to adapt to the target task. The performance reduction is also observed in source tasks, indicating that
overly strong regularization affects overall learning stability.
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D.4 INSUFFICIENCY OF SINGLE SOURCE TASK

In this section, we explore the insufficiency of a single-source task in training a transferable reward
function. Recall that the objective of IRL is to match the state density or occupancy measure between
the learner and expert policy. Therefore, if we only have a single source task, the learned reward
function does not have to be generalized to any tasks except for the trained source task, even if the
ground true reward function shares the same structure across tasks. As shown in Table 13, each reward
function performs well on its corresponding training source task but generalizes poorly to others.
This result highlights the necessity of using multiple diverse source tasks to capture a task-invariant
reward structure for effective transfer learning.

Table 13: Single source task transfer learning experiments on Half Cheetah.

Target
Rear Disabled Front Disabled Normal

Source
Rear Disabled 4,867.19 ± 47.3 532.67 ± 312.2 3,158.79 ± 211.1
Front Disabled 831.98 ± 447.5 5,318.55 ± 83.9 3,351.9 ± 198.4

Normal 2,683.83 ± 412.7 3,017.66 ± 316.7 6,211.72 ± 42.0

D.5 ADDITIONAL DETAILS ABOUT THE 1-WASSERSTEIN DISTANCE EXPERIMENTS

In this section, we detail the 1-Wasserstein distance experiments presented in Sec. 5.1.2. The distance
in the abstracted state space is computed using TraIRL, while the corresponding distance in the
ground state space is obtained from a variant of f -IRL in which the f -divergence is replaced by
the 1-Wasserstein distance (see Appendix A.2 of Ni et al. (2021)). In both cases, the 1-Wasserstein
distance is estimated using the discriminator from a WGAN trained on expert trajectories from two
source tasks. Although expert policies for target tasks are typically unavailable in standard IRL or
transfer learning settings, we assume access to them in this experiment to enable the computation
of the 1-Wasserstein distance defined in Theorem 2, W1(ρ

∗
T t(z), ρ∗T i(z)), between the abstracted

occupancy measures of the target and source tasks. The distances reported in Table 14 are computed
from the state densities of the expert policy, either in the abstracted state space or the ground state
space.

Table 14: Abstraction yields a smaller W1 in the Half Cheetah and Ant, which is desirable.

1-Wasserstein Distance
Abstractions Ground

HalfCheetah
Source (rear disabled) and Source (front disabled) 0.36 1.37
Source (rear disabled) and Target (no disability) 0.62 2.83
Source (front disabled) and Target (no disability) 0.55 2.10

Ant

Source (Leg 1, 2 disabled) and Source (Leg 0, 3 disabled) 0.33 1.78
Source (Leg 1, 2 disabled) and Target (Leg 1, 3 disabled) 0.71 2.82
Source (Leg 1, 2 disabled) and Target (Leg 0, 2 disabled) 0.79 2.97
Source (Leg 0, 3 disabled) and Target (Leg 1, 3 disabled) 0.81 3.00
Source (Leg 0, 3 disabled) and Target (Leg 0, 2 disabled) 0.75 2.89

D.6 TRANSFER LEARNING FROM ANT TO HALF CHEETAH

In this section, we describe the details for performing transfer learning from the source domain (Ant)
to the target domain (Half Cheetah). The primary challenge in this cross-domain transfer arises
from the mismatch between the ground state spaces of the two environments. Specifically, the Ant
domain has a 27-dimensional state space, whereas the Half Cheetah domain has a 17-dimensional
state space. Although both domains primarily consist of joint angles and velocities, the ranges of
these values differ significantly between the two robots. As a result, directly applying the encoder
trained in the source domain to the target domain leads to a substantial distribution shift, undermining
the effectiveness of learned representations and transferred rewards. To mitigate the distribution shift,
we introduce two methods, one-shot transfer learning and zero-shot transfer learning. Fig. 8 shows
the overview of transfer learning.
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Figure 8: Overview of one-shot transfer learning in the target task.

One-Shot Transfer Learning We first introduce one-shot transfer learning. Compared to training
in the source domain, we have trained the reward function Rθ , the discriminator Dω , the encoder pϕ
and the decoder qψi for the source domain. Importantly, there is only one expert trajectory in the
target domain, the so-called one-shot transfer learning. Specifically, we need to train an encoder pϕt ,
a decoder qψt , and a policy πξt for the target domain. The VAE loss function remains the same as the
training in the source domain, except for the single decoder in the target domain.

LVAE(ϕ
t, ψt) = Ez∼pϕt (zt|st)

[
log qψt(st|z)

]
− λD DKL

(
pϕt(zt|st) ∥ p(zt)

)
. (17)

Since the reward function Rθ has been trained, we no longer need the reward loss. In terms of
discriminator loss, the discriminator has also been trained. Therefore, the discriminator loss now only
updates the encoder parameters:

LWGAN(ϕ
t) = Ez∼pϕt (z|s),s∼ρL(st)[Dω(z)]− Ez∼pϕt (z|s),s∼ρE(st)[Dω(z)]

+ λGP Ez∼ρ̂(zt)
[
(∥∇zDω(z)∥2 − 1)

2
] )
, (18)

Next, we introduce the novel cycle loss, illustrated in the overview in Fig. 8. The dimension of the
abstracted state in the target domain is the same as that in the source domain. While the VAE loss
and discriminator loss shape the abstract state space to be compact and optimality-aware, the cycle
loss is designed to establish semantic alignment between the source and target domains. Specifically,
it encourages consistency between the abstract state directly encoded from a target ground state and
the abstract state obtained by first reconstructing that target abstracted state into the source domain
and then encoding it. In doing so, the cycle loss ensures that abstract states from the target domain
remain meaningfully aligned with those from the source, facilitating effective reward transfer despite
differences in the ground state spaces.

LCycle(ϕ
t) = DKL

(
pϕt(zt|st) || pϕ(ẑ|ŝi)

)
, (19)

where ŝi ∼ qψi(si|zt).
The overall loss function is the linear combination of the three loss functions:

L(ϕt, ψt) = λVAELVAE + λWGANLWGAN + λCycleLCycle (20)

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Zero-Shot Transfer Learning Next, we introduce the zero-shot transfer learning setting, which
requires the specification of goal criteria for expert behavior. To guide policy learning in the absence
of expert demonstrations in the target domain, we apply a variant of the Hindsight Experience
Replay (HER) technique to the learner trajectories. Unlike the original HER, which relabels achieved
states as goals, our variant replaces the failed goal conditions in the learner trajectories with the
expert-specified goal criteria. This relabeling produces more informative optimality signals, allowing
the agent to learn effectively from suboptimal trajectories that would otherwise provide little to
no feedback. For instance, in our zero-shot setting for the target domain (Half Cheetah), the goal
criterion is achieving a high forward velocity. In the learner trajectories, where the agent typically
exhibits low forward speed, we relabel the corresponding state features by replacing the observed
speed with a high value that reflects expert-level performance. This substitution allows the learner to
receive feedback aligned with the desired goal, thereby facilitating learning despite the absence of
expert demonstrations in the target domain.

The loss function of zero-shot transfer learning remains the same as Eq. 20.

Table 15: Transfer learning experiments on Half Cheetah.

Half Cheetah (One-Shot) Half Cheetah (Zero-Shot)

Ant (Leg 1, 2) & (Leg 0, 3) (Source Tasks) 5,378.78 ± 61.7 4,821.79 ± 152.5

D.7 FINE-TUNING WITH REWARD SHAPING

In Sec. 5.2, we mention that reward shaping is applied to the learned reward function in the target task.
Since the distributions of goal states differ between the source and target tasks, the learned reward
alone is insufficient to guide the agent toward the new goal in the target task. Table 16 illustrates the
necessity of reward shaping by comparing performance with and without it. Note that reward shaping
is applied consistently to all baseline algorithms as well as TraIRL.

Table 16: Reward shaping experiments on Assistive Gym environment. The reward function is
learned in the source tasks (Feeding task 1 & 2).

Scratch Itch
without Reward Shaping with Reward Shaping

I2L -19.55 ± 3.90 -10.07 ± 8.02
TraIRL -20.13 ± 5.11 -3.82 ± 3.33

D.8 ABLATION STUDY

In this section, we conduct an ablation study on three objective functions, LVAE,LWGAN,LF , in the
overall objective function, Eq. 6.

Table 17: Ablation Study

Sources Target
Run (rear disabled) Run (front disabled) Run (no disability)

Without LVAE 4,099.25 ± 38.7 4,131.87 ± 47.8 1,083.63 ± 167.0
Without LWGAN -133.89 ± 211.8 -118.35 ± 259.4 -181.2 ± 203.6

Without LF -148.1 ± 264.8 -137.72 ± 213.7 -189.0 ± 183.5

TraIRL 4,404.07 ± 57.6 4,359.35 ± 99.2 5,835.11 ± 74.0

Table 17 presents an ablation study evaluating the contribution of the three key components in
the TraIRL objective: the VAE loss (LVAE), the discriminator loss (LWGAN), and the reward loss
(LF ). Removing LVAE results in minimal impact on performance in the source tasks, but leads to
a significant drop in the target task performance, suggesting that a shared abstracted state space
is essential for transfer. In contrast, removing either LWGAN or LF leads to a complete failure of
learning across all tasks, with highly negative returns. This indicates the critical roles of adversarial
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training for enforcing optimality alignment and of reward fitting for capturing the expert policy
structure. The full TraIRL objective achieves strong performance across all tasks, particularly in the
target domain, demonstrating that all three components are necessary for effective transfer learning.

D.9 VIOLATION OF THE STRUCTURAL ALIGNMENT ASSUMPTION IN THEOREM 2

As stated in Theorem 2, a violation of the structural alignment assumption directly leads to a violation
of Eq. 8. Intuitively, when this assumption is not satisfied, the abstract state density of the target task
is shifted relative to that of the source tasks. Such a shift prevents the learned abstract reward from
generalizing correctly, resulting in degraded performance on the target task. The shifted target abstract
state density can be mitigated through one-shot transfer learning, as described in Appendix D.6. We
conducted an additional experiment to validate this claim, where source task 1: Ant (Leg 0 & 1
disabled), source task 2: Ant (Leg 0 & 3 disabled), and target task: Ant (Leg 1 & 2 & 3 disabled)

Table 18: Experiment on violation of the structural alignment assumption.

Source 1 Source 2 Target One-shot transfer learning

AIRL-ME 2399.66 ± 89.1 2231.09 ± 87.6 169.00 ± 99.4 –
RIME 2471.90 ± 92.4 2308.14 ± 81.5 130.61 ± 108.3 –

I2L 2853.80 ± 73.8 2786.90 ± 79.4 149.52 ± 172.6 –
TraIRL 2815.93 ± 63.2 2936.52 ± 95.5 152.17 ± 153.1 1396.57 ± 95.0
Expert 3391.57 ± 279.1 3303.99 ± 341.0 1655.42 ± 256.2 1655.42 ± 256.2

In this setting, none of the source tasks contains optimality information about Leg 0, which becomes
the only functional leg in the target task. This causes the abstract state distribution in the target to
shift significantly from those in the source tasks, violating the structural alignment assumption. This
result provides direct empirical support for Theorem 2: when the structural alignment assumption
is violated, the abstract state density shifts, leading to poor generalization. After applying one-shot
transfer learning, the issue of shifted abstract state density is mitigated, and the performance improves
substantially.

D.10 COMPREHENSIVE EXPERIMENTS

In this section, we present additional experiments that incorporate a larger set of source and target
tasks.

Table 19: Extended experiments on source tasks in the Ant domain (part 1).

Leg 0,1 disabled Leg 0,2 disabled Leg 0,3 disabled Leg 1,2 disabled Leg 1,3 disabled

AIRL-ME 2,420.31 ± 75.2 2,361.22 ± 82.7 2,231.09 ± 67.6 2,389.65 ± 52.0 2,140.84 ± 75.3
RIME 2,691.04 ± 55.6 2,641.37 ± 91.2 2,708.14 ± 81.5 2,901.67 ± 49.9 2,590.71 ± 61.9

I2L 2,762.88 ± 64.1 2,801.55 ± 69.8 2,786.90 ± 79.4 2,831.28 ± 36.4 2,620.47 ± 84.5
TraIRL 2,962.84 ± 49.5 2,774.88 ± 68.9 2,989.54 ± 53.0 2,844.94 ± 17.2 2,733.25 ± 56.9
Expert 3,127.77 ± 172.4 3,590.57 ± 158.2 3,303.99 ± 341.0 3,312.12 ± 304.3 3,369.05 ± 216.8

Table 20: Extended experiments on source tasks in the Ant domain (part 2).

Leg 2,3 disabled Leg 0,1,2 disabled Leg 0,1,3 disabled Leg 0,2,3 disabled Leg 1,2,3 disabled

AIRL-ME 2,302.44 ± 78.1 1,182.06 ± 50.3 1,160.92 ± 48.6 1,121.37 ± 46.9 1,131.58 ± 52.1
RIME 2,660.08 ± 79.6 1,301.77 ± 52.5 1,483.49 ± 36.8 1,241.62 ± 50.7 1,252.33 ± 44.2

I2L 2,721.63 ± 78.2 1,381.94 ± 40.1 1,362.15 ± 35.7 1,361.08 ± 38.9 1,332.76 ± 45.0
TraIRL 2,802.07 ± 42.4 1,454.11 ± 29.6 1,418.54 ± 18.3 1,359.91 ± 23.1 1,361.90 ± 50.6
Expert 3,068.32 ± 209.7 1,716.93 ± 227.0 1,680.04 ± 199.8 1,652.81 ± 161.2 1,655.42 ± 256.2

Tables 19–21 present an extended experiment in the Ant domain, which includes 10 source tasks
and 5 target tasks. In the source tasks, I2L and RIME occasionally achieve slightly higher returns
than TraIRL, reflecting their ability to fit specific task instances. However, in the target tasks,
TraIRL clearly outperforms all baselines, demonstrating that the transferable abstract state space
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Table 21: Extended experiments on target tasks in the Ant domain.

Leg 0 disabled Leg 1 disabled Leg 2 disabled Leg 3 disabled No leg disabled

AIRL-ME 2,412.67 ± 83.1 2,395.42 ± 102.7 2,368.19 ± 59.4 2,401.55 ± 97.2 2,680.14 ± 91.5
RIME 2,675.34 ± 72.8 2,659.48 ± 81.3 2,621.77 ± 69.5 2,670.91 ± 86.4 2,945.63 ± 68.2

I2L 2,752.18 ± 64.7 2,736.02 ± 65.0 2,701.36 ± 71.9 2,749.85 ± 79.6 3,028.77 ± 83.4
TraIRL 3,241.03 ± 95.0 3,237.62 ± 64.3 3,217.80 ± 80.6 3,276.18 ± 75.7 3,546.96 ± 161.1
Expert 3,619.15 ± 139.7 3,550.75 ± 141.5 3,440.70 ± 123.7 3,584.58 ± 133.1 4,091.59 ± 159.2

enables stronger generalization and more reliable reward transfer. This highlights the key advantage
of TraIRL: while other methods may match or surpass performance on the sources, only TraIRL
maintains superior performance when adapting to unseen target tasks.

Another extended experiment is conducted in the Assistive Gym environment3, where source 1
(Feeding Sawyer with a static patient), source 2 (Feeding Sawyer with a tremor patient), source 3
(Feeding Sawyer with a static patient and a disabled wrist joint), source 4 (Feeding Sawyer with a
tremor patient and a disabled wrist joint), source 5 (Scratch Itch Sawyer with a static patient), source
6 (Scratch Itch Sawyer with a tremor patient), source 7 (Scratch Itch Sawyer with a static patient
and a disabled wrist joint), and source 8 (Scratch Itch Sawyer with a tremor patient and a disabled
wrist joint); target 1 (Drinking Sawyer with a static patient), target 2 (Drinking Sawyer with a tremor
patient), target 3 (Drinking Sawyer with a static patient with a static patient and a disabled elbow
joint), and target 4 (Drinking Sawyer with a tremor patient and a disabled elbow joint).

Table 22: Extended experiments on source tasks in the Assistive Gym (part 1).

Source 1 Source 2 Source 3 Source 4 Source 5

AIRL-ME 3.8 ± 2.7 4.5 ± 6.9 1.1 ± 0.4 4.0 ± 2.3 -5.6 ± 2.1
RIME 7.1 ± 7.1 7.8 ± 6.0 5.9 ± 3.3 7.2 ± 1.1 -2.9 ± 4.8

I2L 10.9 ± 3.8 8.5 ± 3.1 10.0 ± 5.5 8.7 ± 6.2 -2.5 ± 0.7
TraIRL 9.3 ± 5.1 11.1 ± 4.2 8.7 ± 6.1 9.0 ± 6.1 -2.0 ± 1.6
Expert 11.2 ± 5.3 12.7 ± 4.2 9.54 ± 3.1 10.2 ± 4.0 -1.1 ± 5.7

Table 23: Extended experiments on source tasks in the Assistive Gym (part 2).

Source 6 Source 7 Source 8

AIRL-ME -6.9 ± 2.8 -6.4 ± 1.9 -6.7 ± 1.0
RIME -3.9 ± 3.7 -3.4 ± 4.8 -3.6 ± 5.9

I2L -3.1 ± 0.6 -2.9 ± 0.7 -3.2 ± 1.6
TraIRL -2.7 ± 2.5 -3.0 ± 2.6 -2.8 ± 2.5
Expert -2.3 ± 4.8 -3.1 ± 4.9 -2.9 ± 3.7

Table 24: Extended experiments on target tasks in the Assistive Gym.

Target 1 Target 2 Target 3 Target 4

AIRL-ME 12.4 ± 4.8 11.2 ± 2.5 10.9 ± 6.7 11.3 ± 5.6
RIME 18.9 ± 8.2 17.5 ± 10.0 16.8 ± 8.1 17.2 ± 7.2

I2L 20.7 ± 3.5 24.4 ± 5.2 22.8 ± 4.4 20.1 ± 3.3
TraIRL 29.8 ± 6.1 27.2 ± 4.0 26.7 ± 6.2 25.0 ± 6.1
Expert 35.7 ± 11.7 30.5 ± 9.4 28.2 ± 11.0 25.7 ± 10.2

Tables 22–24 present extended experiments in the Assistive Gym domain, which include 8 source
tasks and 4 target tasks. In the source tasks, I2L and RIME occasionally surpass TraIRL on certain
instances, reflecting their strength in fitting task-specific structures. However, in the target tasks,
TraIRL consistently outperforms all baselines, achieving results that are much closer to expert

3https://github.com/Healthcare-Robotics/assistive-gym/wiki
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performance. This demonstrates that the transferable abstract state space learned by TraIRL enables
stronger generalization and more reliable reward transfer. The results highlight the key advantage of
TraIRL: while baselines can sometimes match or exceed performance in the sources, only TraIRL
sustains superior generalization when transferring to unseen target tasks.

As the number of source tasks increases, the reward learned by TraIRL becomes more transferable
because the abstraction is trained on a richer and more diverse set of trajectories. This diversity
allows the abstract state space to capture higher-level features that are invariant across a broader
range of variations, reducing the chance of overfitting to any single task. Consequently, the learned
reward generalizes more effectively to unseen targets, as it encodes task-independent structure rather
than idiosyncratic details. In practice, incorporating more source tasks also improves robustness,
since the abstraction must reconcile multiple dynamics and objectives, leading to a more stable and
transferable reward representation.

E COMPUTING RESOURCES

All experiments were conducted on a desktop machine running Ubuntu 20.04, equipped with an Intel
Core i7-10700K CPU, 32 GB of RAM, an NVIDIA RTX 3070 GPU, and CUDA 12.6.

F VISUALIZATION OF ABSTRACTED STATE SPACE

(a) Abstraction (b) Ground

Figure 9: Visualization of Half Cheetah domain by t-SNE.

(a) Abstraction (b) Ground

Figure 10: Visualization of Ant domain by t-SNE.

Fig. 9 presents t-SNE visualizations comparing the distributions of expert and learner states across
two Half Cheetah tasks in both the ground and abstracted state spaces. In Fig. 9a, the expert and
learner trajectories form well-separated clusters, orange for the learner and blue for the expert, while
the trajectories from the two source tasks, Half Cheetah with rear legs disabled (circle) and with
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front legs disabled (cross), appear largely overlapping in the abstract state space. The overlapping
of trajectories across different tasks and the clear separation between the expert and the learner
demonstrate that the abstract state space captures task-invariant features while preserving optimality
information useful for reward learning. In Fig. 9b, both the expert and learner trajectories, as well
as the two source tasks, form clearly separated clusters. This indicates the presence of task-specific
features in the ground state space, which hinders the generalization of learned rewards from source
tasks to the target task. The same conclusion can be made in the Ant domain in Fig. 10.

G LIMITATIONS

While TraIRL demonstrates strong generalization across related tasks, several limitations remain.
First, the method assumes that source and target tasks share sufficient structural similarity. When
this assumption is violated, such as in cases with large differences in state distributions or dynamics,
the transferability of the learned reward may degrade. Balancing the training loss between source
tasks also poses challenges, especially when their difficulty or distribution differs significantly. An
imbalance can cause the abstract representation to overfit to one source task, reducing its effectiveness
in the target.

Second, although TraIRL enables zero-shot transfer within the same task family, transferring to
structurally different domains (e.g., from Ant to Half Cheetah) requires additional adaptation. This
often involves learning mappings between ground states or introducing domain-specific constraints to
mitigate distribution shifts.

Third, learning a reward function based on a common abstract representation may in some cases
hurt performance. If the abstraction suppresses task-specific features that are critical for solving the
target task, the resulting reward may fail to induce effective policies. As we showed in Sec 5.2, a
goal-specific reward should be added on top of the abstract reward.

Finally, TraIRL introduces multiple interacting components—encoder, discriminator, and reward
function—each with their own hyperparameters. Tuning these across tasks can be non-trivial.
Overly complex discriminators or reward models may overfit to source tasks, harming generalization.
Moreover, performance is sensitive to the balance among its three objectives: abstraction quality
(VAE), optimality separation (discriminator), and reward alignment (reward function). Achieving this
balance remains a key challenge for stable and effective training.

29


	Introduction
	Related Work
	Background
	Learning Transferable Rewards via Abstraction
	Problem Definition
	Learning Abstraction via Multi-Head VAE
	Structuring the Abstract State Space
	Robust Transferable Reward Learning via Abstracted States
	Analytical Framework for Reward Transferability

	Experiments
	Evaluations in MuJoCo-Gym
	Reward Transferability
	Benefit of Abstraction and its Visualization

	Evaluation in Human-Robot Assistive Gym

	Conclusion
	Ethics Statement
	Reproducibility Statement
	Appendix
	 Appendix
	Algorithm
	Proof of Theorems
	Analytical Gradient of TraIRL (Theorem 1)
	Proof of Theorem 2
	Dynamics Disentangled State-Only Reward Function

	Training Details and Hyperparameters
	Extra Experiments and Clarifications
	Semantic Analysis of Abstracted States
	Integrate Abstract States into Other IRL Algorithms
	Hyperparameter Sensitivity Analysis
	Insufficiency of Single Source Task
	Additional details about the 1-Wasserstein Distance Experiments
	Transfer Learning from Ant to Half Cheetah
	Fine-Tuning with Reward Shaping
	Ablation Study
	Violation of the Structural Alignment Assumption in Theorem 2
	Comprehensive Experiments

	Computing Resources
	Visualization of Abstracted State Space
	Limitations


