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Abstract

It has been revealed that efficient dense image prediction (EDIP) models designed for AI
chips, trained using the knowledge distillation (KD) framework, encounter two key chal-
lenges, including maintaining boundary region completeness and ensuring target region con-
nectivity, despite their favorable real-time capacity to recognize the main object regions. In
this work, we propose a customized boundary and context knowledge distillation (BCKD)
method for EDIPs, which facilitates the targeted KD from large accurate teacher models to
compact small student models. Specifically, the boundary distillation focuses on extracting
explicit object-level boundaries from the hierarchical feature maps to enhance the student
model’s mask quality in boundary regions. Meanwhile, the context distillation leverages
self-relations as a bridge to transfer implicit pixel-level contexts from the teacher model to
the student model, ensuring strong connectivity in target regions. Our method is specifically
designed for the EDIP tasks and is characterized by its simplicity and efficiency. Theoretical
analysis and extensive experimental results across semantic segmentation, object detection,
and instance segmentation on five representative datasets demonstrate the effectiveness of
BCKD, resulting in well-defined object boundaries and smooth connecting regions.

1 Introduction

The dense image prediction (DIP) tasks, e.g., semantic segmentation (Long et al., 2015), object detec-
tion (Girshick, 2015), and instance segmentation (Wang et al., 2021c¢), are challenging problems within both
domains of computer vision and multimedia computing (Zhang et al., 2020; Ahn et al., 2019). The objective
of these tasks is to assign a semantic label to each object and/or pixel of the given image (Zhang et al.,
2020). In recent years, achievements in general-purpose GPU technology have resulted in notable enhance-
ments in both size and accuracy of sophisticated DIP models (Cao et al., 2022a; Strudel et al., 2021), e.g.,
Mask2Former (Cheng et al., 2022), SegNeXt (Guo et al., 2022b), and SAM (Kirillov et al., 2023). However,
deploying these large and accurate DIP models on resource-constrained edge computing devices, e.g., artifi-
cial intelligence chips (Dong et al., 2025), presents significant challenges due to the substantial computational
costs and high memory consumptions associated with these models (Wang et al., 2021c).

Compressing large DIP models into compact efficient dense image prediction (EDIP) models offers an in-
tuitive and cost-effective solution to address the severe resource limitations associated with mapping vision
models onto edge computing devices (Dong et al., 2021; Zhang et al., 2021). In particular, the cross-
architecture fashion enables compressed models to seamlessly adapt to customized edge chips, eliminating
the need for hardware modifications while maintaining computational efficiency. This manner significantly
reduces deployment complexity and enhances the flexibility of model inference across heterogeneous edge
computing platforms (Yin et al., 2023). To achieve this goal and develop accuracy-preserving EDIP models,
knowledge distillation (KD) (Hinton et al., 2015; Wang et al., 2023), a prevalent model compression technol-
ogy, has been pragmatically employed by using a small efficient model (i.e., the student model) by imitating
the behavior of a large accurate model (i.e., the teacher model) in training (Hinton et al., 2015; Zhao et al.,
2022). During inference, only the student model is utilized, allowing for a highly-efficient recognition pattern
while simultaneously reducing the model size (Dong et al., 2021; Zhang et al., 2021; Cui et al., 2023). De-
spite significant advancements by current KD methods across multiple dimensions, including sophisticated
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Figure 1: Two representative cases that small models are prone to predict errors. Visualization comparisons
between large accurate models (b) and small efficient models (¢) show that the latter tend to make errors
in maintaining boundary region completeness and preserving target region connectivity. With the help of
BCKD, our small models in (d) can address the two types of errors, leading to crisp region boundaries and
smooth connecting regions. Samples are from the ADE20K dataset (Zhou et al., 2017).

distillation strategies (Cui et al., 2023) and complex distillation content (Wang et al., 2020), the inherent
complexity of DIP continues to pose two critical challenges for existing approaches, particularly for the
efficient compact models.

Primary KD methods mainly emphasize the imitation of general knowledge (e.g., features, regions, and
logits) while overlooking the nuanced understanding of features along objective semantic boundaries and
connecting internal regions essential for EDIPs (Zhang et al., 2021; Wang et al., 2022a). Particularly, since
the small student model often predicts the main object regions fairly well but fails in boundary and connecting
regions (Fu et al., 2019; Yuan et al., 2020; Cao et al., 2022a), the conventional utilization of task-agnostic
general KD may not be effective enough and can be considered purposeless and redundant (Gou et al.,
2021; Xu et al., 2020; Zhao et al., 2022), remaining a performance gap between the obtained results and the
expected ones (Wang et al., 2024). For instance, we recommend the representative semantic segmentation
task as an example. As shown in Figure 1, the small student PSPNet-18 model in (c) produces inferior results
compared to the large teacher PSPNet-101 model results in (b). The student model wrongly segments the
boundary regions of “curtain” and “door” as the background category or other foreground objects, and
produces fragmented and “chair”, breaking the regional relation connectivity. Generally,
the common errors observed in the outputs of the small student model can be summarized as maintaining
boundary region completeness and ensuring target region connectivity.

To mitigate these errors and narrow the performance gap, we propose a customized and targeted KD strategy
termed as Boundary and Context Knowledge Distillation (BCKD). By “customized”, we mean that our
method’s inherent ability to synergistically address the common errors present in existing EDIP models,
while also coexisting with other methods (ref. Sec. 5.3). BCKD mainly consists of two key components: the
boundary distillation and the context distillation, aimed at rectifying the typical common errors encountered
by EDIP models in maintaining boundary region completeness and ensuring target region connectivity,
respectively. Specifically, boundary distillation involves generating explicit object-level boundaries from
the hierarchical backbone features, enhancing the completeness of the student model’s masks in boundary
regions (ref. Sec. 4.2). At the same time, context distillation transfers implicit pixel-level contexts from
the teacher model to the student model through self-relations, ensuring robust connectivity in the student’s
masks (ref. Sec. 4.3). BCKD is tailored specifically for EDIP tasks and offers a more targeted distillation
pattern and a more tailored distillation manner compared to conventional task-agnostic KD methods. From
a rigorous theoretical perspective, we establish and prove the effectiveness of our BCKD method (ref. Sec. A).
To validate the superior accuracy, we conducted extensive experiments in three representative dense image
prediction tasks, including semantic segmentation, object detection, and instance segmentation, utilizing
five challenging datasets such as Pascal VOC 2012 (Everingham et al., 2010), Cityscapes (Cordts et al.,
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2016), ADE20K (Zhou et al., 2017), COCO-Stuft 10K (Caesar et al., 2018), and MS-COCO 2017 (Lin et al.,
2014). Qualitatively, BCKD produces sharp region boundaries and smooth connecting regions, addressing
challenges that hindered existing EDIP models. Quantitatively, BCKD consistently improves the accuracy
of baseline models in various metrics, achieving competitive performance.

The main contributions of this work can be summarized as the following four folds: 1) We revealed two
prevalent issues in existing EDIP models: maintaining boundary region completeness and ensuring target
region connectivity. 2) We proposed a customized and targeted boundary and context knowledge distillation
method, which not only demonstrates inherent coherence, but also possesses the capability to coexist with
other methods. 8) Theoretical analysis demonstrates the superior effectiveness of our BCKD. 4) Experimen-
tal evaluations across various tasks, baselines and datasets illustrate the superior accuracy of our method in
comparison with existing methods.

2 Related Work

2.1 Dense Image Prediction Tasks

Dense image prediction (DIP) is a fundamental research problem within the fields of computer vision and
multimedia computing, with the objective of assigning each object and/or pixel in an input image to a
predefined category label, thereby enabling comprehensive semantic image recognition (Long et al., 2015;
Zhou et al., 2024; Zhang et al., 2020; Lin et al., 2023b). Current mainstream DIP models can be roughly
classified into the following three categories based on their backbone components: 1) methods based on
CNNs (Long et al., 2015; Yu et al., 2018; Noh et al., 2015; Huang et al., 2019), 2) methods based on
ViT! (Strudel et al., 2021; Wang et al., 2022b; Zheng et al., 2021), and 3) methods that combine CNNs
and ViT (Li et al., 2022a; Peng et al., 2021). The key difference between these types of architectures is the
approach used for feature extraction and how the extracted features are utilized in enhancing the capacity
of CNNs models to capture contextual features (Cao et al., 2022a; Zhang & Cheng, 2025), increasing the
capacity of ViT models to capture local features (Wu et al., 2021; Zhang et al., 2022b; Peng et al., 2021),
and leveraging low-level features to improve representation capacity (Zhang et al., 2023; Xie et al., 2021)
for achieving favorable results. Concretely, due to differences in feature extraction manners between CNNs
and ViT, these two categories exhibit slight performance differences (Wang et al., 2022b; Peng et al., 2021;
Zheng et al., 2021; Li et al., 2022a). For example, CNNs methods are better at predicting local object
regions, while ViT methods, due to their stronger contextual information, can produce more complete object
masks. Fortunately, the mixture of CNNs and ViT (e.g., CMT (Guo et al., 2022a), CvT (Wu et al., 2021),
ConFormer (Peng et al., 2021), CAE-GreaT (Zhang et al., 2023), and visual Mamba (Gu & Dao, 2023)) uses
the representation strengths of both patterns, resulting in highly satisfactory recognition performance (Han
et al., 2022; Mao et al., 2022; Wang et al., 2021a). In addition to these fundamental categories, there
are advanced approaches that also utilize task-specific training tricks (e.g., graph reasoning (Zhang et al.,
2022b), linear attention (Kong et al., 2022), mult-scale representation (Fan et al., 2021)) to improve the
accuracy. However, while current methods have achieved promising accuracy, mapping these models on
resource constrained edge computing devices remains challenging because these devices typically have limited
computation resources and memory consumptions (Dong et al., 2023; 2025). In this work, we do not intend
to modify the network architecture. We first investigate the result disparities between small and large models
and then propose a novel KD strategy tailored to the EDIP models. We aim at improving the recognition
accuracy of small models without requiring any extra training data or increasing the inference costs.

2.2 Knowledge Distillation in DIPs

Knowledge Distillation (KD) is a well-established model compression technology that aims to transfer valu-
able knowledge from a large accuracy teacher model to a small efficient student model, with the objective of
enhancing the student’s accuracy during inference (Chen et al., 2023; Gou et al., 2023; Wang et al., 2020).

IWe consider the visual state space model-based methods as a specialized Transformer architecture (Gu & Dao, 2023; Xu
et al., 2024), owing to its structural similarities with the ViT model. Besides, we do not address the content related to these
models. Therefore, we will no longer have separate discussions on this aspect.
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It is worth mentioning that the effectiveness of KD in cross-architecture scenarios has enabled significant
flexibility in artificial intelligence chip design, as it eliminates the need to modify the underlying operators
while maintaining model performance, which provides a practical solution for hardware adaptation without
compromising computational efficiency (Dong et al., 2025). The key factors for the success of KD in DIPs
are: 1) the types of knowledge being distilled, e.g., general knowledge: features and logits, and task-specific
knowledge: class edge for semantic segmentation and object localization for object detection, 2) the distilla-
tion strategies employed, e.g., offline distillation (Tseng et al., 2022), online distillation (Guo et al., 2020), and
self-distillation (Zhang et al., 2019), and 3) the architecture of the teacher-student pair, e.g., multi-teacher
KD (Yuan et al., 2021), attention-based KD (Passban et al., 2021), and graph-based KD (Lee & Song, 2019).
While the effectiveness of existing KD methods has been validated in general vision tasks, current methods
rely on coarse task-agnostic knowledge and do not consider the task-specific feature requirements (Sun et al.,
2020; Gou et al., 2021; Mao et al., 2022; Chen et al., 2017a; Wang et al., 2019). Especially for EDIPs, models
are highly sensitive to feature representations (Long et al., 2015; Zhang et al., 2022¢; Zheng et al., 2021;
Zhang et al., 2018). Therefore, general KD may not be effective enough and can be considered purpose-
less and redundant (Gou et al., 2021; Xu et al., 2020; Zhao et al., 2022; Zhang et al., 2022b), remaining a
performance gap between the obtained results and the expected ones (Yang et al., 2022a; Cui et al., 2023;
Wang et al., 2024). Recent studies have shown that task-specific patterns of KD can help further improve
the performance of student models (Zheng et al., 2022). For example, in object detection, object localization
KD leads to more accurate predictions than the general knowledge (Sun et al., 2020; Zhixing et al., 2021).
In this work, we also adopt the idea of task-specific KD. Our contribution lies in proposing a customized
KD scheme, namely boundary distillation and context distillation, which target the common errors of EDIP
models, namely their tendency to make errors in maintaining boundary region completeness and ensuring
target region connectivity. It is also worth noting that while some methods, e.g., CTO (Lin et al., 2023c),
SlimSeg (Xue et al., 2022), and BPKD (Liu et al., 2024), have integrated boundary information in EDIPs,
they necessitate the pre-extraction and incorporation of ground-truth boundaries (Xue et al., 2022; Liu et al.,
2024; Lin et al., 2023c). In contrast, our method obviates the demand for pre-extracting boundaries, thereby
making it more practical for real-world applications and enabling savings in time and labor.

3 Preliminaries

In the training phase, KD intends to facilitate expectant knowledge transfer from a large teacher model T
to a small compact student model S, with the primary goal of enhancing the accuracy of S (Hinton et al.,
2015; Zhang et al., 2021; 2019; Gou et al., 2021; Ji et al., 2021). In inference, only S is used, so there are no
computational overheads. Typically, features and logits serve as a medium for knowledge transfer. Besides,
the temperature scaling strategy is often utilized to smooth the features and logits, which helps to lower
prediction confidence and alleviate the issue of excessive self-assurance in T (Phuong & Lampert, 2019).
Formally, KD can be expressed by minimizing the cross-entropy loss as follows:

Lxp=—12 Z U(Ti)l/Tlog (J(Si)l/T), (1)

i€ M

where T; and S; (both have been adjusted to the same dimension via 1 x 1 convolutions) are the i-th
feature/logit item extracted from T and S, respectively. o(-) is the softmax normalization operation along
the channel dimension, and 7 € R, denotes the temperature scaling coefficient. M denotes the learning
objective of T; and S;, which typically refers to the spatial dimensions. Following (Zhang et al., 2019;
Phuong & Lampert, 2019), to simplify temperature scaling effectively, we use T;/S; divided by 7 to achieve
the similar effect. In addition to cross-entropy loss, other loss functions are also commonly used for KD,
including KL divergence loss and MSE loss (Liu et al., 2019; 2022; Zheng et al., 2023). While existing KD
methods have demonstrated promising results across various vision tasks (Zhang et al., 2021; Cui et al.,
2023; Xu et al., 2020; Liu et al., 2019; Wang et al., 2020; Gou et al., 2021), they have not adequately
addressed the specific feature understanding required for object boundaries and connecting regions in EDIP
tasks. This oversight has led to suboptimal performance in these contexts. In following, we will introduce
a complementary and targeted KD scheme informed by the common failure cases observed in small models,
as shown in Figure 1, with the aim of enhancing their inference accuracy.
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Figure 2: The overall architecture of our boundary and context distillation strategy for the efficient dense
image prediction tasks, where the right side illustrates the implementation details of the whole network.
Specifically, the boundary distillation involves generating explicit object-level boundaries from the hierar-
chical backbone features, enhancing the completeness of the student model’s masks in boundary regions
(ref. Sec. 4.2). Meanwhile, the context distillation transfers implicit pixel-level contexts from the teacher
model to the student model through self-relations, ensuring robust connectivity in the student’s masks
(ref. Sec. 4.3). Compared to existing methods, our method demonstrates a stronger specificity for EDIP and
inherently possesses the ability to synergistically address the common errors found in small models.

4 Customized Knowledge Distillation

4.1 Overview

Figure 2 illustrates an overview of the network architecture for our proposed BCKD. The whole network
mainly consists of an accurate teacher network T, which is a large network that has been trained, and a small
efficient network S that is waiting to be trained. The input for T and S is an arbitrary RGB image X, and the
output of S is a semantic mask or bounding box Y that predicts each pixel or/and object with a specific class
label. The hierarchical features extracted from the backbone network are concatenated along the channel
dimension to facilitate the extraction of EDIP-specific boundary and contextual information from X. The
concatenated features with 256 channel dimension are defined as T = Convsys(concat(Ty; To;--+;T5)) and
S¢ = Convgxs(concat(Sq;Sa;- - +;S5)) for T and S, respectively. It should be noted that both T; and S;
that are concatenated have been uniformly resized into 1/8 of X’s spatial size via 1 x 1 convolution and up-
/down-sampling operations. In training, we propose targeted boundary distillation and context distillation
strategies that are tailored for the EDIP tasks. Specifically, the boundary distillation synthesizes explicit
object-level boundaries T2 and S? from T and S°, respectively, thereby the completeness of S’s results in
the boundary regions can be enhanced. At the same time, the context distillation transfers implicit pixel-level
relations T® and S% by using self-relations, ensuring that S’s results have strong target region connectivity.

4.2 Boundary Distillation

The semantic object boundary is defined as a set of arbitrary pixel pairs from the given image, where the
boundary between pairwise pixels has a value of 1 if they belong to different classes, while if the pairwise
pixels belong to the same class, the boundary between them has a value of 0 (Ahn & Kwak, 2018). Moreover,
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Figure 3: The visualization comparisons of the extracted image boundaries between our method in (c¢) and
the ground truth edge method in (b) used in the state-of-the-art BPKD Liu et al. (2024). Images are from
Pascal VOC 2012 Everingham et al. (2010).

this attribute also exists in the hierarchical features/logits extracted by the backbone feature maps (Chen
et al., 2020). In our work, we use the semantic affinity similarity between arbitrary pairwise pixels from T°
or S° to obtain the explicit object-level boundaries (Ahn et al., 2019; Ru et al., 2022). Concretely, for a pair

of image pixels T{ and T, Tfi j can be formulated as:

Ti, ;2 =1 —maxp,q ¢ II; ;B (Convix1 (Tp), Convix1(Tq)), (2)

where T} and Tj are two arbitrary pixel items from T¢, and II;; denotes a set of pixel items on the
line between T and Tj. Convixi denotes a 1 x 1 convolution layer that is used to compress the channel
dimension, where the input channel size is 256 and output channel size is 1. B(-) denotes the operation that
determines the object-level image boundary values, which outputs either 1 or 0. TP can be obtained across
the entire spatial domain, and S® can be obtained analogously. Based on T and S”, boundary distillation

loss is formulated as:
Lop=—72Y p(T)"0g (p(SP)V/7), (3)
ieM

where p denotes the spatial-wise softmax normalization. By Eq. (3), T’s accurate prediction of the object
boundary region can be transferred into S, thereby addressing its issue of maintaining boundary region
completeness.

The proposed boundary distillation strategy can effectively address the limitations of EDIP models in achiev-
ing completeness in boundary region predictions. It is important to highlight that while several advanced
methods, such as BGLSSeg (Zhou et al., 2024), SlimSeg (Xue et al., 2022), and BPKD (Liu et al., 2024),
leverage explicit edge information for semantic segmentation, these methods necessitate the pre-extraction
and integration of ground-truth masks (please refer to Table 3 for further details). More importantly, the
extracted edge information often lacks the semantic context of the objects and may introduce noise (Yang
et al., 2022b; Ji et al., 2022). In contrast, our method eliminates the need for pre-extracting image edges.
By utilizing hierarchical feature maps, our method enhances the delineation of object boundaries with more
comprehensive semantic information while mitigating the adverse effects of noise present in shallow features.
As illustrated in Figure 3, we show a visualization comparison of the extracted image boundaries between our
method and the ground truth edge method used in the state-of-the-art BPKD (Liu et al., 2024) model. We
can observe that the semantic boundaries extracted by our method can better cover the actual boundaries
of the semantic objects without introducing background noise information. This innovation not only can
enhances the practicality of our method for real-world applications but also streamlines the overall process,
leading to reductions in both time and labor requirements.
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Figure 4: Architecture comparisons between our proposed context distillation (b) and existing context
learning methods (a). Our method leverages concatenated features in a whole-to-whole manner, which
avoids the potential noise introduced by layer-to-layer distillation modes.

4.3 Context Distillation

Elaborate object relations, as validated in (Caron et al., 2021; Wang et al., 2021b; Li et al., 2022b), are
beneficial for learning implicit contextual information across spatial dimensions (Lin et al., 2023a; Ji et al.,
2022). In this paper, we also adopt this scheme to address the challenge of inadequate preservation of target
region connectivity in EDIPs. We consider this scheme as the medium in the KD process. Our contribution
lies in treating pixel-level relations as a bridge for context transfer. Compared to existing methods (Li
et al., 2022b; Ji et al., 2022), our approach utilizes pixel-level relations solely during the training process,
thereby avoiding the increase in model complexity and parameters in inference that is typically associated
with current methods (Liu et al., 2019; Lin et al., 2023a). Besides, compared to object-level relations,
the employed pixel-level relations can capture global contextual information more comprehensively, making
them more suitable for DIP tasks. Specifically, for the concatenated features T of T, its self-relation T is

formulated as: .
o9t -o(T°
TRO_< ( ) ( ))/TERthhw, (4)
Vd

where O(+) denotes the feature-aligned operation as in (Li et al., 2022b; Xie et al., 2023), which aims to align
the feature distribution of the S with that of the T as closely as possible. T' denotes the matrix transpose
operation. d is the channel size of T, which is 256. h and w denotes the height and width of T, respectively.
ST of S can also be obtained analogously. Therefore, the context distillation can be expressed as:

Lop=-2 3 o(TR)Y7Iog (o(SP)V7), (5)

k€hw X hw

where k = (1,2, ..., hw X hw) is the index item. T,If and S,If denotes the k-th item in T and S%, respectively.

The context distillation presents an efficient solution that does not incur additional inference overhead.
As illustrated in Figure 4, our method in (b), which utilizes concatenated features in a whole-to-whole
manner, circumvents the potential noise associated with existing context learning methods in (a) for semantic
segmentation (Liu et al., 2019; 2024) that rely on layer-to-layer distillation. Our method is specifically
tailored to address the potential challenge of incomplete preservation of target region connectivity as shown
in Figure 1, rather than solely focusing on the enhancement of feature representations in a generic context.

4.4 Overall Loss Function

With the boundary distillation loss £Lgp and the context distillation loss Lop, the total loss is expressed as:

L=Lss+alpp+ BLcD, (6)
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where « and 3 are two weights used to balance different losses. Empirically, these weights have a significant
impact on model performance, and unreasonable weight settings may even lead to model collapse in training.
To this end, inspired by previous work (Sun et al., 2020; Yang et al., 2023), to enhance the dependence of S
on ground truth labels, we incorporate a weight-decay strategy that promotes a greater focus on Lgg as the
training epoch increases. To this end, we initialize a time function as follows:

r(t) =1 = (¢t =1)/tmax, (7)

where t = (1,2, ...,tmax) denotes the current training epoch and tpay is the maximum training epoch. In
training, we control the dependence of £ on Lgp and Leop by using 7(t). Therefore, the total loss in Eq. (6)
can be formulated as:

L=Lgs+ T(t)aﬁBD + T(t)ﬂﬁcp. (8)

5 Experiments

5.1 Datasets and Evaluation Metrics
5.1.1 Datasets

To demonstrate the superior performance of our method, we conduct experiments on five representative yet
challenging datasets: Pascal VOC 2012 Everingham et al. (2010), Cityscapes Cordts et al. (2016), ADE20K
Zhou et al. (2017), and COCO-Stuff 10K Caesar et al. (2018) for semantic segmentation (SSeg), as well as
MS-COCO 2017 Lin et al. (2014) for instance segmentation (ISeg) and object detection (ODet).

e The Pascal VOC 2012 dataset comprises 20 object classes along with one background class. Follow-
ing (Zhang et al., 2021; Wang et al., 2020), we utilized the augmented data, resulting in a total of
10, 582 images for training, 1,449 images for val, and 1,456 images for testing.

e The Cityscapes comprises a total of 5, 000 finely annotated images, which are partitioned into subsets
of 2,975, 500, and 1,525 images designated for training, val, and testing, respectively. In alignment
with existing methods (Zheng et al., 2023; Wang et al., 2020; Liu et al., 2019), we exclusively
employed the finely labeled data during the training phase to ensure a fair comparison of results.

e The ADE20K dataset has 150 object classes and is organized into three subsets: 20,000 images for
the training set, 2,000 images for the val set, and 3,000 images for the testing set.

o The COCO-Stuff 10K dataset is an extension of the MS-COCO dataset Lin et al. (2014), enriched
with pixel-wise class labels. It consists of 9,000 samples designated for training and 1,000 samples
allocated for val.

e The MS-COCO 2017 dataset comprises 80 object classes and includes a total of 118,000 images for
training, and 5,000 images for val.

For data augmentation, random horizontal flip, brightness jittering and random scaling within the range
of [0.5,2] are used in training as in (Wang et al., 2020; Zhang et al., 2021; Liu et al., 2019). Experiments
are implemented on the MMRazor framework” under the PyTorch platform (Paszke et al., 2019) using 8
NVIDIA GeForce RTX 3090 GPUs. All the inference results are obtained at a single scale.

5.1.2 Evaluation metrics

Beyond employing standard metrics, we have also developed two extra specialized evaluation metrics specif-
ically optimized for knowledge distillation on dense image prediction tasks, detailed below:

Common metrics. For SSeg, we utilize the mean intersection over union (mloU) as the primary evaluation
metric. For ISeg and ODet, average precision (AP) serves as the principal accuracy-specific metric. To assess

2https://github.com/open-mmlab/mmrazor
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model efficiency, we also consider the number of parameters (Params.) and the floating-point operations
(FLOPs).

Manifold stability (MFS). To assess the effectiveness on the learned feature manifolds, we compute the
Lipschitz constant ratio between teacher and student models. Specifically, let fL(z), fi(z) € R% denote the
l-th layer feature mappings for teacher and student models respectively. The layer-wise Lipschitz constant
can be estimated via:

l 5 — l
by MBEEO-AE@L g o)
zeX,||d]|<e ||§H2

where X is the input space and ¢ = 0.1 controls the perturbation scale. The MFS p; is then computed as:

Ll
pr=—2 I(Ly >7)+ 1Ly < 1) (10)

Ly
with threshold 7 avoiding division by negligible values (7 = 0.01). Values close to 1 indicate well-preserved
manifold structure during distillation, while significant deviations suggest potential degradation of geometric
properties.

Local Hausdorff distance (LHD). For boundary-sensitive tasks like SSeg and ISeg, we introduce a LHD
metric to evaluate boundary alignment quality. Specifically, for boundary point sets B, = {p;}i"; and
By = {q;}}—1, the LHD at point p; is defined as:

LHD, (p;, By) = min { . gzlva)((p )d(pl7 ), medlan({d(pv,q])}qjeN (pz))} (11)

where the neighborhood N,.(p;) and final aggregation are defined as:

Ne(pi) = {g5 € By | lpi = gjll2 < 7},

\B \ (12)
LHD(B,, B,) ‘B 2 ZLHD (pi, By) - I(LHD,(pi, By) < p+ 20),

where 7 is set to 5 in our implementation.

5.2 Implementation Details

5.2.1 Baselines

For a fair result comparison and considering the realistic resource conditions of edge computing devices (Dong
et al., 2023), for SSeg, we select PSPNet-101 (Zhao et al., 2017), DeepLabv3 Plus-101 (Chen et al.,
2018), and Mask2Former (Cheng et al., 2022) for the teacher models. The student models are compact
PSPNet and DeepLabV3+ with ResNet-38, ResNet-18( 5) and ResNet-18; ¢ (He et al., 2016). Besides,
to demonstrate the superior effectiveness of our method on heterogeneous network architectures, follow-
ing (Wang et al., 2020; Liu et al., 2019; Yang et al., 2022a), we also employ MobileNetV2 (Liu, 2018),
EfficientNet-B1 (Tan & Le, 2019), and SegFormer-B0 (Xie et al., 2021) as the student models. For ISeg
and ODet, following (Wang et al., 2024; Zhang & Ma, 2023), we select the representative GFL (Li et al.,
2020), Cascade Mask R-CNN (Cai & Vasconcelos, 2018), and RetinaNet (Ross & Dolldr, 2017) with
ResNet-101/50 and ResNet-50/18 as the teacher model and the student model, respectively. While adopting
cutting-edge large foundation models represents the prevailing research trend, we opt for a pragmatic small-
model baseline given the currently insurmountable challenges in deploying such large-scale models on edge
devices. This application-oriented approach prioritizes practical deployability over model scale, while still
providing a meaningful benchmark for edge computing scenarios. During the training and inference phases,
aside from our proposed method and specific declarations, all other settings adhere to the configurations
outlined in the baseline model.
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5.2.2 Training details

Following the standard practices as in (Hinton et al., 2015; Liu et al., 2019; Wang et al., 2020), all teacher
models are pre-trained on ImageNet-1k by default (Deng et al., 2009), and then fine-tuned on the corre-
sponding dataset before their parameters are fixed in KD. During training, only the student’s parameters
are updated. As in (Zhang et al., 2021; Phuong & Lampert, 2019), 7 is initialized to 1 and is multiplied by a
scaling factor of 1.05 whenever the range of values (across all feature items in a given minibatch) exceeds 0.5.
Following (Wang et al., 2020; Sun et al., 2020; Yang et al., 2023), o and S is set to 10 and 50, respectively.
We fully understand that fine-tuning these base hyperparameters could potentially enhance performance.
However, we contend that such adjustments may be redundant and unwarranted.

For SSeg models, to accommodate the local hardware limitations, the training images are cropped into a
fixed size of 512 x 512 pixels as in (Wang et al., 2024; Zhang & Ma, 2023). The SGD is used as the optimizer
with the “poly” learning rate strategy. The initial learning rate is set to 0.01, with a power of 0.9. To ensure
fairness in the experimental comparisons, the batch size is set to 8 and tyax is set to 40, 000.

For ISeg and ODet, the model is trained following the default 1x training schedule, i.e., 12 epochs. The
batch size is set to 8, and AdamW is used as the optimizer with the initial learning rate of 1 x 10~* and the
weight decay of 0.05. The layer-wise learning rate decay is used and set to 0.9, and the drop path rate is
set to 0.4. The given images are resized to the shorter side of 800 pixels, with the longer side not exceeding
1,333 pixels. In inference, the shorter side of images is consistently set to 800 pixels by default.

5.3 Ablation Analysis

In our ablation analysis, we aim to explore answers of the following crucial questions: 1) the impact of each
component within BCKD in Section 5.3.1; 2) the effectiveness of BCKD across different network architectures
in Section 5.3.2; and 3) the visualized performance and comparisons with other methods in Section 5.3.3.
We select the SSeg task as the experimental objective.

5.3.1 Effectiveness of each component

To explore answer of the first question, we chose Pascal VOC 2012 Everingham et al. (2010) as the experi-
mental dataset. PSPNet-101 (Zhao et al., 2017) serves as the teacher model, while PSPNet-18; ¢y is used as
the student model. Table 1 shows the inference results by adding each component of BCKD into the student
model, where we report the experimental results on the val set. We can observe that incorporating these
components consistently improves the model accuracy, indicating the effectiveness of these components. In
particular, adding £gp resulted in a mIoU? gain of 0.91%, which may be attributed to the fact that the
object boundary regions are relatively small in proportion to the entire image (Zhang et al., 2021; Liu et al.,
2024). With only the implementation of Lpp and Lop, our model can achieve the competitive 73.98%
mloU with 3.20% mlIoU? improvements, which verifies the importance of boundary and context information
in EDIP. Furthermore, this result demonstrates that ourLgp and Lop do not conflict in practical deploy-
ment; instead, they complement each other intrinsically to enhance performance. It is also worth noting
that compared to the advanced methods in Table 3 that do not utilize ground truth mask, our method
also achieves competitive results even without employing the weight-decay strategy. Building upon Lgp
and L¢p, adding the weight-decay strategy brings 0.57% mloU?, which confirms the weight importance of
different losses. Furthermore, there is no increase in the number of Params. or FLOPs in the inference stage.

We also employ visualizations as a means of verifying the efficacy of BCKD components incrementally into the
baseline model. The obtained results are presented in Figure 5, which demonstrate that the inclusion of Lgp
and Lep in a sequential manner leads to enhanced boundary regions and object connectivity. For example,
the “bike handlebar”. Moreover, the integration of the weight-decay strategy results in further improvement
in the overall segmentation predictions. In addition to using white bounding boxes to emphasize the better
regions achieved by our method, we also highlighted the regions of prediction failure using red dashed
bounding boxes. We can observe that although our BCKD significantly improves the prediction quality of
these regions compared to the student model’s results, there are still some incomplete predictions. This case
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Table 1: Ablation results on the wal set of Pascal VOC 2012 (Everingham et al., 2010) by adding each
component of BCKD. “WD” denotes the weight-decay strategy as introduced in Section 4.4

T: PSPNet-101 (Zhao et al., 2017) 77.82 % 70.43M 411.6G
S: PSPNet-18(;.0y (Zhao et al., 2017) 70.78 % 15.24M 106.2G
LBD Lcbp WD mloU (%) Params. FLOPs

v X X 71.6910.91 15.24M 106.2G
X v X 72.551.77 15.24M 106.2G
v v X 73.9813.20 15.24M 106.2G
v v v 74.6513.87 15.24M 106.2G

D » J!D |

o

Teacher’s result Student’s result

w/ IFVD Ground-Truth

Figure 5: Visualized comparisons and results obtained by adding different components of BCKD. The
teacher model and the student model denotes PSPNet-101 (Zhao et al., 2017) and PSPNet-18; ¢y (Zhao
et al., 2017), respectively. “w/” denotes with the corresponding implementation. Samples are from Pascal
VOC 2012 (Everingham et al., 2010).

may be caused by the spurious correlation between the “helmet” and the “person” in the used dataset, which
can be eliminated through causal intervention (Zhang et al., 2020).

5.3.2 Effectiveness across network architectures

In this section, we evaluate the effectiveness of our BCKD across various network architectures for SSeg
using: Pascal VOC 2012 (Everingham et al., 2010), Cityscapes (Cordts et al., 2016), ADE20K (Zhou et al.,
2017), and COCO-Stuff 10K (Caesar et al., 2018). The obtained results under different network architectures
are given in Table 2. For the purpose of comparing experimental results, we also include the results of a large
model that does not utilize knowledge distillation for each dataset. From this table, we can observe that
deploying BCKD on different network architectures can lead to continuous performance improvements. For
example, when employing PSPNet-38 (Zhao et al., 2017), EfficientNet-B1 (Tan & Le, 2019), and SegFormer-
BO (Xie et al., 2021) as student models while keeping the teacher model PSPNet-101 (Zhao et al., 2017)
unchanged, our BCKD achieves mIoU? improvements of 2.50%, 4.53%, and 2.13% on Pascal VOC wval, and
2.30%, 3.51%, and 1.67% on Cityscapes val, respectively. The performance gains demonstrate the effective-
ness of our method not only within the same network architecture but also across network architectures,
indicating sustained performance enhancements. This phenomenon also highlights the generalization capac-
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Table 2: Result comparisons on mloU (%) under different network architectures on the wval sets of Pascal
VOC 2012 (Everingham et al., 2010), Cityscapes (Cordts et al., 2016), and ADE20K (Zhou et al., 2017),
and on the test set of COCO-Stuff 10K (Caesar et al., 2018).

Methods Pascal VOC val Params.

DANet (Fu et al., 2019) 80.40 83.1M

T: PSPNet-101 (Zhao et al., 2017) 77.82 70.4M
S: PSPNet-38 (Zhao et al., 2017) 72.65 58.6M

+ BCKDgurs 75.1542 50 58.6M

S: EfficientNet-B1 (Tan & Le, 2019) 69.28 6.7M
+ BCKDours 73.8144.53 6.7M

S: SegFormer-B0 (Xie et al., 2021) 66.75% 3.8M
+ BCKDours 68.88.12.13 3.8M

Methods Cityscapes val Params.

HRNet (Sun et al., 2019) 81.10 65.9M

T: PSPNet-101 (Zhao et al., 2017) 78.56 70.4M
S: PSPNet-38 (Zhao et al., 2017) 71.26 47.4M

+ BCKDours 73.56.+2.30 47.4M

S: EfficientNet-B1 (Tan & Le, 2019) 60.40 6.7M
+ BCKDgurs 63.91.3 51 6.7M

S: SegFormer-B0 (Xie et al., 2021) 76.20 3.8M
+ BCKDours T7.87 4167 3.8M

Methods ADE20K wval Params.

DeepLab V3 (Chen et al., 2017b) 43.28 71.3M

T: PSPNet-101 (Zhao et al., 2017) 42.19 70.4M
S: ESPNet (Mehta et al., 2018) 20.13 0.4M

+ BCKDours 923.6513.52 0.4M

S: MobileNetV2 (Liu, 2018) 33.64 8.3M

+ BCKDours 36.59+2.95 8.3M

S: SegFormer-B0 (Xie et al., 2021) 37.40 3.8M
+ BCKDours 38.7511.35 3.8M

T: Mask2Former (Cheng et al., 2022) 47.20 44.0M
S: ESPNet + BCKDgurs 24.2614.13 0.4M

S: MobileNetV2 + BCKDours 37.09,3.45 8.3M
S: SegFormer-B0 + BCKDgurs 39.6142.21 3.8M
Methods COCO 10K test FLOPs

SegVIT (Zhang et al., 2022a) 50.3 383.9G

T: DeepLabV3 Plus-101 (Chen et al., 2018) 33.10 366.9G
S: MobileNetV2 (Liu, 2018) 26.29 1.4G

+ BCKDours 28.31 2,02 1.4G

S: SegFormer-B0 (Xie et al., 2021) 35.60 8.4G
+ BCKDours 35.92_ 0.3 8.4G

ity of our method. Besides, similar conclusions can be also drawn from our experimental results on ADE20K
val and COCO-Stuff 10K test sets. Deploying different teacher models on the ADE20K wval dataset are also
conducted, where Mask2Former (Cheng et al., 2022) is utilized as the teacher model, and ESPNet (Mehta
et al., 2018), MobileNetV2 (Liu, 2018), and SegFormer-B0 are used as the student models. The results
demonstrate that our method yields mIoU? improvements of 4.13%, 3.45%, and 2.21% on ESPNet, Mo-
bileNetV2, and SegFormer-B0 (Xie et al., 2021), respectively, showcasing the strong flexibility. On efficiency,

12



Under review as submission to TMLR

Table 3: Comparisons on mIoU (%) with state-of-the-art methods on the wval sets of Pascal VOC 2012 (Ev-
eringham et al., 2010) and Cityscapes (Cordts et al., 2016), and ADE20K (Zhou et al., 2017). “1” denotes
our re-implemented result based on the released codes due to inconsistencies in experimental settings. “KD
Manner”: knowledge distillation manner, which contains of layer-to-layer (L2L) and whole-to-whole (W2W)
as illustrated in Figure 4. “GTM’: ground-truth mask used to obtain the pre-extraction image boundaries.
“Bod.” denotes the boundary type, and “Cont.” denotes the context type. “E”: physical edge. “B”: semantic
boundary. “P”: pixel-wise. “I”: image-wise. “0”: object-wise.

T: PSPNet-101 (Zhao et al., 2017) 77.82% 78.56% 42.19%

S: PSPNet-18(1.0y (Zhao et al., 2017) 70.78% 69.10% 33.82%

Methods | KD Manner | GTM? | Bod. | Cont. | Pascal VOC 2012 | Cityscapes | ADE20K

+ KD (Hinton et al., 2015) L2L X X X 71.28% 050 | 71.2042.10 | 34.33% 10,51

+ SKD (Liu et al., 2019) L2L v E P 73.054207 | T1.45, 035 | 34.65.0.53

+ SCKD (Zhu & Wang, 2021) L2L X X X 72.33 1155 | 72.1043.00 | 34.7610.04
+ CIRKD (Yang et al., 2022a) L2L X X I 73.57 070 | T2.25.515 | 34.9341 11
+ IFD (Chen et al., 2022) L2L X X X 73.88% 1510 | 72.6313.53 | 35.15% 11 33

+ FGKD (Yang et al., 2022b) L2L X X (0] 72.9Oi+2_12 72.5543.45 | 35.2441 42
+ CWT (Liu et al., 2023) L2L X X 0 73.06% 1205 | 72.6013.50 | 35.21% 1 39

+ SlimSeg (Xue et al., 2022) L2L v E X 74.0843.30 | 73.954485 | 37.121330
+ BGLSSeg (Zhou et al., 2024) L2L v E X 74.27% 549 | T4.10% 1500 | 36.49% 15 67
+ FAM (Pham et al., 2024) L2L X X X 74.28% 550 | 74.2545.15 | 36.82%. 5,00

+ CrossKD (Wang et al., 2024) L2L X X X 74.28% 550 | T4.2845.158 | 36.72F 1000
+ BPKD (Liu et al., 2024) L2L v E X 74.30% 350 | 74.20 510 | 37.07% 15,05

+ BCKDours |  W2W X B P 74.6513.87 | T4.921582 | 37.6243.50

+ IFVD (Wang et al., 2020) L2L X X X 74.05 1307 | 74.41.531 | 36.63% 1535
+ IFVD + BCKDours | W2W X B P 74824404 | 74991580 | 37.7313.0

+ TAT (Lin et al., 2022) L2L X X 0] 74.02% 1304 | 74.48 538 | 37.12.3.30

+ TAT 4+ BCKDous | W2W X B | P&O T4.7143.93 | 74.971587 | 38.124430

+ SSTKD (Ji et al., 2022) L2L v E X 73.91 515 | T4.601550 | 37.2243.40

+ SSTKD + BCKDours |  W2W v |B&E| P 74.5243.74 | T4.901550 | 38.244452

our method leverages the KD framework, resulting in no increase in Params. or FLOPs. Consequently, we
achieve both improved accuracy and fast inference speed.

5.3.3 Visualized comparisons

The visualized comparisons on the SSeg task with the baseline teacher and student models, and large models
without the KD strategy are given in Figure 6. As highlighted by the white bounding boxes, the obtained
results on Pascal VOC 2012 (Everingham et al., 2010), Cityscapes (Cordts et al., 2016), ADE20K (Zhou et al.,
2017), and COCO-Stuff 10K (Caesar et al., 2018) demonstrate that BCKD yields significant improvements
on both the boundary region completeness and the target region connectivity, when compared with the small
student model’s results. For example, the “cow” in Pascal VOC 2012, the “guidepost” in Cityscapes, the
“desk” and the “TV bench” in ADE20K, the “bus”, the “tennis racket”, and the “guideboard” in COCO-Stuff
10K. The results obtained are basically the same as those of the large teacher model. Besides, compared
to large models with higher model complexity (i.e., DANet (Fu et al., 2019) and HRNet (Sun et al., 2019))
on Pascal VOC 2012 and Cityscapes, although our method is not as competitive as theirs on quantitative
results, our method achieves better predictions on object boundaries and small objects, which validate the
effectiveness and emphasize the importance of boundary distillation and context distillation. With the help
of our method, the student model is also able to predict better masks for certain fine-grained objects. For
example, the “cow’s ear” and the “person’s leg”.
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Table 4: Comparisons on mloU (%), MFS and LHD with state-of-the-art methods on the test set of COCO-
Stuff 10K (Caesar et al., 2018).

T: DeepLabV3 Plus-101 33.10% 1.00+0.00 0.0040.00

S: DeepLabV3 Plus-18 26.33% 0.4540.08 4.214+0.35
Methods mloU (%) MFS (p1) LHD

+ KD (Hinton et al., 2015) 27.2140.88 0.6340.07 3.8240.41

+ SKD (Liu et al., 2019) 27.2710.04 0.6740.06 3.774+0.38

+ SCKD (Zhu & Wang, 2021) 27.3811.05 0.72+0.08 3.63+£0.42

+ CIRKD (Yang et al., 2022a) 27.6811.35 0.81+0.05 3.45+0.33

+ IFD (Chen et al., 2022) 27911158 0.884+0.04 3.284+0.29

+ FGKD (Yang et al., 2022b) 28.0041.67 0.91+£0.03 3.12+0.31

+ CWT (Liu et al., 2023) 28.1841.85 0.9540.02 2.9840.22

+ IFVD (Wang et al., 2020) 28.3542.02 1.024+0.03 2.774+0.25

+ C2VKD (Zheng et al., 2023) 28.4245 09 1.08+0.04 2.634+0.24

+ FAM (Pham et al., 2024) 28.4842 15 1.12+0.03 2.554+0.21

+ CrossKD (Wang et al., 2024) 28.5342.20 1.15+0.02 2.4840.19

+ SSTKD (Ji et al., 2022) 28.7042.37 1.23+0.03 2.314+0.17

+ BCKD 29.2215 g9 1.414+0.02 1.8940.15

+ TAT (Lin et al., 2022) 28.74 12,141 1.25+0.04 2.25+0.18

+ TAT 4+ BCKD 29.29,3.11 1.4440.01 1.82+0.14

+ SlimSeg (Xue et al., 2022) 28.5042.17 1.13+0.03 2.5240.20

+ SlimSeg + BCKD 29.4513.12 1.46+0.01 1.7940.13

+ BPKD (Liu et al., 2024) 28.66.42.33 1.21+0.02 2.364+0.16

+ BPKD + BCKD 29.6043.27 1.4940.01 1.72£0.12

5.4 Comparisons With SOTA Methods on SSeg

In this section, we explore the superiority accuracy and the effectiveness of the joint implementation of BCKD
with the state-of-the-art (SOTA) KD methods on SSeg. To ensure a fair comparison, PSPNet-101 (Zhao
et al., 2017) and DeepLabV3 Plus-101 (Chen et al., 2018) are employed as the teacher models, while PSPNet-
18(1.0) and DeepLabV3 Plus-18 (Chen et al., 2018) serve as the student models. The specific settings for
each student model are described in detail in the provided table. Some results are re-implemented by us
on the released code due to inconsistencies in experimental settings and are marked with “}” in the given
tables.

5.4.1 Superiority of BCKD

Compared to the SOTA KD methods on SSeg, on the top half of Table 3 and Table 4, we can observe
that our BCKD can surpass these methods. BCKD boosts the student model by 3.87%, 5.82%, and 3.80%
mloU? on the wval sets of Pascal VOC 2012 (Everingham et al., 2010), Cityscapes (Cordts et al., 2016), and
ADE20K (Zhou et al., 2017), respectively. Compared to the current SOTA KD methods on these datasets,
BCKD outperforms IFVD (Wang et al., 2020), TAT (Lin et al., 2022), and SSTKD (Ji et al., 2022) on
Pascal VOC 2012 by 0.6%, 0.63%, and 0.74% mIoU7, respectively. The visualized comparison results with
the classic KD (Hinton et al., 2015) and SOTA IFVD methods are presented in the last row of Figure 5.
It can be observed that our method demonstrates significant advantages in capturing the connectivity of
small objects as well as the integrity of the boundary masks. Furthermore, BCKD achieves higher mIoU
than SOTA methods on Cityscapes and ADE20K datasets as well. On the COCO-Stuff 10K (Caesar et al.,
2018) datasets in Table 4, our method surpasses the student model and the SOTA TAT model by 2.89%
and 0.48% mloU?, respectively. As demonstrated in Table 4, the proposed BCKD framework also exhibits
significant advantages in terms of MFS (p;) and LHD. These results not only indicate an overall performance
improvement but also validate the effectiveness of our novel boundary distillation and context distillation,
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PSPNet-38 w/o and w/ BCKD PSPNet-18 w/o and w/ BCKD

Pascal VOC

Cityscapes

ADE20K

PSPNet-101 reycper) PSPNet-18 w/o BCKD PSPNet-18 w/BCKD MobileNetV2 w/o BCKD  MobileNetV2 w/ BCKD
-

DeepLabV3 Plus-18 w/o and w/ BCKD DeepLabV3 Plus-18 w/o and w/ BCKD MobileNetV2 w/0 and w/ BCKD

COCO-Stuff 10K

Figure 6: Visualizations on SSeg. DANet (Fu et al., 2019) and HRNet (Sun et al., 2019) have been included
for comparison as well. “w/0” means “without” and “w/” means “with”, indicating whether our method
is NOT implemented or implemented. The white bounding boxes highlight the regions where our method
predicts better.

which were designed to address these critical aspects of the learning process. Since inference is only conducted
on the student model, our method does not introduce any increase in model complexity. These results across
different datasets can confirm that the task-specific knowledge is indeed more effective in practice compared
to general knowledge.

5.4.2 Effectiveness of the joint implementation

The results on the joint implementation of BCKD and SOTA KD methods are presented on the lower half
of Table 3 and Table 4, respectively. It can be observed that, on top of BCKD, further adding IFVD (Wang
et al., 2020), TAT (Lin et al., 2022), and SSTKD (Ji et al., 2022) yields consistent performance gains, with
mloU? improvements of 0.77%, 0.69%, and 0.61% on the val set of Pascal VOC 2012, respectively. This can
be attributed to the fact that BCKD contains semantic boundary and context that is not present in these
methods, further demonstrating the importance of semantic boundary and context information for the SSeg
task. However, adding SSTKD (Ji et al., 2022) on top of BCKD resulted in a performance decrease (i.e.,
0.13% mIoU| on Pascal VOC 2012 and 0.02% mIoU] on Cityscapes) compared to the accuracy on BCKD.
We guess that this may be because SSTKD uses superficial image texture information, which is non-semantic
and contain some noise relative to the extracted semantic boundaries. On COCO-Stuff 10K, we can observe
that our method further enhances the performance of all SOTA methods, including TAT (Lin et al., 2022),
SlimSeg (Xue et al., 2022), and BPKD (Liu et al., 2024), and finally achieves 29.60% mloU on the test set.

5.5 Comparisons With SOTA Methods on ISeg and ODet

The quantitative result comparisons on ISeg and ODet are presented in Table 5. The obtained results
indicate that our method can consistently outperform existing methods across various baseline models,

15



Under review as submission to TMLR

Table 5: Result comparisons with the state-of-the-art methods on the wval set of MS-COCO 2017 Lin et al.
(2014) for ISeg and ODet. “CM R-CNN”: Cascade Mask R-CNN. mAP™ and mAPP denotes the average
precision on instance segmentation mask and object detection bounding box, respectively.

Methods | AP™ (%) AP® (%) FPS | MFS (p) LHD

T: GFL-50 (Li et al., 2020) 36.8 40.2 19.4 1.00 0.00

S: GFL-18 (Li et al., 2020) 33.1 35.8 23.7 0.82 3.20

+ FGD (Yang et al., 2022b) 34.0 36.6 23.7 0.85 2.90

+ SKD (Liu et al., 2019) 34.3 36.9 23.7 0.86 2.70

+ GID (Dai et al., 2021) 34.6 37.8 23.7 0.89 2.50

+ LD (Zheng et al., 2022) 34.8 38.0 23.7 0.90 2.30

+ PKD (Cao et al., 2022b) 35.0 38.0 23.7 0.91 2.20

+ CrossKD (Wang et al., 2024) 35.3 38.1 23.7 0.92 1.90

+ SSTKD (Ji et al., 2022) 35.2 38.3 23.7 0.93 1.80

+ BCKDqurs 35.8 38.8 23.7 0.95 1.60

T: CM R-CNN-101 (Cai & Vasconcelos, 2018) 37.3 42.9 13.1 1.00 0.00
S: CM R-CNN-50 (Cai & Vasconcelos, 2018) 36.5 41.9 16.1 0.88 2.10
+ FGD (Yang et al., 2022Db) 35.3 42.1 16.1 0.87 2.20

+ SKD (Liu et al., 2019) 36.5 42.2 16.1 0.89 2.00

+ GID (Dai et al., 2021) 36.7 42.0 16.1 0.90 1.90

+ LD (Zheng et al., 2022) 36.8 42.1 16.1 0.91 1.80

+ PKD (Cao et al., 2022b) 36.8 42.0 16.1 0.92 1.70

+ CrosskKD (Wang et al., 2024) 36.9 42.2 16.1 0.93 1.60

+ SSTKD (Ji et al., 2022) 37.0 42.2 16.1 0.94 1.50

+ BCKDgurs 37.0 42.5 16.1 0.96 1.40

T: RetinaNet-101 (Ross & Dollar, 2017) 33.5 38.9 13.5 1.00 0.00
S: RetinaNet-50 (Ross & Dollar, 2017) 31.7 374 17.7 0.85 2.40
+ FGD (Yang et al., 2022b) 32.1 37.7 17.7 0.86 2.20

+ SKD (Liu et al., 2019) 32.5 37.5 17.7 0.87 2.12

+ GID (Dai et al., 2021) 32.8 37.6 17.7 0.88 2.03

+ LD (Zheng et al., 2022) 33.1 37.8 17.7 0.89 1.90

+ PKD (Cao et al., 2022b) 33.0 37.8 17.7 0.90 1.88

+ CrosskKD (Wang et al., 2024) 33.2 38.0 17.7 0.91 1.75

+ SSTKD (Ji et al., 2022) 33.1 38.1 17.7 0.92 1.66

+ BCKDgurs 33.3 38.5 17.7 0.94 1.54

demonstrating its strong generalization and versatility. Specifically, we achieve AP scores of 35.8%/38.8%,
37.0%/42.5%, and 33.3%/38.5% for instance segmentation masks (i.e., AP™) and object detection bounding
boxes (i.e., APP) on the GFL-18 (Li et al., 2020), Cascade Mask R-CNN-50 (Cai & Vasconcelos, 2018),
and RetinaNet-50 (Ross & Dollar, 2017), respectively. In comparison with the SOTA CrossKD (Wang
et al., 2024) and SSTKD (Ji et al., 2022), our method demonstrates an average performance improvement
of approximately 0.5%. This enhancement serves to validate the effectiveness of our proposed method. The
results also demonstrate significant advantages in both MFS and LHD, indicating its superior capability in
preserving the structure of learned feature manifolds while maintaining high precision in boundary-sensitive
tasks. These results substantiate the effectiveness of our boundary and context distillation in maintaining
geometric consistency and minimizing alignment errors.

The visual comparison results with baseline methods and SOTA methods are shown in Figure 7. It is
observed that, relative to the baseline student models, the application of various KD strategies enhances
the prediction results for specific classes (e.g., the person”; the book”, and the surfboard”), thereby affirming
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GFL

CM R-CNN

RetinaNet

(f) w/ Ours

(a) Input Image (b) Teacher (c) Student (d) w/ CrosskD (e) w/ SSTD

Figure 7: Visualization results on ISeg and ODet. “w/” means “with”, indicating that the corresponding
knowledge distillation method is deployed based on the student model. We chose the state-of-the-art methods
CrossKD Wang et al. (2024) and SSTKD Ji et al. (2022) for comparison.

the effectiveness of KD in dense image prediction tasks. Moreover, when compared to the SOTA methods
CrossKD and SSTKD, our method demonstrates improved connectivity in object regions and boundary
integrity (e.g., the person” and the baseball bat”), highlighting the effectiveness of our proposed context
distillation and boundary distillation strategies tailored for the targeted tasks. Additionally, our method
addresses the issue of overlapping predicted bounding boxes (e.g., the mouse” and the “chair”), a benefit
attributed to the enriched contextual information incorporated into the student model via context distillation.

Furthermore, we also observed a significant phenomenon wherein our method effectively reduces the occur-
rence of hallucinations in the student model’s predictions. Specifically, as depicted in the last column of
Figure 7, both the teacher and student models fail to identify the “camera”, while the CrossKD and SSTKD
methods mistakenly classify the “camera” as the “bottle”. In contrast, our approach accurately recognizes
the “camera” as a background object, aligning with definitions. We hypothesize that this discrepancy may
stem from the confusion of target knowledge caused by task-irrelevant KD during the training process. Our
proposed task-specific BCKD is inherently designed to alleviate such confusion from the outset.

6 Conclusion and Future Work

In this work, we propose a customized boundary and context knowledge distillation (BCKD) method tailored
for efficient dense image prediction tasks on Al accelerator, including semantic segmentation, instance seg-
mentation, and object detection. Our approach significantly narrows the performance gap between compact,
efficient models and their larger, more accurate counterparts while maintaining computational efficiency.
Specifically, BCKD enhances boundary-region completeness and ensures object-region connectivity, leading
to consistent accuracy improvements across diverse challenging benchmarks and architectures. Theoretical
analysis further corroborates the effectiveness of our method.

As a generalizable method, in the future, we plan to extend BCKD to additional dense visual tasks (e.g.,
pose estimation and image generation) and investigate its adaptation to emerging architectures (e.g.,
Vision Mamba) to better support model compression for AI accelerator deployment. Moreover, we will
explore synergies between BCKD and large foundation models (e.g., Segment Anything Model and vision-
language models) to further enhance the robustness of lightweight dense predictors under adverse conditions.
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A Appendix

Theoretical Analysis

BCKD is theoretically grounded in differential geometry and spectral graph theory. In the Appendix, we
will analyze its components through measurable properties of the learned feature manifolds Mr (teacher)
and Mg (student), with proofs connecting to the empirical results in Section 5.3.

A.1 Boundary-Aware Manifold Alignment

The proposed Lgp in Eq. (3) induces geometric consistency between teacher and student decision boundaries.

Theorem 1 (Boundary Consistency). Under Lpp minimization with 7 > 1, for any boundary point xz;, we

have:
[J7 () = Is(@p)llFr < V2Lpp /T2 + Oe™7), (13)

where J. are Jacobian matrices of the feature maps.

Proof. The temperature-scaled gradients satisfy:

1/7
VLpp =By, | L-Viogos|, (14)
Os
|VLy — VLs|?> < 2(1 — cos6), (15)

where 0 is the angle between S and T gradients. Applying Taylor expansion (Kanwal & Liu, 1989) at high
7, then we can obtain:

1
cosf >1— §£BDT_2 +0(r7%). (16)

The Jacobian bound follows from Pinsker’s inequality applied to the manifold tangent spaces. O

This theoretical guarantee explains the 0.91% mlIoU improvement observed in Table 1, as aligned Jacobians
ensure consistent boundary localization.

A.2 Contextual Graph Preservation

The proposed Lep in Eq. (5) maintains spectral properties critical for dense image prediction tasks:

Theorem 2 (Spectral Convergence). For eigenvalues {\;} of relation matrices TE ST, we have:

max AT — X% < |T — S%||r < VdLep. (17)

Proof. Applying Weyl’s inequality for symmetric matrices, we can obtain:

A= AP < AR < | AR, (18)

where the heat kernel continuity follows from:
le™ET — eTTES|[p < 7 osup |le T (Ly — Lg)e” TTIES | < remlETl Lo (19)

t€[0,7]
O

As shown in Table 1, compared with the baseline model, the 1.77% mloU gain directly reflects this eigenvalue
stability.
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A.3 Multi-Scale Geometric Consistency

As illustrated in Figure 4, the feature concatenation and projection operation in Section 4.1 preserves topo-
logical invariants:

Proposition 1 (Topological Preservation). The mapping ¢ : H1M¥) — MEomeat satisfies:

Br(Mgoneat) Zﬂk MDY, k=012 (20)

where Py are Betti numbers.
Proof. The 3x3 convolution operation is a diffeomorphism, thus we have:
Br(d(T°)) = Br(T°) (invariance) (21)

= Br(®; /\/l( Z B M(l (Kiinneth formula)

The dimensionality bound follows from the classical projection theorem as in (Falconer & Howroyd, 1996). O

A.4 Training Dynamics Interpretation

The used weight decay in Eq. (8) induces phased learning:

Theorem 3 (Annecaled Convergence). With r(t) = 1 — (t — 1)/tmax and Robbins-Monro conditions on
learning rate n:

t—l>ltIrr,lm P(,C == ,Cgs) =1 (22)
Proof. Decompose the gradient flow:
dL 2 2/ 2 2 2 2
o = “lVEss|T = ner () (@[ VLeD " + 57V Lenl) (23)

As r(t) — 0, the right terms vanish asymptotically. The convergence follows the stochastic approximation
theory (Lai, 2003). O
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