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Abstract

It has been revealed that efficient dense image prediction (EDIP) models designed for Al
chips, trained using the knowledge distillation (KD) framework, encounter two key challenges,
including maintaining boundary region completeness and ensuring target region connectivity,
despite their favorable real-time capacity to recognize the main object regions. In this work,
we propose a customized boundary and context knowledge distillation (BCKD) method for
EDIPs, which facilitates the targeted KD from large accurate teacher models to compact
small student models. Specifically, the boundary distillation focuses on extracting explicit
object-level boundaries from the hierarchical feature maps to enhance the student model’s
mask quality in boundary regions. Meanwhile, the context distillation leverages self-relations
as a bridge to transfer implicit pixel-level contexts from the teacher model to the student
model, ensuring strong connectivity in target regions. Our method is specifically designed for
the EDIP tasks and is characterized by its simplicity and efficiency. Extensive experimental
results across semantic segmentation, object detection, and instance segmentation on five
representative datasets demonstrate the effectiveness of BCKD, resulting in well-defined
object boundaries and smooth connecting regions.

1 Introduction

The dense image prediction (DIP) tasks, e.g., semantic segmentation (Long et al.l 2015, object detection (Gir-
shick}, 2015)), and instance segmentation (Wang et al., [2021c|), are challenging problems within both domains
of computer vision and multimedia computing (Zhang et al., [2020; |Ahn et al., |2019). The objective of these
tasks is to assign a semantic label to each object and/or pixel of the given image (Zhang et al.,|2020). In recent
years, achievements in general-purpose GPU technology have resulted in notable enhancements in both size
and accuracy of sophisticated DIP models (Cao et al., 2022a; [Strudel et al., 2021)), e.g., Mask2Former (Cheng
et al.l 2022), SegNeXt (Guo et al.||2022b), and SAM (Kirillov et al., [2023). However, deploying these large and
accurate DIP models on resource-constrained edge computing devices, e.g., artificial intelligence chips (Dong
et al., [2025)), presents significant challenges due to the substantial computational costs and high memory
consumptions associated with these models (Wang et al. 2021c).
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Figure 1: Two representative cases that small models are prone to predict errors. Visualization comparisons
between large accurate models (b) and small efficient models (c) show that the latter tend to make errors
in maintaining boundary region completeness and preserving target region connectivity. With the help of
BCKD, our small models in (d) can address the two types of errors, leading to crisp region boundaries and
smooth connecting regions. Samples are from the ADE20K dataset (Zhou et al.l [2017).

Compressing large DIP models into compact efficient dense image prediction (EDIP) models offers an intuitive
and cost-effective solution to address the severe resource limitations associated with mapping vision models
onto edge computing devices (Dong et al., 2021} Zhang et al. [2021). In particular, the cross-architecture
fashion enables compressed models to seamlessly adapt to customized edge chips, eliminating the need
for hardware modifications while maintaining computational efficiency. This manner significantly reduces
deployment complexity and enhances the flexibility of model inference across heterogeneous edge computing
platforms 2023). To achieve this goal and develop accuracy-preserving EDIP models, knowledge
distillation (KD) (Hinton et al., [2015; Wang et al. 2023), a prevalent model compression technology, has
been pragmatically employed by using a small efficient model (i.e., the student model) by imitating the
behavior of a large accurate model (i.e., the teacher model) in training (Hinton et al., 2015} Zhao et al.,
. During inference, only the student model is utilized, allowing for a highly-efficient recognition pattern
while simultaneously reducing the model size (Dong et al| 2021} Zhang et all [2021; |Cui et all [2023).
Despite significant advancements by current KD methods across multiple dimensions, including sophisticated
distillation strategies and complex distillation content (Wang et al., [2020), the inherent
complexity of DIP continues to pose two critical challenges for existing approaches, particularly for the
efficient compact models.

Primary KD methods mainly emphasize the imitation of general knowledge (e.g., features, regions, and
logits) while overlooking the nuanced understanding of features along objective semantic boundaries and
connecting internal regions essential for EDIPs (Zhang et al.,2021; [Wang et al.,|2022a)). Particularly, since the
small student model often predicts the main object regions fairly well but fails in boundary and connecting
regions (Fu et al 2019; [Yuan et al.| [2020} |Cao et al., 2022al), the conventional utilization of task-agnostic
general KD may not be effective enough and can be considered purposeless and redundant
Xu et al.l [2020; | Zhao et al., [2022), remaining a performance gap between the obtained results and the expected
ones (Wang et all [2024). For instance, we recommend the representative semantic segmentation task as an
example. As shown in Figure|l] the small student PSPNet-18 model in (c¢) produces inferior results compared
to the large teacher PSPNet-101 model results in (b). The student model wrongly segments the boundary
regions of “curtain” and “door” as the background category or other foreground objects, and produces
fragmented and “chair”, breaking the regional relation connectivity. Generally, the common
errors observed in the outputs of the small student model can be summarized as maintaining boundary region
completeness and ensuring target region connectivity.

To mitigate these errors and narrow the performance gap, we propose a customized and targeted KD strategy
termed as Boundary and Context Knowledge Distillation (BCKD). By “customized”, we mean that our
method’s inherent ability to synergistically address the common errors present in existing EDIP models,
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while is also generally compatible with other methods (ref. Sec. . BCKD mainly consists of two key
components: the boundary distillation and the context distillation, aimed at rectifying the typical common
errors encountered by EDIP models in maintaining boundary region completeness and ensuring target
region connectivity, respectively. Specifically, boundary distillation involves generating explicit object-level
boundaries from the hierarchical backbone features, enhancing the completeness of the student model’s
masks in boundary regions (ref. Sec. . At the same time, context distillation transfers implicit pixel-level
contexts from the teacher model to the student model through self-relations, ensuring robust connectivity in
the student’s masks (ref. Sec. . BCKD is tailored specifically for EDIP tasks and offers a more targeted
distillation pattern and a more tailored distillation manner compared to conventional task-agnostic KD
methods. From a rigorous theoretical perspective, we establish and prove the effectiveness of our BCKD
method (ref. Sec. . To validate the accuracy, we conducted extensive experiments in three representative
dense image prediction tasks, including semantic segmentation, object detection, and instance segmentation,
utilizing five challenging datasets such as Pascal VOC 2012 (Everingham et al.l [2010), Cityscapes (Cordts et al.|
2016), ADE20K (Zhou et al., [2017), COCO-Stuff 10K (Caesar et all, 2018), and MS-COCO 2017 (Lin et al.
2014)). Qualitatively, BCKD produces sharp region boundaries and smooth connecting regions, addressing
challenges that hindered existing EDIP models. Quantitatively, BCKD consistently improves the accuracy of
baseline models in various metrics, achieving competitive performance.

The main contributions of this work are: (1) We revealed two prevalent issues in existing EDIP models:
maintaining boundary region completeness and ensuring target region connectivity. (2) We proposed a
customized and targeted boundary and context knowledge distillation method, which not only demonstrates
inherent coherence, but is also generally compatible with other methods. (8) Experimental evaluations across
various tasks, baselines and datasets illustrate a new state-of-the-art accuracy of our method in comparison
with existing methods.

2 Related Work

2.1 Dense Image Prediction Tasks

Dense image prediction (DIP) is a fundamental research problem within the fields of computer vision and
multimedia computing, with the objective of assigning each object and/or pixel in an input image to a
predefined category label, thereby enabling comprehensive semantic image recognition (Long et al., [2015; |Zhou|
let al.l 2024; Zhang et al., |2020; Lin et al., 2023b). Current mainstream DIP models can be roughly classified
into the following three categories based on their backbone components: 1) methods based on CNNs (Long
et al}, 2015 [Yu et al 2018, Noh et al., 2015} Huang et al., [2019), 2) methods based on ViT['| (Strudel et al.
2021; [Wang et all 2022b; |Zheng et al., [2021), and 3) methods that combine CNNs and ViT (Li et al., [2022a
Peng et al.l [2021)). The key difference between these types of architectures is the approach used for feature
extraction and how the extracted features are utilized in enhancing the capacity of CNNs models to capture
contextual features (Cao et al., 2022a; Zhang & Cheng| 2025)), increasing the capacity of ViT models to
capture local features (Wu et all 2021; |Zhang et al., [2022b; Peng et al., [2021)), and leveraging low-level
features to improve representation capacity (Zhang et al., [2023} Xie et al, 2021 for achieving favorable results.
Concretely, due to differences in feature extraction manners between CNNs and ViT, these two categories
exhibit slight performance differences (Wang et al., 2022b; Peng et al., 2021} Zheng et al., 2021} Li et al.,
. For example, CNNs methods are better at predicting local object regions, while ViT methods, due to
their stronger contextual information, can produce more complete object masks. Fortunately, the mixture
of CNNs and ViT (e.g., CMT (Guo et al [2022a)), CvT (Wu et all, [2021)), ConFormer (Peng et all [2021)),
CAE-GreaT (Zhang et al.,[2023), and visual Mamba (Gu & Dao, 2023))) uses the representation strengths
of both patterns, resulting in highly satisfactory recognition performance (Han et all [2022; Mao et al.,
[2022; [Wang et all [2021a)). In addition to these fundamental categories, there are advanced approaches that
also utilize task-specific training tricks (e.g., graph reasoning (Zhang et al., 2022b)), linear attention

2022), mult-scale representation (Fan et al. [2021])) to improve the accuracy. However, while current

1We consider the visual state space model-based methods as a specialized Transformer architecture (Gu & Dao, [2023}
2024), owing to its structural similarities with the ViT model. Besides, we do not address the content related to these
models. Therefore, we will no longer have separate discussions on this aspect.
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methods have achieved promising accuracy, mapping these models on resource constrained edge computing
devices remains challenging because these devices typically have limited computation resources and memory
consumptions (Dong et al.l |2023} [2025]). In this work, we do not intend to modify the network architecture.
We first investigate the result disparities between small and large models and then propose a novel KD
strategy tailored to the EDIP models. We aim at improving the recognition accuracy of small models without
requiring any extra training data or increasing the inference costs.

2.2 Knowledge Distillation in DIPs

Knowledge Distillation (KD) is a well-established model compression technology that aims to transfer valuable
knowledge from a large accuracy teacher model to a small efficient student model, with the objective of
enhancing the student’s accuracy during inference (Chen et all [2023; |Gou et al., 2023; Xiang et al., 2025;
Wang et all, 2020; Xu et al., [2025; [Li et al., 2025). It is worth mentioning that the effectiveness of KD
in cross-architecture scenarios has enabled significant flexibility in artificial intelligence chip design, as it
eliminates the need to modify the underlying operators while maintaining model performance, which provides
a practical solution for hardware adaptation without compromising computational efficiency
. The key factors for the success of KD in DIPs are: 1) the types of knowledge being distilled, e.g., general
knowledge: features and logits, and task-specific knowledge: class edge for semantic segmentation and object
localization for object detection, 2) the distillation strategies employed, e.g., offline distillation (Tseng et al.
2022)), online distillation 2020)), and self-distillation (Zhang et al [2019), and 3) the architecture
of the teacher-student pair, e.g., multi-teacher KD (Yuan et all [2021)), attention-based KD (Passban et al.|
2021)), and graph-based KD (Lee & Song [2019). While the effectiveness of existing KD methods has been
validated in general vision tasks, current methods rely on coarse task-agnostic knowledge and do not consider
the task-specific feature requirements (Sun et al.} 2020} |Gou et al. |2021; Mao et al, 2022} [Chen et all [2017a
Wang et al.| [2019). Especially for EDIPs, models are highly sensitive to feature representations (Long et al.
2015} |Zhang et al., [2022¢}; |Zheng et al. 2021} |Zhang et al., 2018)). Therefore, general KD may not be effective
enough and can be considered purposeless and redundant (Gou et al., |2021; Xu et al., 2020; |Zhao et al., 2022;
Zhang et al.| 2022b)), remaining a performance gap between the obtained results and the expected ones (Yang
et al. |2022a} |Cui et al., 2023; [Wang et al., 2024). Recent studies have shown that task-specific patterns of
KD can help further improve the performance of student models (Zheng et all |2022). For example, in object
detection, object localization KD leads to more accurate predictions than the general knowledge (Sun et al.
[2020; |Zhixing et all [2021). In this work, we also adopt the idea of task-specific KD. Our contribution lies
in proposing a customized KD scheme, namely boundary distillation and context distillation, which target
the common errors of EDIP models, namely their tendency to make errors in maintaining boundary region
completeness and ensuring target region connectivity. It is also worth noting that while some methods, e.g.,
CTO 2023c), SlimSeg 2022)), and BPKD [2024)), have integrated boundary
information in EDIPs, they necessitate the pre-extraction and incorporation of ground-truth boundaries
let al., 2022 Liu et al., [2024; [Lin et al.,|2023c|). In contrast, our method obviates the demand for pre-extracting
boundaries, thereby making it more practical for real-world applications and enabling savings in time and
labor.

=

3 Preliminaries

In the training phase, KD intends to facilitate expectant knowledge transfer from a large teacher model T
to a small compact student model S, with the primary goal of enhancing the accuracy of S
[2015} |Zhang et al., 2021; 2019} |Gou et al.| 2021} |Ji et al., 2021). In inference, only S is used, so there are no
computational overheads. Typically, features and logits serve as a medium for knowledge transfer. Besides,
the temperature scaling strategy is often utilized to smooth the features and logits, which helps to lower
prediction confidence and alleviate the issue of excessive self-assurance in T (Phuong & Lampert], 2019).
Formally, KD can be expressed by minimizing the cross-entropy loss as follows:

Lp =73 o(T)"log (o(8)"/7), (1)

ieM
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Figure 2: The overall architecture of our boundary and context distillation strategy for the efficient dense
image prediction tasks, where the right side illustrates the implementation details of the whole network.
Specifically, the boundary distillation involves generating explicit object-level boundaries from the hierarchical
backbone features, enhancing the completeness of the student model’s masks in boundary regions (ref. Sec. .
Meanwhile, the context distillation transfers implicit pixel-level contexts from the teacher model to the
student model through self-relations, ensuring robust connectivity in the student’s masks (ref. Sec. .
Compared to existing methods, our method demonstrates a stronger specificity for EDIP and inherently
possesses the ability to synergistically address the common errors found in small models.

where T; and S; (both have been adjusted to the same dimension via 1 x 1 convolutions) are the i-th
feature/logit item extracted from T and S, respectively. o(-) is the softmax normalization operation along the
channel dimension, and 7 € R denotes the temperature scaling coefficient. M denotes the learning objective
of T; and S;, which typically refers to the spatial dimensions. Following (Zhang et all 2019 [Phuong &]
2019), to simplify temperature scaling effectively, we use T;/S; divided by 7 to achieve the similar
effect. In addition to cross-entropy loss, other loss functions are also commonly used for KD, including KL
divergence loss and MSE loss (Liu et al., [2019; |2022; Zheng et al., 2023). While existing KD methods have
demonstrated promising results across various vision tasks (Zhang et al. 2021} |Cui et al., 2023} |Xu et al.,
[2020; Liu et al 2019, Wang et al., 2020} |Gou et all [2021), they have not adequately addressed the specific
feature understanding required for object boundaries and connecting regions in EDIP tasks. This oversight
has led to suboptimal performance in these contexts. In following, we will introduce a complementary and
targeted KD scheme informed by the common failure cases observed in small models, as shown in Figure [I]
with the aim of enhancing their inference accuracy.

4 Customized Knowledge Distillation

4.1 Overview

Figure [2] illustrates an overview of the network architecture for our proposed BCKD. The whole network
mainly consists of an accurate teacher network T, which is a large network that has been trained, and a
small efficient network S that is waiting to be trained. The input for T and S is an arbitrary RGB image X,
and the output of S is a semantic mask or bounding box Y that predicts each pixel or/and object with a
specific class label. The hierarchical features extracted from the backbone network are concatenated along the
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channel dimension to facilitate the extraction of EDIP-specific boundary and contextual information from X.
The concatenated features with 256 channel dimension are defined as T = Convsys(concat(Ty; To;- - -5 Ts))
and S° = Convsyxs(concat(Sy;Sa;- - +;S5)) for T and S, respectively. It should be noted that both T; and
S; that are concatenated have been uniformly resized into 1/8 of X’s spatial size via 1 X 1 convolution and
up-/down-sampling operations. In training, we propose targeted boundary distillation and context distillation
strategies that are tailored for the EDIP tasks. Specifically, the boundary distillation synthesizes explicit
object-level boundaries T? and S from T¢ and S¢, respectively, thereby the completeness of S’s results in
the boundary regions can be enhanced. At the same time, the context distillation transfers implicit pixel-level
relations T and S% by using self-relations, ensuring that S’s results have strong target region connectivity.

4.2 Boundary Distillation

The semantic object boundary is defined as a set of arbitrary pixel pairs from the given image, where the
boundary between pairwise pixels has a value of 1 if they belong to different classes, while if the pairwise
pixels belong to the same class, the boundary between them has a value of 0 (Ahn & Kwak, [2018)). Moreover,
this attribute also exists in the hierarchical features/logits extracted by the backbone feature maps (Chen
et al., 2020). In our work, we use the semantic affinity similarity between arbitrary pairwise pixels from T°
or S¢ to obtain the explicit object-level boundaries (Ahn et al., 2019; Ru et all, 2022). Concretely, for a pair

of image pixels T{ and T, Tf ; can be formulated as:

Ti,j% =1 —maxp,q € I1; ;B (Convyx1 (Tp), Convix1(Tq)), (2)

where T} and T{ are two arbitrary pixel items from T¢, and II; ; denotes a set of pixel items on the line
between T¥ and T; Convix1 denotes a 1 x 1 convolution layer that is used to compress the channel dimension,
where the input channel size is 256 and output channel size is 1. B(-) denotes the operation that determines
the object-level image boundary values, which outputs either 1 or 0. T? can be obtained across the entire
spatial domain, and SB can be obtained analogously. Based on T and P , boundary distillation loss is

formulated as:
Lop =723 p(TP)/710g (p(SP)/7), (3)
ieM
where p denotes the spatial-wise softmax normalization. By Eq. , T’s accurate prediction of the object
boundary region can be transferred into S, thereby addressing its issue of maintaining boundary region
completeness.

The proposed boundary distillation strategy can effectively address the limitations of EDIP models in achieving
completeness in boundary region predictions. It is important to highlight that while several advanced methods,
such as BGLSSeg (Zhou et al.,[2024), SlimSeg (Xue et al., [2022)), and BPKD (Liu et al.,|2024]), leverage explicit
edge information for semantic segmentation, these methods necessitate the pre-extraction and integration
of ground-truth masks (please refer to Table |3| for further details). More importantly, the extracted edge
information often lacks the semantic context of the objects and may introduce noise (Yang et al., |2022b;
Ji et all [2022)). In contrast, our method eliminates the need for pre-extracting image edges. By utilizing
hierarchical feature maps, our method enhances the delineation of object boundaries with more comprehensive
semantic information while mitigating the adverse effects of noise present in shallow features. As illustrated
in Figure [3] we show a visualization comparison of the extracted image boundaries between our method
and the ground truth edge method used in the state-of-the-art BPKD (Liu et al.| [2024) model. We can
observe that the semantic boundaries extracted by our method can better cover the actual boundaries of the
semantic objects without introducing background noise information. This innovation not only can enhances
the practicality of our method for real-world applications but also streamlines the overall process, leading to
reductions in both time and labor requirements.

4.3 Context Distillation

Elaborate object relations, as validated in (Caron et all |2021; |Wang et al., [2021b; |Li et al.l [2022b)), are
beneficial for learning implicit contextual information across spatial dimensions (Lin et al.l 2023a; [Ji et al.,
2022). In this paper, we also adopt this scheme to address the challenge of inadequate preservation of target
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Figure 3: The visualization comparisons of the extracted image boundaries between our method in (c) and
the ground truth edge method in (b) used in the state-of-the-art BPKD [Liu et al.| (2024). Images are from
Pascal VOC 2012 [Everingham et al.| (2010)).

region connectivity in EDIPs. We consider this scheme as the medium in the KD process. Our contribution
lies in treating pixel-level relations as a bridge for context transfer. Compared to existing methods (Li et al.,
2022b; |Ji et al.| [2022), our approach utilizes pixel-level relations solely during the training process, thereby
avoiding the increase in model complexity and parameters in inference that is typically associated with
current methods (Liu et al., 2019; [Lin et al.| |2023a)). Besides, compared to object-level relations, the employed
pixel-level relations can capture global contextual information more comprehensively, making them more
suitable for DIP tasks. Specifically, for the concatenated features T of T, its self-relation TF is formulated

as:
c\T c
TR:O'<O(T ) O(T ))/TERthhw, (4)
Vd

where O(-) denotes the feature-aligned operation as in (Li et all, [2022b; Xie et al., 2023]), which aims to
align the feature distribution of the S with that of the T as closely as possible. O(:) is implemented as a
projection head consisting of two 1x1 convolutional layers (256 channels) with ReLU activation, followed by
layer normalization and final projection to the target dimension. 7' denotes the matrix transpose operation.
d is the channel size of T¢, which is 256. h and w denotes the height and width of T, respectively. S¥ of S
can also be obtained analogously. Therefore, the context distillation can be expressed as:

Lop == > a(TfH10g (a(S)7), (5)
k€hw X hw

where k = (1,2, ..., hw x hw) is the index item. TkR and SkR denotes the k-th item in T® and S%, respectively.

The context distillation presents an efficient solution that does not incur additional inference overhead.
As illustrated in Figure 4] our method in (b), which utilizes concatenated features in a whole-to-whole
manner, circumvents the potential noise associated with existing context learning methods in (a) for semantic
segmentation (Liu et al., 2019; [2024) that rely on layer-to-layer distillation. Our method is specifically
tailored to address the potential challenge of incomplete preservation of target region connectivity as shown
in Figure[I] rather than solely focusing on the enhancement of feature representations in a generic context.

4.4 Overall Loss Function

With the boundary distillation loss Lzp and the context distillation loss Lo p, the total loss is expressed as:

L=Lss+alpp+ BLcD, (6)
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Figure 4: Architecture comparisons between our proposed context distillation (b) and existing context learning
methods (a). Our method leverages concatenated features in a whole-to-whole manner, which avoids the
potential noise introduced by layer-to-layer distillation modes.

where o and [ are two weights used to balance different losses. Empirically, these weights have a significant
impact on model performance, and unreasonable weight settings may even lead to model collapse in training.
To this end, inspired by previous work (Sun et al., 2020; [Yang et al., 2023), to enhance the dependence of S
on ground truth labels, we incorporate a weight-decay strategy that promotes a greater focus on Lgg as the
training epoch increases. To this end, we initialize a time function as follows:

r(t)=1—(t — 1)/tmax, (7)

where t = (1,2, ..., tmax) denotes the current training epoch and #.x is the maximum training epoch. In
training, we control the dependence of £ on Lgp and Lep by using r(t). Therefore, the total loss in Eq. @
can be formulated as:

L=Lss+rt)alpp +7r(t)BLcD. (8)

5 Experiments

5.1 Datasets and Evaluation Metrics

5.1.1 Datasets

To demonstrate the performance of our method, we conduct experiments on five representative yet challenging
datasets: Pascal VOC 2012 [Everingham et al| (2010), Cityscapes [Cordts et al| (2016), ADE20K
(2017), and COCO-Stuff 10K |Caesar et al.| (2018) for semantic segmentation (SSeg), as well as MS-COCO

2017 (2014])) for instance segmentation (ISeg) and object detection (ODet).

e The Pascal VOC 2012 dataset comprises 20 object classes along with one background class. Follow-
ing (Zhang et al., 2021; Wang et al., 2020), we utilized the augmented data, resulting in a total of
10, 582 images for training, 1,449 images for val, and 1,456 images for testing.

o The Cityscapes comprises a total of 5,000 finely annotated images, which are partitioned into subsets
of 2,975, 500, and 1,525 images designated for training, val, and testing, respectively. In alignment
with existing methods (Zheng et al., 2023; Wang et al., 2020} Liu et al., [2019), we exclusively employed
the finely labeled data during the training phase to ensure a fair comparison of results.

o The ADE20K dataset has 150 object classes and is organized into three subsets: 20,000 images for
the training set, 2,000 images for the val set, and 3,000 images for the testing set.

e The COCO-Stuff 10K dataset is an extension of the MS-COCO dataset (2014)), enriched
with pixel-wise class labels. It consists of 9,000 samples designated for training and 1,000 samples
allocated for wval.
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e The MS-COCO 2017 dataset comprises 80 object classes and includes a total of 118,000 images for
training, and 5,000 images for val.

For data augmentation, random horizontal flip, brightness jittering and random scaling within the range
of [0.5,2] are used in training as in (Wang et al.| |2020; Zhang et al.; 2021} [Liu et al., |2019). Experiments
are implemented on the MMRazor frameworkﬂ under the PyTorch platform (Paszke et al., [2019) using 8
NVIDIA GeForce RTX 3090 GPUs. All the inference results are obtained at a single scale.

5.1.2 Evaluation metrics

Beyond employing standard metrics, we have also developed two extra specialized evaluation metrics specifically
optimized for knowledge distillation on dense image prediction tasks, detailed below:

Common metrics. For SSeg, we utilize the mean intersection over union (mloU) as the primary evaluation
metric. For ISeg and ODet, average precision (AP) serves as the principal accuracy-specific metric. To assess
model efficiency, we also consider the number of parameters (Params.), Peak GPU memory (Peak GPU
Mem.), and the floating-point operations (FLOPS)E

Manifold stability (MFS). To assess the effectiveness on the learned feature manifolds, we compute the
Lipschitz constant ratio between teacher and student models. Specifically, let fL(z), ffg(x) € R% denote the
I-th layer feature mappings for teacher and student models respectively. The layer-wise Lipschitz constant

can be estimated via: . 5 l
z€X,||d]|<e ||6H2

where X is the input space and ¢ = 0.1 controls the perturbation scale. The MFS p; is then computed as:

Ll
pL = L—IS (L > )+ (L < 1) (10)
T

with threshold 7 avoiding division by negligible values (7 = 0.01). Values close to 1 indicate well-preserved
manifold structure during distillation, while significant deviations suggest potential degradation of geometric
properties.

Local Hausdorff distance (LHD). For boundary-sensitive tasks like SSeg and ISeg, we introduce a LHD
metric to evaluate boundary alignment quality. Specifically, for boundary point sets B, = {p;}/*, and
By = {q;}}—1, the LHD at point p; is defined as:

LHD, (p;, By) = min { e d(pi, ¢5), median ({d(pi, 4;) }g,e N, (1)) } (11)
where the neighborhood N,.(p;) and final aggregation are defined as:
Ne(pi) = {45 € By | lpi = gjll2 <7},
e (12)

> LHD,(p;, By) - I(LHD,(p;, By) < 1+ 20),
=1

LHD(B;D,BQ) = W
Pl =

where r is set to 5 in our implementation.

5.2 Implementation Details
5.2.1 Baselines

For a fair result comparison and considering the realistic resource conditions of edge computing devices (Dong
et al.l [2023), for SSeg, we select PSPNet-101 (Zhao et all 2017), DeepLabv3 Plus-101 (Chen et al.|

2https://github.com/open-mmlab/mmrazor
3While Params/FLOPs are widely used as proxy metrics for model complexity, they do not fully capture the actual performance
of models on edge devices. The edge-chip performance remains the ultimate benchmark for EDIP models.
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2018)), and Mask2Former (Cheng et al., |2022) for the teacher models. The student models are compact
PSPNet and DeepLabV3+ with ResNet-38, ResNet-18( 5y and ResNet-18(; o) (He et al., 2016)). Besides,
to demonstrate the effectiveness of our method on heterogeneous network architectures, following (Wang
et al., [2020; [Liu et al., |2019; [Yang et al.l [2022a)), we also employ MobileNetV2 (Liu, 2018), EfficientNet-
B1 (Tan & Le, 2019)), and SegFormer-B0 (Xie et al., 2021)) as the student models. For ISeg and ODet,
following (Wang et al.l 2024} [Zhang & Mal |2023)), we select the representative GFL (Li et al.l 2020), Cascade
Mask R-CNN (Cai & Vasconcelos| [2018), and RetinaNet (Ross & Dollar} 2017)) with ResNet-101/50 and
ResNet-50/18 as the teacher model and the student model, respectively. While adopting cutting-edge large
foundation models represents the prevailing research trend, we opt for a pragmatic small-model baseline
given the currently insurmountable challenges in deploying such large-scale models on edge devices. This
application-oriented approach prioritizes practical deployability over model scale, while still providing a
meaningful benchmark for edge computing scenarios. During the training and inference phases, aside from
our proposed method and specific declarations, all other settings adhere to the configurations outlined in the
baseline model.

5.2.2 Training details

Following the standard practices as in (Hinton et al., |2015; [Liu et al.| 2019; [Wang et al., [2020)), all teacher
models are pre-trained on ImageNet-1k by default (Deng et al.,[2009), and then fine-tuned on the corresponding
dataset before their parameters are fixed in KD. During training, only the student’s parameters are updated.
As in (Zhang et al.|2021; Phuong & Lampert}, |2019), 7 is initialized to 1 and is multiplied by a scaling factor of
1.05 whenever the range of values (across all feature items in a given minibatch) exceeds 0.5. Following (Wang
et al., |2020; Sun et al.| [2020; Yang et al.l [2023), « and S is set to 10 and 50, respectively. We fully understand
that fine-tuning these base hyperparameters could potentially enhance performance. However, we contend
that such adjustments may be redundant and unwarranted.

For SSeg models, to accommodate the local hardware limitations, the training images are cropped into a
fixed size of 512 x 512 pixels as in (Wang et al., [2024; |Zhang & Ma, 2023). The SGD is used as the optimizer
with the “poly” learning rate strategy. The initial learning rate is set to 0.01, with a power of 0.9. To ensure
fairness in the experimental comparisons, the batch size is set to 8 and tyax is set to 40, 000.

For ISeg and ODet, the model is trained following the default 1x training schedule, i.e., 12 epochs. The
batch size is set to 8, and AdamW is used as the optimizer with the initial learning rate of 1 x 10~* and the
weight decay of 0.05. The layer-wise learning rate decay is used and set to 0.9, and the drop path rate is
set to 0.4. The given images are resized to the shorter side of 800 pixels, with the longer side not exceeding
1,333 pixels. In inference, the shorter side of images is consistently set to 800 pixels by default.

5.3 Ablation Analysis

In our ablation analysis, we aim to explore answers of the following crucial questions: 1) the impact of each
component within BCKD in Section 2) the effectiveness of BCKD across different network architectures
in Section and 3) the visualized performance and comparisons with other methods in Section We
select the SSeg task as the experimental objective.

5.3.1 Effectiveness of each component

To explore answer of the first question, we chose Pascal VOC 2012 [Everingham et al.| (2010)) as the experimental
dataset. PSPNet-101 (Zhao et al., 2017) serves as the teacher model, while PSPNet-18; ¢ is used as the
student model. Table 7?7 shows the inference results by adding each component of BCKD into the student
model, where we report the experimental results on the val set. We can observe that incorporating these
components consistently improves the model accuracy, indicating the effectiveness of these components. In
particular, adding Lpp resulted in a mIoU? gain of 0.91%, which may be attributed to the fact that the
object boundary regions are relatively small in proportion to the entire image (Zhang et al.l |2021} [Liu et al.l
2024). With only the implementation of Lgp and L¢p, our model can achieve the competitive 73.98% mloU
with 3.20% mlIoU? improvements, which verifies the importance of boundary and context information in
EDIP. Furthermore, this result demonstrates that ourLpp and Lop do not conflict in practical deployment;
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Table 1: Ablation results on Pascal VOC 2012 val set (£STD over 3 random seeds). Peak GPU memory
(Peak GPU Mem.) measured on NVIDIA RTX 3090.

Configuration mloU (%) AmloU Params. Inf. FLOPs Tr. FLOPs Tr. Peak GPU Mem.
Teacher (PSPNet-101)  77.8240.15 - 70.43M 411.6G 411.6G 24.5GB
Student (PSPNet-18) 70.78+0.21 - 15.24M 106.2G 106.2G 8.2GB
+ Lsp 71.6940.18 +0.91 15.24M 106.2G 116.8G 10.7GB
+ Lecbp 72.554+0.17 +1.77 15.24M 106.2G 124.3G 12.3GB
+ Both 73.98+0.14 +3.20 15.24M 106.2G 135.6G 14.1GB
+ Both + WD 74.65+0.12 +3.87 15.24M 106.2G 142.1G 15.8GB

Note: STD values calculated over 3 runs with different random seeds (42, 2023, 3407).

B

Teacher’s result Student’s result

&

"
7

w/ IFVD Ground-Truth

Figure 5: Visualized comparisons and results obtained by adding different components of BCKD. The teacher
model and the student model denotes PSPNet-101 (Zhao et al., [2017) and PSPNet-18(; o) (Zhao et al.,
, respectively. “w/” denotes with the corresponding implementation. Samples are from Pascal VOC
2012 (Everingham et al., 2010)).

instead, they complement each other intrinsically to enhance performance. It is also worth noting that
compared to the advanced methods in Table |3| that do not utilize ground truth mask, our method also
achieves competitive results even without employing the weight-decay strategy. Building upon Lgp and Lo p,
adding the weight-decay strategy brings 0.57% mlIoU?, which confirms the weight importance of different
losses. Furthermore, there is no increase in the number of Params. or FLOPs in the inference stage.

We also employ visualizations as a means of verifying the efficacy of BCKD components incrementally into
the baseline model. The obtained results are presented in Figure [5| which demonstrate that the inclusion
of Lgp and Lop in a sequential manner leads to enhanced boundary regions and object connectivity. For
example, the “bike handlebar”. Moreover, the integration of the weight-decay strategy results in further
improvement in the overall segmentation predictions. In addition to using white bounding boxes to emphasize
the better regions achieved by our method, we also highlighted the regions of prediction failure using red
dashed bounding boxes. We can observe that although our BCKD significantly improves the prediction
quality of these regions compared to the student model’s results, there are still some incomplete predictions.
This case may be caused by the spurious correlation between the “helmet” and the “person” in the used
dataset, which can be eliminated through causal intervention (Zhang et al., [2020)).
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Table 2: Result comparisons on mloU (%) under different network architectures on the val sets of Pascal
VOC 2012 (Everingham et al., [2010]), Cityscapes (Cordts et al.l 12016), and ADE20K (Zhou et al., [2017)),
and on the test set of COCO-Stuff 10K (Caesar et al., [2018]). Peak GPU memory in training measured on
NVIDIA GeForce RTX 3090. Results include standard deviations from 3 independent runs.

Methods Pascal VOC val Params. Tr. GPU Mem. (GB)

DANet (Fu et all [2019) 80.400.15 83.1M 9.8

T: PSPNet-101 (Zhao et al.:2017) 77.8240.12 70.4M 8.2
S: PSPNet-38 (Zhao et al., 2017) 72.65+£0.18 58.6M 6.1

+ BCKDours 75.1540.14 2 50 58.6M 6.5

S: EfficientNet-B1 (Tan & Lel 2019) 69.284+0.25 6.7M 3.2
+ BCKDours 73.814+0.17+4.53 6.7M 3.8

S: SegFormer-B0 (Xie et al., [2021) 66.75+0.22} 3.8M 2.9
+ BCKDours 68.884+0.162.13 3.8M 3.3

Methods Cityscapes val Params. Tr. GPU Mem. (GB)

HRNet (Sun et al] 2019) 81.1040.10 65.9M 7.9

T: PSPNet-101 (Zhao et all [2017) 78.56+0.11 70.4M 8.2
S: PSPNet-38 (Zhao et al.,72017) 71.26+0.20 47.4M 5.8

+ BCKDours 73.56£0.1542 30 47.4M 6.2

S: EfficientNet-B1 (Tan & Lel 2019) 60.4040.30 6.7M 3.2
+ BCKDours 63.9140.221 351 6.7M 3.7

S: SegFormer-B0 (Xie et al., [2021)) 76.20+0.13 3.8M 2.9
+ BCKDours 77.87+0.1041.67 3.8M 3.3

Methods ADE20K val Params. GPU Mem. (GB)

DeepLab V3 (Chen et al., |2017b) 43.2840.18 71.3M 8.5

T: PSPNet-101 (Zhao et al., |2017) 42.194+0.20 70.4M 8.2
S: ESPNet (Mehta et al., 2018) 20.1340.35 0.4M 1.8

+ BCKDgurs 23.65£0.28 43 52 0.4M 2.1

S: MobileNetV2 (Liu, 2018]) 33.64+0.25 8.3M 3.5

+ BCKDours 36.591+0.1942 95 8.3M 4.0

S: SegFormer-B0 (Xie et al., |2021) 37.401+0.22 3.8M 2.9
+ BCKDours 38.7540.181.35 3.8M 3.3

T: Mask2Former (Cheng et al.:2022) 47.20£0.16 44.0M 6.8
S: ESPNet + BCKDogurs 24.26+£0.3044.13 0.4M 2.3

S: MobileNetV2 + BCKDgurs 37.094+0.21 13 45 8.3M 4.2
S: SegFormer-B0 + BCKDours 39.614+0.17 1221 3.8M 3.5
Methods COCO 10K test FLOPs GPU Mem. (GB)

SegVIT (Zhang et al.:2022a) 50.3+0.15 383.9G 11.2

T: DeepLabV3 Plus-101 (Chen et al.:2018) 33.10+0.22 366.9G 9.1
S: MobileNetV2 (Liu, 2018 26.29-£0.28 1.4G 3.5

+ BCKDours 28.31£0.2312.02 1.4G 4.0

S: SegFormatter-B0 (Xie et al.| 2021)) 35.60+0.18 8.4G 2.9
+ BCKDgurs 35.9240.1510.32 8.4G 3.3

5.3.2 Effectiveness across network architectures

In this section, we evaluate the effectiveness of our BCKD across various network architectures for SSeg using;:
Pascal VOC 2012 (Everingham et al.l 2010]), Cityscapes (Cordts et al., [2016]), ADE20K (Zhou et al.,[2017)), and
COCO-Stuff 10K (Caesar et al., 2018)). The obtained results under different network architectures are given
in Table [2| For the purpose of comparing experimental results, we also include the results of a large model
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Table 3: Comparisons on mloU (%) with state-of-the-art methods on the val sets of Pascal VOC 2012 (Ever;
ingham et al., [2010) and Cityscapes (Cordts et al., |2016), and ADE20K (Zhou et al.l 2017). “1” denotes
our re-implemented result based on the released codes due to inconsistencies in experimental settings. “KD
Manner”: knowledge distillation manner, which contains of layer-to-layer (L2L) and whole-to-whole (W2W)
as illustrated in Figure [l “GTM’: ground-truth mask used to obtain the pre-extraction image boundaries.
“Bod.” denotes the boundary type, and “Cont.” denotes the context type. “E”: physical edge. “B”: semantic
boundary. “P”: pixel-wise. “I”: image-wise. “O0”: object-wise.

T: PSPNet-101 (Zhao et al., 2017) 77.82% 78.56% 42.19%

S: PSPNet-18(;.0) (Zhao et al., 2017) 70.78% 69.10% 33.82%

Methods | KD Manner | GTM? | Bod. | Cont. | Pascal VOC 2012 | Cityscapes | ADE20K

+ KD (Hinton et al. [2015) L2L X X X 71.28% 050 | 71.2049.10 | 34.33%F 051

+ SKD (Liu et all 2019) L2L v E P 73.05 007 | 71.45 035 | 34.65. 053

+ SCKD (Zhu & Wang, [2021) L2L X X X 72334155 | 72104300 | 34.76.0.04
+ CIRKD (Yang et al., [2022al) L2L X X I 73.57% 070 | 72250315 | 34.93,1 11
+ IFD (Chen et al.| [2022) L2L X X X 73.88% 510 | 72.63 353 |35.15% .1 33

+ FGKD (Yang et al. 2022b)) L2L X X 0 72.90% 1510 | 72.55.3.45 | 35.2441 40
+ CWT (Liu et al., [2023) L2L X X 0 73.06% 1008 | 72.60 350 | 35.21% 1 39

+ SlimSeg (Xue et al.| [2022) L2L v E X 74.084330 | 73.951485 | 37.1243.30
+ BGLSSeg (Zhou et al., [2024) L2L v/ E X 74.27% 5 40 | 7T4.10% 500 | 36.49% .5 67
+ FAM (Pham et al., [2024) L2L X X X T4.28% 550 | 7425515 | 36.82% . 3.00

+ CrossKD (Wang et al., [2024) L2L X X X 74.28% 550 | 74.28,5.15 | 36.72% 1500
+ BPKD (Liu et al., [2024) L2L v E X 74.30% 1350 | T4.29. 510 | 37.07% 1305

+ BCKDours | W2W X B P 74.65, 387 | 74.92 58> | 37.62:350

+ IFVD (Wang et al.] [2020) L2L X X X 74054307 | 7441531 | 36.63% 535
+ IFVD + BCKDours | W2W X B P 74.824404 | 7499550 | 37.7313.01

+ TAT (Lin et al.[2022) L2L X X o 74.02% 1504 | T4.48,538 | 37.1213.30

+ TAT + BCKDours W2W X B P& O 74.71 4393 | T4.971587 | 38.1244.30

+ SSTKD (Ji et al.| [2022) L2L v/ E X 73.91. 513 | 74.60 550 | 37.22.3.40

+ SSTKD + BCKDours |  W2W v |B&E| P 74524374 | 74904550 | 38.24 450

that does not utilize knowledge distillation for each dataset. From this table, we can observe that deploying
BCKD on different network architectures can lead to continuous performance improvements. For example,
when employing PSPNet-38 (Zhao et al.l |2017)), EfficientNet-B1 (Tan & Lel 2019)), and SegFormer-B0 (Xie
et al.l |2021)) as student models while keeping the teacher model PSPNet-101 (Zhao et al., 2017) unchanged,
our BCKD achieves mIoU? improvements of 2.50%, 4.53%, and 2.13% on Pascal VOC wval, and 2.30%, 3.51%,
and 1.67% on Cityscapes val, respectively. The performance gains demonstrate the effectiveness of our
method not only within the same network architecture but also across network architectures, indicating
sustained performance enhancements. This phenomenon also highlights the generalization capacity of our
method. Besides, similar conclusions can be also drawn from our experimental results on ADE20K wval and
COCO-Stuff 10K test sets. Deploying different teacher models on the ADE20K wval dataset are also conducted,
where Mask2Former (Cheng et al 2022) is utilized as the teacher model, and ESPNet (Mehta et al.l [2018),
MobileNetV2 (Liul 2018), and SegFormer-B0 are used as the student models. The results demonstrate
that our method yields mIoU? improvements of 4.13%, 3.45%, and 2.21% on ESPNet, MobileNetV2, and
SegFormer-B0 (Xie et al.l 2021), respectively, showcasing the strong flexibility. On efficiency, our method
leverages the KD framework, resulting in no increase in Params. or FLOPs. Consequently, we achieve both
improved accuracy and fast inference speed.
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Table 4: Comparisons on mloU (%), MFS and LHD with state-of-the-art methods on the test set of COCO-
Stuff 10K (Caesar et al., [2018]). Standard deviations are computed from 5 independent runs.

T: DeepLabV3 Plus-101 33.10£0.15% 1.00£0.00 0.00+0.00

S: DeepLabV3 Plus-18 26.33+0.18% 0.45+0.08 4.2140.35
Methods mloU (%) MFS (o) LHD

+ KD (Hinton et al} [2015) 27.2140.16 1 0 55 0.63+0.07 3.8240.41

+ SKD (Liu et al., [2019) 27.274+0.1540.94 0.67%+0.06 3.77+0.38

+ SCKD (Zhu & Wangj, 2021) 27.3840.14 1 05 0.721+0.08 3.631+0.42

+ CIRKD (Yang et al.l |2022a) 27.684+0.134+1.35 0.81+0.05 3.45+0.33

+ IFD (Chen et al.l [2022) 27.914£0.124 4 58 0.88+0.04 3.284+0.29

+ FGKD (Yang et al.| [2022b)) 28.00+0.1141.67 0.9140.03 3.1240.31

+ CWT (Liu et al.| |2023)) 28.1840.1041 85 0.95+0.02 2.98+0.22

+ IFVD (Wang et al., 2020) 28.3540.0942.02 1.02+0.03 2.77+0.25

+ C2VKD (Zheng et al., 2023) 28.4240.0842.09 1.08+0.04 2.634+0.24

+ FAM (Pham et al.| [2024) 28.48+0.0842.15 1.124+0.03 2.5540.21

+ CrossKD (Wang et al., [2024)) 28.53+0.0712.20 1.15+0.02 2.4840.19

+ SSTKD (Ji et al., 2022) 28.7040.0642.37 1.23+0.03 2.31+0.17

+ BCKD 29.2240.0542 89 1.414+0.02 1.89+£0.15

+ TAT (Lin et al [2022) 28.7440.06 1 5 11 1.25:£0.04 2.2540.18

+ TAT + BCKD 29.2940.0443.11 1.4440.01 1.82+0.14

+ SlimSeg (Xue et al., |2022)) 28.5040.0842.17 1.13£0.03 2.524+0.20

+ SlimSeg + BCKD 29.45£0.0443.12 1.46+0.01 1.79+£0.13

+ BPKD (Liu et al.; [2024) 28.66+0.07 233 1.2140.02 2.36+0.16

+ BPKD + BCKD 29.60+0.0313.27 1.4940.01 1.7240.12

5.3.3 Visualized comparisons

The visualized comparisons on the SSeg task with the baseline teacher and student models, and large models
without the KD strategy are given in Figure[6] As highlighted by the white bounding boxes, the obtained
results on Pascal VOC 2012 (Everingham et al., 2010), Cityscapes (Cordts et al.,|2016), ADE20K (Zhou et al.|
2017), and COCO-Stuff 10K (Caesar et all 2018) demonstrate that BCKD yields significant improvements
on both the boundary region completeness and the target region connectivity, when compared with the small
student model’s results. For example, the “cow” in Pascal VOC 2012, the “guidepost” in Cityscapes, the
“desk” and the “TV bench” in ADE20K, the “bus”, the “tennis racket”, and the “guideboard” in COCO-Stuff
10K. The results obtained are basically the same as those of the large teacher model. Besides, compared
to large models with higher model complexity (i.e., DANet (Fu et all) 2019) and HRNet (Sun et all [2019))
on Pascal VOC 2012 and Cityscapes, although our method is not as competitive as theirs on quantitative
results, our method achieves better predictions on object boundaries and small objects, which validate the
effectiveness and emphasize the importance of boundary distillation and context distillation. With the help
of our method, the student model is also able to predict better masks for certain fine-grained objects. For
example, the “cow’s ear” and the “person’s leg”.

5.4 Comparisons With SOTA Methods on SSeg

In this section, we explore the accuracy and the effectiveness of the joint implementation of BCKD with the
state-of-the-art (SOTA) KD methods on SSeg. To ensure a fair comparison, PSPNet-101 (Zhao et al., 2017))
and DeepLabV3 Plus-101 (Chen et al., 2018)) are employed as the teacher models, while PSPNet-18; ¢y and
DeepLabV3 Plus-18 (Chen et al.l 2018) serve as the student models. The specific settings for each student
model are described in detail in the provided table. Some results are re-implemented by us on the released
code due to inconsistencies in experimental settings and are marked with “1” in the given tables.
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PSPNet-38 w/o and w/ BCKD PSPNet-18 w/o and w/ BCKD

Pascal VOC

Cityscapes

ADE20K

PSPNet-101 reycper) PSPNet-18 w/o BCKD PSPNet-18 w/BCKD MobileNetV2 w/o BCKD  MobileNetV2 w/ BCKD
-

DeepLabV3 Plus-18 w/o and w/ BCKD DeepLabV3 Plus-18 w/o and w/ BCKD MobileNetV2 w/0 and w/ BCKD

Figure 6: Visualizations on SSeg. DANet (Fu et al., 2019) and HRNet (Sun et al., 2019) have been included

for comparison as well. “w/0” means “without” and “w/” means “with”, indicating whether our method
is NOT implemented or implemented. The white bounding boxes highlight the regions where our method
predicts better.

COCO-Stuff 10K

5.4.1 Superiority of BCKD

Compared to the SOTA KD methods on SSeg, on the top half of Table [3] and Table [d] we can observe
that our BCKD can surpass these methods. BCKD boosts the student model by 3.87%, 5.82%, and 3.80%
mlIoU? on the val sets of Pascal VOC 2012 (Everingham et al. |2010), Cityscapes (Cordts et al., 2016), and
ADE20K (Zhou et al.l |2017)), respectively. Compared to the current SOTA KD methods on these datasets,
BCKD outperforms IFVD (Wang et al.| 2020)), TAT 2022)), and SSTKD on Pascal
VOC 2012 by 0.6%, 0.63%, and 0.74% mIoU?, respectively. The visualized comparison results with the classic
KD (Hinton et all 2015) and SOTA IFVD methods are presented in the last row of Figure [5| It can be
observed that our method demonstrates significant advantages in capturing the connectivity of small objects
as well as the integrity of the boundary masks. Furthermore, BCKD achieves higher mloU than SOTA
methods on Cityscapes and ADE20K datasets as well. On the COCO-Stuff 10K (Caesar et al.|2018) datasets
in Table [4] our method surpasses the student model and the SOTA TAT model by 2.89% and 0.48% mloUt,
respectively. As demonstrated in Table[d] the proposed BCKD framework also exhibits significant advantages
in terms of MFS (p;) and LHD. These results not only indicate an overall performance improvement but also
validate the effectiveness of our novel boundary distillation and context distillation, which were designed to
address these critical aspects of the learning process. Since inference is only conducted on the student model,
our method does not introduce any increase in model complexity. These results across different datasets can
confirm that the task-specific knowledge is indeed more effective in practice compared to general knowledge.

5.4.2 Effectiveness of the joint implementation

The results on the joint implementation of BCKD and SOTA KD methods are presented on the lower half of
Table [3 !and Table [4 respectlvely It can be observed that on top of BCKD, further adding IFVD (Wang|

2020), TAT (Lin et al| , and SSTKD 1| [2022) yields consistent performance gains, with
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GFL

CM R-CNN

RetinaNet

(a) Input Image (b) Teacher (c) Student (d) w/ CrosskD (e) w/ SSTK ‘ (f) w/ Ours

Figure 7: Visualization results on ISeg and ODet. “w/” means “with”, indicating that the corresponding
knowledge distillation method is deployed based on the student model. We chose the state-of-the-art methods

CrossKD [Wang et al.| (2024) and SSTKD (2022) for comparison.

mloU? improvements of 0.77%, 0.69%, and 0.61% on the wval set of Pascal VOC 2012, respectively. This can
be attributed to the fact that BCKD contains semantic boundary and context that is not present in these
methods, further demonstrating the importance of semantic boundary and context information for the SSeg
task. However, adding SSTKD on top of BCKD resulted in a performance decrease (i.e.,
0.13% mlIoUJ on Pascal VOC 2012 and 0.02% mlIoU] on Cityscapes) compared to the accuracy on BCKD.
We guess that this may be because SSTKD uses superficial image texture information, which is non-semantic
and contain some noise relative to the extracted semantic boundaries. On COCO-Stuff 10K, we can observe

that our method further enhances the performance of all SOTA methods, including TAT (Lin et al., 2022),
SlimSeg (Xue et al., 2022), and BPKD (Liu et al.,|2024), and finally achieves 29.60% mIoU on the test set.

5.5 Comparisons With SOTA Methods on ISeg and ODet

The quantitative result comparisons on ISeg and ODet are presented in Table[5] The obtained results indicate
that our method can consistently outperform existing methods across various baseline models, demonstrating
its strong generalization and versatility. Specifically, we achieve AP scores of 35.8%/38.8%, 37.0%/42.5%, and
33.3%/38.5% for instance segmentation masks (4.e., AP™) and object detection bounding boxes (i.e., AP”) on
the GFL-18 2020), Cascade Mask R-CNN-50 (Cai & Vasconcelos| 2018), and RetinaNet-50 (Ross
& Dollar, [2017), respectively. In comparison with the SOTA CrossKD (Wang et all, [2024) and SSTKD (Ji
et al.[, , our method demonstrates an average performance improvement of approximately 0.5%. This
enhancement serves to validate the effectiveness of our proposed method. The results also demonstrate
significant advantages in both MFS and LHD, indicating its capability in preserving the structure of learned
feature manifolds while maintaining high precision in boundary-sensitive tasks. These results substantiate the
effectiveness of our boundary and context distillation in maintaining geometric consistency and minimizing
alignment errors.

The visual comparison results with baseline methods and SOTA methods are shown in Figure[7] It is observed
that, relative to the baseline student models, the application of various KD strategies enhances the prediction
results for specific classes (e.g., the person”, the book”, and the surfboard”), thereby affirming the effectiveness
of KD in dense image prediction tasks. Moreover, when compared to the SOTA methods CrossKD and
SSTKD, our method demonstrates improved connectivity in object regions and boundary integrity (e.g.,
the person” and the baseball bat”), highlighting the effectiveness of our proposed context distillation and
boundary distillation strategies tailored for the targeted tasks. Additionally, our method addresses the issue
of overlapping predicted bounding boxes (e.g., the mouse” and the “chair”), a benefit attributed to the
enriched contextual information incorporated into the student model via context distillation.

Furthermore, we also observed a significant phenomenon wherein our method effectively reduces the occurrence
of hallucinations in the student model’s predictions. Specifically, as depicted in the last column of Figure [7]
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Table 5: Result comparisons with the state-of-the-art methods on the val set of MS-COCO 2017 [Lin et al.
(2014) for ISeg and ODet. “CM R-CNN”: Cascade Mask R-CNN. mAP™ and mAPP denotes the average
precision on instance segmentation mask and object detection bounding box, respectively.

Methods | AP™ (%) AP® (%) FPS | MFS (p) LHD

T: GFL-50 (Li et al.:2020) 36.8 40.2 19.4 1.00 0.00

S: GFL-18 (Li et al.:2020) 33.1 35.8 23.7 0.82 3.20

+ FGD (Yang et al., |2022b)) 34.0 36.6 23.7 0.85 2.90

+ SKD (Liu et al.| [2019) 34.3 36.9 23.7 0.86 2.70

+ GID (Dai et al.l [2021) 34.6 37.8 23.7 0.89 2.50

+ LD (Zheng et al., [2022) 34.8 38.0 23.7 0.90 2.30

+ PKD (Cao et al.| 2022b)) 35.0 38.0 23.7 0.91 2.20

+ CrossKD (Wang et al.| [2024) 35.3 38.1 23.7 0.92 1.90

+ SSTKD (Ji et al., 2022) 35.2 38.3 23.7 0.93 1.80

+ BCKDqurs 35.8 38.8 23.7 0.95 1.60

T: CM R-CNN-101 (Cai & Vasconcelos:2018) 37.3 42.9 13.1 1.00 0.00
S: CM R-CNN-50 (Cai & Vasconcelos;2018) 36.5 41.9 16.1 0.88 2.10
+ FGD (Yang et al., |2022b) 35.3 42.1 16.1 0.87 2.20

+ SKD (Liu et al.| [2019)) 36.5 42.2 16.1 0.89 2.00

+ GID (Dai et al.| [2021) 36.7 42.0 16.1 0.90 1.90

+ LD (Zheng et al. 2022) 36.8 42.1 16.1 0.91 1.80

+ PKD (Cao et al.| 2022b)) 36.8 42.0 16.1 0.92 1.70

+ CrossKD (Wang et al.| 2024) 36.9 42.2 16.1 0.93 1.60

+ SSTKD (Ji et al., 2022) 37.0 42.2 16.1 0.94 1.50

+ BCKDours 37.0 42.5 16.1 0.96 1.40

T: RetinaNet-101 (Ross & Dollér:2017) 33.5 38.9 13.5 1.00 0.00
S: RetinaNet-50 (Ross & Dollér:2017) 31.7 37.4 17.7 0.85 2.40
+ FGD (Yang et al.| 2022b) 32.1 37.7 17.7 0.86 2.20

+ SKD (Liu et al. [2019) 32.5 37.5 17.7 0.87 2.12

+ GID (Dai et al.l [2021) 32.8 37.6 17.7 0.88 2.03

+ LD (Zheng et al., 12022]) 33.1 37.8 17.7 0.89 1.90

+ PKD (Cao et al.| 2022b)) 33.0 37.8 17.7 0.90 1.88

+ CrossKD (Wang et al., |2024) 33.2 38.0 17.7 0.91 1.75

+ SSTKD (Ji et al., 2022) 33.1 38.1 17.7 0.92 1.66

+ BCKDgurs 33.3 38.5 17.7 0.94 1.54

both the teacher and student models fail to identify the “camera”, while the CrossKD and SSTKD methods
mistakenly classify the “camera” as the “bottle”. In contrast, our approach accurately recognizes the “camera”
as a background object, aligning with definitions. We hypothesize that this discrepancy may stem from
the confusion of target knowledge caused by task-irrelevant KD during the training process. Our proposed
task-specific BCKD is inherently designed to alleviate such confusion from the outset.

6 Conclusion and Future Work

In this work, we propose a customized boundary and context knowledge distillation (BCKD) method
tailored for efficient dense image prediction tasks on Al accelerator, including semantic segmentation, instance
segmentation, and object detection. Our approach significantly narrows the performance gap between compact,
efficient models and their larger, more accurate counterparts while maintaining computational efficiency.
Specifically, BCKD enhances boundary-region completeness and ensures object-region connectivity, leading
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to consistent accuracy improvements across diverse challenging benchmarks and architectures. Theoretical
analysis further corroborates the effectiveness of our method.

As a generalizable method, in the future, we plan to extend BCKD to additional dense visual tasks (e.g.,
pose estimation and image generation) and investigate its adaptation to emerging architectures (e.g., Vision
Mamba) to better support model compression for AT accelerator deployment. Besides, we will explore synergies
between BCKD and large foundation models (e.g., Segment Anything Model and vision-language models)
to further enhance the robustness of lightweight dense predictors under adverse conditions. Furthermore,
investigating BCKD in next-generation models, such as Vision Mamba (Vim), also represents a highly
practical and instructive research direction.
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Broader Impact Statement

We acknowledge the broader implications of deploying EDIP models in real-world applications. While EDIP
models are designed to be efficient and effective for edge device deployment, there are potential risks associated
with their use in high-stakes scenarios such as mass surveillance, facial recognition, or other security-related
applications. These applications may raise ethical concerns and require careful adherence to regulatory
frameworks to ensure responsible use. As such, we emphasize the importance of ethical considerations and
legal compliance when deploying such models, and recommend the implementation of safeguards to protect
user privacy.

We also recognize that biases present in the training data may be inadvertently amplified during model
distillation or other knowledge transfer processes in EDIP systems. For example, the “helmet/person”
correlation serves as a case study demonstrating such dataset bias. To address this, we will propose methods
such as fairness-aware training and post-hoc bias correction to reduce the likelihood of biased outcomes and
ensure more equitable model behavior.

Finally, we also consider the environmental impact of our model training process, which may involve up
to 40,000 training epochs. Although our model is efficient in inference, the high computational and energy
demands during training raise concerns about sustainability. To mitigate this, we suggest future strategies
such as progressive training, knowledge distillation with low-rank adaptation, and early stopping techniques,
where applicable, to reduce the overall environmental footprint of model development.
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A Appendix

Theoretical Analysis

BCKD is theoretically grounded in differential geometry and spectral graph theory. In the Appendix, we will
analyze its components through measurable properties of the learned feature manifolds My (teacher) and
Mg (student), with proofs connecting to the empirical results in Section

A.1 Boundary-Aware Manifold Alignment

The proposed Lpp in Eq. induces geometric consistency between teacher and student decision boundaries.

Theorem 1 (Boundary Consistency). Under Lgp minimization with T > 1, for any boundary point xy, we

have:
[Jr(zs) = Is(as)llr < V2Lpp /72 + O(e™7), (13)

where J. are Jacobian matrices of the feature maps.

Proof. The temperature-scaled gradients satisfy:

1/7
VLpp = Ea, |75 Viogos | | (14)
Os
IVLr = VLs|* < 2(1 - cos ), (15)

where 6 is the angle between S and T gradients. Applying Taylor expansion (Kanwal & Liu, [1989)) at high 7,
then we can obtain:

1
cosf >1— 5/33177'*2 +0O(1r™4). (16)

The Jacobian bound follows from Pinsker’s inequality applied to the manifold tangent spaces. O

This theoretical guarantee explains the 0.91% mloU improvement observed in Table 77, as aligned Jacobians
ensure consistent boundary localization.

A.2 Contextual Graph Preservation

The proposed Lo p in Eq. maintains spectral properties critical for dense image prediction tasks:

Theorem 2 (Spectral Convergence). For eigenvalues {\;} of relation matrices T, S®, we have:

max |\l — A7| < | TF - 8% < VdLen. (17)

Proof. Applying Weyl’s inequality for symmetric matrices, we can obtain:
N =A< |AR]:2 < AR F, (18)
where the heat kernel continuity follows from:

He_T‘CT _ e_T£S||F S . S}lp] ||e—tET(£T _ Es)e_(‘l'—t)l:s H S TCTHLTHECD (19)
tel0,7

O

As shown in Table ??, compared with the baseline model, the 1.77% mlIoU gain directly reflects this eigenvalue
stability.
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A.3 Multi-Scale Geometric Consistency

As illustrated in Figure [4 the feature concatenation and projection operation in Section preserves
topological invariants:

Proposition 1 (Topological Preservation). The mapping ¢ : Hl/\/l%) — MEomeat satisfies:

Br(Mgemeet) Zﬂk MP), k=012 (20)

where By are Betti numbers.
Proof. The 3x3 convolution operation is a diffeomorphism, thus we have:
Br(6(T€)) = Br(T°) (invariance) (21)

= Bl @l/\/l( Z B ]\/l( (Kiinneth formula)

The dimensionality bound follows from the classical projection theorem as in (Falconer & Howroyd, |[1996)). O

A.4 Training Dynamics Interpretation

The used weight decay in Eq. induces phased learning:

Theorem 3 (Annecaled Convergence). With r(t) = 1—(t —1)/tmax and Robbins-Monro conditions on learning
rate n;:

t—l>ltI£ax P(,C == ,Css) =1 (22)
Proof. Decompose the gradient flow:
dL 2 2/ 2 2 2 2
o = “lVEss|T = ner () (@[ VLeD " + 57V Lenl) (23)

As r(t) — 0, the right terms vanish asymptotically. The convergence follows the stochastic approximation
theory (Lail 2003]). O

Pseudo-Code of BCKD

B BCKD Algorithm

The Boundary and Context Knowledge Distillation (BCKD) consists of two main components: Boundary
Distillation and Context Distillation. Below we present the detailed pseudo-code.
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Algorithm 1 Boundary and Context Knowledge Distillation (BCKD)

Require: Teacher model 7', Student model S, Input image X

Require: Temperature 7, Loss weights «,
Require: Maximum training epochs t,,q4

1:
2:

Feature extraction:
Trp + {Ti(X)}i—,
Sk {Si(X)}L,

3: T, S, < logits from T and S

Feature processing:

4: T, + Convsys(concat(T,...,T5))

o

10:

11:

12:
13:

14:
15:

16:

S. + Convsys(concat(Sy,...,Ss))

Boundary Distillation:

for each pair (7,j) of pixels do
Ty 1 —maxy 4em, , B(Convyy1(T7), Convyyi (1))
ng < 1 —maxy gem, ;, B(Convyy1(S?), Convixi(SY))

end for

Lpp « =723, p(Tp)/ " log(p(Sp)"/7)

Context Distillation:

T
%%a@m%m>ﬁ
0(S)TO(S.
SR<—J(7( )\/E( ))/’T

Lop + —123, o(TE)Y 7 log(a(Sk)Y/T)
Loss computation:

r(t) < 1—(t —1)/tmax

L+ Lss+r(t)(alpp + BLcp)
Model update:

Update S parameters via V.L

Ensure: Trained student model S

> Get teacher features
> Get student features

28



	Introduction
	Related Work
	Dense Image Prediction Tasks
	Knowledge Distillation in DIPs

	Preliminaries
	Customized Knowledge Distillation
	Overview
	Boundary Distillation
	Context Distillation
	Overall Loss Function

	Experiments
	Datasets and Evaluation Metrics
	Datasets
	Evaluation metrics

	Implementation Details
	Baselines
	Training details

	Ablation Analysis
	Effectiveness of each component
	Effectiveness across network architectures
	Visualized comparisons

	Comparisons With SOTA Methods on SSeg
	Superiority of BCKD
	Effectiveness of the joint implementation

	Comparisons With SOTA Methods on ISeg and ODet

	Conclusion and Future Work
	Appendix
	Boundary-Aware Manifold Alignment
	Contextual Graph Preservation
	Multi-Scale Geometric Consistency
	Training Dynamics Interpretation

	BCKD Algorithm

