
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ENHANCING LLMS FOR KNOWLEDGE BASE QUESTION
ANSWERING BY CHAIN-OF-DECOMPOSITION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have demonstrated remarkable success across
diverse domains through in-context learning or fine-tuning. However, adapting
LLMs to Knowledge Base Question Answering (KBQA) remains challenging, as
KBQA necessitates multi-step reasoning over large-scale structured knowledge
bases. Directly prompting LLMs with entire knowledge bases incurs prohibitive
computational costs, while existing methods provide limited guidance on effectively
fine-tuning LLMs for such complex reasoning tasks. In this work, we propose
Chain-of-Decomposition (CoD), a novel framework that decomposes KBQA into
three modular steps: (1) an LLM-free retrieval module to extract query-relevant
subgraphs from the knowledge base, (2) a parameter-free reformulation step that
transforms retrieved contexts into structured reasoning paths, and (3) a lightweight
LLM-based reasoning module trained to evaluate the logical validity of each path.
By isolating computation-heavy retrieval and rule-based reformulation from LLM
reasoning, CoD reduces task complexity and enables efficient fine-tuning focused
solely on the final verification step. Comprehensive experiments demonstrate
that Llama-2 7B, fine-tuned with the proposed CoD surpasses strong baselines,
including GPT-4 augmented with retrieved knowledge, achieving state-of-the-art
performance on WebQSP and MetaQA benchmarks.

1 INTRODUCTION

The great achievement of large language models (LLMs) have attracted widespread attention (Brown
et al., 2020; Ouyang et al., 2022b; OpenAI, 2023). The striking feature of LLMs is their ability to
handle complex tasks through reasoning (Wei et al., 2022; Wang et al., 2023b). Despite their im-
pressive performance, LLMs have substantial limitations when facing complex knowledge reasoning
tasks (Pan et al., 2024) that require multi-hop reasoning. In this regard, advanced works propose to
adapt LLMs to these complex tasks by either prompting LLMs with knowledge (Sun et al., 2023; Sui
et al., 2024) or fine-tuning LLMs with carefully designed data and objectives (Luo et al., 2023b).

However, it is challenging to adapt LLMs to the tasks of knowledge base question answering (KBQA).
This results from the fact that KBQA aims to reason about answers for an input query, which requires
a large-scale knowledge base and deep reasoning. Specifically, prompting LLMs with such a large-
scale knowledge base in an in-context learning manner leads to high computation costs. Meanwhile,
fine-tuning LLMs to promote the reasoning capability relies heavily on the utilized training data and
objective functions (Ouyang et al., 2022a). In this regard, some works propose to scale down the
size of the knowledge base by retrieving query-relevant context (Sun et al., 2023; Sui et al., 2024).
Advanced works propose to fine-tune LLMs with appropriate objective functions (Luo et al., 2023a;b),
aiming to encourage LLMs to predict the answer directly or indirectly. However, the existing works
mainly focus on improving the capability of LLMs for complex reasoning, while overlooking the
strategy to reduce the task complexity.

In this work, we propose Chain-of-Decomposition (CoD), a novel framework that simplifies the task
by decomposing KBQA into three modular steps. As shown in Fig. 1 and Eq.(5), we decompose the
KBQA tasks into a chain with three subtasks: retrieval, reformulating, and reasoning by factoring
the distribution of the answer generation. The factorization is based on our constructed causal graph
(Fig. 2), which formulates the answer-generation process. First, the objective of the retrieval task is
to scale down the knowledge base by returning query-relevant information, which is an LLM-free
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Figure 1: CoD overview: Query-relevant information is first retrieved. Reasoning paths are then
constructed. Finally, LLMs are fine-tuned to determine whether reasoning paths are logically valid.

retrieval module to extract query-relevant subgraphs from the knowledge base. This leads to a simple
binary task problem1. Second, the objective of the reformulating task is to transform the retrieved
context into reasoning paths, which is a parameter-free reformulation step. Namely, we can perform
the reasoning path construction by designing some rules, leading to no learnable parameters for the
task. Ultimately, the objective of the reasoning task is to determine whether a reasoning path is
logically valid, which is a lightweight LLM-based reasoning module. Through the decomposition, we
surprisingly find that two of these tasks are LLM-free, which isolates computation-heavy retrieval and
rule-based reformulation from LLM reasoning. Consequently, our decomposition provides detailed
instructions on how to simplify KBQA tasks and fine-tune LLMs for only one task, which drastically
reduces task complexity and enables efficient fine-tuning of LLMs.

To verify the efficacy of the proposed CoD, we conduct experiments on two benchmark KBQA
datasets: WebQuestionSP (WebQSP) (Yih et al., 2016) and ComplexWebQuestions (CWQ) (Tal-
mor & Berant, 2018). Comprehensive results demonstrate that fine-tuning Llama-2 7B with CoD
can outperform all baseline methods by a considerable margin, achieving state-of-the-art (SOTA)
performance. Moreover, the fine-tuned Llama-2 7B outperforms the GPT4 model with retrieved
knowledge.

Our main contributions can be summarized as follows.

• We construct a causal graph to formulate the answer-generation process in KBQA. Based on
the graph, we factorize the distribution of answer prediction, which motivates a decomposi-
tion strategy to reduce the complexity of the KBQA task.

• We propose chain-of-decomposition (CoD), a novel framework to adapt LLMs to KBQA
by decomposing the task into three modular steps: retrieval, reformulating, and reasoning.
CoD promotes LLM-based KBQA by isolating retrieval and reformulation from reasoning,
resulting in a simple reasoning task for LLMs.

• The proposed method CoD dramatically outperform the existing methods, achieving state-
of-the-art (SOTA) performance. Moreover, fine-tuning Llama-2 7B with CoD outperforms
the GPT4 model with retrieved knowledge, highlighting its ability to empower lightweight
LLMs for complex reasoning.

1Our experimental results (Table 2) demonstrate that employing a relatively small generative model, i.e., T5,
can achieve exciting performance.
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2 PRELIMINARY

2.1 KNOWLEDGE BASE QUESTION ANSWERING

Knowledge base question answering (KBQA) is a reasoning task based on a large-scale structured
knowledge base, i.e., knowledge graph (KG). The KG G is composed of factual knowledge in the
form of a set of triples: G = {(es, r, eo)|es, eo ∈ E , r ∈ R}, where es and eo are the subject entity
and object entity connected by the relation r.

The goal of the KBQA task is to construct a function f to predict answers A ∈ A(Q) for an input
query Q in the form of natural language question based on the knowledge from G, i.e., Â = f(Q,G).
Here, we leverage A(Q) to represent the fact that the set of answers varies with the input query Q. In
this work, we follow previous work (Jiang et al., 2023) and merely consider the close-set scenarios
where the topic entities T (Q) used in Q and the answer entities A(Q) used in A are involved in G,
e.g., T (Q),A(Q) ⊆ E . More details can be found in Appendix A.

2.2 TWO STRATEGIES FOR KBQA

There are mainly two types of approaches to realize the predictor f(Q,G). The first approach is
straightforward, realizing f by directly generating answers,

min
θ

KL(P (A|Q,G), fθ(A|Q,G)), (1)

where A and Q denote the answer and query random variables, P (A|Q,G) represents the target
distribution of answer generation, θ denotes the parameter of the predictor f . Given the objective
function in Eq. (1), we can complete the KBQA task by converting it to either a classification
problem (Sun et al., 2019) or a generation problem (Saxena et al., 2022). Note that the used KG is
typically large. Thus, the prediction is usually based on a retrieved subgraph relevant to the query.

Different from the approach of directly generating answers, semantic parsing-based methods parse
the input query into a logical form (LF), which is then executed over G to obtain the answers. This
can be formalized as follows,

min
θ

KL(P (M |Q,G), gθ(M |Q,G)), (2)

where M indicates the LF, P (M |Q,G) is the distribution of LF generation, g is the function designed
to generate LF parameterized by θ. In this regard, the answer is generated by executing the SPARQL
query converted from the predicted LF M̂ = gθ̂(M |Q,G) against the KG,

â = Execute(Convert(M̂)), (3)

where θ̂ denotes the optimized parameter of g, Execute(·) is the query execution function, and
Convert(·) represents the conversion function transforming LF M̂ to SPARQL query. Similar
to the direct generation approach, the semantic parsing approach usually predicts with a retrieved
subgraph relevant to the query as the used KG is large (Yu et al., 2022; Luo et al., 2023b).

Given a query Q, these two strategies retrieve question-relevant context C, leading to a set of reasoning
paths Z . Subsequently, the answer A can be directly (Z/C −→ a) or indirectly (Z/C −→ m −→ a)
produced with these reasoning paths or context. Here, the reasoning path z ∈ Z is formatted as a
series of directed relations and the corresponding entities: z = e0

r1−→ e1
r2−→, . . . ,

rk−→ ek with the i-th
entity ei ∈ E and the i-th relation ri ∈ R. For instance, z = The Baltimore Fight Song fight song−−−−−−−→
Baltimore Ravens championships−−−−−−−−−−→ Super Bowl XXXV, Super Bowl XLVII means that “Baltimore
Fight Song” is the fight song of the team “Baltimore Ravens”, and “Baltimore Ravens” is the
champion of “Super Bowl XXXV” and “Super Bowl XLVII”.

3 METHOD

3.1 MOTIVATION

The KBQA task is challenging for LLMs (Luo et al., 2023a;b) due to the fact that completing KBQA
requires complex reasoning. In this regard, one promising approach is to fine-tune LLMs to promote
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Figure 2: Causal graph of the answer generation process in KBQA. Each node represents a random
observable, where G, Q,C, Z,A,M are knowledge graph, question, context, reasoning path, answer,
and logical form, respectively.

their performance. However, fine-tuning LLMs with limited data to accomplish a complex task would
be challenging. To this end, we revisit the processes widely adopted to accomplish KBQA tasks,
aiming to simplify the KBQA task for LLM fine-tuning.

For direct answer-generation approach, we can directly generate the answer by training a pre-
dictor fθ(A|Q,G) to approach the target distribution P (A|Q,G) using the objective function in
Eq. (1). As it is challenging to fine-tune LLMs with limited data for complex tasks, we aim to
simplify the task. In this regard, the factorization approach used in causal inference provides a
straightforward approach (Peters et al., 2017). The answer-generation process can be formalized by
a causal graph (Peters et al., 2017), as depicted in Figure 2. Based on the graph, we can factorize
the probability of generating answers P (A|Q,G) using the independence between variables. Given
the causal graph formalizing the answer-generation process, we factorize the joint probability of all
variables as follows,

P (Q,G, C, Z,A) = P (Q)P (G)P (C|Q,G)P (Z|C)P (A|Q,Z), (4)

where the input query Q and the knowledge base G are the causes of the context C ⊂ G, P (C|Q,G)
denotes the mechanism of retrieving question-relevant context over the knowledge base, P (Z|C) is
the mechanism to generate reasoning paths Z, and P (A|Q,Z) stands for the mechanism of reasoning
the answer A based on the question and reasoning paths. Note that we omit the logical form random
variable M when considering the direct answer generation approach.

According to the factorization above and using the chain rule of probabilities, we can rewrite the
probability of generating answer P (A|Q,G) as follows2,

P (A|Q,G) =
∑
Z

P (A|Q,Z)︸ ︷︷ ︸
reason

∑
C

P (Z|C)︸ ︷︷ ︸
reformulate

P (C|Q,G)︸ ︷︷ ︸
retrieve

, (5)

where we marginalize over the context C and the reasoning path Z. The factorization is intuitive.
Specifically, we can reason about the answer using the query and reasoning path, i.e., P (A|Q,Z).
This is based on the fact that we can reformulate the retrieved context into a specific type of reasoning
path using P (Z|C). Here, the premise is that we can retrieve query-relevant context from the
knowledge base using the input query, i.e., P (C|Q,G).
For logical form-generation approach, we can decompose the logical form (LF)-generation process
using the causal graph in Figure 2 by omitting the answer A. Based on the graph, we can factorize
P (M |Q,G), i.e., the probability of generating LFs. To this end, we first factorize the joint probability
of all variables as follows,

P (Q,G, C, Z,M) = P (Q)P (G)P (C|Q,G)P (Z|C)P (M |Q,Z), (6)

where the mechanism of retrieving question-relevant context over the knowledge base P (C|Q,G)
and the mechanism to generate reasoning paths Z using the context P (Z|C) are the same as those
under the direct answer-generation approach, and P (M |Q,Z) stands for the mechanism of reasoning
the LF M based on the question and reasoning paths. Then, we have an intuitive decomposition

P (M |Q,G) =
∑
R

P (M |Q,Z)︸ ︷︷ ︸
reason

∑
C

P (Z|C)︸ ︷︷ ︸
reformulate

P (C|Q,G)︸ ︷︷ ︸
retrieve

. (7)

According to Eq. (7), we can reason about LFs using P (M |Q,Z), where we reformulate the
retrieved context into reasoning paths using P (Z|C). Here, the premise is that we can retrieve
query-relevant context using P (C|Q,G).

2Here, we consider the context and question as discrete variables.
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Factorization provides an alternative approach to decomposing complex KBQA tasks into simple
subtasks. Namely, we can decompose the objectives of these two strategies into three subtasks:
reasoning, reformulating, and retrieving. Moreover, the objectives of reformulating and retrieving are
the same for the direct answer-generation approach and the logical-form generation approach.

3.2 OBJECTIVE OF REASONING MODEL

LLMs have achieved exciting success in various reasoning tasks. Thus, we employ an open-source
LLM to realize the reasoning model following previous work (Luo et al., 2023a;b). Inspired by previ-
ous work (Yu et al., 2022), we encourage LLMs to generate answers and logical forms simultaneously.
This also aligns well with our factorization perspective, as these two approaches share the same two
sub-objectives, i.e., retrieving and reformulating.

According to Eq. (5), we aim to construct a reasoning model to approach P (A|Q,Z) by

min
θr

KL(P (A|Q,Z), fθr (A|Q,Z)), (8)

where θr represents the learnable parameter of the reasoning model fθr to generate answers. Note
that the number of the candidate values of A is large, making the task challenging. In this regard, we
propose to transform the multiple-class classification task into a binary classification task by grouping
answer candidates/entities into one class with the rest of the candidates/entities into the other class.
This transforms the original answer A ∈ A to the label Ya(Q,Z) ∈ {0, 1}, where Ya(Q,Z) = 1
represents that the input pair (Q,Z) can derive the correct answer A and Ya(Q,Z) = 0 means the
failure of deriving the correct answer. We can rewrite the objective function in Eq. (8) as follows,

min
θr

La(θr) ≜ CE(fθr (A|Q,Z), Ya(Q,Z)), (9)

where CE(·, ·) denotes the cross-entropy loss. As LLMs are trained for generation tasks rather than
classification tasks, we map the label to the token space, i.e., Ya(Q,Z) = 1 is labeled as “yes” and
“no” for Ya(Q,Z) = 0.

For LF-generation approach, according to Eq. (7), we aim to construct a reasoning model to estimate
P (M |Q,Z) by

min
θr

KL(P (M |Q,Z), fθr (M |Q,Z)), (10)

where θr represents the learnable parameter of the reasoning model fθr to generate LFs. To fine-tune
LLMs, we realize the objective in Eq. (10) using the widely adopted objective of next-token prediction
with LF as the ground-truth label,

min
θr

Lm(θr) ≜ − log

|M |∏
i=1

fθr (Mi|Q,Z,M0:i−1), (11)

where we use M to represent M(Q,Z) for brevity and Mi denotes the i-th token in the LF M . Thus,
we can fine-tune LLMs to construct a reasoning model using the following objective,

min
θr

Lr(θr) ≜ La(θr) + Lm(θr). (12)

3.3 OBJECTIVE OF THE REFORMULATING MODEL

According to Eq. (5), we aim to reformulate the context into reasoning paths to approach P (Z|C) by

min
w

KL(P (Z|C), hw(Z|C)), (13)

where C denotes the retrieved context or subgraph and hw is the reformulating model parameterized
with w. In KBQA, reformulating context into a reasoning path can be realized in a handcrafted manner.
Namely, we can realize P (Z|C) in a parameter-free scheme by designing a rule of transformation.
For instance, we can design a template to reformulate the given context into a reasoning path.
Consequently, we have KL(P (Z|C), hw(Z|C)) = 0, as w = ∅ is an optimal solution. Thus, to
enable the translation of context into reasoning paths, we propose a deterministic algorithm that
operates without necessitating model training.

For instance, we can reformulate the context as follows (more details about the reasoning path
template can be found in Appendix B.). Note that not all reasoning paths can lead to the answer.
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Retrieved context:
(Penn State, contained by, State College), (Penn State, contains, Beaver Stadium),
(Penn State, colors, Royal blue and white), (State College,contained by,Pennsylvania),
(Beaver Stadium, contained by,University Park).

Reasoning paths:
z1 = Penn State contained by−−−−−−−−→ State College contained by−−−−−−−−→ Pennsylvania;
z2 = Penn State contains−−−−−→ Beaver Stadium contained by−−−−−−−−→ University Park.

3.4 OBJECTIVE OF THE RETRIEVING MODEL

According to Eq. (5), we aim construct a retriever to approach P (C|Q,G) by

min
θe

KL(P (C|Q,G), ϕθe(C|Q,G)), (14)

where C denotes a subgraph of the structured knowledge base and ϕθe is the retrieving model
parameterized with θe. The computational cost of traversing all subgraphs of a large-scale knowledge
base is prohibitive. Thus, we follow previous works to shrink the number of candidate contexts by
filtering out entities and their corresponding relations that lead to a large hop count (or path length).
This results in a small-scale graph Gs(Q), where Q represents the set constructed for the question Q.

Although filtering out a large number of entities and tuples leads to a small-scale graph G(Q), the
number of the rest of the entities could be large. Moreover, the small-scale graph G(Q) varies with
the query Q. Thus, it is challenging to train a classifier. In this regard, we propose to divide relations
O in G(Q) into two classes. Namely, we merge all answer-relevant relations into a single set3 and
merge the remaining relations into another class. Consequently, we can retrieve answer-relevant
context by determining whether a relation is answer-relevant. Note that the retrieved relation and its
corresponding subject and object entities are used to construct the set of answer-relevant contexts.
Thus, we can rewrite the objective of the retrieving model

min
θe

CE(ϕθe(Q,Gs(q), O), Ye(Q,O)), (15)

where Ye(Q,O) ∈ {0, 1} stands for the label of the relation O. Namely, Ye(Q,O) = 1 represents
that the relation O is answer-relevant, while Ye(Q,O) = 0 means that the relation will not be included
in the context. The retrieving task is a traditional binary classification task. Thus, we propose to train
a relatively small model, e.g., T5, rather than fine-tuning LLMs to construct the retrieving model.

3.5 DISCUSSIONS

We find that ROG (Luo et al., 2023b) also formally employs the concept of reasoning path, which
is regarded as a natural baseline of our method. Mathematically, by assuming that the generation
of the answer A to the question Q is independent of the question-relevant context C (Assumption
A1) and the generation of reason paths Z is independent of the knowledge base G (Assumption A2),
we show in Appendix C that our method intrinsically subsumes ROG as a special exemplar of itself.
Methodologically, in contrast to ROG which solves the optimization problem of Eq. (1) under the
EM framework, where a rigorous uniform assumption is explicitly imposed, our method, thanks to
the reformulation of P (A|Q,G) in Eqs. (5,7), can address the optimization problem of Eq. (1) by
aligning each subterm in P (A|Q,G) and fθ(A|Q,G) as shown in Eqs. (13,14,15).

3.6 OVERVIEW AND IMPLEMENTATION

Before verifying the effectiveness of our CoD, we give detailed implementations to ensure the
reproducibility of our experiments. We first fine-tune a small generative model ϕθe , i.e., T5, to
retrieve question-relevant context. Then, we reformulate the retrieved context using a hand-crafted
rule, which is parameter-free and achieved by the function h∅. Finally, we fine-tune LLMs fθr to
generate a logical form and identify whether the reasoning path can derive correct answers. Namely,

3For entity in the query, retrieval is completed by determining whether a relation should be involved.
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Table 1: Performance comparison of CoD with different baselines on the two KBQA datasets.

Backend Models Model WQSP CWQ
Hits@1(%) F1(%) Hits@1(%) F1(%)

Non-LLM

TIARA (Shu et al., 2022) 75.20 78.90 - -
UniKGQA (Jiang et al., 2023) 77.20 72.20 51.20 49.40

HGNet (Chen et al., 2022) 76.90 76.60 68.90 68.50

Prompting - LLM Only (GPT-3.5)
Zero-shot 54.37 52.31 34.87 28.32
Few-shot 56.33 53.12 43.21 35.85

CoT (Wei et al., 2022) 57.42 54.72 43.21 35.85

Prompting - LLM Only (GPT-4)
Zero-shot 62.32 59.71 42.71 37.93
Few-shot 68.85 62.71 51.52 43.70

CoT (Wei et al., 2022) 72.11 65.37 53.51 44.76

Prompting - LLM + KG (GPT-3.5) ToG (Sun et al., 2023) 75.13 72.32 57.59 56.96
FiDeLis(Sui et al., 2024) 79.32 76.78 63.12 61.78

Prompting - LLM + KG (GPT-4) ToG (Sun et al., 2023) 81.84 75.97 68.51 60.20
FiDeLis(Sui et al., 2024) 84.39 78.32 71.47 64.32

Finetuning - LLM + KG

DeCAF (Yu et al., 2022) 82.10 - 70.42 -
KD-CoT (Wang et al., 2023a) 73.70 50.20 50.50 -

RoG (Luo et al., 2023b) 83.15 69.81 61.39 56.17
CoD (ours) 86.54 81.24 77.42 65.70

for a given input query Q = q and a structured knowledge base G, our method CoD predicts by

Â,M̂ = fθr︸︷︷︸
reason

◦ h∅︸︷︷︸
reformulate

◦ϕθe(q,G)︸ ︷︷ ︸
retrieve

, (16)

where Â and M̂ denote the set of the predicted answers and LFs. This is because CoD generates a
pair of answers and LFs for each reasoning path. In this regard, we follow previous work to predict
answers using executable LFs with the highest confidence. If the predicted LFs M̂ is non-executable,
the predicted answer is constructed using all tail entities of reasoning paths with a = “yes”.

4 RELATED WORK

Knowledge retrieval in KBQA. In multi-hop KBQA scenarios, the goal of knowledge retrieval is to
extract relevant documents from the knowledge graph that are relevant to the given question. The
process begins with initial topic entities, from which it is necessary to select relevant neighboring
triples from large-scale KGs to form a path leading to the answer entities. Traditional lexical models
such as BM25 (Robertson et al., 2009) and PageRank (Sun et al., 2018; He et al., 2021) have been
extensively employed in KBQA. However, these methods often overlook the semantics of the question,
potentially impairing the efficiency and accuracy of retrieval. Recent advancements in the field have
seen the emergence of dense semantic retrieval models, including Dense Passage Retrieval(Karpukhin
et al., 2020), SimCSE (Gao et al., 2021), and Contriever (Izacard et al., 2021), employ bi-encoder
architectures to transform sentences into low-dimensional dense vectors.

Knowledge reasoning in KBQA. The reasoning stage in KBQA focuses on accurately identifying
answer entities by traversing relations starting from the topic entities. Early approaches (Miller
et al., 2016; Sun et al., 2018; 2019; Jiang et al., 2022) employ specialized network architectures
such as Key-Value Memory Networks to model the multi-hop reasoning process. Recent works
have proposed parsing questions into structured query languages (e.g., logical forms (LFs)) and
executing them via query engines to obtain answers (Lan et al., 2019; Das et al., 2021; Huang et al.,
2021). These methods typically use encoder-decoder architectures, such as T5 (Raffel et al., 2020), to
generate structured queries. In the area of LLMs, DECAF (Yu et al., 2022) combines LF and LLMs
reasoning to jointly generate answers. ChatKBQA (Luo et al., 2023a) generates logical forms through
fine-tuning LLMs based solely on the input question, and obtains the final answers through query
engines. The generated logical forms may be inaccurate. To effectively utilize the path information
of knowledge graphs, some studies use subgraphs obtained through retrieval for reasoning. TOG
(Sun et al., 2023) leverages the reasoning capabilities of open-source LLM, iteratively exploring
various possible reasoning paths on the KG through prompt tuning, until the LLM determines that
it can answer the question based on the current reasoning path. ROG (Luo et al., 2023b) proposes
a planning retrieval reasoning framework that synergizes LLM to achieve faithful and explainable
reasoning. More details can be found in Appendix E.
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5 EXPERIMENTS

5.1 SETUP

Datasets. We conduct experiments on two benchmark KBQA datasets: WebQuestionSP (WebQSP)
(Yih et al., 2016) and ComplexWebQuestions (CWQ) (Talmor & Berant, 2018), both available for
Freebase KB reasoning. The former contains 4,737 simple natural language questions with SPARQL
queries, while the latter contains 34,689 more complex questions with SPARQL queries. Training
and testing splits of each dataset follow the same setting as those of previous work (Yu et al., 2022).

Table 2: Perfor-
mance compari-
son of different
retrieval models
on the two KBQA
datasets.

Method WebQSP CWQ

top5-acc top10-acc top20-acc top5-acc top10-acc top20-acc

DPR (Karpukhin et al., 2020) 35.02 44.17 53.87 10.24 17.90 28.14
BM25 (Robertson et al., 2009) 15.25 20.50 22.70 2.77 6.59 11.95

Sentence-BERT 30.69 43.32 55.83 9.13 17.10 32.82
CoD (ours) 91.04 95.00 96.77 89.93 92.82 95.11

Evaluation Metrics. To obtain a fair comparison, we adopt the F1 score and Hits@1 to evaluate
the coverage of all answers and the single top-ranked answer, respectively, following previous work
(Shu et al., 2022; Yu et al., 2022). In terms of retriever comparison, top-k accuracy is utilized to
demonstrate whether the correct reasoning paths are searched within the top-k retrieval results.

Baselines. The baselines include: Non-LLMs-based method, Prompting-LLM-based method, and
Finetuning-LLM-based method. Below are the details. (1) Non-LLMs based method. TIARA
(Shu et al., 2022) improves question answering by using multi-grained retrieval and constrained
decoding to enhance the accuracy and robustness of KBQA. UniKGQA (Jiang et al., 2023) unifies the
retrieval and reasoning in both model architecture and parameter learning. HGNet (Chen et al., 2022)
proposes a hierarchical query graph generation approach to improve the performance of KBQA. (2)
Prompting-LLM-based method. ToG (Sun et al., 2023) involves prompting the LLM to iteratively
explore various potential reasoning paths within KGs until it concludes that the question can be
answered based on the retrieved path. FiDeLis (Sui et al., 2024) proposes a retrieval-exploration
method that incorporates knowledge graphs into LLMs, exploiting their deductive reasoning abilities
to enhance knowledge retrieval and reasoning. (3) Finetuning-LLM based method. KD-CoT (Wang
et al., 2023a) extracts relevant knowledge from KGs to create accurate reasoning paths for LLMs.
DeCAF (Yu et al., 2022) integrates semantic parsing with LLM reasoning to jointly produce answers,
achieving notable performance in KGQA tasks. RoG (Luo et al., 2023b) incorporates structural
knowledge from knowledge graphs (KGs) into neural networks during pretraining and fine-tuning.
We use Llama2-7B as the base LLM, with a batch size of 4 and a learning rate of 5e−5.

5.2 MAIN RESULTS

Table 1 illustrates the comparative performance of our method against various baseline methods.
CoD improves Hits@1 and F1 by over 2% and 2% on the WebQSP dataset and by over 5% and
1% on the CWQ dataset, respectively, compared to the previous optimal methods. The data clearly
indicate that our method surpasses all baselines, even those enhanced with GPT-4-turbo, including
strong contenders, like DeCAF and FiDeLis. Among all methods based on prompting, GPT-4-turbo
consistently delivers superior results compared to GPT-3.5-turbo, particularly on the CWQ dataset,
suggesting its enhanced ability to comprehend and process complex queries.

Among them, the non-LMs-based methods have limited performance improvements due to their
limited reasoning capabilities. The Prompting-LLM Only-based methods have poor performance due
to the lack of knowledge graphs. For the methods based on Prompting-LLM + KG and Finetuning-
LLM + KG, ROG combines LLM with KG to achieve faithful and explainable reasoning. FiDeLis
uses the retrieval-exploration-interactive framework to enable large models to perform KBQA in a
deductively verified manner, making full use of the advantages of LLM in logical reasoning, and it
achieves state-of-the-art performance. However, this kind of method may introduce too many paths,
resulting in limited performance improvement. Our method effectively improves the accuracy of
knowledge graph retrieval by designing an enhanced retriever.
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Table 3: Performance
evaluation of the pro-
posed CoD with differ-
ent hyperparameters, i.e.,
beam sizes.

Beam Size F1% on WQSP F1% on CWQ

Only LF Only RP CoD Only LF Only RP CoD

bm=1 71.60 74.21 75.56 44.55 45.65 62.13
bm=2 74.46 76.67 78.37 47.48 50.09 65.83
bm=3 75.04 77.26 80.87 48.25 50.67 68.27
bm=5 79.60 78.62 81.24 49.40 51.37 65.70

5.3 RETRIEVERS PERFORMANCE COMPARISON

Figure 3: The performance of CoD with only generated answers
(indicated as Ans. only) or LF executed answers (indicated as LF
only).

To verify the effectiveness of the
proposed retriever, we conducted
the experiments as shown in Ta-
ble 2. It can be seen that our
method is significantly higher
than DPR, BM25, and Sentence-
BERT. In other words, when per-
forming knowledge reasoning,
our method only needs to retrieve
a small number of paths to fully
include the required reasoning
paths, effectively reducing the
impact of unnecessary paths on
the performance of the model in
the reasoning stage. Addition-
ally, we paired CoD with differ-
ent retrievers. The corresponding results and analysis are presented in Appendix D.

5.4 ABLATION STUDIES

Beam size decides the maximum number of candidate outputs remaining after beam search. We
conduct experiments to verify its impact on model performance. As shown in Table 3, with the
increase in beam size, the performance of the model gradually improves, and when bm=3, the
performance gradually stabilizes. This suggests that, when generating answers through beam search,
LLM tends to provide the correct answer within the top-generated responses. To verify the significance
of the combination of LF-executed answers and generated answers in CoD, we conducted ablation
studies with results in Figure 3 when bm=5, where the performance of joint utilization surpasses
that of either the answer-only or LF-only approaches. The effectiveness is more distinct for the
CWQ dataset, indicating robustness when encountering complicated KB questions. Additionally,
experiments on the impact of different prompt templates and robustness analysis are presented in
Appendix D.

6 CONCLUSION

In this paper, we present Chain-of-Decomposition (CoD), a novel framework that addresses the chal-
lenges of adapting large language models (LLMs) to Knowledge Base Question Answering (KBQA).
Based on our causal graph, we factorize the answer-generation process and isolate computation-
heavy retrieval and rule-based reformulation from LLM reasoning. We decompose KBQA into
three modular steps—an LLM-free retrieval module, a parameter-free reformulation step, and a
lightweight LLM-based reasoning module— significantly reduce task complexity and enable efficient
fine-tuning of LLMs. Experiments on benchmarks demonstrate that Llama-2 7B fine-tuned with
CoD outperforms strong baselines, including GPT-4 augmented with retrieved knowledge, achieving
state-of-the-art performance. The efficacy of the proposed CoD highlights the importance of task
decomposition in enhancing LLM reasoning capabilities for complex reasoning tasks.

Limitation. While CoD achieves notable advancements, it has limitations. We solely employ Llama-
2 7B as the base LLM, overlooking more advanced models like Llama-3 (Grattafiori et al., 2024),
QWen, and DeepSeek-R1 (Guo et al., 2025). Exploring these advanced LLMs to further improve
CoD’s performance is a promising direction for future work.
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REPRODUCIBILITY STATEMENT

We outline the pipeline of our proposed method in Fig. 1 and provide implementation details in
Appendix B. Key data and settings are also included in Appendix A for reference.
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Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. arXiv
preprint arXiv:2004.04906, 2020.

10

https://arxiv.org/abs/2005.14165
https://openreview.net/forum?id=Z63RvyAZ2Vh


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yunshi Lan, Shuohang Wang, and Jing Jiang. Knowledge base question answering with topic units.
2019.

Xingxuan Li, Ruochen Zhao, Yew Ken Chia, Bosheng Ding, Lidong Bing, Shafiq Joty, and Soujanya
Poria. Chain of knowledge: A framework for grounding large language models with structured
knowledge bases. arXiv preprint arXiv:2305.13269, 3, 2023.

Haoran Luo, Zichen Tang, Shiyao Peng, Yikai Guo, Wentai Zhang, Chenghao Ma, Guanting Dong,
Meina Song, Wei Lin, et al. Chatkbqa: A generate-then-retrieve framework for knowledge base
question answering with fine-tuned large language models. arXiv preprint arXiv:2310.08975,
2023a.

Linhao Luo, Yuan-Fang Li, Gholamreza Haffari, and Shirui Pan. Reasoning on graphs: Faithful and
interpretable large language model reasoning. arXiv preprint arXiv:2310.01061, 2023b.

Alexander Miller, Adam Fisch, Jesse Dodge, Amir-Hossein Karimi, Antoine Bordes, and Ja-
son Weston. Key-value memory networks for directly reading documents. arXiv preprint
arXiv:1606.03126, 2016.

Barlas Oguz, Xilun Chen, Vladimir Karpukhin, Stan Peshterliev, Dmytro Okhonko, Michael
Schlichtkrull, Sonal Gupta, Yashar Mehdad, and Scott Yih. Unik-qa: Unified representations
of structured and unstructured knowledge for open-domain question answering. arXiv preprint
arXiv:2012.14610, 2020.

OpenAI. GPT-4 technical report. CoRR, abs/2303.08774, 2023. doi: 10.48550/ARXIV.2303.08774.
URL https://doi.org/10.48550/arXiv.2303.08774.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser
Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Christiano, Jan
Leike, and Ryan Lowe. Training language models to follow instructions with human feedback.
In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.),
Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information
Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December
9, 2022, 2022a. URL http://papers.nips.cc/paper_files/paper/2022/hash/
b1efde53be364a73914f58805a001731-Abstract-Conference.html.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser
Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Christiano, Jan
Leike, and Ryan Lowe. Training language models to follow instructions with human feedback.
In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.),
Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information
Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December
9, 2022, 2022b. URL http://papers.nips.cc/paper_files/paper/2022/hash/
b1efde53be364a73914f58805a001731-Abstract-Conference.html.

Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen, Jiapu Wang, and Xindong Wu. Unifying large
language models and knowledge graphs: A roadmap. IEEE Trans. Knowl. Data Eng., 36(7):
3580–3599, 2024. doi: 10.1109/TKDE.2024.3352100. URL https://doi.org/10.1109/
TKDE.2024.3352100.

Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Elements of causal inference: foundations
and learning algorithms. The MIT Press, 2017.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Stephen Robertson, Hugo Zaragoza, et al. The probabilistic relevance framework: Bm25 and beyond.
Foundations and Trends® in Information Retrieval, 3(4):333–389, 2009.

11

https://doi.org/10.48550/arXiv.2303.08774
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://doi.org/10.1109/TKDE.2024.3352100
https://doi.org/10.1109/TKDE.2024.3352100


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Apoorv Saxena, Adrian Kochsiek, and Rainer Gemulla. Sequence-to-sequence knowledge graph
completion and question answering. arXiv preprint arXiv:2203.10321, 2022.

Yiheng Shu, Zhiwei Yu, Yuhan Li, Börje F Karlsson, Tingting Ma, Yuzhong Qu, and Chin-Yew Lin.
Tiara: Multi-grained retrieval for robust question answering over large knowledge bases. arXiv
preprint arXiv:2210.12925, 2022.

Yuan Sui, Yufei He, Nian Liu, Xiaoxin He, Kun Wang, and Bryan Hooi. Fidelis: Faithful reasoning in
large language model for knowledge graph question answering. arXiv preprint arXiv:2405.13873,
2024.

Haitian Sun, Bhuwan Dhingra, Manzil Zaheer, Kathryn Mazaitis, Ruslan Salakhutdinov, and
William W Cohen. Open domain question answering using early fusion of knowledge bases
and text. arXiv preprint arXiv:1809.00782, 2018.

Haitian Sun, Tania Bedrax-Weiss, and William W Cohen. Pullnet: Open domain question answering
with iterative retrieval on knowledge bases and text. arXiv preprint arXiv:1904.09537, 2019.

Jiashuo Sun, Chengjin Xu, Lumingyuan Tang, Saizhuo Wang, Chen Lin, Yeyun Gong, Heung-Yeung
Shum, and Jian Guo. Think-on-graph: Deep and responsible reasoning of large language model
with knowledge graph. arXiv preprint arXiv:2307.07697, 2023.

Alon Talmor and Jonathan Berant. The web as a knowledge-base for answering complex questions.
2018.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Keheng Wang, Feiyu Duan, Sirui Wang, Peiguang Li, Yunsen Xian, Chuantao Yin, Wenge Rong, and
Zhang Xiong. Knowledge-driven cot: Exploring faithful reasoning in llms for knowledge-intensive
question answering. arXiv preprint arXiv:2308.13259, 2023a.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023b. URL https://openreview.net/
forum?id=1PL1NIMMrw.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.),
Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information
Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December
9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html.

Yike Wu, Nan Hu, Guilin Qi, Sheng Bi, Jie Ren, Anhuan Xie, and Wei Song. Retrieve-rewrite-answer:
A kg-to-text enhanced llms framework for knowledge graph question answering. arXiv preprint
arXiv:2309.11206, 2023.

Wen Tau Yih, Matthew Richardson, Chris Meek, Ming Wei Chang, and Jina Suh. The value of
semantic parse labeling for knowledge base question answering. 2016.

Donghan Yu, Sheng Zhang, Patrick Ng, Henghui Zhu, Alexander Hanbo Li, Jun Wang, Yiqun Hu,
William Wang, Zhiguo Wang, and Bing Xiang. Decaf: Joint decoding of answers and logical
forms for question answering over knowledge bases. arXiv preprint arXiv:2210.00063, 2022.

12

https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

APPENDIX

A SETTING OF KNOWLEDGE BASE QUESTION ANSWERING

Knowledge base question answering (KBQA) is a complex task that requires factual knowledge and
deep reasoning to accomplish accurately. In KBQA, factual knowledge typically is in the form of
a set of triples, i.e., subject entity, object entity, and the relation of these two entities. The deep
reasoning refers to the fact that the input query typically requires complicated multi-hop reasoning.
Namely, on the knowledge graph G, the answer entities are multiple hops away from the topic entities
mentioned in the natural language query.

There are mainly two datasets used in the literature, i.e., WebQuestionSP (WebQSP) (Yih et al., 2016)
and Complex WebQuestions (CWQ) (Talmor & Berant, 2018). These two datasets result from the
Freebase (Bollacker, 2008) that contains around 88 million entities, 20 thousand relations, and 126
million triples. The data split strategy is the same as previous work (Sun et al., 2018; Luo et al.,
2023b). Specifically, 2, 826 samples are used for training, while 1, 628 is used for testing on the
WebQSP dataset. For CWQ, we leverage 27, 639 samples for model training and 3, 531 for testing.
Here, the sample comprises a pair of the input query and the corresponding answers4.

These two datasets contain up to 4-hop questions, which require deep reasoning. The deep reasoning
is challenging even for large language models (LLMs). For instance,

Query:
Which book written by the author who married the actress starring in the movie directed by the director
who won an Oscar for a movie starring Tom Hanks?

Multi-hop reasoning:
Tom Hanks starred in−−−−−−−→ Forrest Gump directed by−−−−−−−→ Robert Zemeckis married to−−−−−−−→
Richard Matheson author of−−−−−−→ I Am Legend

We can see that a 4-hop question is challenging even for humans.

B TEMPLATE DESIGN OF REASONING PATH

According to our factorization, we show that the reformulating model could be handcrafted rules,
leading to a parameter-free algorithm. Namely, we can design a template to convert the retrieved
context into the required reasoning paths. Here, we provide details for the template design.

For the retrieved context, i.e., a set of triples, we group triples into four classes according to the
number of hops. Then, we determine a series of candidate reasoning paths based on the principle
of whether the head entity in the i-th hop is consistent with the tail entity in the i+ 1-th hop. The
overview of the reformulating model can be found in Algorithm 1.

Algorithm 1 Extract Reasoning Path for Input Query

1: procedure EXTRACT REASON PATH(data)
2: t← data[“triplets′′]
3: # Link the triplets
4: linked t← LINK TRIPLETS(t)
5: # Generate reasoning paths
6: reason p← GENERATE PATH(linked t)
7: # Replace entity indexes with entity names
8: new path← GENERATE WITH NAME(reason p)
9: return new path

10: end procedure

4In these two datasets, the SPARQL query is also provided. Thus, we can convert the SPARQL of each input
query into logical forms.
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In our experiments, the retrieval model can filter out most irrelevant relations. Namely, we have a
limited number of tuples in each group with the same hop. Moreover, the number of tuples that link
head-to-tail entities between different groups is also usually limited. Thus, the reformulating model
typically results in a limited number of reasoning paths, i.e., less than 10.

C MATHEMATICAL CONNECTION TO ROG

We construct a general causal graph by rethinking the widely adopted approaches to knowledge base
question answering (KBQA). Namely, the causal graph formulates the generation process of answer
A or logical form M for a given input query Q. Our factorization approach results from the general
causal graph. Thus, our factorization is a general approach that could be realized using different
assumptions.

We show that, under some assumptions, a recent outstanding approach, ROG (Luo et al., 2023b), for
KBQA is a special case of our factorization. To clarify the connection, we first list two assumptions
used in ROG.
Assumption 1. When conditioning on the context Z, the generation of the answer A to the query Q
is independent of the question-relevant context C.

This assumption is intuitive, as the query and reasoning path can determine the answer.
Assumption 2. The generation of reason paths Z is independent of the knowledge base G conditioning
on the input query Q.

However, this assumption could be violated in many practical scenarios. In particular, the reasoning
path is based on the knowledge graph (or knowledge base) G. Namely, the reasoning path usually
varies with the utilized knowledge graph G. Thus, the assumption could be relatively strong for many
real-world scenarios.

Based on these two assumptions, we can show that our factorization∑
Z P (A|Q,Z)

∑
C P (Z|C)P (C|Q,G) gives a general formulation and the objective used

in ROG
∑

Z P (A|Q,G, Z)P (Z|Q) is a special case of our factorization.

∑
Z

P (A|Q,Z)
∑
C

P (Z|C)P (C|Q,G)

=P (A|Q,G) (17)

=
∑
Z

∑
C

P (A,Z,C|Q,G) (18)

=
∑
Z

∑
C

P (A|Q,G, Z, C)P (Z,C|Q,G) (19)

=
∑
Z

∑
C

P (A|Q,G, Z, C)P (C|Q,G, Z)P (Z|Q,G) (20)

=
∑
Z

∑
C

P (A|Q,G, Z)P (C|Q,G, Z)P (Z|Q,G) (21)

=
∑
Z

∑
C

P (A|Q,G, Z)P (C|Q,G, Z)P (Z|Q) (22)

=
∑
Z

[∑
C

P (C|Q,G, Z)

]
P (A|Q,G, Z)P (Z|Q) (23)

=
∑
Z

P (A|Q,G, Z)P (Z|Q), (24)

where Eq. (21) holds based on Assumption 1, Eq. (22) holds based on the Assumption 2, and Eq.
(24) is exactly the learning objective of ROG (Luo et al., 2023b). Thus, ROG is a special case of our
factorization under Assumptions 1 and 2.
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D ADDITIONAL EXPERIMENTS

In this section, we further present the experimental results and in-depth analysis for additional
research questions.

Robustness analysis. To evaluate the robustness of the proposed CoD method, we conduct ex-
periments using different backbone LLMs. As shown in Table 4, we extend our evaluation to two
additional base LLMs: Llama3-8B and Qwen2.5-7B. These models are fine-tuned within the CoD
framework and evaluated on two knowledge-based question answering (KBQA) benchmarks, namely
WebQuestionsSP (WQSP) and ComplexWebQuestions (CWQ). The results indicate that CoD main-
tains robust performance across different LLMs, underscoring its adaptability and generalizability.

Table 4: The performance of CoD across different backbone LLMs on the WQSP and CWQ datasets.

Model WQSP CWQ
F1 Hits@1 F1 Hits@1

Llama2 7B 81.24 86.54 65.7 77.42
Llama3 8B 81.03 86.29 79.61 79.33
Qwen2.5 7B 80.39 85.42 66.53 77.85

Table 5: The impact of various retrievers on the performance of the CoD model on the WQSP and
CWQ datasets.

Model WQSP CWQ
F1 Hits@1 F1 Hits@1

CoD (DPR) 78.71 83.37 60.13 73.15
CoD (BM25) 77.93 81.33 59.52 71.83
CoD (SentenceBERT) 83.52 60.62 66.53 74.02
CoD (Ours) 80.39 86.54 65.70 77.42

Table 6: The impact of different prompt templates on the performance of the CoD model.

Model WQSP CWQ
F1 Hits@1 F1 Hits@1

CoD (Direct Generaton) 77.53 82.52 62.77 75.16
CoD (CoT) 79.36 86.15 64.94 76.39
CoD (Ours) 81.24 86.54 65.70 77.42

The impact of different retrievers. To investigate the impact of different retrievers on the perfor-
mance of the CoD model, we conduct experiments as shown in Table 5. The results demonstrate
that CoD achieves promising performance when using our specially designed retriever. This finding
underscores the importance of accurate retrieval paths for the effectiveness of our approach. The com-
parative analysis with other popular retrievers (DPR, BM25, and Sentence-BERT) further validates
the necessity of our retrieval component design.

The impact of different prompt templates. To investigate the impact of different prompt templates
on the CoD model’s performance, we conduct experiments as shown in Table 6, we evaluate three
answer generation templates using the retrieved reasoning paths: direct generation, Chain-of-Thought
(CoT), and our proposed deductive reasoning approach. The choice of prompt template indeed has a
impact on the performance of the CoD method. Both Chain-of-Thought (CoT) and our deductive
reasoning approach outperform direct generation. Furthermore, our method demonstrates slightly
superior performance to CoT and exhibits better robustness and stability across different templates.
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E ADDITIONAL RELATED WROK

To effectively utilize the path information of knowledge graphs, some studies use subgraphs obtained
through retrieval for reasoning. PullNet (Sun et al., 2019) retrieves a relevant subgraph from the KB
and uses graph neural networks to predict answer entities within these subgraphs. UniKGQA (Oguz
et al., 2020) unifies the knowledge base retrieval and reasoning processes into a single model with
PLM, achieving STOA performance. (Li et al., 2023) break down questions into subquestions and
generate SPARQL queries using a fine-tuned llama model (Touvron et al., 2023) to fetch knowledge
from KGs. (Wu et al., 2023) make full use of the retrieved knowledge of the knowledge graph through
steps such as Retrieve-Rewrite-Answer and fine-tuning the large model to obtain the final answer.
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