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ABSTRACT

In this paper, we present a novel multi-agent trajectory prediction model, which
discovers interpretable relations among agents and prioritize agent’s motion. Dif-
ferent from existing approaches, our interpretable design is inspired by the fun-
damental navigation and motion functions of agent movements, which represent
’where’ and ’how’ the agents move in the scenes. Specifically, it generates the
relation matrix, where each element indicates the motion impact from one to an-
other. In addition, in highly interactive scenarios, one agent may implicitly gain
higher priority to move, while the motion of other agents may be impacted by
the prioritized agents with higher priority (e.g., a vehicle stopping or reducing its
speed due to crossing pedestrians). Based on this intuition, we design a novel
motion prioritization module to learn the agent motion priorities based on the in-
ferred relation matrix. Then, a decoder is proposed to sequentially predict and
iteratively update the future trajectories of each agent based on their priority or-
ders and the learned relation structures. We first demonstrate the effectiveness of
our prediction model on simulated Charged Particles (Kipf et al., 2018) dataset.
Next, extensive evaluations are performed on commonly-used datasets for robot
navigation, human-robot interactions, and autonomous agents: real-world NBA
basketball (Yue et al., 2014) and INTERACTION (Zhan et al., 2019). Finally, we
show that the proposed model outperforms other state-of-the-art relation based
methods, and is capable to infer interpretable, meaningful relations among agents.

1 INTRODUCTION
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Figure 1: Different from the common paradigm on inferring relation for trajectory prediction, our
approach aims to learn interpretable relations, prioritize agent motions, and make in-order prediction
based on their priorities.

Multi-agent trajectory prediction is an essential component in a wide range of applications from
robot navigation to autonomous intelligent systems. While navigating in crowded scenes, au-
tonomous agents (i.e., robots and vehicles) not only themselves interact, but also should have
ability to observe others’ interactions and anticipate where other agents will move in near future.
This ability is crucial for autonomous agents to avoid collisions and plan meaningful machine-
human/machine-machine interactions.

Designing a robust and accurate trajectory prediction model has attracted much of recent research
efforts. In fact, meaningful reasoning about interactions among agents provides valuable cues to im-
prove the trajectory prediction accuracy, especially in highly interactive scenarios. However, how to
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learn/discover meaningful relations among agents from historical motion data to improve prediction
accuracy remains a challenging task in recent research. There is a large body of recent research fo-
cused on modeling interaction among agents for future trajectory prediction. Some notable research
in this field learn interaction features using advanced deep learning techniques such as graph neural
networks (Scarselli et al., 2008), social pooling mechanism (Alahi et al., 2016; Gupta et al., 2018),
or attention networks (Kamra et al., 2020). These works follow a common paradigm, as shown in
Figure 1a, to infer the relations among agents using their historical motions. The main limitation
of these approaches is that they lack a mechanism to learn the motion importance of each agent in
the scene. In realistically interactive scenarios, it is often that the agent movements implicitly imply
that an agent gains higher priority to decide where and when to move, their movements will impact
the others in the scene. For example, in driving scenarios, vehicles yield to crossing pedestrians
(higher prioritized agents). In the basket ball game, the other players’ movements are likely to be
conditioned (i.e., impacted ) by the ball-controlling offensive player.

To handle the aforementioned limitations, we propose a new approach, shown in Figure 1b, to prior-
itize each agent motion based on their interpretable relations. Our model first learns the interaction
among agents at each time-step. Inspired by the relation learning method (Fujii et al., 2021) for an-
imal movements, we design a inter-agent encoder that consists of two sub-encoders, each of which
represents innate movement and navigation capacities of agents. While the navigation encoder cap-
tures the agent relations based on the moving directions (i.e, where to move), the motion encoder
infers the relation based on the motion capacity (i.e., how to move). Next, the prioritization module
quantifies the importance score (i.e., priority) of each agent by measuring their motion impacts on
other agents. Based on the orders of priorities, sequential predictions are made to allow the predicted
future trajectories of agents with higher priorities to impact on the lower prioritized ones within their
relation structures. In summary, our contributions are:

• We propose a novel prediction pipeline with motion prioritization module to prioritize the impor-
tance of each agent based on its motion impacts on other agents within their interpretable relation
structures.

• We design an interpretable interaction encoder to capture the agent relations from both navigational
and motion perspectives. The relationships among agents are learned interpretably at each observed
time step to produce meaningful relation structures for prioritization task.

• We evaluate our prediction model on several highly interactive datasets: Charged Particles, NBA,
and INTERACTION. We show that the proposed model is able to learn meaningful interaction
features and outperforms state-of-the-art models on these datasets.

2 RELATED WORKS

Multi-Agent Trajectory Prediction Multi-agent trajectory prediction is an actively researched
problem due to its broad applications in robot planning (Schmerling et al., 2018), traffic predic-
tion (Liao et al., 2018), sport video analysis (Felsen et al., 2017). Recent research have focused on
modeling the relations among agents seeking to improve trajectory prediction. In general, existing
approaches employ common structures such as graph neural network, social-GAN (Mohamed et al.,
2020), attention network, transformer, etc. to learn agent interactions from their motions. Notably,
Kosaraju et al. (Kosaraju et al., 2019) on graph attention network (Veličković et al., 2017) to decide
how much information to share between agents. Kamra et al. (Kamra et al., 2020) developed a ded-
icated attention mechanism for trajectory prediction from the inductive bias of motion and intents.
Kipf et al. (Kipf et al., 2018) proposed neural relational inference (NRI) proposed by taking the
form of a variational auto-encoder;. Jiachen et al. (Li et al., 2020) improved NRI by using graphs
that evolve over time. Although these approaches can capture some interactions among agent, they
lack mechanism to reason the agent priorities, important feature cues to improve trajectory results.

Relation Discovery Another closely related research theme focuses on discovering the Granger-
causal (GC) relationship among agents. SENN (Alvarez Melis & Jaakkola, 2018) is the first self-
explanatory network, a class of intrinsically interpretable models, which explains the contributions
concepts (i.e., raw inputs) to predictions. SENN was applied to infer GC relationship via gener-
alized vector autoregression model (GVAR) (Marcinkevičs & Vogt, 2021), which captures the GC
relationship via coefficient matrices. These models have shown promising performances to learn
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Figure 2: (The overview of our prediction model. Our model consists of three main modules: Motion
Encoder (Section 3.1), Inter-agent Encoder (Section 3.3), and Decoder (Section 3.2) with Motion
Prioritization and Relation Inference (Section 3.4).

agent interaction in simulated environments, where the GC relationships are known and static. Re-
cently, ABM model (Fujii et al., 2021) was proposed to further extend GVAR model to capture
animal interactions such as approaching or repulsing. ABM relies on scientific knowledge and as-
sumes that if an agent goes straight then there is no interactions. For relation discovery in trajectory
prediction, (Makansi et al., 2021) analyzed feature attributes to provide insights on the impacts
of relation feature and discussed its links to causality inference. Recently, M2I (Sun et al., 2022)
learn to predict, but limits to pairs of relations, and only applicable for traffic scenes. Different from
these works, we build a new pipeline and extend relation modeling schemes to discover agent rela-
tions in real-world interacting scenarios. Based on the learned relation structures, agent motions are
prioritized for the purpose of future trajectory prediction.

3 METHODOLOGY

In this work, we tackle the problem of multi-agent trajectory prediction. Given the past trajectories
X = [X1, X2..., XN 2 RTo⇥d] 2 RN⇥To⇥d of N agents with d-dimensional spatial locations in the
past To time steps, we aim to predict their trajectories Y = [Y1, Y2, ..., YN 2 RTp⇥d] 2 RN⇥Tp⇥d

in the next Tp future time steps. The overview of our prediction model is shown in Figure 2. Our
model consists of three main modules: (1) Motion Encoder: encodes historical motion of each
agents. (2) Inter-agent Encoder: encodes interactions among agents; (3) Decoder: infer relations,
prioritize motion, sequentially predict future trajectories of agents. Next, we present the details of
each module.

3.1 MOTION ENCODER

The motion encoder p(h|X) captures the individual movement of agents by learning the hidden
motion feature h 2 RN⇥dh conditioned on X . We encode the hidden state of each agent i as:

ei = ReLU(Conv1D(Xi)) 2 RTo⇥C , (1)

[oti, h
t
i] = GRU(ei), h

t
i 2 Rdh , (2)

where ht
i is the hidden motion state of target agent i at current time step t, oti is the output feature of

GRU, C is the size of embedded feature ei.

3.2 MOTION DECODER

The motion decoder q(Ŷ |h) decodes the future trajectories of each agent i from the learned hidden
motion feature ht

i. We formulate this decoding process as:

[ot+1
i , ht+1

i ] = GRU(ht
i), (3)

[�µt+1
i ,�t+1

i , pt+1
i ] = fc(ot+1

i );µt+1
i = µt

i +�µt+1
i , (4)

Y t+1
i ⇠ N (µt+1

i ,�t+1
i , pt+1

i ) 2 Rdh , (5)
where fc is a fully connected layer. To cope with multi-modal nature of future trajectories, we predict
a bivariate Gaussian distribution N (µt

i,�
t+1
i , pti) in each future time step t 2 {t0 + 1, ..., t0 + Tp},
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where µt+1
i = (µx, µy)

t+1
i , �t+1

i = (�x,�y)
t+1
i , pti are the mean, standard deviation, and corre-

lation coefficient. We then randomly select K samples from the distribution for the final multiple
trajectories prediction. Due to complex interactions among agents, relying on historical motions is
not adequate for accurate predictions. Thus, in the next stages, we extend the decoder to incorporate
relation features from inter-agent encoder and from the motion prioritization module. The decoder
is formulated as q(Ŷ |h, za, zm), where za and zm are relation features from inter-agent encoder and
motion prioritization, which will be presented next.

3.3 INTER-AGENT ENCODER

The encoder pa(za,�|X), depicted in Figure 3, learns interpretable relation features za given
the past locations of all agents. It also produces relation matrices (i.e., coefficient matrices)
�, consisting of relation matrix �t

2 RN⇥N at each observed time step t 2 {t0 � To +
1, ..., t0}. �t

i,j is an asymmetric square matrix, which elements indicate the motion impact of
an agent on another. Thus, the value of �t

i,j is high if there is strong motion impact from
agent i to j. In other words, agent i contains rich information that improves future predic-
tion of agent j. Conversely, �t

i,j = 0 indicates no relation i ! j. The relation matri-
ces are learned during the training process via inducing sparsity loss, introduced in Section 3.4.
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Figure 3: The architecture of Inter-agent encoder.

To learn interpretable and meaningful relation
matrix, we design an disentangled inter-agent
encoder, which consists of an interaction-
based navigation encoder Fn(�n|X) and
an interaction-based movement encoder
Fm(�m|X). Our design is inspired by that
autonomous agents innately possess common
navigation and movement functions, which
enable them an ability to plan the future
movements. While the navigation encoder
captures the relation based on the future
directions of agents, the movement encoder
infers the relation based on the strength of
their movements. Specifically, we imple-
ment our inter-agent encoder following the
concepts of self-explanatory neural networks

SENN(Alvarez Melis & Jaakkola, 2018), and its extensions to to discover causal relationships
(GVAR (Marcinkevičs & Vogt, 2021), ABM (Fujii et al., 2021)). These networks consists of a link
function g(·), basis concepts  (x), and explainable function ✓(x) to each concept to the predictions.
The general form is:

f(x) = g(✓(x)1 (x)1, ..., ✓(x)u (x)u). (6)

In our work, we consider the concepts  (x) being motion feature hi, the relation matrix �t is the
result of explainable function ✓(x), and g(·) is the sum. Equation 6 can be written as:

zta,i =
t0X

t=t0�To+1

�tht
i + ✏t, zi 2 Rda . (7)

�t can be decomposed to �t
m and �t

n; that is �t = �t
m � �t

n, where � is element-wise mul-
tiplication, ✏t represent independent noise. Each matrix represents the agent relationships from
motion and navigational perspectives. Formally, �t

m and �t
m are learned from motion and naviga-

tion functions as: �t
m = F t

m(Xt) 2 RNdi⇥(N�1)di and �t
n = F t

n(u
t
n) 2 RNdi⇥(N�1)di , where

ut
n = [Xt, rt] 2 Rdu is the input feature, concatenating the observed location Xt of all agents and

its relative locations to others rt = [�Xi,j(j 6=i)]. Fm and Fn are neural networks. Equation 7 makes
our relation modeling to capture agent relations in each observed time step, which is different from
NRI (Kipf et al., 2018) and dNRI (Graber & Schwing, 2020). We note that ABM (Fujii et al., 2021))
also shares a similar structure, but with limitations that hinder the ability to extend SENN to work
in human interactive scenarios. The key differences are highlighted below:
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(1) ABM model designs a specific navigation function Fn to capture the relationship of few animal
species, where there relationship occurs within a close distance (i.e., local scope). Thus, this model
does not generalize well to other real-world applications, where the relation could be occurred in
further distance. In this work, we extend the navigation functions to captures relations in both local
and global scopes as: Fn(un) = &↵F l

n(u
l
n)+(1�&↵)F g

n(u
g
n), where F l

n and F g
n are local and global

navigation functions, which capture the relations within local areas and entire scene, respectively.
The contribution of each function is weighted by &↵, a sigmoid function with learnable parameter
↵; &↵ 2 [0, 1]. We present the implementation and impacts of these functions in the supplementary
material.

(2) While previous models (Fujii et al., 2021; Marcinkevičs & Vogt, 2021) infer the causal rela-
tionships without focusing on long-term trajectory prediction task. In contrast, our work focus on
learning interpretable relation, which is meaningful for motion prioritization in the later stage and
the entire pipeline is trained to improve the multi-step future prediction.

3.4 MOTION PRIORITIZATION

The motion prioritization module pm(zm, r|�, Ŷ ) learns to prioritize the impact of the agents based
on the learned relation matrix from Inter-agent Encoder. It also produces the future-trajectories
conditioned relational features zm for each agent. We present the details of each module below:

Future-Conditioned Relation Inference Given the learned relational matrix �t at each observed
time step t 2 {t0 � To + 1, ..., t0}, we quantify the relation matrix among agents S 2 RN⇥N as:

Si,j =
1

To

t0X

t0�To+1

(t, t0)(||�i,j ||
2
2), (8)

wr
i,j =

Si,jPP
j=0,j 6=i Si,j

;wi,j 2 [0, 1];
NX

j 6=i

wi,j = 1, (9)

where � = [�t0�To+1, ...,�t0 ], consisting the relation matrix at each observed time step, and �t =
�t

n � �t
m. Due to the dynamic movements of agents, the recent relation matrix is more relevant to

predict future time steps compared to those in further past. To achieve this, we design a temporal
kernel (t, t0) = &ar (1/|t0 � t| � dth) with &ar is a sigmoid function with gain ar. The kernel
emphasizes the relation feature as it closer to the current time step, and weaken those that is away.
Next, we construct the future-conditioned relation feature zm,i of target agent i as:

ĥj = GRU(Conv1D(Ŷj)) 2 Rdh , (10)

zm,i = wr
i,j ⇥ ĥj 2 Rdz . (11)

Motion Prioritization The intuition is that an agent gains higher priority when its motion is less
affected by other’s motion and more impacts on others. In fact, the impact score can be measured
from the relation matrix. We associate each agent with a priority score mi =

Pj=N
j=0,j 6=i Si,j . Based

on the priority score, we propose to predict future trajectories in order of their priorities. This is to
allow the predicted trajectories of higher prioritized agents have impacts on the ones with lower pri-
orities. Considering motion prioritization, we can extend the motion decoder as q(Ŷ |h, za, zm). In
fact, the predicted trajectories of each agent can be updated (i.e., refined) multiple times to encourage
the self-corrected among agent’s future trajectories and to fully utilize the future-conditioned rela-
tion features. To implement this idea, we iteratively decodes the future trajectories multiple times
defined by Ns 2 R. Intuitively, if Ns = 0, then there is no updates on predictions. In other words,
the motion prioritization does not have effects. Otherwise, there will be Ns loop over the prioritized
list O = {i, j, ..., N}, where mi � mj . The details of decoding procedure and the impacts of Ns

on prediction accuracy are presented in our supplementary material.
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Loss Function We jointly train the proposed models by using the following losses:

L(✓) =

TpX
Lpred(Ŷt, Yt) + �

ToX
Lsparsity(�), (12)

Lpred = mink(||Yi � Y k
i ||2), (13)

Lsparsity =
1

To
(↵||�||1 + (1� ↵)||�||2F ), (14)

where Lpred is the min-over-k mean-square-error (MSE) prediction loss, which encourages diver-
sities among K predictions sampled from the predicted Gaussian distribution. Lsparsity(�t) is
sparsity-inducing penalty term used to learn the relation matrix. In our implementation, we use the
elastic-net-style penalty term (Nicholson et al., 2017) (Equation 14) with ↵ = 0.5, and || · ||F is the
Frobenius norm.

4 EXPERIMENTAL RESULTS

We evaluate our model on simulated Charged Particles (Kipf et al., 2018) dataset and two complex
interaction datasets, which commonly favors the applications of robot navigation and autonomous
system: NBA (Yue et al., 2014) and INTERACTION (Zhan et al., 2019).

Charged Particles Charged particles (Kipf et al., 2018) is a simulated deterministic system, which
is controlled by simple physics rules. In each scene, there are 5 charged particles. Each particle has
either a positive or negative charge with equal probability. Particles with the same charge repel each
other, and vise versa. We set T = 100 and To = 80 for each scene. We generate 50K scenes for
training, and 10K each for validation and test respectively.

NBA Dataset This dataset contains tracking data from the 2012-2013 NBA season, and is pro-
vided in (Li et al., 2021). The dataset consist of trajectories of a ball and 10 players from both teams
(i.e., 5 players each team). We preprocess the data such that each scene has 50 frames and spans
approximately 8 seconds of play, and the first 40 frames are historic, i.e. T = 50 and To = 40.

INTERACTION It consists of different realistic and interactive driving scenarios in roundabout,
un-signalized intersection, signalized intersection, merging and lane changing. In total, the dataset is
collected from 11 locations using drones or fixed cameras. We follow the same train/validation/test
splits as proposed by (Zhan et al., 2019). We set To = 30 frames (3 seconds), Tp = 10 frames (1
second).

The evaluations are made in comparison with state-of-the-art models: Social-GAN (Gupta et al.,
2018), Fuzzy Query Attention (FQA) (Kamra et al., 2020), Dynamic Neural Relational Inference
(dNRI) (Graber & Schwing, 2020), and GRIN (Li et al., 2021). We evaluate our model using the
commonly-used metrics: Average Displacement Error (ADE) and Final Displacement Error (FDE),
which are the L2 distance between the ground truth and predicted trajectories, and the L2 distance
between the ground truth final destination and predicted final destination. Following GRIN (Li et al.,
2021), we report the best-of-100 displacement error of each trajectory/destination. We present the
details of comparison models and implementations in the supplementary material.

4.1 QUANTITATIVE RESULTS

We provide quantitative comparisons with related methods on Charged Particles and NBA datasets
in Table 1. We follow the same experiment setups used on GRIN (Li et al., 2021). Our approach
outperforms relation modeling methods (NRI (Kipf et al., 2018), dNRI (Graber & Schwing, 2020))
in ADE/FDE, which demonstrates the efficacy of discovering agent relations in each observed time
step. Additionally, our model also outperforms state-of-the-art model (Kamra et al., 2020) and
interpretable model (Li et al., 2021) on both datasets by large margins. It concludes that the proposed
prioritization module plays a pivot role in improving prediction accuracy. We perform the ablation
study (see Table 2) to investigate the impact of each model component. The brief description of
each module is as follows: E using only motion encoder/decoder, Fm is the motion encoder; Fn
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Model Charged Particles NBA
ADE/FDE ADE/FDE

NRI (Kipf et al., 2018) 0.63/1.30 2.10/4.56
dNRI (Graber & Schwing, 2020) 0.94/1.93 2.02/4.52

FQA (Kamra et al., 2020) 0.82/1.76 2.42/4.81
S-GAN (Gupta et al., 2018) 0.66/1.25 1.88/3.64

GRIN (Li et al., 2021) 0.52/1.09 1.72/3.59
Ours 0.42/0.72 1.66/2.89

Table 1: Comparisons with Other Relation based
Trajectory Prediction Models.

Components Charged Particles NBA
E Fm Fn Re Pri ADE/FDE ADE/FDE

X 0.51/0.96 1.83/3.46
X X 0.50/0.94 1.89/3.52
X X 0.46/0.88 1.87/3.50
X X X 0.45/0.87 1.87/3.50
X X X X 0.48/0.77 1.84/2.99
X X X X X 0.42/0.72 1.66/2.89

Table 2: Ablation Study on Charged Particles
and NBA Dataset.

(a) Ground truth (b) Prediction (c) Relation matrix (d) Ground truth

Figure 4: Qualitative results on Charged Particles dataset. Darker colours corresponds to weak
relation between agents in relation matrix.

is the navigation encoder, Re is future-conditioned relation inference, Pri is motion prioritization
module. We can see that the relation-based navigation encoder(i.e., E + Fn ) and relation-based
motion encoder (i.e., E + Fm ) show their positive impacts when reducing the prediction errors
on Charge Particles compared to the variant only individual motion encoder E. However, it is
interesting to observe that these variants worsen the results on NBA sport dataset. It is reasonable
because the NBA consist of mostly realistic and complex interactions among players. The players
make strategy movements based on the future movements of other higher prioritized players. This
explains why adding relational inference (i.e., module Re) to condition one player’s movements on
other’s future trajectories helps reduce the prediction errors. Interestingly, our full model with Pri

(last row) shows best results overall. This indicates that each player has different motion impact that
affects other players’ movements in NBA sport games.

4.2 QUALITATIVE RESULTS

We show the qualitative results consisting of the predicted trajectory and learned relation matrix.
In Figure 4 the charged particles preserve very interesting swirling interactions, such as among two
particles 2 and 4 in the first row, and two groups of swirling particles (1,4), and (0,3) in second
row. The learned relation matrices show that these interactions can be captured in the corresponding
squares (1,3), (3,1), (4, 2), (2,4) for the first scenario, and (3,0), (0,3) (1,4), (4,1) for the second
scenario. We note that the stronger relation among agents, the more yellowish (i.e., Sij ! 1) in the
corresponding square in the relation matrix, while blue (Sij ! 0) indicates there is no relation.

In NBA dataset, we observe several interesting interaction scenarios, shown in Figure 5. In the first
row, there are several notable interaction pairs (2,7), (0, 5), (4,9) captured in our relation matrix. It
can be observed that in this scenario player 7 is following along with player 2, moving from one
side to another side of the court. At the same time, players 5, 9 play defense against players 0 and
4, respectively. In second row, our model learns there are group of motion among players (0, 6, 8,
1, 7, 3), where player 0 has dominant motion impact on other players. In the last row, there are two

7



Under review as a conference paper at ICLR 2023

ADE FDE
Models 1/20/100 FDE 1/20/100

GRIN (Li et al., 2021) 1.80/1.27/0.67 3.31/2.33/1.26
Ours 1.46/1.16/0.61 2.69/2.11/1.22

Table 3: Quantitative results on INTERACTION datasets with different number of prediction sam-
ples 1/20/100.

main groups (1,7) and (2,9, 4 ,5 6,), especially player 9 plays large attention to player 2 as player 9
is defending against player 2, who is trying to score.

(a) Ground truth (b) Prediction (c) Priority map (d) Relation matrix

Figure 5: Qualitative results on NBA dataset. Offensive team (i.e., controlling the ball) is colored in
red, defensive team is colored in blue. The ball is colored in black. Solid line represents observed
trajectory. Dotted line represents predicted trajectory. In priority map, the larger circles represent
higher priority scores of agents.

4.3 RESULTS ON INTERACTION DATASET

In this section, we present our evaluation on INTERACTION dataset in comparisons with GRIN (Li
et al., 2021) on different number of prediction samples: 1, 20, 100, as reported in Table 3. Both mod-
els are trained with 100 epochs. Overall, our model outperforms GRIN model in both ADE/FDE in
different number of predicted trajectories. Finally, we provide visualization on different driving sce-
narios such as intersection, roundabout and merging in INTERACTION dataset, shown in Figure 6.
Generally, interaction types such as following, or yielding are very common in driving scenarios.
The results show that our model is able to capture these types of interactions in several scenarios.
As we can see that in first row (intersection scenarios), agent 2 is waiting for agent 0 and 1 to pass
before it can turn left. Meanwhile, agent 1 makes a slight interaction (i.e., yield) to agent 3. In the
roundabout scenarios (second row), the most notable interaction is between 2 and 4. In this scenario,
agent 2 is waiting for agent 4 to cross, before it can go into the roundabout section. In the last row,
there is interesting merging scenarios from 4 to 3. and agent 3 following 2 when there merge from
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(a) Trajectory prediction (a) Priority map (a) Relation matrix

Figure 6: Visualizations from scenarios: intersection (first row), roundabout (second row), and
merging (third row) in INTERACTION dataset.

3 to 2 lanes. In addition, the priority map for each scenario indicates the agent’s importance, which
provides meaning cues for improving trajectory prediction.

5 LIMITATIONS

Although we have demonstrated that the proposed model has successfully captured several inter-
action behavior in the given datasets, discovering causalities in realistic scenarios such as in au-
tonomous driving is still challenging. As a possible solution, exploring scientific knowledge about
traffics and the priorities of different agent types could be incorporated to improve the model accu-
racy. Secondly, our model discovers relations and prioritization from bird-eye views, which provides
a global-view relation agents. However, robots or ego-vehicles also observe the relations with sur-
rounding agent from the front camera views. Thus, the future work of considering fusing relations
from different views can be explored to strengthen the relation features. Lastly, discovering relation
and trajectory prediction (if the identity of subject is known, which is not the case in our work) can
raise issues regarding privacy sensitivity.

6 CONCLUSION

In this paper, we introduce a novel multi-agent trajectory prediction. Our model discovers inter-
pretable interaction feature from historical trajectories of all agents. We also developed motion
prioritization module, which prioritize those agents which have higher impacts on other future mo-
tions. Based on the prioritized scores, the decoder makes sequential prediction of each agents with
iterative predictions. In broader impacts, our prediction could be used to infer relations in other
scenarios such as human motions, or inferring robot-human interactions and predictions.
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In this supplementary material, we first provide the details of Inter-Agent encoder (Section 1).
We then discuss algorithm of future trajectory decoding process with motion prioritization (Sec-
tion 2). We further provide the implementation and training details of our model(Section 3) and
additional qualitative results (Section 4) on Charged Particles Graber & Schwing (2020), NBA Yue
et al. (2014), and INTERACTION Zhan et al. (2019) datasets.

1 DETAILS OF INTER-AGENT ENCODER

We introduced in our main paper that the Inter-Agent encoder consists of movement function Fm

and navigation function Fn, which capture agent relations from motion and navigation perspectives,
inspired by animal movements Nathan et al. (2008); Fujii et al. (2021). Specifically, each function
produces a relation matrix (�m and �n), where each element of �m (produced by Fm) represents
the amplitude of interaction, and each element of �n (produced by �n) represents the sign of in-
teractions (e.g., positive : two agents approach, negative: two agents repulse). To further extend
the model to generalize well to real-world robot applications, where the relation could be occurred
in further distance. We implement our navigation function to capture interaction from local and
global scopes, which capture the relations within local areas and entire scene, respective. Thus, Fn

can be decomposed into local function F l
n and global function F g

n . The local function F l
n capture

interaction with emphasies given a pre-defined thershold dignore as follows:

FL
N (un) = &ad(

1

||ri,j ||2
� dignore)(&av (v

i,j
�

1

2
)⇥ 2, (1)

while the global function capture the interaction in entire scene (without threshold).

FG
N (un) = &ad(

1

||ri,j || ⇤ 2
)(&av (v

i,j
�

1

2
)⇥ 2, (2)

where &ad and &av are sigmoid functions with gain ad and av , respectively; dignore is a threshold for
defining the local area. Thus, if the distance of two agents are greater than dignore, then there is no
interaction. ri,j = rj �ri is the relative distance of agent j to agent i with ri = (xi, yi)T . vi,j is the
velocity of agent i (i.e., vi) in the direction of rij , thus &av (v

i,j
�

1
2 ) ⇥ 2 sign represents of effects

of j on i. Then, the navigation function is formulated as:

FN (hi) = &↵F
L
N (hi) + (1� &↵)F

G
N (hi), (3)

where &↵ is a sigmoid function with learnable parameter &↵ 2 [0, 1].

In addition to our ablation studies presented in (Section 4, Table 2 in main paper), we validate
the impact of the proposed navigation functions on trajectory prediction. In this experiment, we
train/test the different variants of Inter-Agent encoder on Charged Particles dataset. As shown in
Table 1, we can observe that local navigation function F l

n and F g
n both improves the prediction

accuracy. This indicates the important roles of these functions in our model.

2 DETAILS OF DECODING ALGORITHM

We present the details of trajectory decoding process with motion prioritization in Algorithm 1. We
note that the predicted trajectories of each agent can be updated (i.e., refined) multiple times to
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Table 1: Comparisons with other relation based trajectory prediction models.

Model Charged Particles
ADE FDE

GRIN Li et al. (2021) 0.52 1.09
E 0.54 1.01

E + Fm 0.52 0.95
E + Fm + F l

n 0.50 0.94
E + Fm + F l

n + F g
n 0.48 0.93

Figure 1: Analysis of number of iterations (Ns on Charge Particles (left) and NBA (right).

encourage the correction among agent’s future trajectories and to fully utilize the future-conditioned
relation features. To implement this idea, we iteratively decodes the future trajectories multiple
times defined by Ns. For example, if the prioritized list of agent is O = {3, 2, 1, 4, 5}, with 3 is
the agent with highest priority, 5 is the lowest one. One iteration (i.e., Ns = 1) corresponds to a
sequential prediction in order of 3 ! 2 ! 1 ! 4 ! 5. This allows the predicted trajectories of
agent with higher priority influences on trajectories of agent with lower priority. We study the impact
of different number of iterations to update the future trajectories, shown in Figure 1. It is interesting
to observe that only one step of refinement is enough to achieve the best prediction on Charged
Particles. On NBA dataset, although we achieve best results at 5 iterations, the results also seem to
be saturated in the first iteration. This concludes that relational features has been fully shared from
the higher-prioritized agent to the lower one in list of prioritized agent in the first iteration.

Algorithm 1: Algorithm for trajectory prediction with motion prioritization
Input: List of relational matrices � = [�t0�To+1, . . . ,�t0 ] in To historical time-steps
Output: Predicted trajectories Y = [Y1, Y2, ..., YN 2 RTp⇥d] of all N agents in the next Tp

future time steps.
1 Calculate relational weights using Equation 9.
2 Estimate the priority score (i.e., impactness) for each agent. mi =

Pj=N
j=0,j 6=i Si,j

3 Rank agents with priority scores in descending order: O = {i, j, ..., N}: ordered list of agents,
where mi � mj .

4 for step in Ns do

5 for i in O do

6 Calculate relational feature fr
i for target agent i using Equation 10 and 11.

7 Update predicted trajectory
8 Y 0

i = fc(GRU([ĥi, zm,i])

9 .

3 IMPLEMENTATION DETAILS

We implement our model using PyTorch Pytorch (2018), which has BSD-style license. We train the
model with the Adam Zhang (2018) optimizer with the learning rate of 0.0001 and 100 epochs. The

2



Under review as a conference paper at ICLR 2023

t=10

t=60

t=120

t=240

(a) Ground truth (b) Prediction (c) Relation Matrix (d) Ground-truth

Figure 2: Additional qualitative results on Charge Particles dataset

batch size is 128. For all datasets, we implement the movement encoders with 2 MLP layers, each
has hidden size of 50. The hidden size of GRU in both encoders and decoders is 48. In the training
loss, we set ↵ = 0.5, and � = 1.

4 ADDITIONAL QUALITATIVE RESULTS

In this section, we present additional qualitative results on three datasets: Charged Particles, NBA,
INTERACTION.

Results on Charged Particles Figure 2 shows the trajectory prediction and the learned relation
matrix at different time steps. We observe that at different time steps, particles involves in different
interactions. For example, at t=10 and t=60, there are mainly swirling interactions between particles
(2, 4) and (1, 3). At t=120, particle 3 reaches toward particle 0, and then goes further away at t=240.
The learned relation matrix show that these subtle movements and interactions can be captured.

Results on NBA Next, we show predictions and priority scores of players in basketball games
(Figure 3). NBA dataset consists of highly complex interactions among players. In the first scenario,
player 0 and 4 in offensive team (red) have higher priority score (i.e., higher impact) as the player 0
is passing the ball to player 4; thus, their movements highly influence others’ motions. In the second
scenario, player 0 holding the ball but does not have large impact; this is because the motions of
the ball and player 0 is not changing much. Other players may suspect that the player 0 could pass
the ball to other offensive players. Thus, the movements of other players in the red team are more
important to observe. Interestingly, player 2 has the most critical move and thus it generates the
largest impact on other players.

Results on INTERACTION We further visualize the trajectory prediction, priority map, and re-
lation matrix for two interactive scenarios: merging and roundabout in Figure 4. We can see that our
model can capture intriguing relation matrix and learns the motion importance of agent effectively.
In the merging scenarios (top row), agent 2 gains highest importance as it is going to merge and have
high relations with others agents in front (agent 1), and behind (agent 3). In the roundabout scenario
(bottom row), we observe two groups: (1,3) and (0,2,4) on different sides of the roundabout. In-
terestingly, we can see that the relation between agent 0 (pedestrian) and agent 2 (vehicle) can be
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Ground truth Prediction Priority map Ground truth Prediction Priority Map

Figure 3: Qualitative results on NBA dataset. Offensive team (i.e., controlling the ball) is colored in
red, defensive team is colored in blue. The ball is colored in black. Solid line represents observed
trajectory. Dotted line represents predicted trajectory. In priority map, the larger circles represent
higher priority scores of agents.

pedestrian

(a) Trajectory prediction (b) Priority map (c) Relation matrix

merging

Figure 4: Additional qualitative results on INTERACTION dataset.

captured even though they still far-way. The agent 2 gains most motion priority within the group
(0,2,4) because it has relationship with both agent 4 and 0.
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