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Abstract

Recently, a series of studies have tried to extract
interactions between input variables modeled
by a DNN and define such interactions as
concepts encoded by the DNN. However, strictly
speaking, there still lacks a solid guarantee
whether such interactions indeed represent
meaningful concepts. Therefore, in this paper,
we examine the trustworthiness of interaction
concepts from four perspectives. Extensive
empirical studies have verified that a well-trained
DNN usually encodes sparse, transferable, and
discriminative concepts, which is partially aligned
with human intuition. The code is released at
https://github.com/sjtu-xai-lab/
interaction-concept.

1. Introduction
Understanding the black-box representation of deep neural
networks (DNNs) has received increasing attention in recent
years. Unlike graphical models with interpretable internal
logic, the layerwise feature processing in DNNs makes it
naturally difficult to explain DNNs from the perspective
of symbolic concepts. Instead, previous studies interpreted
DNNs from other perspectives, such as illustrating the visual
appearance that maximizes the inference score (Simonyan
et al., 2013; Yosinski et al., 2015), and estimating attribu-
tion/importance/saliency of input variables (Ribeiro et al.,
2016; Sundararajan et al., 2017; Lundberg & Lee, 2017a).
Zhou et al. (2015); Bau et al. (2017); Kim et al. (2018) visu-
alized the potential correspondence between convolutional
filters in a DNN and visual concepts in an empirical manner.

Unlike previous studies, a series of studies (Ren et al.,
2021a; 2023a; Deng et al., 2022a) tried to define and pro-
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pose an exact formulation for the concepts encoded by
a DNN. Specifically, these studies discovered that a well-
trained DNN usually encoded various interactions between
different input variables, and the inference score on a spe-
cific input sample could be explained by numerical effects
of different interactions. Thus, they claimed that each in-
teraction pattern was a symbolic concept encoded by the
DNN.

Specifically, let us consider a DNN given a sample with n

input variables N = {1, 2, ..., n} e.g., given a sentence with
five words “he is a green hand.” The DNN usually does
not use each individual input variable for inference inde-
pendently. Instead, the DNN lets different input variables
interact with each other to construct concepts for inference.
For example, a DNN may memorize the interaction between
words in S = {green, hand} with a specific numerical con-
tribution I(S) to push the DNN’s inference towards the
meaning of a “beginner.” Such a combination of words is
termed an interaction concept. Each interaction concept
S ⊆ N represents the AND relationship between input vari-
ables in S. Only the co-appearance of input variables in
S can make an interaction effect I(S) on the network out-
put. In contrast, masking any word in {green, hand} removes
the interaction effect I(S). In this way, Ren et al. (2021a)
proved that the inference score y of a trained DNN on each
sample can be written as the sum of effects of all potential
symbolic concepts S ⊆ N , i.e. y =

∑
S⊆N I(S).

However, the claim that “a DNN encodes symbolic con-
cepts” is too counter-intuitive. Ren et al. (2021a) just
formulated I(S) that satisfied y =

∑
S⊆N I(S). Current

studies have not provided sufficient support for the claim
that a DNN really learns symbolic concepts. In fact, we
should not ignore another potential situation that the de-
fined effect I(S) is just a mathematical transformation that
ensures the decomposition of network output into concepts
y =

∑
S⊆N I(S), rather than faithfully representing a mean-

ingful and transferable concept learned by a DNN.

Therefore, in this paper, we aim to give a quantitative verifi-
cation of the concept-emerging phenomenon, i.e., whether a
well-trained DNN summarizes transferable symbolic knowl-
edge from chaotic raw data, like what human brain does. Or
the defined effect I(S) is just a mathematical game without
clear meanings. To this end, we believe that if a well-trained
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Another salient interaction concept S = { gas tank, front wheel, front frame }
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Figure 1. Visualization of interaction concepts S extracted by PointNet on different samples in the ShapeNet dataset. The histograms
show the distribution of interaction effects I(S|x) over samples in the “motorbike” category, where S is extracted as a salient concept.

DNN really encodes certain concepts, then the concepts are
supposed to satisfy the following four requirements.

• Representing network inference using a few concepts.
If a DNN really learns symbolic concepts, then the DNN’s
inference on a specific sample is supposed to be concisely
explained by a small number of salient concepts, rather than
a large number of concepts, according to both Occam’s Ra-
zor and people’s intuitive understanding towards concepts.
In fact, the sparsity of concepts in a specific sample has
been discussed by Ren et al. (2021a). In this paper, we fur-
ther conduct extensive experiments on more diverse DNNs,
in order to verify that a well-trained DNN usually extracts
sparse concepts from each sample for inference.

• A transferable concept dictionary through different
samples. If a DNN can use a relatively small set D of
salient concepts, namely a concept dictionary, to approx-
imate inference scores on different samples in a category,
i.e., ∀x, y ≈

∑
S∈D I(S|x), then we consider the concept

dictionary D represents common features shared by differ-
ent samples in the category. Otherwise, if Ren et al. (2021a)
extract a fully different set of concepts from each different
sample in the same category, then these concepts probably
represent noisy signals. In other words, convincing concepts
must be stably extracted with high transferability through
different samples in the same category.

• Transferability of concepts across different DNNs. Sim-
ilarly, when we train different DNNs for the same task, dif-
ferent DNNs probably learn similar sets of concepts if they
really memorize the defined “concepts” as basic inference
patterns for the task.

• Discrimination power of concepts. Furthermore, if a
DNN learns meaningful concepts, then these concepts are

supposed to exhibit certain discrimination power in the clas-
sification task. The same concept extracted from different
samples needs to consistently push the DNN towards the
classification of a certain category.

To this end, we conducted experiments on various DNNs
trained on different datasets for classification tasks, in-
cluding tabular datasets, image datasets, and point-cloud
datasets. We found that all these trained DNNs encoded
transferable concepts. On the other hand, we also investi-
gated a few extreme cases, in which the DNN either col-
lapsed into simple linear models or failed to learn trans-
ferable and discriminative concepts. In sum, although we
cannot theoretically prove the phenomenon of the emer-
gence of transferable concepts, this phenomenon indeed
happened for most tasks in our experiments.

Contributions of this paper can be summarized as follows.
(1) Besides the sparsity of concepts, we propose three more
perspectives to examine the concept-emerging phenomenon
of a DNN, i.e., whether the DNN summarizes transferable
symbolic knowledge from chaotic raw data. (2) Extensive
empirical studies on various tasks have verified that a well-
trained DNN usually encodes transferable interaction con-
cepts. (3) We also discussed three extreme cases, in which
a DNN is unlikely to learn transferable concepts.

2. Related works
2.1. Understanding black-box representation of DNNs

Many explanation methods have been proposed to explain
DNNs from different perspectives. Typical explanation
methods include visualizing patterns encoded by a DNN (Si-
monyan et al., 2013; Zeiler & Fergus, 2014; Yosinski et al.,
2015; Dosovitskiy & Brox, 2016), estimating the attribu-

2



Does a Neural Network Really Encode Symbolic Concepts?

tion/importance/saliency of each input variable (Ribeiro
et al., 2016; Sundararajan et al., 2017; Lundberg & Lee,
2017b; Fong & Vedaldi, 2017; Zhou et al., 2016; Selvaraju
et al., 2017), and learning feature vectors potentially cor-
respond to semantic concepts (Kim et al., 2018). Unlike
attribution methods, some studies focused on quantifying
interactions between input variables (Sorokina et al., 2008;
Murdoch et al., 2018; Singh et al., 2018; Jin et al., 2019;
Janizek et al., 2020). In game theory, Grabisch & Roubens
(1999); Sundararajan et al. (2020); Tsai et al. (2022) pro-
posed interaction metrics from different perspectives. Some
studies explained a DNN by distilling the DNN into an-
other interpretable model (Frosst & Hinton, 2017; Che et al.,
2016; Wu et al., 2018; Zhang et al., 2018; Vaughan et al.,
2018; Tan et al., 2018). However, most explanation methods
did not try to disentangle concepts encoded by a DNN.

2.2. Explainable AI (XAI) theories based on
game-theoretic interactions

Our research group developed a theoretical framework based
on game-theoretic interactions, which aims to tackle the fol-
lowing two challenges in XAI, i.e., (1) extracting and quan-
tifying concepts from implicit knowledge representations
of DNNs and (2) utilizing these explicit concepts to explain
the representational capacity of DNNs. Furthermore, we
discovered that game-theoretic interactions provide a new
perspective for analyzing the common underlying mecha-
nism shared by previous XAI applications.

• Using game-theoretical interactions to define concepts en-
coded by DNNs. Quantifying the interactions between input
variables is one of the ultimate problems facing XAI (Sun-
dararajan et al., 2020; Tsai et al., 2022). Based on game the-
ory, we introduced multi-variate interactions (Zhang et al.,
2021a;c) and multi-order interactions (Zhang et al., 2021b)
to analyze interactions encoded by the DNN. Recently, Ren
et al. (2021a) proposed the mathematical formulation for
concepts encoded by a DNN, and Ren et al. (2023a) further
used such concepts to define the optimal baseline values for
Shapely values. Based on this, recent studies have also ob-
served (Ren et al., 2023a) and mathematically proved (Ren
et al., 2023c) the concept-emerging phenomenon in DNNs.
However, strictly speaking, there still lacks theoretical
guarantee for the interaction to prove whether the inter-
action represents the true concept encoded by a DNN or
just a tricky metric without a clear meaning. Therefore,
in this study, we examined the trustworthiness of the
interaction concepts from four perspectives.

• Explaining the representation power of DNNs based on
game-theoretic interactions. Game-theoretical interactions
facilitate the explanation of the representation capacity of
a DNN from different perspectives, including the adver-
sarial robustness (Wang et al., 2021a; Ren et al., 2021b),

adversarial transferability (Wang et al., 2021b), and gen-
eralization power (Zhang et al., 2021b; Zhou et al., 2023).
Besides, the game-theoretical interactions can also be uti-
lized to explain the signal processing behavior of DNNs.
For example, Cheng et al. (2021a) analyzed the distinctive
behavior of a DNN encoding shape/texture features based
on such interactions. Cheng et al. (2021b) discovered that
salient interactions often represented different prototype fea-
tures encoded by a DNN. Deng et al. (2022a) proved that
it was difficult for a DNN to encode mid-order interactions,
which reflected a representation bottleneck of DNNs. In
comparison, Ren et al. (2023b) proved that a Bayesian neu-
ral network was less likely to encode high-order interactions,
thereby alleviating the over-fitting problem.

• Unifying empirical findings in the framework of game-
theoretic interactions. To unify different attribution meth-
ods, Deng et al. (2022b) used interactions as a unified re-
formulation of different attribution methods. They proved
that attributions estimated by each of 14 attribution methods
could all be represented as a certain allocation of interaction
effects to different input variables. In addition, Zhang et al.
(2022a) proved that the reduction of interactions was the
common mathematical mechanism shared by a total of 12
previous approaches to enhance adversarial transferability.

3. Emergence of transferable concepts
3.1. Preliminaries: representing network inferences

using interaction concepts

It is widely believed that the learning of a DNN can be
considered as a regression problem, instead of explicitly
learning symbolic concepts like how graphical models do.
However, a series of studies (Ren et al., 2021a; 2023a;
Deng et al., 2022a) have discovered that given a sufficiently-
trained DNN for a classification task, its inference logic on
a certain sample can usually be rewritten as the detection
of specific concepts. In other words, the DNN’s inference
score on a specific sample can be sparsely disentangled into
effects of a few concepts.

Disentangling the DNN’s output as effects of interaction
concepts. Specifically, let us consider a trained DNN v :

Rn → R and an input sample x with n input variables
indexed by N = {1, 2, ..., n}. Here, we assume the network
output v(x) ∈ R is a scalar. Note that different settings
can be applied to v(x). For example, for multi-category
classification tasks, we may set v(x) = log p(y=ytruth|x)

1−p(y=ytruth|x)
∈

R by following (Deng et al., 2022a). Then, given a function
v(x), Ren et al. (2021a) have proposed the following metric
to quantify the interaction concept that is comprised of input
variables in S ⊆ N .

I(S|x) ≜
∑

T⊆S
(−1)|S|−|T | · v(xT ) (1)

3



Does a Neural Network Really Encode Symbolic Concepts?
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Figure 2. Visualization of interaction concepts S extracted by two MLP-5 networks3, which are trained on (a) the wifi dataset3 and (b) the
tic-tac-toe dataset3. The histograms show (a) the distribution of interaction effects I(S|x) over samples in the 4th category, and (b) the
distribution of interaction effects I(S|x) over samples in sub-categories5 with patterns x4=x5=x6=1 and x3=x6=x9=1.

where xT denotes the input sample when we keep variables
in T ⊆ N unchanged and mask variables in N\T using
baseline values1.

Here, the interaction concept I(S|x) extracted from the
input x encodes an AND relationship (interaction) be-
tween input variables in S. For example, let us consider
three image regions of S = {eyes, nose, mouth} that form the

“face” concept in a face classification task. Then, I(S|x)
measures the numerical effect of the concept on the classifi-
cation score v(x). Only when all image regions of “eyes”,

“nose”, and “mouth” co-appear in the input image, the “face”
concept is activated, and contributes a numerical effect
I(S|x) to the classification score. Otherwise, if any region
is masked, then the “face” concept cannot be formed, which
removes the interaction effect, making I(S|xmasked) = 0.

Mathematically, the above definition for an interaction con-
cept can be understood as the Harsanyi dividend (Harsanyi,
1963) of S w.r.t. the DNN v. It has been proven that the

1For all tabular datasets and the image datasets (the CelebA-
eyeglasses dataset and the CUB-binary dataset), the baseline value
of each input variable was set as the mean value of this variable
over all samples (Dabkowski & Gal, 2017). For grayscale digital
images in the MNIST-3 dataset, the baseline value of each pixel was
set as zero (Ancona et al., 2019). For the point-cloud dataset, the
baseline value was set as the center of the entire point cloud (Shen
et al., 2021).

DNN’s inference score v(x) can be disentangled into the
sum of effects of all potential concepts, as follows.

v(x) =
∑

S⊆N
I(S|x) ≈

∑
S∈Ωx

I(S|x) (2)

In particular, all interaction concepts can be further catego-
rized into a set of salient concepts S ∈ Ωx with considerable
effects I(S|x), and a set of ignorable noisy patterns with
almost zero effects I(S|x) ≈ 0.

Note that the Harsanyi dividend I(S|x) also satisfies many
desirable axioms/theorems, as introduced in Appendix A.
The interaction effects can be further optimized using
the trick of disentangling OR interactions4 introduced in
both (Li & Zhang, 2023) and Appendix H.4 of (Ren et al.,
2021a), to pursue higher sparsity of interaction concepts.

3.2. Visualization of interaction concepts

In this section, we visualize interaction concepts extracted
from point-cloud data and tabular data. Note that a sample
in the ShapeNet dataset (Yi et al., 2016) usually contains
2500 3D points. To simplify the visualization, we simply
consider 8-10 semantic parts on the point cloud x, which
has been provided by the dataset.2 Each semantic part is

2For example, the ShapeNet dataset has provided the annotated
parts for the motorbike category, including gas tank, seat, handle,
light, front wheel, back wheel, front frame, mid frame, and back
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Figure 3. Normalized strength of interaction effects of different concepts in a descending order. DNNs trained for different tasks all
encode sparse salient concepts.

taken as a “single” input variable to the DNN. In this way,
we visualize concepts consisting of semantic parts.

Fig. 1 shows interaction concepts S and the corresponding
effects I(S|x) extracted by PointNet (Qi et al., 2017a) from
different samples x in the ShapeNet dataset. We find that
the interaction concept S = {light, front wheel, mid frame}
on five samples all makes positive effects I(S|x) > 0

to the PointNet’s output, whereas the interaction concept
S = {handle, front wheel, front frame} usually makes nega-
tive effects I(S|x) < 0 to the PointNet’s output. Similarly,
Fig. 2 shows interaction concepts extracted from two tabular
datasets, i.e., the wifi dataset3, and the tic-tac-toe dataset3.
We visualize interactions between different received signal
strength indicatons (RSSIs) in the wifi dataset, and interac-
tions between board states in the tic-tac-toe dataset. We also
find that the same interaction concept usually makes similar
effects to the network output on different input samples,
which supports the conclusion in Section 3.3.2.

3.3. Does a DNN really learn symbolic concepts?

Although (Ren et al., 2021a) have claimed that the metric
I(S|x) in Eq. (1) quantifies symbolic concepts encoded
by a DNN, there is still no theory to guarantee a subset
S ⊆ N with a salient effect I(S|x) faithfully represents a
meaningful and transferable concept. Instead, we should
not ignore the possibility that I(S|x) is just a mathematical
transformation that ensures v(x) =

∑
S⊆N I(S|x) in Eq.

(2) on each specific sample. Therefore, in this study, we
examine the counter-intuitive conjecture that a DNN learns
symbolic concepts from the following four perspectives.

3.3.1. SPARSITY OF THE ENCODED CONCEPTS

According to Eq. (2), the DNN may encode at most 2n sym-
bolic concepts in 2N ≜ {S : S ⊆ N} w.r.t. the 2n different
combinations of input variables. However, a distinctive
property of symbolism, which is different from connec-
tionism, is that people usually would like to use a small
number of explicit symbolic concepts to represent the
knowledge, instead of using extensive fuzzy features.

frame. Please see Appendix B.2 for details on the annotation of
semantic parts.

Thus, we hope to examine whether a DNN’s inference score
v(x) on a specific sample can be summarized into effects of
a small number of salient concepts v(x) ≈

∑
S∈Ωx

I(S|x),
rather than using an exponential number of concepts w.r.t.
all subsets S ⊆ N . To be precise, a faithful conceptual
representation requires most concepts S ⊆ N to be noisy
patterns with negligible effects I(S|x) ≈ 0. Only a few
salient concepts S in Ωx make considerable effects I(S|x).

To this end, Ren et al. (2021a) have made a preliminary
attempt to explain a DNN’s inference score v(x) on a spe-
cific sample x as interaction effects I(S|x) of a small num-
ber of concepts. Specifically, they used a few top-ranked
salient interaction concepts to explain the inference score of
LSTMs (Hochreiter & Schmidhuber, 1997) and CNNs (Kim,
2014) trained for sentiment classification and linguistic ac-
ceptance classification tasks on the SST-2 dataset (Socher
et al., 2013) and the CoLA dataset (Warstadt et al., 2019).

Experiments. In this paper, we further examined whether
most DNNs, which were trained for much more diverse
tasks on different datasets, all encoded very sparse salient
concepts. To this end, we trained various DNNs3 on tabu-
lar datasets (the tic-tac-toe dataset3 and the wifi dataset3),
image datasets (the MNIST-3 dataset3 and the CelebA-
eyeglasses dataset3), and a point-cloud dataset (the ShapeNet
dataset3). The interaction effects can be further optimized
using the trick of disentangling OR interactions4 introduced
in both (Li & Zhang, 2023) and Appendix H.4 of (Ren et al.,
2021a), to pursue higher sparsity of interaction concepts.
Fig. 3 shows the normalized interaction strength of different
concepts |Ĩ(S|x)|≜ |I(S|x)|/maxS′ |I(S′|x)| in a descend-
ing order for each DNN. Each curve shows the strength av-
eraged over different samples in the dataset. We found that
most concepts had little effects on the output |I(S|x)| ≈ 0,
which verified the sparsity of the encoded concepts.

Salient concepts. According to the above experiments,
we can define the set of salient concepts as Ωx = {S :

|I(S|x)| > τ}, subject to τ = 0.05 · maxS |I(S|x)|. As
Fig. 3 shows, there were only about 20-80 salient concepts

3Please see the experimental settings paragraph at the end of
Section 3 for details on datasets and DNNs.

4This study also extracts the OR interaction, which is proved
to be a specific AND interaction.
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Figure 4. The change of the average explanation ratio ρ(k) along with the size k of the concept dictionary Dk.

extracted from an input sample, and all other concepts have
ignorable effects on the network output.

3.3.2. TRANSFERABILITY OVER DIFFERENT SAMPLES

Beyond sparsity, the transferability of concepts is more
important. If I(S|x) is just a tricky mathematical transfor-
mation on v(xS) without representing meaningful concepts,
then each salient concept I(S|x) extracted from the input
sample x probably cannot be transferred to another input
sample, i.e., we cannot extract the same salient concept
consisting of variables in S in the second sample, due to
sparsity of salient concepts.

Therefore, in this section, we aim to verify whether con-
cepts extracted from a sample can be transferred to
other samples. This task is actually equivalent to checking
whether there exists a common concept dictionary, which
contains most salient concepts extracted from different sam-
ples in the same category.

Given a well-trained DNN, we construct a relatively small
dictionary Dk ⊆ 2N containing the top-k frequent concepts
in different samples, and check whether such a dictionary
contains most salient concepts in Ωx extracted from each
sample x. The concept dictionary Dk is constructed based
on a greedy strategy. Specifically, we first extract a set of
salient concepts Ωx from each input sample x. Then, we
compute the frequency of each concept S being a salient
concept over different samples. Finally, the concept dic-
tionary Dk is constructed to contain the top-k interaction
concepts with the highest frequencies.

Then, we design the metric ρ(k) ≜ Ex[|Dk ∩ Ωx|/|Ωx|] to
evaluate the average ratio of concepts extracted from an
input sample that is covered by the concept dictionary Dk.
Theoretically, if we construct a larger dictionary Dk with
more concepts (a larger k value), then the dictionary can
explain more concepts.

Experiments. We conducted experiments to show whether
there existed a small concept dictionary that could explain
most concepts encoded by the DNN. Specifically, we con-
structed a concept dictionary to explain samples in a certain
category in each dataset5. In this experiment, we temporar-

5In this paper, when we needed to analyze of samples in a spe-
cific category, we used positive samples in the MNIST-3, CelebA-

ily extracted salient concepts using τ = 0.1 ·maxS |I(S|x)|
to construct Ωx

6. Fig. 4 shows the increase of the average
explanation ratio ρ(k) along with the increasing size k of the
concept dictionary Dk. We found that there usually existed
a concept dictionary consisting of 30-100 concepts, which
could explain more than 60%-80% salient concepts encoded
by the DNN. Besides, Fig. 1(right) and Fig. 2(right) also
show histograms of effects I(S|x) over different samples5,
where S was extracted as a salient concept. We found that
the same interaction concept usually made similar effects
on different samples. This verified that the DNN learned
transferable concepts over different samples.

3.3.3. TRANSFERABILITY ACROSS DIFFERENT DNNS

In addition to sample-wise transferability of concepts, an-
other aspect is model-wise transferability. If the concepts
extracted from an input sample really represent meaningful
knowledge for the task, then these concepts are supposed
to be stably learned by different DNNs towards the same
task, although we cannot directly align intermediate-layer
features between different DNNs.

Therefore, in this section, we aim to verify whether con-
cepts extracted from a DNN can be transferred to an-
other DNN trained for the same task. In other words,
we actually check whether salient concepts encoded by
one DNN are also encoded by another DNN learned for
the same task. To this end, let us consider two DNNs, v1
and v2, trained for the same task. Given an input sam-
ple x, let Ωv1

x and Ωv2
x denote the sets of salient concepts

extracted by v1 and v2 from the input sample x, respec-
tively. We evaluate the the ratio of concepts in Ωv1

x en-
coded by v1, which are also encoded by v2 in Ωv2

x , i.e.
γ(Ωv1

x |Ωv2
x ) ≜ |Ωv1

x ∩ Ωv2
x |/|Ωv1

x |, to measure the transfer-
ability of salient concepts in Ωv1

x . A larger ratio γ(Ωv1
x |Ωv2

x )

indicates that the extracted salient concepts have higher

eyeglasses, and CUB-binary datasets, samples in the 4th category
in the wifi dataset, and samples in the “motorbike” category in the
ShapeNet dataset. For the tic-tac-toe dataset, since there exists
eight sub-categories among positive samples, we used samples in
the sub-category with the pattern x4 = x5 = x6 = 1.

6Here, we increased the threshold from τ=0.05 ·maxS |I(S|x)|
to τ=0.1 · maxS |I(S|x)| to analyze those highly salient concepts.
Appendix C.1 shows results computed by using the vanilla thresh-
old τ=0.05 · maxS |I(S|x)| to compute Ωx.
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weighted average discrimination power β̄ over concepts of all frequencies is shown beside the curve.
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Figure 6. Concepts extracted by a higher threshold τ (i.e. concepts
with more significant effects I(S|x)) usually have higher transfer-
ability across different DNNs.

transferability across different DNNs.

Experiments. In this experiment, we examined the trans-
ferability of concepts in both the case when DNNs v1 and
v2 had the same network architecture but were trained with
different parameter initializations, and the case when v1 and
v2 had different network architectures. Then, given each
sample x, Ωv2

x contains all salient concepts with interaction
strength Iv2(S|x) ≥ 0.05·maxS |Iv2(S|x)|, as defined in Sec-
tion 3.3.1. Whereas, we used different thresholds τ ranging
from τ = 0.05 ·maxS |Iv1(S|x)| to τ = 0.3 ·maxS |Iv1(S|x)|
to generate different sets Ωv1

x . A larger τ value usually
generated a smaller set of salient concepts with more signif-
icant effects. These concepts were more likely to be stably
learned by different DNNs. Fig. 6 shows that concepts with
higher saliency usually exhibited higher transferability from
DNN v1 to DNN v2. This indicated that more salient con-
cepts were more likely to be stably learned by different
DNNs, which was aligned with intuition. As a baseline
for comparison, we also randomly extracted two sets of
concepts Ω̃v1

x and Ω̃v2
x from all the 2n interaction concepts,

which had the same size as Ωv1
x and Ωv2

x , i.e. |Ωv1
x | = |Ω̃v1

x |
and |Ωv2

x | = |Ω̃v2
x |. Fig. 6 shows that the transferability

Ex[γ(Ω
v1
x |Ωv2

x )] of concepts extracted by I(S|x) increased
in the range of 0.5-0.95 along with the increase of τ . In
comparison, the transferability Ex[γ(Ω̃

v1
x |Ω̃v2

x )] of random
concepts was usually less than 0.05. This verified the high
transferability of concepts across different DNNs.

3.3.4. DISCRIMINATION POWER OF CONCEPTS

Furthermore, if a DNN encodes faithful symbolic concepts,
then these concepts are supposed to exhibit certain discrimi-

nation power in the classification task. In other words, for
each concept S, if the concept is saliently activated on a
set of samples, then interaction effects I(S) of the same
concept are supposed to push the classification of these
samples towards a certain category in most cases. Note
that different concepts extracted from a sample may push the
sample towards different categories, and the classification is
the result of the competition between these concepts.

In order to verify the above discrimination power of con-
cepts, in this section, we extract the concept S from m

different input samples x1,x2, ...,xm in the same category
c, and check whether this concept consistently exhibits a
positive (or negative) interaction effects I(S) on the m sam-
ples. If the concept S pushes the classification of most of
the m samples towards the target category, i.e., I(S|xi) > 0

(or opposite to the target category, i.e., I(S|xi) < 0), then
the discrimination power of the concept S is high. On the
other hand, if the concept S pushes half of the samples to-
wards the positive direction I(S|xi) > 0, but pushes the
other half towards the negative direction I(S|xi) < 0, then
the discrimination power of the concept S is low.

Specifically, we use the following metric to measure the
discrimination power of concept S among the above m sam-
ples in category c. Let Ωxi denote a set of salient concepts
extracted from the sample xi. Then, m+

S ≜
∑

i 1S∈Ωxi
·

1I(S|xi)>0 denote the number of samples where the concept
S makes a salient and positive effect on the classification
score. Similarly, we can define m−

S ≜
∑

i 1S∈Ωxi
·1I(S|xi)<0

to denote the number of samples where the concept S makes
a salient and negative effect on the classification score. In
this way, the discrimination power of a salient concept S
can be measured as β(S) = max(m+

S ,m
−
S )/(m

+
S +m−

S ). A
larger value of β(S) indicates a higher discrimination power
of the concept S.

Experiments. Note that different concepts are of differ-
ent importance in the classification of a category. Some
concepts frequently appear in different samples and make
salient effects, while other concepts only appear in very
few concepts. Therefore, we use the frequency of the
concept α(S) as a weight to compute the average dis-
crimination power of all concepts, which is given as β̄ ≜∑

S [α(S) · β(S)]/
∑

S [α(S)]. The frequency of a concept is

7



Does a Neural Network Really Encode Symbolic Concepts?

label noise level 𝑟

av
e

ra
ge

 e
xp

la
n

at
io

n
ra

ti
o

 

av
e

ra
ge

 d
is

cr
im

i
-n

at
io

n
 p

o
w

er
 

concept dictionary size 𝑘 = 𝐃𝑘

Figure 7. The (left) transferability and (right) discrimination power
of concepts decreased when we added more label noises.

defined as α(S) ≜ (m+
S +m−

S )/m. The selection of datasets
and the training of DNNs are introduced in the experimental
settings paragraph at the end of Section 3. Fig. 5 shows
the average discrimination power of concepts in different
frequency intervals. We found that the average discrimina-
tion power β̄ of concepts was usually higher than 0.8, which
verified the discrimination power of extracted concepts.

3.4. When DNNs do not learn transferable concepts

It is worth noting that all the above work just conducts ex-
periments to show the concept-emerging phenomenon in
different DNNs for different tasks. We do not provide, or
there may even do not exist, a theoretical proof for such
a concept-emerging phenomenon, although the concept-
emerging phenomenon does exist in DNNs for most ap-
plications. Therefore, in this subsection, we would like to
discuss the following three extreme cases, in which a DNN
does not learn symbolic concepts.

In the three extreme cases, DNNs may either collapse to
simple models close to linear regressions, or learn non-
transferable indiscriminative concepts, although the network
output can still be represented as the sum of interaction
effects of these concepts.

• Case 1: When there exists label noise. If the ground-
truth label for classification is incorrectly annotated on
some samples, then the DNN usually has to memorize each
incorrectly-labeled training sample for classification with-
out summarizing many common features from such chaotic
annotations. Thus, in this case, the DNN usually encodes
more non-transferable concepts.

Experimental verification. In this experiment, we con-
structed datasets with noisy labels to check whether DNNs
trained on these datasets did not learn transferable concepts
with high discrimination power. To this end, given a clean
dataset, we first selected and randomly labeled a certain
portion r of training samples in the dataset, so as to train
a DNN. Specifically, we constructed a series of datasets
by assigning different ratios r of samples with incorrect
labels. We used the wifi dataset3 to construct new datasets
by adding different ratios r of noisy labels. Then, we trained
an MLP-5 network3 on each of these datasets. We examined
the transferability and discrimination power of the extracted
concepts5 on each MLP-5 network. We extracted concept
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Figure 8. The (left) transferability and (right) discrimination power
of concepts decreased when input data were noisy.

dictionaries of different sizes based on each MLP-5 network
(please see Section 3.3.2 for details). Fig. 7(left) shows
that if there was significant label noise in the dataset, the
concept dictionary usually explained much fewer concepts
encoded by the network, which indicated low transferability
of the learned concepts. Besides, Fig. 7(right) shows the av-
erage discrimination power β̄ of the extracted concepts also
decreased when we assigned more training samples with
random labels. This verified that the DNN usually could not
learn transferable and discriminative concepts from samples
that were incorrectly labeled.

• Case 2: When input samples are noisy. In fact, this
case can be extended to a more general scenario, i.e., when
the task is difficult to learn, there is no essential differ-
ence between the difficult data and noisy data for the DNN.
Specifically, when training samples are noisy and lack mean-
ingful patterns, it is difficult for a DNN to learn transferable
concepts from noisy training samples.

Experimental verification. In this experiment, we injected
noise into training samples to examine whether DNNs
trained on datasets with noisy samples did not learn trans-
ferable concepts. Just like the experiment in “Case 1,” we
constructed such datasets by corrupting a clean dataset. To
this end, we added Gaussian noises ϵ ∼ N (0, I) to each
input sample x in the clean dataset by modifying it to
(1 − δ) · x + δ · ϵ, where δ ∈ [0, 1] denotes the strength
of noise injected into the sample x. Each dimension of the
clean sample x was normalized to unit variance over the
dataset beforehand.

We constructed a series of datasets by injecting noises of dif-
ferent strength δ into samples in the wifi dataset3. We trained
MLP-5’s3 based on these datasets. Just like experiments in
“Case 1,” we examined the transferability and discrimination
power of concepts. Fig. 8(left) shows that the transferability
of concepts was usually low when the DNN was learned
from noisy input data. Fig. 8(right) shows that the average
discrimination power β̄ of concepts decreased along with
the increasing strength δ of injected noise. This verified that
DNN usually did not learn transferable and discriminative
concepts when input data were noisy.

• Case 3: When the task has a simple shortcut solution.
In the above two cases, both label noise and data noise cor-
rupted the original discriminative patterns in each category,
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Figure 9. (left) We constructed a dataset where the “color” informa-
tion was a shortcut solution. (right) The relative concept strength
κ extracted from DNNs trained on different datasets.

thus making the DNN unlikely to learn transferable con-
cepts. In comparison, here, let us discuss a new case, i.e.,
even if there exist meaningful patterns in training data, the
DNN may still not learn these concepts.

To be precise, if a classification task can be conducted with
some shortcut solutions without requiring the DNN to en-
code complex concepts, then the DNN probably converges
to the shortcut solution. For example, in an image classi-
fication task, if pixel-wise colors are sufficient to conduct
the image-classification task, then the DNN is more likely
to only use the color information for classification without
modeling complex visual concepts. The simple shortcut so-
lution usually prevents the DNN from summarizing complex
visual concepts.

Experimental verification. We constructed a dataset for
image classification, where the “color” information was
a shortcut solution for the task. Specifically, we modified
images in the CUB-binary dataset3, such that all negative
samples were red-colored background regions, and all posi-
tive samples were blue-colored foreground birds, as shown
in Fig. 9(left). We trained AlexNet, ResNet-18, and VGG-13
on both the original dataset and the modified dataset. Com-
pared with DNNs learned on the original dataset, DNNs
learned on the modified dataset were more likely to simply
used the color information for classification. We used the
metric κ ≜ Ex[

∑
S∈Ωx,|S|≥2 |I(S)|/

∑
S∈Ωx

|I(S)|] to mea-
sure the relative strength of all concepts consisting of mul-
tiple variables. Fig. 9(right) shows that the κ values were
usually low for DNNs learned to classify red-colored back-
grounds and blue-colored birds. This indicated that the
DNN collapsed to a simple model without encoding interac-
tions between different image patches when the task had a
simple shortcut solution.

Experimental settings. For tabular datasets, we used the
UCI tic-tac-toe endgame dataset (Dua & Graff, 2017) for
binary classification, and used the UCI wireless indoor lo-
calization dataset (Dua & Graff, 2017) for multi-category
classification. These datasets were termed tic-tac-toe and
wifi for simplicity. We trained the following two MLPs on
each tabular dataset. MLP-5 contained five fully connected
layers with 100 neurons in each hidden layer (Ren et al.,
2021a). ResMLP-5 was constructed by adding a skip con-

nection to each layer of an MLP-5. For image data, we used
the following three datasets. We took images corresponding
to digit “three” in the MNIST dataset (LeCun, 1998) as pos-
itive samples, and took other images as negative samples to
train DNNs. We took images with the attribute “eyeglasses”
in the CelebA dataset (Liu et al., 2015) as positive samples,
and took other images as negative samples to train DNNs.
We trained DNNs to classify birds in bounding boxes in
the CUB-200-2011 dataset (Wah et al., 2011) from ran-
domly cropped background regions around the bird. These
three datasets were termed MNIST-3, CelebA-eyeglasses,
and CUB-binary for short. We trained LeNet (LeCun
et al., 1998), AlexNet (Krizhevsky et al., 2017), ResNet-
18/20/32/34/44 (He et al., 2016), VGG-13/16 (Simonyan
& Zisserman, 2014) on these image datasets. Based on the
ShapeNet dataset (Yi et al., 2016) for the classification of
3D point clouds, we trained PointNet (Qi et al., 2017a) and
PointNet++ (Qi et al., 2017b). Please see Appendix B.1 for
the classification accuracy of the above DNNs.

4. Conclusion
In this paper, we have analyzed the interaction concepts
encoded by a DNN. Specifically, we quantitatively examine
the concept-emerging phenomenon of a DNN from four
perspectives. Extensive empirical studies have verified that a
well-trained DNN usually encodes sparse, transferable, and
discriminative interaction concepts. Our experiments also
prove the faithfulness of the interaction concepts extracted
from DNNs. Besides, we also discussed three cases in which
a DNN is unlikely to learn transferable concepts.
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A. Axioms and theorems of the Harsanyi dividend
As mentioned in Section 3.1 of the paper, the definition for an interaction concept S in Eq. (1) can be understood as the
Harsanyi dividend of the set of variables in S w.r.t. the DNN v. In fact, the Harsanyi dividend I(S|x) also satisfies many
desirable axioms and theorems, as follows.

The Harsanyi dividend I(S|x) satisfies seven desirable axioms in game theory (Ren et al., 2021a), including the efficiency,
linearity, dummy, symmetry, anonymity, recursive and interaction distribution axioms.

(1) Efficiency axiom. The output score of a model can be decomposed into interaction effects of different patterns, i.e.
v(x) =

∑
S⊆N I(S|x).

(2) Linearity axiom. If we merge output scores of two models w and v as the output of model u, i.e. ∀S ⊆ N, u(xS) = w(xS)+

v(xS), then their interaction effects Iv(S|x) and Iw(S|x) can also be merged as ∀S ⊆ N, Iu(S|x) = Iv(S|x) + Iw(S|x).

(3) Dummy axiom. If a variable i ∈ N is a dummy variable, i.e. ∀S ⊆ N\{i}, v(xS∪{i}) = v(xS) + v(x{i}), then it has no
interaction with other variables, ∀∅ ̸= T ⊆ N\{i}, I(T ∪ {i}|x) = 0.

(4) Symmetry axiom. If input variables i, j ∈ N cooperate with other variables in the same way, ∀S ⊆ N\{i, j}, v(xS∪{i}) =

v(xS∪{j}), then they have same interaction effects with other variables, ∀S ⊆ N\{i, j}, I(S ∪ {i}|x) = I(S ∪ {j}|x).

(5) Anonymity axiom. For any permutations π on N , we have ∀S⊆N, Iv(S|x) = Iπv(πS|x), where πS≜{π(i)|i∈S}, and
the new model πv is defined by (πv)(xπS) = v(xS). This indicates that interaction effects are not changed by permutation.

(6) Recursive axiom. The interaction effects can be computed recursively. For i ∈ N and S ⊆ N\{i}, the interaction effect of
the pattern S∪{i} is equal to the interaction effect of S with the presence of i minus the interaction effect of S with the absence
of i, i.e. ∀S⊆N\{i}, I(S∪{i}|x)=I(S|i is always present,x)−I(S|x). I(S|i is always present,x) denotes the interaction effect
when the variable i is always present as a constant context, i.e. I(S|i is always present,x) =

∑
L⊆S(−1)|S|−|L| · v(xL∪{i}).

(7) Interaction distribution axiom. This axiom characterizes how interactions are distributed for “interaction functions” (Sun-
dararajan et al., 2020). An interaction function vT parameterized by a subset of variables T is defined as follows. ∀S ⊆ N , if
T ⊆ S, vT (xS) = c; otherwise, vT (xS) = 0. The function vT models pure interaction among the variables in T , because
only if all variables in T are present, the output value will be increased by c. The interactions encoded in the function vT
satisfies I(T |x) = c, and ∀S ̸= T , I(S|x) = 0.

The Harsanyi dividend I(S|x) can also explain the elementary mechanism of existing game-theoretic metrics (Ren et al.,
2021a), including the Shapley value, the Shapley interaction index, and the Shapley-Taylor interaction index.

(1) Connection to the Shapley value (Shapley, 1953). Let ϕ(i|x) denote the Shapley value of an input variable i, given the
input sample x. Then, the Shapley value ϕ(i|x) can be explained as the result of uniformly assigning attributions of each
Harsanyi dividend to each involving variable i, i.e., ϕ(i|x) =

∑
S⊆N\{i}

1
|S|+1

I(S ∪ {i}|x). This also proves that the Shapley
value is a fair assignment of attributions from the perspective of Harsanyi dividend.

(2) Connection to the Shapley interaction index (Grabisch & Roubens, 1999). Given a subset of variables T ⊆ N in an
input sample x, the Shapley interaction index IShapley(T |x) can be represented as IShapley(T |x) =

∑
S⊆N\T

1
|S|+1

I(S ∪ T |x).
In other words, the index IShapley(T |x) can be explained as uniformly allocating I(S′|x) s.t. S′ = S ∪ T to the compositional
variables of S′, if we treat the coalition of variables in T as a single variable.

(3) Connection to the Shapley Taylor interaction index (Sundararajan et al., 2020). Given a subset of variables T ⊆ N in an
input sample x, the k-th order Shapley Taylor interaction index IShapley-Taylor(T |x) can be represented as weighted sum of
interaction effects, i.e., IShapley-Taylor(T |x) = I(T |x) if |T | < k; IShapley-Taylor(T |x) =

∑
S⊆N\T

(|S|+k
k

)−1
I(S ∪ T |x) if |T | = k;

and IShapley-Taylor(T |x) = 0 if |T | > k.

B. Experimental details
B.1. Accuracy of DNNs

In this paper, we conducted experiments on various DNNs trained on different types of datasets, including tabular datasets,
image datasets, and a point-cloud dataset. Table 1 reports the classification accuracy of DNNs trained on the above datasets.
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Table 1. Classification accuracy of different DNNs.
Dataset DNN

tic-tac-toe
MLP-5 ResMLP-5
100% 100%

wifi
MLP-5 ResMLP-5
97.75% 97.75%

MNIST-3
LeNet ResNet-20 ResNet-32 ResNet-44 VGG-13 VGG-16

99.99% 100% 100% 100% 100% 100%

CelebA-eyeglasses
AlexNet ResNet-18 VGG-13
99.53% 99.66% 99.65%

CUB-binary
AlexNet ResNet-18 ResNet-34
95.67% 96.41% 96.43%

the modified
CUB-binary dataset

AlexNet ResNet-18 ResNet-34
100% 100% 100%

ShapeNet
PointNet PointNet++
97.36% 98.64%

B.2. The annotation of semantic parts

This section discusses the annotation of semantic parts in the point-cloud dataset and image datasets. As mentioned in
Section 3.3.1, given an input sample x with n input variables, the DNN may encode at most 2n interaction concepts. The
computational cost for extracting salient concepts is high, when the number of input variables n is large. For example, if
we take each 3D point of a point-cloud (or each pixel of an image) as a single input variable, the computation is usually
prohibitive. In order to overcome this issue, we simply annotate 8-10 semantic parts in each input sample, such that the
annotated semantic parts are aligned over different samples7. Then, each semantic part in an input sample is taken as a
“single” input variable to the DNN.

• For point-cloud data in the ShapeNet dataset, we annotated semantic parts for 100 samples in the motorbike category.
These semantic parts were generated based on original annotations provided by (Yi et al., 2016). In the original annotation,
Yi et al. (2016) provided semantic parts including gas tank, seat, handle, light, wheel, and frame for each motorbike sample.
As shown in Fig. 10, we further modified the original annotation into more fine-grained semantic parts, i.e. gas tank, seat,
handle, light, front wheel, back wheel, front frame, mid frame, and back frame.

gas tank seat handle light front wheel back wheel front frame back framemid frame

Figure 10. Examples of annotated semantic parts for samples in the motorbike category of the ShapeNet dataset.

• For image data, we annotated semantic parts for 50 samples in the CelebA-eyeglasses dataset. Specifically, as shown
in Fig. 11, we annotated semantic parts including forehead, left eye, right eye, nose, left cheek, right cheek, mouth, chin,
and hair for each sample in the CelebA-eyeglasses dataset8. Similarly, we annotated semantic parts for 20 samples in the
CUB-binary dataset. These semantic parts include head, neck, throat, wing, tail, leg, belly, and breast. For images in the
MNIST-3 dataset, we annotated semantic parts for 100 positive samples. Please see the source code for details.

B.3. The setting of v(x) in experiments

As mentioned in Section 3.1 of the paper, in the computation of the interaction effect I(S|x), people can apply different
settings for v(x). For example, Covert et al. (2020) computed v(x) as the cross-entropy loss of the sample x in the

7Actually, we can extract sparse and transferable interaction concepts without pre-annotated parts. Please see Appendix C.2 for
experimental results.

8Note that we only considered interactions within foreground regions in each image, due to the high computational cost mentioned
above. Therefore, the annotated semantic parts did not cover regions in the background. Please see Section B.4 for details on how to
handle background regions in the computation of I(S|x) for image data.
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chinforehead hairleft cheekleft eye mouthnose right cheekright eye

Figure 11. Examples of annotated semantic parts for positive samples in the CelebA-eyeglasses dataset.

classification task. Lundberg & Lee (2017b) directly set v(x) = p(y = ytruth|x) ∈ R. In this paper, we followed (Deng et al.,
2022a) and used v(x) = log p(y=ytruth|x)

1−p(y=ytruth|x)
∈ R for both binary classification tasks and multi-category classification tasks.

B.4. Computation details of I(S|x) for image data

As mentioned in Section B.2, given an input sample x with n input variables, the DNN may encode at most 2n interaction
concepts. The computational cost for extracting salient concepts is high, when the number of input variables n is large. In
order to overcome this issue, we only considered interaction concepts formed by foreground regions. For image data, the
annotated semantic parts for each sample only covered regions in the foreground. In order to handle the uncovered regions
in the background, in the extraction of interaction concepts, we averaged the interaction effect I(S|x) when we were given
multiple background with different strengths, which was similar to (Sundararajan et al., 2017).

Specifically, let the input image x ∈ Rn be divided into the foreground region xfg ∈ Rnfg
and the background region

xbg ∈ Rnbg
, where n = nfg +nbg and x = xfg ⊔xbg. The foreground region xfg consisted of all pixels covered by the annotated

semantic parts in Section B.2, and the background region xbg consisted of all other uncovered pixels. Let bbg ∈ Rnbg
denote

the baseline value for pixels in the background region xbg ∈ Rnbg
. We defined the background region xbg

α with strength α

w.r.t. the baseline value bbg as xbg
α = α · xbg + (1− α) · bbg, where the strength α ∈ [0, 1]. When α = 0, the background region

was masked by the baseline value, i.e. xbg
α=0 = bbg. When α = 1, the background region remained its original value, i.e.

xbg
α=1 = xbg. When we computed the effect of each interaction concept S, we averaged the interaction effect when we were

given multiple background regions with different strengths α, as follows.

I(S|x) = Eα∼U[0,1]

[
I
(
S
∣∣ xfg ⊔ xbg

α

)]
=

∫ 1

0

I
(
S
∣∣ xfg ⊔ xbg

α

)
dα (3)

B.5. The eight sub-categories in the tic-tac-toe dataset

In this section, we provide more details on the eight sub-categories for positive samples in the tic-tac-toe dataset, as
mentioned in the footnote5 of the paper.

Each sample x in the tic-tac-toe dataset (Dua & Graff, 2017) encodes one possible board configurations at the end of
tic-tac-toe games. Specifically, each variable xi indicates the state at the i-th position of the board, where xi = 1 indicates
the player “X” has taken this position, xi = −1 indicates the player “O” has taken this position, and xi = 0 indicates this
position is blank. If one of the player in the tic-tac-toe game creates a “three-in-a-row”, then this player wins the game.
In the tic-tac-toe dataset, positive samples includes all configurations where the player “X” wins the game. Since there
are eight possible ways for the player “X” to create a “three-in-a-row”, there are eight corresponding sub-categories for
positive samples in the tic-tac-toe dataset. Specifically, these sub-categories contain patterns x1 = x2 = x3 = 1 (three-in-
the-first-row), x4 = x5 = x6 = 1 (three-in-the-second-row), x7 = x8 = x9 = 1 (three-in-the-third-row), x1 = x4 = x7 = 1

(three-in-the-first-column), x2 = x5 = x8 = 1 (three-in-the-second-column), x3 = x6 = x9 = 1 (three-in-the-third-column),
x1 = x5 = x9 = 1 (three-in-the-main-diagonal), x3 = x5 = x7 = 1 (three-in-the-anti-diagonal), respectively.

C. More experimental results
C.1. More verification on the existence of a concept dictionary

As a supplement to Fig. 4, Section 3.3.2 of the paper, we conducted another experiment to show the existence of a small
concept dictionary Dk that could explain most concepts encoded by the DNN. Different from the experiment in Section 3.3.2,
we extracted salient concepts Ωx by using the vanilla threshold τ =0.05 ·maxS |I(S|x)|. Fig. 12 shows that there usually
existed a concept dictionary consisting of 40-150 concepts, which could explain more than 60%-80% salient concepts
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encoded by the DNN. This still verified that the DNN learned transferable concepts over different samples.
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Figure 12. The change of the average explanation ratio ρ(k) along with the size k of the concept dictionary Dk, when we extracted salient
concepts using the vanilla threshold τ = 0.05 · maxS |I(S|x)|.

C.2. Extracting interaction concepts without the annotation of semantic parts

In this section, we conducted an experiment to extract concepts without pre-defined semantic parts. In this experiment,
we first extracted super-pixels from the image, and consider each super-pixel as a basic input unit of the DNN. Then, we
can extract interaction concepts between these super-pixels, based on I(S|x) in Eq. (1). Specifically, we first segmented
super-pixels from images in the CelebA dataset using the SLIC method (Achanta et al., 2012). Then, we extracted concepts
encoded by ResNet-18 and ResNet-34 trained on the CelebA dataset for the classification of the eyeglasses attribute.
Following the experimental settings in Fig. 3 of the paper, we visualized normalized strength of interaction effects of
different concepts in a descending order. Experimental results in Fig. 13 show that the extracted concepts were still sparse.
We also visualized some salient concepts extracted from ResNet-18 formed by super-pixels. We found that the salient
concepts were usually meaningful to humans (super-pixels forming the "half face" concept, the "two eyes" concept, etc.),
and they were also transferable across different samples.
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Visualization of salient concepts extracted from ResNet-18. The
concepts are usually meaningful to humans, and they are also trans-
ferable across different samples.

Normalized strength of interaction
effects of different concepts in a
descending order. Concepts extracted
from super-pixels are still sparse.
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the "half face" concept
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Figure 13. (left) Normalized strength of interaction effects of different concepts in a descending order. Concepts extracted from super-
pixels are still sparse. (right) Visualization of salient concepts extracted from ResNet-18. The concepts are usually meaningful to humans,
and they are also transferable across different samples.

C.3. Extracting interaction concepts encoded by NLP models

In this section, we extracted interaction concepts encoded by DNNs trained on NLP tasks.

In the first experiment, we trained a CNN network (Kim, 2014) on the SST-2 dataset for the sentiment classification task.
Then, we extracted interaction concepts from this DNN. Table 2 shows the effects of salient concepts to the DNN’s output
for positive sentiment. We found that the extracted concepts were meaningful to human. For example, given the input
sentence "It’s just not very smart," two salient interaction concepts {not, smart} and {just, not} contributed negative scores
to the positive sentiment, while the interaction concepts {just, very} and {just, very, smart} contributed positive scores to the
positive sentiment.

In the second experiment, we explained concepts encoded by a large language model (OPT-1.3B (Zhang et al., 2022b)) for
the text generation task. Given the first k words in the sentence, we focused on the probability distribution of generating
the (k + 1)-th word. For example, given a partial sentence x ="Diabetes is a chronic condition that affects how the
body uses and stores," we focused on the output logits of the next word "glucoses," i.e., v(x) = log pnext

1−pnext
, where

pnext = p(glucoses|Diabetes ... stores). Thus, we extracted interaction concepts with salient effects on generating the target
word. In Table 3, we showed that the model encoded meaningful concepts. For example, in Sentence 1, the model
encoded concepts formed by relevant verbs ({affects, and, stores}), and concepts formed by both relevant nouns and verbs
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Table 2. Effects of salient concepts extracted from a CNN network for the semantic classification task.

Sentence 1: It’s just not very smart.
Output: negative sentiment

Sentence 2: It is not too fast and not too slow.
Output: positive sentiment

I({not, very}|x) = −2.56 I({not, too}|x) = 6.49 (the first "not too")
I({just, not}|x) = −1.52 I({not, too}|x) = 4.87 (the second "not too")
I({just, very}|x) = 0.95 I({too}|x) = −3.33

I({just, very, smart}|x) = 0.84 I({not, slow}|x) = 1.59
I({not, smart}|x) = −0.77 I({and, not}|x) = −1.16

({body, stores}). Both the interaction between {affects, and, stores} and the interaction between {body, stores} contributed to
the correct generation of the output word "glucoses."

Table 3. Effects of salient concepts extracted from OPT-1.3B for the text generation task.

Sentence 1: Diabetes is a chronic condition that affects
how the body uses and stores, Output: glucoses

Sentence 2: Physicist Isaac newton was born in 1642
in the village of Newton, Output: Abbot

I({Diabetes}|x) = 3.10 I({village}|x) = 2.07
I({body, stores}|x) = 3.08 I({village,Newton}|x) = 1.05

I({affects, and, stores}|x) = 2.62 I({Issac,village,Newton}|x) = 0.90
I({Diabetes,body,stores}|x) = −2.01 I({was}|x) = −0.74

I({how,body,stores}|x) = 1.95 I({1642,in,village,Newton}|x) = −0.71

C.4. Discussion on the relationship between interaction concepts and adversarial robustness

In this section, we analyze the relationship between different interaction concepts encoded by the DNN and the adversarial
robustness of the DNN.

In the first experiment, we studied the robustness of different concepts. In this experiment, we found that high-order concepts
(i.e. concepts which contain massive input variables) were less robust than low-order concepts (i.e. concepts which contain a
small number of input variables). Therefore, we can examine different models based on the extracted concepts, and select
models that encode less high-order non-robust concepts. In this way, the selected model would potentially be more robust.

Mathematically, we defined the order of a concept S as the number of input variables composing this concept, i.e.
order(S) = |S|. Then, we evaluated the sensitivity of concepts S with different orders |S|, which was encoded by the
VGG-16 model trained on the MNIST-3 dataset, when adversarial perturbations (Madry et al., 2018) were injected into the
input sample. Given an input sample x, the adversarial perturbation δ was obtained via the L∞ PGD attack (Madry et al.,
2018), subject to ∥δ∥∞ < 64

255
. The attack was iterated for 20 steps with the step size 4

255
. The sensitivity of concepts S with

s-order (i.e. |S| = s) was defined as sensitivitys ≜ Ex

[∑
S:|S|=s |I(S|x+δ)−I(S|x)|∑

S:|S|=s |I(S|x)|

]
. Table 4 shows the sensitivity of concepts

with different orders.

We found that high-order concepts usually exhibited higher sensitivity, thereby being less robust for inference. Notice that
Eq. (2) in the paper shows the network output can be written as the sum of effects of all interaction concepts. Therefore,
if a model encodes massive high-order concepts, the model would probably be less robust to adversarial attacks. This
indicated that we could select models that encode less high-order non-robust concepts. In this way, the selected model
would potentially be more robust.

Table 4. Sensitivity of concepts with different orders. High-order concepts are sensitive to adversarial noise, thereby being less robust.

s = 1 s = 2 s = 3 s = 4 s = 5 s = 6

sensitivitys 0.81 0.94 2.45 3.46 9.90 14.89

In the second experiment, we compared the transferability of concepts encoded by normally trained models with adversarially
trained models (Madry et al., 2018). We found that besides improving the robustness of the model, adversarial training also
improved the generalization power of features, i.e., the transferability of the encoded concepts. Therefore, we can select
models that encoded more transferable concepts, which would potentially be more reliable.

To this end, we trained another two VGG-13 networks and another two VGG-16 networks on the MNIST-3 dataset
using adversarial training. Then, following the experimental settings in Fig. 6, Section 3.3.3, we checked the model-
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wise transferability of the concepts encoded by these DNNs. Specifically, let us suppose a pair of models v1 and v2
were trained for the same task. Given an input sample x, let Ωv1

x and Ωv2
x denote the sets of salient concepts extracted

by v1 and v2 from sample x, respectively. We evaluated the ratio of concepts in Ωv1
x encoded by v1 that were also

encoded by v2 in Ωv2
x , i.e. γ(Ωv1

x |Ωv2
x ) ≜ |Ωv1

x ∩ Ωv2
x |/|Ωv1

x |, to measure the transferability of salient concepts in Ωv1
x .

Following experimental settings in Section 3.3.3, given each sample x, Ωv2
x contained all salient concepts with interaction

strength Iv2(S|x) ≥ 0.05 · maxS |Iv2(S|x)|. We used different thresholds τ ranging from τ = 0.05 · maxS |Iv1(S|x)| to
τ = 0.3 ·maxS |Iv1(S|x)| to generate different sets Ωv1

x . A larger τ value usually generated a smaller set of salient concepts
with more significant effects. We computed the average ratio over different samples Ex[γ(Ω

v1
x |Ωv2

x )] to measure the
transferability of concepts between a pair of models.

Table 5 and Table 6 show that concepts encoded by adversarially trained models usually exhibit higher model-wise
transferability. This may explain the robustness of adversarially trained models, to some extent. Therefore, besides
improving the robustness of the model, adversarial training also improved the generalization power of features, i.e., the
transferability of the encoded concepts. This indicated that we could select models that encoded more transferable concepts,
which would potentially be more reliable.

Table 5. Transferability of concepts between a pair of VGG-13 networks, when we extract salient concepts Ωv1
x under different thresholds.

λ, the threshold τ = λ ·maxS |Iv1(S|x)| 0.05 0.10 0.15 0.20 0.25 0.30
a pair of normally trained VGG-13 networks 0.61 0.77 0.87 0.91 0.94 0.95
a pair of adversarially trained VGG-13 networks 0.66 0.80 0.87 0.93 0.96 0.98

Table 6. Transferability of concepts between a pair of VGG-16 networks, when we extract salient concepts Ωv1
x under different thresholds.

λ, the threshold τ = λ ·maxS |Iv1(S|x)| 0.05 0.10 0.15 0.20 0.25 0.30
a pair of normally trained VGG-16 networks 0.56 0.71 0.82 0.88 0.95 0.96
a pair of adversarially trained VGG-16 networks 0.62 0.76 0.85 0.91 0.94 0.96
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