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Abstract
In this work, we leverage visual prompting (VP) to improve adversarial robustness
of a fixed, pre-trained model at testing time. Compared to conventional adversarial
defenses, VP allows us to design universal (i.e., data-agnostic) input prompting
templates, which have plug-and-play capabilities at testing time to achieve desired
model performance without introducing much computation overhead. Although VP
has been successfully applied to improving model generalization, it remains elusive
whether and how it can be used to defend against adversarial attacks. We investigate
this problem and show that the vanilla VP approach is not effective in adversarial
defense since a universal input prompt lacks the capacity for robust learning against
sample-specific adversarial perturbations. To circumvent it, we propose a new VP
method, termed Class-wise Adversarial Visual Prompting (C-AVP), to generate
class-wise visual prompts so as to not only leverage the strengths of ensemble
prompts but also optimize their interrelations to improve model robustness. Our
experiments show that C-AVP outperforms the conventional VP method, with
2.1× standard accuracy gain and 2× robust accuracy gain. Compared to classical
test-time defenses, C-AVP also yields a 42× inference time speedup. Code is
available at link.

1 Introduction
Machine learning (ML) models,can easily be manipulated to output drastically different classifications.
This process is known as adversarial attack [1, 2]. Thereby, model robustification against adversarial
attacks is now a major focus of research. Yet, a large volume of existing works focused on advancing
training recipes and/or model architectures to gain robustness. Adversarial training (AT) [3], one of
the most effective defense, adopted min-max optimization to minimize the worst-case training loss
induced by adversarial attacks. Extended from AT, various defense methods were proposed, ranging
from supervised learning to semi-supervised learning, and further to unsupervised learning [4–12].

Although the design for robust training has made tremendous success in improving model robustness
[13, 14], it typically takes an intensive computation cost with poor defense scalability to a fixed, pre-
trained ML model. Towards circumventing this difficulty, the problem of test-time defense arises; see
the seminal work in [15]. Test-time defense alters either a test-time input example or a small portion of
the pre-trained model for adversarial defense. Examples include input (anti-adversarial) purification
[16–18] and model refinement by augmenting the pre-trained model with auxiliary components
[19–21]. However, these defense techniques inevitably raise the inference time and hamper the
test-time efficiency [15]. Inspired by that, our work will advance the test-time defense technology by
leveraging the idea of visual prompting (VP) [22], also known as model reprogramming [23–26].

Generally speaking, VP [22] creates a universal (i.e., data-agnostic) input prompting template (in
terms of input perturbations) in order to improve the generalization ability of a pre-trained model
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when incorporating such a visual prompt into test-time examples. It enjoys the same idea as model
reprogramming [23–26] or unadversarial example [27], which optimizes the universal perturbation
pattern to maneuver (i.e., reprogram) the functionality of a pre-trained model towards the desired
criterion, e.g., cross-domain transfer learning [25], out-of-distribution generalization [27], and fairness
[26]. However, it remains elusive whether or not VP could be designed as an effective solution to
adversarial defense. We will investigate this problem, which we call adversarial visual prompting
(AVP), in this work. Compared to conventional test-time defense methods, AVP will significantly
reduce the inference time overhead since visual prompts can be designed offline over training data
and have the plug-and-play capability applied to any testing data. We summarize our contributions
below.

❶ We formulate and investigate the problem of AVP for the first time. We empirically show that the
conventional data-agnostic VP design is incapable of gaining adversarial robustness.

❷ We propose a new VP method, termed class-wise AVP (C-AVP), which produces multiple,
class-wise visual prompts with explicit optimization on their couplings to gain adversarial robustness.

❸ We provide insightful experiments to demonstrate the pros and cons of VP in adversarial defense.

2 Problem Statement
Visual prompting. We describe the problem setup of VP following [22, 24–26]. Let Dtr denote
a training set for supervised learning, where (x, y) ∈ Dtr signifies a training sample with feature x
and label y. And let δ be a visual prompt. The prompted input is then given by x + δ with respect to
(w.r.t.) x. VP drives δ to minimize the performance loss ℓ of a pre-trained model θ. This leads to

minimize
δ

E(x,y)∈Dtr[ℓ(x + δ; y,θ)]
subject to δ ∈ C,

(1)

where ℓ denotes prediction error given the training data (x, y) and base model θ, and C is a perturba-
tion constraint. Following [22, 24, 25], C restricts δ to let x + δ ∈ [0,1] for any x. Projected gradient
descent (PGD) [3, 27] can then be applied to solving problem (1). In the evaluation, δ is integrated
into test data to improve the prediction ability of θ.
Adversarial visual prompting. Inspired by the usefulness of VP to improve model generalization
[25, 22], we ask:

(AVP problem) Can VP (1) be extended to robustify θ against adversarial attacks?

At the first glance, the AVP problem seems trivial only if we specify the performance loss ℓ as the
adversarial training (AT) loss [3, 4]:

ℓadv(x + δ; y,θ) = maximize
x′ ∶∥x′−x∥∞≤ϵ

ℓ(x′ + δ; y,θ), (2)

where x′ denotes the adversarial input that lies in the ℓ∞-norm ball centered at x with radius ϵ > 0.

Recall from (1) that the conventional VP design requests δ to be universal across training data. Thus,
we term universal AVP (U-AVP) the following problem by integrating (1) with (2):

minimize
δ∶δ∈C

λE(x,y)∈Dtr[ℓ(x + δ; y,θ)] + E(x,y)∈Dtr[ℓadv(x + δ; y,θ)] (U-AVP)
where λ > 0 is a regularization parameter to strike a balance between generalization and adversarial
robustness [4].
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Fig. 1: Example of designing U-AVP
for adversarial defense on (CIFAR-10,
ResNet18), measured by robust accu-
racy against PGD attacks [3] of different
steps. The robust accuracy of 0 steps is
the standard accuracy.

The problem (U-AVP) can be effectively solved using a stan-
dard min-max optimization method, which involves two alter-
nating optimization routines: inner maximization and outer
minimization. The former generates adversarial examples as
AT, and the latter produces the visual prompt δ like (1). At
testing time, the effectiveness of δ is measured from two as-
pects: (1) standard accuracy, i.e., the accuracy of δ-integrated
benign examples, and (2) robust accuracy, i.e., the accuracy of
δ-integrated adversarial examples (against the victim model
θ). Despite the succinctness of (U-AVP), Fig. 1 shows its inef-
fectiveness to defend against adversarial attacks. Compared to
the vanilla VP (1), it also suffers a significant standard accu-
racy drop (over 50% in Fig. 1 corresponding to 0 PGD attack
steps) and robust accuracy is only enhanced by a small margin (around 18% against PGD attacks).
The negative results in Fig. 1 are not quite surprising since a data-agnostic input prompt δ has limited
learning capacity to enable adversarial defense. Thus, it is non-trivial to tackle the problem of AVP.
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3 Class-wise Adversarial Visual Prompting
No free lunch for class-wise visual prompts. A direct extension of (U-AVP) is to introduce
multiple adversarial visual prompts, each of which corresponds to one class in the training set Dtr. If
we split Dtr into class-wise training sets {D(i)tr }

N
i=1 (for N classes) and introduce class-wise visual

prompts {δ(i)}, then the direct C-AVP extension from (U-AVP) becomes

minimize
{δ(i)∈C}i∈[N]

1

N

N

∑
i=1
{λE(x,y)∈D(i)tr

[ℓ(x + δ(i); y,θ)] + E(x,y)∈D(i)tr

[ℓadv(x + δ(i); y,θ)]} (C-AVP-v0)

where [N] denotes the set of class labels {1,2, . . . ,N}. It is worth noting that C-AVP-v0 is decom-
posed over class labels. Although the class-wise separability facilitates numerical optimization, it
introduces challenges (C1)-(C2) when applying class-wise visual prompts for adversarial defense.

● (C1) Test-time prompt selection: After acquiring the visual prompts {δ(i)} from (C-AVP-v0), it
remains unclear how a class-wise prompt should be selected for application to a test-time example
xtest. An intuitive way is to use the inference pipeline of θ by aligning its top-1 prediction with the
prompt selection. That is, the selected prompt δ and the predicted class i∗ are determined by

δ = δ∗, i∗ = argmax
i∈[N]

fi(xtest + δ(i);θ), (3)

where fi(x;θ) denotes the ith-class prediction confidence of using θ at x. However, the seemingly
correct rule (3) leads to a large prompt selection error (thus poor prediction accuracy) due to (C2).

● (C2) Backdoor effect of class mis-matched prompts: Given δ(i) from (C-AVP-v0), if the test-time
example xtest is drawn from class i, the visual prompt δ(i) then helps prediction. However, if xtest

is not originated from class i, then δ(i) could serve as a backdoor attack trigger [28] with the targeted
backdoor label i for the ‘prompted input’ xtest+δ

(i). Since the backdoor attack is also input-agnostic,
the class-discriminative ability of xtest + δ

(i) enabled by δ(i) could result in incorrect prediction
towards the target class i for xtest.
Joint prompts optimization for C-AVP. The failure of C-AVP-v0 inspires us to re-think the value
of class-wise separability. As illustrated in challenges (C1)-(C2), the compatibility with the test-time
prompt selection rule and the interrelationship between class-wise visual prompts should be taken
into account. To this end, we develop a series of new AVP principles below. Fig. A1 provides a
schematic overview of C-AVP and its comparison with U-AVP and the original predictor without VP.

First, to bake the prompt selection rule (3) into C-AVP, we enforce the correct prompt selection, i.e.,
under the condition that fy(x + δ

(y);θ) > maxk∶k≠y fk(x + δ
(k);θ) for (x, y) ∈ D(y). The above

can be cast as a CW-type loss [1]:
ℓC−AVP,1({δ(i)};Dtr,θ) = E(x,y)∈Dtr max{max

k≠y
fk(x + δ(k);θ) − fy(x + δ(y);θ),−τ}, (4)

where τ > 0 is a confidence threshold. The rationale behind (4) is that given a data sample (x, y), the
minimum value of ℓC−AVP,1 is achieved at −τ , indicating the desired condition with the confidence
level τ . Compared with (C-AVP-v0), another key characteristic of ℓC−AVP,1 is its non-splitting over
class-wise prompts {δ(i)}, which benefits the joint optimization of these prompts.

Second, to mitigate the backdoor effect of class mis-matched prompts, we propose additional two
losses, noted by ℓC−AVP,2 and ℓC−AVP,3, to penalize the data-prompt mismatches. Specifically,
ℓC−AVP,2 penalizes the backdoor-alike targeted prediction accuracy of a class-wise visual prompt
when applied to mis-matched training data. For the prompt δ(i), this leads to

ℓC−AVP,2({δ(i)};Dtr,θ) =
1

N

N

∑
i=1

E(x,y)∈D(−i)tr

max{fi(x + δ(i);θ) − fy(x + δ(i);θ),−τ}, (5)

where D(−i)tr denotes the training data set by excluding D(i)tr . The class i-associated prompt δ(i)

should not behave as a backdoor trigger to non-i classes’ data. Likewise, if the prompt is applied to
the correct data class, then the prediction confidence of this matched case should surpass that of a
mis-matched case. This leads to

ℓC−AVP,3({δ(i)};Dtr,θ) = E(x,y)∈Dtr max{max
k≠y

fy(x + δ(k);θ) − fy(x + δ(y);θ),−τ}. (6)

Let ℓC−AVP,0({δ
(i)
};Dtr,θ) denote the objective function of (C-AVP-v0). Integrated with

ℓC−AVP,q({δ
(i)
};Dtr,θ) for q ∈ {1,2,3}, the desired class-wise AVP design is cast as

minimize
{δ(i)∈C}i∈[N]

ℓC−AVP,0({δ(i)};Dtr,θ) + γ∑3
q=1 ℓC−AVP,q({δ(i)};Dtr,θ), (C-AVP)

where γ > 0 is a regularization parameter for the class-wise prompting penalties.
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4 Experiments

Experiment setup. We conduct experiments on CIFAR-10 with a pretrained ResNet18 of testing
accuracy of 94.92% on standard test dataset. We use PGD-10 (i.e., PGD attack with 10 steps [3])
to generate adversarial examples with ϵ = 8/255 during visual prompts training, and with a cosine
learning rate scheduler starting at 0.1. Throughout experiments, we choose λ = 1 in (U-AVP), and
τ = 0.1 and γ = 3 in (C-AVP). The width of visual prompt is set to 8 (see Fig. A2).

Table 1: VP performance comparison in
terms of standard (std) accuracy (acc) and
robust accuracy against PGD attacks with ϵ =
8/255 and multiple PGD steps on (CIFAR-
10, ResNet18).

Evaluation Std Robust acc vs PGD w/ step #
metrics (%) acc 10 20 50 100

Pre-trained 94.92 0 0 0 0
Vanilla VP 94.48 0 0 0 0

U-AVP 27.75 16.9 16.81 16.81 16.7
C-AVP-v0 19.69 13.91 13.63 13.6 13.58

C-AVP (ours) 57.57 34.75 34.62 34.51 33.63

C-AVP outperforms conventional VP. Tab. 1 demon-
strates the effectiveness of proposed C-AVP approach vs.
U-AVP (the direction extension of VP to adversarial de-
fense) and the C-AVP-v0 method in the task of robustify
a normally-trained ResNet18 on CIFAR-10. For compari-
son, we also report the standard accuracy of the pre-trained
model and the vanilla VP solution given by (1). As we can
see, C-AVP outperforms U-AVP and C-AVP-v0 in both
standard accuracy and robust accuracy (evaluated using
PGD attacks with different step sizes). We also observe
that compared to the pre-trained model and the vanilla
VP, the robustness-induced VP variants bring in an evident standard accuracy drop as the cost of
robustness enhancement. We show the ablation study of prompting regularization in Tab. A1.

(a) C-AVP-v0 (b) C-AVP

Fig. 2: The prediction error analysis of C-AVP vs. C-AVP-v0 on
(CIFAR10, ResNet18).

Class-wise prediction error analysis.
Fig. 2 shows a comparison of the clas-
sification confusion matrix. Each row
corresponds to testing samples from one
class, and each column corresponds to
the prompt (‘P’) selection across 10 im-
age classes. As we can see, our pro-
posal outperforms C-AVP-v0 since the
former’s higher main diagonal entries in-
dicate better prompt selection accuracy
than the latter.

Table 2: Comparison of C-AVP with other SOTA test-
time defenses. Per the benchmark in [15], the involved
test-time operations in these defenses include: IP (input
purification), MA (model adaption), IA (iterative algo-
rithm), AN (auxiliary network), and R (randomness).
And inference time (IT), standard accuracy (SA), and
robust accuracy (RA) against PGD-10 are used as per-
formance metrics.

Method IP MA IA AN R IT SA (%) RA (%)

Shi et al. [29] ✔ ✘ ✔ ✘ ✘ 518 × 85.9% 0.4%
Yoon et al. [16] ✔ ✘ ✔ ✔ ✔ 176 × 91.1% 40.3%
Chen et al. [30] ✘ ✔ ✔ ✔ ✘ 59 × 56.1% 50.6%

C-AVP ✔ ✘ ✘ ✘ ✘ 1.4 × 57.6% 34.3%

Comparisons with other test-time defenses.
In Tab. 2, we compare our proposed C-AVP with
other test-time defense from [15]. We divide
defenses into different categories, relying on
their defense principles (i.e., IP or MA) as well
as their test-time operations (i.e., IA, AN, and R).
Our method C-AVP falls into the IP category but
requires no involved test-time operations. This
leads to the least inference overhead. Although
there exists a performance gap with other test-
time defense, our work shows the pros and cons
of visual prompting in adversarial robustness.

5 Conclusion

In this work, we develop a novel VP method, i.e., C-AVP, to improve adversarial robustness of a
fixed model at testing time. Compared to existing VP methods, this is the first work to peer into
how VP could be in adversarial defense. We show that the direct integration of VP into robust
learning does not offer an effective adversarial defense at testing time for the fixed model. To
address this problem, we propose C-AVP to create ensemble visual prompts and jointly optimize
their interrelations for robustness enhancement. We empirically show that our proposal significantly
reduces the inference overhead compared to classical adversarial defenses which typically call for
computationally-intensive test-time defense operations.
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Appendix

Overview of C-AVP vs U-AVP Fig. A1 provides a schematic overview of C-AVP and its comparison
with U-AVP and the original predictor without VP.

Inputs

Visual
Prompt

Pretrained
Classifier

Predictions

Method (c) C-AVP(b) U-AVP(a) No Prompt

Dog Cat Dog Cat Dog Cat

Fig. A1: Overview of C-AVP over two classes (red and green) vs. U-AVP and the prompt-free learning pipeline.

Visualization of Prompted Images We set visual prompt width to 8. Fig. A2 shows the visualiza-
tion for C-AVP.

airplane automobile bird cat dear dog frog horse ship truck

Fig. A2: C-AVP visualization. One image is chosen from each CIFAR-10 class with the corresponding C-AVP.

Table A1: Sensitivity analysis of prompting regulariza-
tions in C-AVP on (CIFAR-10, ResNet18).

Setting ℓC−AVP,1 ℓC−AVP,2 ℓC−AVP,3 Std Acc (%) PGD-10 Acc (%)

S1 ✘ ✘ ✘ 19.69 13.91
S2 ✔ ✘ ✘ 22.72 13.01
S3 ✘ ✔ ✘ 40.01 25.40
S4 ✘ ✘ ✔ 17.44 11.78
S5 ✔ ✔ ✘ 57.03 32.39
S6 ✔ ✘ ✔ 26.02 15.80
S7 ✔ ✔ ✔ 57.57 34.75

Prompting regularization effect in (C-AVP).
Tab. A1 shows different settings of prompting
regularizations used in C-AVP, where ‘Si’ repre-
sents a certain loss configuration. As we can see,
the use of ℓC−AVP,2 contributes most to improv-
ing the performance of learned visual prompts
(see S3). This is not surprising, since we design
ℓC−AVP,2 for mitigating the backdoor effect of
class-wise prompts, which is the main source of
prompting selection error. We also note that ℓC−AVP,1 is the second most important regularization,
as evidenced by the comparable performance of S3 vs. S5. This is because such a regularization is
accompanied with the prompt selection rule (3). If training cost is taken into consideration, Tab. A1
also indicates that the combination of ℓC−AVP,1 and ℓC−AVP,2 is a possible computationally lighter
alternative to (C-AVP).

7


	Introduction
	Problem Statement
	Class-wise Adversarial Visual Prompting
	Experiments
	Conclusion

