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ABSTRACT

Progress in machine learning has been driven in large part by massive increases
in data. However, large web-scale datasets such as LAION are largely uncurated
beyond searches for exact duplicates, potentially leaving much redundancy. Here,
we introduce SemDeDup, a method which leverages embeddings from pre-trained
models to identify and remove “semantic duplicates”: data pairs which are seman-
tically similar, but not exactly identical. Removing semantic duplicates preserves
performance and speeds up learning. Analyzing a subset of LAION, we show that
SemDeDup can remove 50% of the data with minimal performance loss, effec-
tively halving training time. Moreover, performance increases out of distribution.
Also, analyzing language models trained on C4, a partially curated dataset, we
show that SemDeDup improves over prior approaches while providing efficiency
gains. SemDeDup provides an example of how simple ways of leveraging quality
embeddings can be used to make models learn faster with less data.

1 INTRODUCTION
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Figure 1: Data efficiency from semantic deduplication (SemDeDup) (left): A schematic of the
SemDeDup algorithm which efficiently removes semantic duplicates from web-scale data. (right):
When SemDeDup removes 50% of the LAION-440M dataset, training on this semantically nonre-
dundant subset achieves almost the same performance as training on the entire 440M dataset. Also,
training speed is twice as fast and completes in half the time.

A primary driver of recent success in machine learning has been the rise of self-supervised learning
(SSL) scaled to ever larger models and unlabelled datasets (Hestness et al., 2017; Kaplan et al., 2020;
Henighan et al., 2020; Rosenfeld et al., 2020; Gordon et al., 2021; Hernandez et al., 2021; Zhai
et al., 2021; Hoffmann et al., 2022). In particular, modern large datasets are often derived at global
web-scale and are generally unfiltered, with the exception of NSFW filters. One such public dataset is
LAION (Schuhmann et al., 2022b), a multi-modal dataset of 5 billion image/text pairs. Multi-modal
models such as CLIP (Radford et al., 2021b) are trained for many epochs on these large datasets
achieving impressive performance, but at the cost of extremely long training durations.

The critical role of large datasets has led to increasing interest in scaling laws which enable us
to predict how model performance changes given more data and/or parameters, leading to the
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Figure 2: Mapping cosine similarity to perceptual and semantic similarity. We visualize pairs of
images with cosine similarity 1− ϵ in the CLIP image encoder embedding space. The left most image
is a random seed image from LAION, while the remaining images are sorted by their dissimilarity ϵ
to the seed image. Roughly, as ϵ increases from left to right, we move from perceptual to semantic
duplicates, while at large values of ϵ we see semantically redundant pairs. Note the red labelled
“semantic duplicate” is a view of the original left-most seed image from a slightly different perspective.
We visualize more examples in Figure A13.

observation that test error generally scales as a power law with respect to data quantity (Kaplan et al.,
2020). Power law scaling, however, is unsustainable as diminishing marginal returns are quickly hit
such that ever increasing amounts of data are required to achieve ever diminishing improvements in
performance. Notably, many of these models appear never to converge, as test performance continues
to increase even after 10s of passes through these massive datasets (Ilharco et al., 2021; Aghajanyan
et al., 2023). This result suggests that our best models are underfitting, likely as a result of spending
an increasing fraction of learning time focusing on redundant data.

Improving data efficiency is therefore quite impactful, either by enabling models to achieve the
same performance much faster or to achieve better performance given the same computational
budget. This has inspired recent work which suggests that by pruning data according to an intelligent
criterion, power law scaling with respect to data can be beat and, given an optimal data ranking metric,
exponential scaling might in principle be achieved (Sorscher et al., 2022). Recent explorations of this
direction have shown promising results, with some works able to reduce data size by almost 5-fold
with minimal performance loss (Radenovic et al., 2023).

Optimal approaches to select data might focus on one of several different classes of examples to be
removed, roughly ordered by the complexity of their discovery:

1. Perceptual duplicates: We loosely define such data pairs to be perceptually identical to
a typical human observer. These may be exact duplicates or inputs with slight, human
impreceptible distortions.

2. Semantic duplicates: These are examples which contain largely identical information
content, but remain perceptually distinct. For example, a pair of image views which
are derived from the same image, but feature different margins, aspect ratios, or color
distributions could be considered semantic duplicates. Such pairs would rarely, if ever, be
detected by exact duplicate filters as they are far apart in pixel/token space.

3. Semantically redundant data: in contrast to semantic duplicates, semantically redundant
data are not derived from the same underlying objects and would be clearly distinguishable to
a human. However, the information contained in such examples may still contain substantial
overlap. For example, consider the case of two different images of two different golden
retrievers in two different parks. These images are neither perceptually nor semantically
identical as the content of the images differ. Each additional semantically redundant
data point will provide less and less new information, eventually converging to near-zero
information gained from additional such data.

4. Misleading data: these are data which rather than providing zero information (as in the
previous categories) provide negative or harmful signal, such that removing these data
actually improves performance rather than having a neutral effect. While such data are easy
to conceive of in supervised learning (i.e. mislabeled examples), it is much less clear what
such examples may be in the context of self-supervised learning.

In this work, we focus on the category of semantic duplicates: data which are semantically highly
similar but which would be difficult to discover using simple deduplication approaches. These data
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points are challenging to identify because distance measures in input space are unlikely to uncover
semantic duplicates. To overcome this limitation, we leverage pre-trained foundation models to
compare data similarity in the learned embedding space rather than in input space. Comparing
every data point to every other data point, however, is intractable, especially for web-scale datasets
containing billions of examples. To make this computation possible, we use the clustering approach
described in Sorscher et al. (2022) to segment the embedding space, allowing us to only search for
duplicate pairs within a cluster. Using this approach, we make the following contributions:

• We propose SemDeDup (Fig. 1, left), a simple, yet effective and computationally tractable
way to identify semantic duplicates. Using this approach, we show that large web-scale
datasets such as LAION contain large numbers of semantic duplicates, with 50% of examples
containing at least one semantic duplicate.

• Large fractions of semantic duplicates can be removed with little-to-no performance impact,
greatly increasing training efficiency. We reduced the size of our LAION training set by
50% with minimal performance loss, achieving nearly the same performance 2x faster (Fig.
1, right), and moreover improved performance out-of-distribution.

• We apply SemDeDup to C4, beating prior SoTA deduplication, providing efficiency gains
10-15% for language model training, and sometimes even improving performance.

2 SEMDEDUP

Defining and identifying semantic duplicates While identifying perceptual duplicates can be
easily done in input space, identifying semantic duplicates is more difficult as they may be distant
in either pixel or token space. To identify these pairs, we leverage the embedding space of a large
pre-trained foundation model to provide a more semantically meaningful distance metric. To detect
and remove semantically similar images, we use the following semantic de-duplication (SemDeDup)
algorithm (Fig. 1, left). First, we embed each data point using a foundation model (CLIP (Ilharco
et al., 2021; Radford et al., 2021a) for images and OPT (Zhang et al., 2022) for language). We then
cluster the embeddings into k clusters via k-means. Below, we choose k = 50, 000 clusters in CLIP
image encoder embeddings and k = 11, 000 clusters in OPT-language model embeddings. Within
each cluster, we compute all pairwise cosine similarities and set a threshold cosine similarity above
which data pairs are considered semantic duplicates. Finally, from each group of semantic duplicates
within a cluster, we keep the image with the lowest cosine similarity to the cluster centroid and
remove the rest. We note that to determine duplicates, this method considers only the images and
ignores the captions. A pseudo code for SemDeDup is shown in Algorithm A12 in the appendix.
We provide more details about the method in addition to experiments on choosing the value of k in
Appendix E.

3 SEMDEDUP ON LAION

We first show that the LAION dataset contains extreme amounts of semantic redundancy (Section
3.1) and provide examples of the semantic duplicates discovered by SemDeDup. Most critically,
we demonstrate that removing the semantic duplicates discovered by SemDeDup has minimal to no
impact on converged performance and increases learning speed (Section 3.2). In Appendix D we
show that SemDeDup improves performance of language models over prior methods. We present an
analysis of the method parameters in Appendix G as well.

3.1 EXTREME SEMANTIC REDUNDANCY AT WEB-SCALE

How many semantically redundant pairs are there in LAION? Remarkably, we find that even tiny
thresholds ϵ lead SemDeDup to remove large fractions of data in LAION-440M (Fig. A1a), showing
that LAION-440M contains large quantities of semantic duplicates. Surprisingly, 30% of images in
LAION-440M have a semantic duplicate at the highly stringent distance threshold of ϵ = 0.00095,
while 50% have a duplicate at the tight threshold of ϵ = 0.124 (Fig. A1b). Moreover, a histogram of
pairwise cosine similarity in LAION-440M (Fig. A1c) reveals a high density of pairs at high cosine
similarity, including a large contribution at 1, reflecting highly similar semantic duplicates. These
results demonstrate that LAION-440M contains large amounts of semantic redundancy.
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What do semantic duplicates look like? In Fig. 2, we show examples of semantic duplicates
found at different thresholds ϵ. At extremely low values of ϵ we find perceptual duplicates, and at
slightly higher values of ϵ, we find semantic duplicates, which are the same image but with distortions
which evade exact de-duplication approaches such as different margins, crops, aspect ratios, and
color filters, or slighly different peripheral details. Fig. A14, and A15 show examples of clusters that
are semantically deduplicated at increasing levels of ϵ, clearly indicating more semantic diversity in
deduplicated clusters as ϵ increases.

3.2 TRAINING ON SEMANTICALLY DEDUPLICATED DATA IMPROVES EFFICIENCY

If SemDeDup is effective at finding semantic duplicates, we should be able to remove these duplicates
with minimal performance impact. To test this, we train CLIP models on subsets of LAION-440M
deduplicated at different thresholds ϵ. As ϵ rises, we retain a smaller fraction of data. In Fig. 3 (a),
we plot the top-1 zero-shot accuracy of our CLIP models on ImageNet-1k. Encouragingly, we found
that SemDeDup can remove up to 37% of LAION-440M with no performance drop, and 50% with
minimal performance drop (< 0.5%). In contrast, randomly removing data results in much larger
drops. In Fig. 3 (b), we show the average zero-shot performance across 25 tasks, finding that on
average, performance increased on de-duplicated data. See Table A2 for detailed performance on all
24 tasks at 6 deduplication thresholds as well as 1 baseline and 4 random controls. See also Fig. A4
for performance on 24 individual tasks.

We also evaluated out-of-distribution robustness on 6 datasets commonly used for this task: ImageNet-
A, ImageNet-O (Hendrycks et al., 2021b), Imagenet-R (Hendrycks et al., 2021a), Imagenet-sketch
(Wang et al., 2019), ImageNetV2 (Recht et al., 2019), and ObjectNet (Barbu et al., 2019). We
again found that SemDeDup increased performance when removing 37% of the data, and matched
performance when 50% was removed as shown in Fig. 3 (c). See Table A3 for detailed performance
on 6 OOD tasks at 6 deduplication thresholds as well as 1 baseline and 4 random controls. See also
Fig. A5 for performance on the 6 individual tasks. We emphasize that SemDeDup achieves these
results on LAION-440M, an already highly curated dataset derived from LAION-2B which was
found to have similar performance despite the almost five-fold reduction in data (Radenovic et al.,
2023). However, to ensure that this curated subset did not bias our results, we also evaluated on
LAION-233M, an uncurated subset of LAION-2B, finding qualitatively similar results (Fig. A6).

Because SemDeDup reduces the number of training points, it enables substantially faster training.
In Fig. 3 (d), we plot the top-1 zero-shot accuracy on ImageNet-1k as a function of the number of
iterations for different deduplication thresholds ϵ. Notably, models trained on deduplicated data reach
convergence in substantially fewer iterations
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Figure 3: SemDeDup allows better average zero-shot accuracy across 30 tasks with less data
and faster pre-training. (a): Down to using only 50% of LAION-440M for pre-training CLIP,
we are able match the zero-shot ImageNet accuracy of the baseline model trained on 100% of the
data (black dashed line) with a small drop of 0.38% only, while we outperform the baseline model
with only 63% of data. (b): Average zero-shot performance for CLIP measured on 24 datasets
improves down to 63% of the pre-training data, yielding better performance with almost 1.6× faster
pre-training. (c): Zeroshot validation accuracy averaged over 6 ImageNet-1k OOD datasets. (d): We
track zeroshot ImageNet-1K performance as a function of LAION-440M pre-training iterations at
different deduplication thresholds. With SemDeDup, models converge in far less iterations. The black
dashed line corresponds to the average performance over 4 different traning seeds for a baseline model
trained on 100% of the data. The error bars indicate the standard deviation (std) of performance.
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Discussion: we introduced SemDeDup, a simple yet tractable and effective method which leverages
pre-trained embeddings to remove semantic duplicates which are highly semantically similar but not
identical. Removing semantic duplicates improves learning speed and out-of-distribution performance
while providing efficiency gains of up to 50% on the largely uncurated LAION and 15% on the
partially curated C4. SemDeDup demonstrates the importance of data quality and the potential of
data curation to dramatically improve training efficiency.
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A DATASETS AND TRAINING FOR CLIP

The LAION dataset. To train large-scale multi-modal models, we used the LAION dataset (Schuh-
mann et al., 2022a), an open multi-modal dataset containing up to 5 billion image-text pairs scraped
from the web. LAION data were filtered using a pre-trained CLIP model to only retain image-text
pairs with an embedding similarity greater than 0.28. Image-text pairs containing very short captions
or small images were also removed. A simple de-duplication method based on the image url was also
performed.

The majority of our experiments were performed on the LAION-440M filtered subset of LAION-2B
introduced by (Radenovic et al., 2023). This dataset was filtered using a Complexity, Action, and Text
(CAT) filtering according to three criteria: (1) high enough caption complexity; (2) the caption must
contain an action; (3) any text present in the image cannot substantially overlap with the caption.

To ensure this CAT filtered LAION-440M subset did not impact our results, we also performed
experiments on unfiltered data derived from LAION. Much of the original LAION-400M subset
(Schuhmann et al., 2021) is no longer available due to broken urls, so we used a reduced version of
the LAION-400M subset containing the 233 million data points we were able to collect, which we
call LAION-233M.

CLIP training. For CLIP training on LAION, we use the OpenCLIP implementation (Ilharco et al.,
2021). We use CLIP-ViT-Base-16 in all our experiments. The model has Vision Transformer Base
(ViT-B-16) (Dosovitskiy et al., 2020) as an image encoder and Text Transformer (Vaswani et al.,
2017) as a text encoder. We train all models with a global batch size of 33k image-caption pairs and
fix the number of training epochs to 32 regardless of the dataset size. This results in training for a
fewer number of iterations when training on deduplicated data, thereby achieving efficiency gains.
We train with AdamW (Loshchilov & Hutter, 2017) and cosine learning rate schedule with warmup.
The same peak learning rate of 5x10−4 is used for all models. Table A1 shows training parameters
we use for CLIP.

CLIP Evaluation For CLIP evaluation, we conduct zeroshot evaluation on 30 distinct datasets, of
which six are designated for assessing out-of-distribution (OOD) robustness. Tables A2 and A3 in
the Appendix list all the datasets we use for evaluation.
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Figure A1: Extreme semantic redundancy in LAION-440M. (a) Fraction of data remaining as a
function of deduplication threshold ϵ for LAION-440M. (b) Percentage of images in LAION-440M
with at least one semantic duplicate as a function of ϵ. (c) Histogram of the number of within-cluster
image pairs in LAION-440M at a given cosine similarity.

B CLIP ZEROSHOT EVALUATION RESULT

In this section, we show the result of zeroshot evaluation for CLIP. We note that the models trained on
dataset deduplicated using SemDeDup outperform the baseline model in many tasks. In Table A2 we
list the top1 zeroshot accuracy on 24 tasks and in Table A3 we show the top1 zeroshot accuracy on 6
datasets for out-of-distribution robustness evaluation. Our complete evaluation set has 30 different
datasets in total. When using only 63% of LAION-440M, SemDeDup outperforms the baseline
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Figure A2: SemDeDup improves zeroshot and OOD performance in many tasks with less
pre-training. A comparison of zeroshot evaluation performance between our CLIP model trained on
63% of LAION-440M after de-duplication to a baseline CLIP model trained on 100% of the data
(left), and OpenAI CLIP (Radford et al., 2021a) (right) on 30 tasks. The green bars show when
SemDeDup outperforms the baseline model.

Table A1: Training parameters for CLIP

Parameter Value

Model CLIP ViT-B-16

Warmup 2000

Epochs 32

Batch size 33,792

Learning rate 5.0e-4, cosine scheduler

Optimizer AdamW, wd=0.2, betas=(0.9, 0.98), eps=1.0e-6

model in 19 out of the 30 tasks. Fig. (A4) and Fig. (A5) show the performance of different models as
a function of training dataset size.

C LAION-233M DE-DUPLICATION

To support our results on LAION-440M, we also de-duplicate a much smaller dataset of 233 million
images. We call this dataset LAION-233M. Usually, CLIP needs to be trained on more than 400
million image-caption pairs as introduced in (Radford et al., 2021a), so de-duplicating LAION-233M
is more challenging in this respect. We train a baseline model on the 233 million image-caption pairs
and two models on 55% of the data, one on a random subset and the other on deduplicated subset
using SemDeDup. We trained all the models using the same hyperparameters we used for training on
LAION-440M. We show ImageNet top1 zeroshot accuracy for these models in Fig. A6. The baseline
model achieved 64.62% accuracy, while the SemDeDup model achieved 63.61% outperforming the
model trained on the random subset (61.3% accuracy).
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Table A2: Zeroshot evaluation top1 accuracy on different datasets. Training CLIP on 72% of
the data after deduplication gives a higher performance than training on 100% of the data in 19/24
datasets. In the first row, model names are represented by the pruning method (Dedup, Baseline, and
Rand for SemDeDup, no pruning, and random pruning respectively), and the fraction of data used for
training. For the Baseline100 model we report the average performance across 4 training seeds.
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Cars 63.33 78.14 80.26 81.43 82.05 82.61 81.37 80.96 79.26 77.74 71.57

Country211 14.16 17.74 18.26 18.44 18.70 18.20 18.88 18.39 16.75 15.97 12.88

Fgvc Aircraft 4.44 11.49 12.42 15.42 15.27 15.09 14.30 14.31 13.11 9.27 8.85

GTSRB 38.22 37.20 36.22 43.06 41.00 35.74 40.85 43.33 41.88 25.72 32.28

Imagenet1k 60.24 66.90 68.27 68.66 68.93 68.80 68.65 68.29 66.12 64.82 58.86

MNIST 44.29 31.87 22.93 48.55 42.75 48.86 32.95 43.82 35.73 36.32 19.22

Renderedsst2 51.46 53.65 52.72 50.80 52.99 57.17 52.14 52.72 51.29 52.22 45.47

STL10 96.06 96.85 97.50 97.71 97.69 97.21 97.63 97.49 97.38 97.08 94.31

SUN397 64.81 67.98 68.26 68.89 69.25 69.76 69.46 69.08 67.96 65.51 60.76

VOC2007 77.94 79.51 79.74 80.37 79.75 78.61 79.04 77.97 79.43 77.96 74.42

Caltech101 83.05 84.40 84.98 85.06 84.35 84.75 83.74 83.69 83.93 83.38 80.62
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DTD 49.73 53.51 54.31 56.76 58.94 57.66 57.27 57.02 53.35 50.96 41.76

Eurosat 44.07 51.28 51.70 59.46 57.02 59.72 54.78 59.81 48.63 51.26 50.00

Flowers 45.21 62.21 67.67 69.78 70.48 66.29 67.97 68.39 65.43 62.42 58.16

Kitti Dist 20.39 13.36 14.35 14.77 19.97 26.72 17.16 11.11 20.68 17.02 11.25
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Average 49.4 52.91 52.44 55.66 55.43 55.41 54.17
±0.65

53.77 52.56 51.21 47.73
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Figure A3: SemDeDup is always better than training on random subset from LAION-440M. The
plots show zeroshot top1 accuracy on ImageNet for CLIP models trained on different fractions of
data.

D SEMDEDUP ON NATURAL LANGUAGE

D.1 METHODS

We train language models on deduplicated versions of the C4 dataset (Raffel et al., 2019). Since
pre-training large language models on the entire C4 corpus is beyond our compute budget, we train
on subsets of this data whose sizes are compute optimal given model size as per (Hoffmann et al.,
2022). We use the OPT model and training configurations (Zhang et al., 2022) to train 125M and
1.3B parameter models (see Table 1 in (Zhang et al., 2022) for full specifications). We use the original
number of warmup updates but adjust the learning rate schedule such that all training runs anneal
learning rate to 0 by the end of the training — this allows for fair comparisons of model performances
across different dataset sizes. For 1.3B model size experiments, we increase the number of warmup
updates to 5550 and reduce the peak learning rate to 6x10−5 to stabilize training.

We evaluate our trained language models on two independent validation sets: the validation text
corpora used by OPT (Zhang et al., 2022) (referred to as ”opt valid”) and a random sample of
the instruction finetuning corpus used to train the OPT-IML family of models (Iyer et al., 2022),
composed of verbalized prompts corresponding to a wide range of NLP tasks and their solutions
(referred to as ”prompts with answers”).

To perform SemDeDup, we pass documents through the open-sourced pre-trained 125M OPT model
(Zhang et al., 2022) and save the last layer embedding for the last token in the document. We then
apply the same method described in Section E.1 with K = 11000 to cluster these embeddings. We
compare to random pruning and the NearDup method described in (Lee et al., 2021b). Note that the
deduplication threshold values associated with different fractions of data remaining change compared
to LAION-440M, as seen in Fig. A21.
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Table A3: Out-of-distribution Robustness for CLIP models we trained on a different number of
examples. The two models trained on 63% and 72% of LAION440M with our de-duplication method
have higher average accuracy over 6 datasets. In the first column, model names are represented by
the pruning method (Dedup, Baseline, and Rand for SemDeDup, no pruning, and random pruning
respectively), and the fraction of data used for training. For the Baseline100 model we report the
average performance across 4 training seeds.

Model/-
Dataset ImageNet-

A
ImageNet-

O
ImageNet-

R
ImageNet-

Sketch

ImageNet-
V2

Object-
Net Average

Dedup20 31.35 52.25 72.69 46.98 52.71 51.0 51.16
Dedup40 38.73 49.3 77.08 51.93 59.21 54.98 55.21
Dedup50 39.68 48.55 77.74 53.54 60.37 55.36 55.87
Dedup63 39.07 48.45 78.24 53.86 60.56 56.33 56.08
Dedup72 39.53 47.6 78.61 53.7 61.23 56.28 56.16
Dedup80 39.12 47.95 78.53 53.82 60.59 54.72 55.79

Base-
line100 38.56 47.59 78.65 53.81 60.96 55.44 55.84

±0.12

Rand80 37.87 47.7 78.04 52.81 60.02 54.3 55.12
Rand60 34.6 47.5 75.61 51.18 57.97 53.22 53.35
Rand40 31.88 49.1 73.65 49.02 56.83 49.57 51.67
Rand20 23.43 49.4 66.74 43.76 50.67 43.57 46.26

D.2 RESULTS ON LANGUAGE MODELING

In Fig. A7, we show the performance of SemDeDup versus random pruning. We observe that SemD-
eDup significantly outperforms random pruning as measured by perplexity on prompts with answers
and average opt valid performance. For a breakdown of performance on individual validation sets
in opt valid, see Fig. A24 where we observe that SemDeDup beats random pruning on every single
validation set in opt valid.

Training on less data for one epoch naturally causes performance to decrease. Thus, we also explore
whether continuing to train on the same smaller pruned datasets for more epochs will match the
performance of a baseline model trained on a larger dataset. In Fig. A8, we train on datasets pruned
with SemDeDup, but perform the same number of total training steps as the baseline model on the
larger dataset (which was trained for 1 epoch). This causes the model to do multiple epochs over the
pruned dataset. We observe that by training for multiple epochs over significantly pruned datasets
we can reach the performance of a single-epoch run on the full dataset using 10-15% less compute.
This is similar to the finding in Section 3.2. Notably, this efficiency gain is larger at higher pruning
percentages, indicating that more aggressive pruning can yield more efficiency gains. This trend
generally holds across the individual validation sets in opt valid (see Fig. A25).

On the C4 validation set, we observe that SemDeDup still outperforms random pruning in Fig. A22.
In Table A16 we compare SemDeDup to the NearDup baseline from (Lee et al., 2021a). We observe
that NearDup and SemDeDup have comparable performance as is expected, because with 4% pruning
there is very little change to the underlying dataset.

D.3 WHAT IS BEING PRUNED IN LANGUAGE DATA?

In Fig. A26 and Fig. A27 we choose specific clusters and show a random sample of documents
retained in the cluster after performing SemDeDup for different values of ϵ. In Fig. A26, we observe
that at low values of ϵ, we find semantic duplicates in the form of templated text, where typically
few words (e.g. a geographic location or a name) is changed. This successfully evades exact-string
deduplication methods but contains highly redundant information as seen in Fig. A26. In Fig. A27,
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Figure A4: Zeroshot performance of CLIP on 24 datasets. The last plot shows the average perfor-
mance over all datasets.

we show an example of a cluster with semantically redundant duplicates — most examples in this
cluster are advertisements about Nike shoes. These examples are not necessarily templated text or
have exact string matches, but are highly redundant nonetheless. We see in Fig. A27 that at more
aggressive pruning (i.e. higher ϵ) these semantically redundant duplicates get pruned. We note that
exact string duplicates (i.e.“perceptual duplicates for text”) are rare since duplicate occurrences of
any three-sentence spans were removed in C4 already.

E ANALYSIS OF HYPERPARAMETER CHOICES

E.1 NUMBER OF K-MEANS CLUSTERS FOR SEMDEDUP

Clustering to reduce computation The time complexity of naive de-duplication is O(n2) where
n is the number of data points, making this approach impractical for large web-scale data. For
example, the LAION-440M dataset would require ≈ 1.9x1017 similarity computations. The k-
means clustering step in SemDeDup reduces this complexity substantially from O(n2) to O(n2/k)
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Figure A5: Out-of-distribution zeroshot performance on 6 datasets. SemDeDup outperforms random
pruning on all datasets for all fractions of dataset kept. The last plot shows the average performance
over all datasets.
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Figure A6: Performance when deduplicating 233 million images from LAION-2B. We deduplicte
LAION233M to 55% of its size and train CLIP model on it. SemDeDup performs better than random
pruning (63.61% vs 61.3%). Training on the whole 233 million examples gives 64.62%. Note that
the deduplicated dataset size here is 128 million only.

assuming approximately uniform cluster size1. This means we only require ≈ 4.6x1012 intra-cluster
comparisons instead of ≈ 1.9x1017 across all pairs, a 5-order of magnitude improvement. Here we
study the impact of changing the number of clusters k in the k-means clustering step in SemDeDup
described in section 2. In all our experiments in the main paper, we set k = 50,000 for the LAION
dataset and k = 11,000 for the C4 dataset. To study the impact of k on the performance, we deduplicate
LAION-440M using different values for k and train different CLIP models on the deduplicated data.
We compare three values for k (70,000, 50,000, and 10,000) when deduplicating LAION-440M to
40% of its size. As we see in Table A4 the exact choice of k has a very small impact on performance
as measured by the zeroshot accuracy on ImageNet with a small improvement in the top1 accuracy as
k increases.

The key intuition is that the choice of k implements a tradeoff in the probability of recovering all
semantic duplicates of any data point, and the computational complexity of doing so. For example,
assuming k-means finds equal cluster sizes, each data point will lie in a cluster of size N/k, and we
are only searching for ϵ-nearest neighbors (with cosine similarity ¿ 1− ϵ) within each cluster. As
k decreases, cluster size N/k increases, and the error probability of substantially many ϵ nearest
neighbors of a data point lying outside it’s own cluster decreases, while the computational complexity
of searching for all nearest neighbors within the cluster increases. As long as k is small enough

1Note that our choice of k depends on n, it is not a constant in the context of this complexity analysis.
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Figure A7: SemDeDup applied to C4. The x-axis corresponds to different percents of data kept,
and the y-axis represents the perplexity on validation sets described in Section D.1 (lower is better).
Each point is a separate 125M model trained on one-pass of its respective pruned dataset (mean and
standard deviation across 3 random training seeds). The green point represents a 125M model trained
on a version of C4 deduplicated via the NearDup method (Lee et al., 2021a). Note that NearDup (the
single green point) keeps 96.1% of the data. SemDeDup can match this baseline performance while
keeping only 80% of the data (see Table A17 for numerical comparison).
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Figure A8: SemDeDup allows compute efficiency gains by training on much smaller datasets
for slightly longer. We prune datasets via SemDeDup and continue training past one epoch until
we reach baseline model perplexity. The x-axis is the percentage of data kept, and the y-axis is the
percentage of FLOPs saved. For example, training on the 80% pruned dataset reaches baseline model
perplexity on prompts with answer in 95.0% of the baseline training, saving 5.0% compute. Mean
and standard deviation provided across 3 random training seeds.

relative to the total dataset size N , so that N/k is large enough to contain most nearest neighbors of
each data point, the performance of SemDeDup should be robust to the choice of k.

E.2 PRE-TRAINED MODELS FOR EXTRACTING EMBEDDINGS

Utilizing pre-trained foundation Models: Our method makes use of pre-trained foundation models
to embed data examples. Considering that there are many of these ready-to-use pre-trained models
available to the public, we can use embeddings from these models to guide curation of other datasets.
Pre-trained models like Vision Transformers (Dosovitskiy et al., 2020) for vision tasks, OPT (Zhang

Table A4: Performance of CLIP when keeping 40% of LAION-440M as a function of the number of
k-means clusters k used for SemDeDup. SemDeDup is robust to the choice of k and the impact on
the zeroshot accuracy on ImageNet is small with slight performance improvement as we increase k.

Metric / Num. of Clusters 70K Clusters 50K Clusters 10K Clusters

Top1 zeroshot IN Acc. 67.11 66.90 66.56
Top5 zeroshot IN Acc. 90.96 90.74 91.04
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Table A5: The impact of the foundation model used for extracting embeddings. Using a foundation
model pre-trained on a different (and private) dataset has no impact on the performance. The table
shows the performance when training OpenCLIP on 40% of LAION-440M dataset. In each column
in the table, the dataset is deduplicated by SemDeDup using embeddings from a different model.

Metric / Model Used for Extracting Embeddings
CLIP

Pre-trained on
LAION440M

OpenAI CLIP
(Radford et al.,

2021a) Pre-trained on
Private 400M dataset

Top1 zeroshot IN Acc. After Training on DeDup. Data 66.90 66.96
Top5 zeroshot IN Acc. After Training on DeDup. Data 90.74 90.80

Table A6: Different strategies to choose the example to keep from each group of duplicates.

Metric / Examples to Keep
Examples with low

similarity to
centroids

Random
examples

Examples with high
similarity to

centroids

Top1 zeroshot IN Acc. 66.90 66.90 66.73
Top5 zeroshot IN Acc. 90.74 90.95 90.82

et al., 2022) for natural language and CLIP (Radford et al., 2021a) for vision-language data have
been used widely. Here we show that one can effectively use an on-the-shelf model pre-trained on
one dataset to prune another dataset resulting in a considerable training cost saving.

As we describe in section 2, SemDeDup clusters the example embeddings extracted from a pre-trained
foundation model and uses them for deduplication. To study the effect of the pre-training dataset of
the foundation model on SemDeDup we deduplicate LAION-440M using an OpenAI CLIP model
(Radford et al., 2021a) pre-trained on a different dataset than LAION. We use the OpenAI CLIP
ViT-Base-16 model pre-trained on a private dataset of 400 million image-caption pairs. We use the
embeddings from this model to deduplicate LAION-440M dataset to 40% of its size. As we see
in Table A5, using Open AI CLIP model for extracting embeddings has a negligible impact on the
performance.

E.3 DIFFERENT STRATEGIES FOR CHOOSING WHICH SEMANTIC DUPLICATES TO KEEP

In section 2 and Algorithm A12, we describe the steps for deduplication with SemDeDup. From each
group of duplicates (the circles in Figure 1), we keep the example with the lowest cosine similarity to
the cluster centroid in the embedding space. This is the default setting for all experiments we run
unless otherwise mentioned. In Table A6 we study the strategy we follow to choose the example
to keep from each group of duplicates. We train three CLIP models on 40% of LAION-440M
deduplicated by SemDeDup for 32 epochs. We try three options for choosing the examples we keep
1) keeping examples with low similarity to centroids, 2) keeping random examples, and 3) keeping
examples with high similarity to cluster centroids. We obverse that the difference between the three
methods in zero-shot accuracy on ImageNet is negligible.

E.4 TRAINING ON DEDUPLICATED DATA FOR MORE ITERATIONS IMPROVES PERFORMANCE

Training on deduplicated data comes with the advantage that we train for fewer iterations when
training for the same number of epochs. For example, training on 50% of LAION-440M for the same
number of epochs as the baseline model (100% of the data) means that we train for only 50% of the
number of training iterations. We find that we can achieve a good trade-off between performance and
training speed when training on deduplicated data. We show that training on deduplicated LAION-
440M for more iterations improves the accuracy while still being below the number of iterations we
train the baseline model for. In Table A7, we show results for different CLIP models, trained on 50%
of LAION-440M, for a different number of training iterations. We see that by continuing training
the model until we reach 75% of the iterations relative to the baseline model, we outperform the
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Table A7: By training on only 50% of LAION440M, deduplicated using SemDeDup, we perform
better than training on whole LAION440M (baseline100) with 62.5% or 75% of the number of
training iterations used for training the baseline model. The table shows zeroshot Top1 accuracy.

Model / Metric IN Acc Avg. Acc (24
datasets)

Avg. OOD (6
datasets)

100% data, 100% iters (Baseline100) 68.65 ±0.10 54.17 ±0.65 55.84 ±0.12

50% data, 50% iters 68.27 52.44 55.87

50% data, 62.5% iters 68.33 55.07 56.38

50% data, 75% iters 69.21 55.07 56.36

baseline model on not only ImageNet, but also on average accuracy over 24 datasets, and on the 6
out-of-distribution datasets.

E.5 CHOOSING THE DEDUPLICATION THRESHOLD ϵ

We tune the deduplication threshold ϵ for each dataset manually to get the desired deduplicated
dataset size. To do that, we first run the clustering step of SemDeDup. Then we sample 10% of the
clusters and tune ϵ on them. We found that using only 10% of clusters gives a good approximation of
the final dataset size. We notice that the relationship between ϵ and the deduplicated dataset size is
semi-linear for both LAION and C4 datasets (see Fig. A1, A10, and A21). When tuning ϵ we start
with two values and run SemDeDup on 10% of the clusters (the time needed for this step is a few
minutes. See the DeDup. Time column in Table A10 ). Then we linearly interpolate the two values
of ϵ knowing their correspondence deduplicated dataset size and the target dataset size to get a better
value for ϵ. In Fig. A10 we plot the duplicated dataset size as a function of ϵ for different values
of the number of clusters k used. We show that k has a small impact on the value ϵ only when the
duplicated dataset size is less than 50%.

F COMPUTE COST OF RUNNING SEMDEDUP

We report in Table A8 the cost of running SemDeup on LAION440M in GPU hours. We see in the
table that the overhead of deduplicating LAION440M doesn’t exceed 1% of the training cost in GPU
hours. This results in substantial savings in the overall cost after deduplication. For example, training
on 50% of the data saves 50% of the training cost while requiring only 1% of the training cost for
deduplication. We also show in Table A10 the time needed for deduplicating LAION440M dataset
using SemDeDup. Our implementation for SemDeDup parallelizes the operations across devices to
speed up the deduplication. Table Table A10 also shows how the deduplication time changes as we
change the number of clusters.

However, we should note that the computational cost of SemDeDup can be amortized across the
efficiency gains it can generate in training many downstream models by many other groups. For
example, its typical use case would be to take a large web-scaled dataset, and semantically deduplicate
it once, resulting in a much smaller foundation dataset (Sorscher et al., 2022) that can be widely
disseminated to the community. Then many different groups can train many different foundation
models on this deduplicated foundation dataset, and all these groups will reap the training efficiency
gains conferred by a less redundant smaller dataset. Thus the computational cost of finding the dataset
can be amortized across the efficiency gains achieved on many downstream training runs, in direct
analogy to how the computational cost of training a foundation model can be amortized across the
computational efficiency gains with which it achieves high zero-shot or fine-tuning performance on
many downstream applications.
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Table A8: SemDeDup requires much fewer GPU hours than training a CLIP ViT-B-16 model on
LAION440M for one epoch. When using 50K clusters, it requires only 0.29 of the GPU hours needed
for one epoch of training on 100% of the data. This is equivalent to 0.0091 of the complete training
cost in GPU hours.

Num. SemDeDup
Clusters / Cost

GPU Hours
For Training

CLIP on
100% of

LAION440M
for 32 Epochs

GPU Hours
For Training
on 50% of

DeDup. Data

SemDeDup
Overhead in
GPU Hours

SemDeDup
Overhead / 1

Epoch
Training GPU

Hours

SemDeDup
Overhead / 32

Epochs
Training GPU

Hours

10K Clusters 11541 5770.5 163.5 0.43 0.0132

25K Clusters 11541 5770.5 101.2 0.26 0.0082

50K Clusters 11541 5770.5 110.3 0.29 0.0091

70K Clusters 11541 5770.5 103.6 0.27 0.0084

G ADDITIONAL ANALYSIS

G.1 NUMBER OF K-MEANS CLUSTERS FOR SEMDEDUP

To further assess the impact of changing the value of k we measure the intersection between
datasets deduplicated by SemDeDup using different values for k. Let DA = {a1, a2, ..., aN} and
DB = {b1, b2, ..., bN} be two datasets of the same size N . We define the percentage of intersection
I between DA and DB in equation 1 as the percentage of data points that appear in both datasets
relative to the dataset size N . Note that I(DA, DA) = 100%.
We find that deduplicating LAION-440M dataset to 72% of its size using any value of k values
(10000, 25000, 50000, 70000) results in almost the same dataset with only 3% of the examples
replaced when changing k. This is induced by the 97% percentage of intersection I value between
any pair of datasets deduplicated using two different values for k. We show in Fig. A9 the percentage
of intersection ratio between different datasets when changing the number of clusters k at different
deduplication thresholds ϵ.
We also show in figure A10 that by using the same deduplication threshold value ϵ we get almost the
same deduplicated dataset size for different values for k.

I(DA, DB) = 100 ∗ |DA ∩DB |
N

(1)

G.2 ESTIMATING THE FRACTION OF DUPLICATES DETECTED BY SEMDEDUP

SemDeDup searches for duplicates within clusters. This results in reducing the floating point
operations (FLOPs) required for deduplication by 5 order of magnitude for LAION-440M dataset as
described in section E.1. Indeed, by searching for duplicates within clusters, we ignore duplicates
across different clusters if they exist. Here we try to estimate the efficiency of SemDeDup in detecting
all the duplicates in the dataset.
Let Dϵ represent the total number of duplicates in the dataset at a specific value of deduplication
threshold ϵ, and Ds

ϵ represent the total number of duplicates detected by SemDeDup. We define the
deduplication efficiency ηϵ (eq. 2) as the fraction of duplicates detected by SemDeDup from the total
number of duplicates in the datasets at a specific value of ϵ. For example, a deduplication efficiency
of 100% corresponds to detecting all the duplicates in a dataset. As computing the exact value of
Dϵ is computationally expensive, we approximate its value by the number of duplicates between the
cluster items and its 20 nearest neighbor clusters and donate this approximated value by D

′

ϵ. We
sampled part (2000 clusters) of the LAION-440M dataset randomly and compute the value of the
deduplication efficiency η in eq. 2 for different values of ϵ and k-means clusters k. As we see in
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Figure A9: Intersection between different deduplicated LAION datasets using different values for
the number of k-means clusters k. Each cell corresponds to the percentage of intersection between
two datasets deduplicated using different k values. At the 72% dataset size, more than 97% of data
examples are shared between all the datasets regardless of the value of k. This shows the robustness
of SemDeDup to the number of clusters parameter k.
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Figure A10: Deduplicated dataset size as a function of the deduplication threshold for different values
of k-means clusters k. Note that the range in the resulting deduplicated dataset size is 0.003% when ϵ
is 0.00095 and 2% when ϵ is 0.26.

Table A9, for k=50,000, SemDeDup can effectively detect more than 94% of the duplicates when
keeping 63% of LAION-440M dataset and 89% of the duplicates when keeping 40%.

η = 100 ∗ Ds
ϵ

D′
ϵ

(2)

Table A9: Percentage of duplicates detected (η) by SemDeDup at different deduplication thresholds
(ϵ). We notice that η increases as we reduce the number of clusters k in the clustering step of
SemDeDup.

Percentage of Data Kept 63% 50% 40%
Num. of
Clusters 70K 50K 10K 70K 50K 10K 70K 50K 10K

η 94.4 94.6 95.3 90.1 90.6 91.3 88.3 89.0 90.8
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Table A10: Time for running SemDeDup on LAION440M. Note that we report the total time for
deduplication to different dataset size ratios.

Operation / Time Clustering Time DeDup. Time Total Time

SemDeDup w/10K Clusters 2h:36 @8 GPUs 2h:20 @64 GPUs 4h:56

SemDeDup w/25K Clusters 3h:52 @8 GPUs 1h:19 @64 GPUs 5h:11

SemDeDup w/50K Clusters 5h:59 @8 GPUs 1h:22 @64 GPUs 7h:21

SemDeDup w/70K Clusters 9h:02 @8 GPUs 1h:10 @64 GPUs 10h:12

Training CLIP on 100% of
LAION440M for 32 Epochs — — 69h:52 @176

GPUs

Table A11: Performance after training on deduplicated data for the same number of iterations as
training on 100% of the data.

Metric / Model Dedup40 Dedup50 Dedup60 Dedup70 Baseline (100%)

Top1 IN Zeroshot Acc. 68.35 68.92 69.04 69.14 68.65 ±0.10
Top5 IN Zeroshot Acc. 91.64 91.82 91.86 91.73 91.46 ±0.04

Table A12

PyTorch-style Pseudo Code For SemDeDup

1 #Input: cluster_embeddings, num_clusters, epsilon
2

3 for i in range(num_clusters):
4 # Load cluster embeddings.
5 cluster_i_embeddings = cluster_embeddings[i]
6

7 # Sort the cluster embeddings by the distance to the cluster centroid.
8 cluster_i_embeddings = sort_by_distance_to_cluster_centroid(

cluster_i_embeddings, descending = True)
9

10 # We use descending=True/False for keeping examples with low/high
similarity to cluster centroids. We ignore this step for keeping random
examples from each group of similar examples. See Appendix E for more

details about this step.
11

12 # Compute the pairwise cosine similarity between embeddings
13 pairwise_sim_matrix = cluster_i_embeddings @ cluster_i_embeddings.T
14

15 triu_sim_matrix = torch.triu(pairwise_sim_matrix, diagonal = 1)
16

17 M = torch.max(triu_sim_matrix, dim=0)[0]
18

19 # Check if the maximum similarity <= the threshold.
20 points_to_keep_from_cluster_i = M <= 1-epsilon
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Figure A11: How many images can we remove from each cluster? Moving from top to down we
increase ϵ value. The x-axis corresponds to the cluster size. The y-axis corresponds to the fraction of
data removed from each cluster by SemDeDup. As we increase ϵ, more examples are removed from
each cluster. We notice that most of the examples from the large clusters (the points to the right) are
removed when ϵ becomes large. The points in this figure are for 2000 clusters sampled randomly
from a total of 50,000 clusters.

0 10000 20000 30000 40000 50000
Cluster ID (From 1 to 50K)

0

50000

100000

150000

200000

250000

300000

Nu
m

be
r o

f I
m

ag
es

 in
 C

lu
st

er

Figure A12: The number of images in each cluster for 50,000 clusters of LAION-440M images after
running k-means clustering in the embedding space. The average cluster size is 8748, but we also see
a few clusters with more than 300,000 examples.

H VISUALIZING EXAMPLES BEFORE AND AFTER DE-DUPLICATION

To visually show which images are removed by SemDeDup from LAION-440M dataset, we visualize
some images from a random cluster before and after deduplication. To do that, we choose a cluster
randomly and sort its examples by the cosine similarity to the centroid. By doing that, we can
show similar images next to each other in a sequence. Then we visualize a sequence of images
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before de-duplication. After that, we run SemDeDup, remove duplicates, and sort the remaining
examples again. Finally, we visualize the sequence of images from the same indices we visualize
before de-duplication. We visulaize some examples of clusters before and after deduplication in
Fig. (A14 and A15). The figures show that after applying SemDeDup with different values for the
de-duplication threshold ϵ, we keep the unique images.

Figure A13: For each of the source images (left column), we can retrieve a set of similar images
from LAION-440M. For each of the source images, we show a set of images with the highest cosine
similarity to it. Images are sorted from left to right by their cosine similarity (1- ϵ) to the source image.
By changing ϵ value, we can identify perceptual duplicates, semantic duplicates, and semantically
redundant examples for the source images. As we see in the first row, by increasing ϵ we can remove
many examples that are semantically similar to the source image.

I PERPLEXITY VALUES FOR SEMDEDUP ON LANGUAGE MODELING

J QUALITATIVE EXAMPLES OF SEMDEDUP ON C4
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Figure A14: Examples from the same cluster from LAION-440M dataset before and after de-
duplication. Images are sorted by cosine similarity to the cluster centroid. As we increase the
deduplication threshold we start to see more unique images.
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Figure A15: Examples from the same cluster from LAION440M dataset before and after de-
duplication. Images are sorted by cosine similarity to the cluster centroid. As we increase the
deduplication threshold we start to see more unique images.
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method Baseline (no
pruning)

NearDup
from (Lee

et al., 2021a)
Random SemDedup

validation set

C4 38.95 +/- 0.07 39.46 +/- 0.14 39.51 +/- 0.07 39.35 +/- 0.16
opt valid 47.13 +/- 0.21 47.33 +/- 0.20 47.75 +/- 0.23 47.18 +/- 0.29
prompts with answers 29.60 +/- 0.15 29.79 +/- 0.11 29.95 +/- 0.11 29.69 +/- 0.19

Figure A16: Comparison of perplexity values for 125M OPT model after pruning via different
methods at 96% pruning. Note that (Lee et al., 2021a) pruned 3.9 % of examples, while above
Random and SemDeDup prune 4% of examples. Mean and standard deviation provided across 3
training seeds. Note that the Baseline column does not prune data (which is why the perplexities are
lower) and bolded numbers compare between Random, SemDedup, and NearDup.

method Baseline (no pruning) Random SemDedup
validation set

C4 38.95 +/- 0.07 42.16 +/- 0.03 41.98 +/- 0.09
opt valid 47.13 +/- 0.21 50.66 +/- 0.11 49.04 +/- 0.16
prompts with answers 29.60 +/- 0.15 31.65 +/- 0.16 30.98 +/- 0.13

Figure A17: Comparison of perplexity values for 125M OPT model after pruning via different
methods at 80% pruning. Mean and standard deviation provided across 3 training seeds. Note that the
Baseline column does not prune data (which is why the perplexities are lower) and bolded numbers
compare between Random and SemDedup.

method Baseline Random SemDedup
validation set

C4 38.95 +/- 0.07 87.09 +/- 0.21 67.32 +/- 0.16
opt valid 47.13 +/- 0.21 95.05 +/- 0.31 70.17 +/- 0.16
prompts with answers 29.60 +/- 0.15 60.63 +/- 1.12 43.16 +/- 0.19

Figure A18: Comparison of perplexity values for 125M OPT model after pruning via different
methods at 20% pruning. Mean and standard deviation provided across 3 training seeds. Note that the
Baseline column does not prune data (which is why the perplexities are lower) and bolded numbers
compare between Random and SemDedup.

method Baseline (no
pruning)

NearDup
from (Lee

et al., 2021a)
Random SemDedup

validation set

C4 46.16 +/- 0.00 46.85 +/- 0.00 46.15 +/- 0.00 46.56 +/- 0.00
opt valid 55.69 +/- 0.00 55.27 +/- 0.00 55.20 +/- 0.00 54.88 +/- 0.00
prompts with answers 34.04 +/- 0.00 33.93 +/- 0.00 33.91 +/- 0.00 33.83 +/- 0.00

Figure A19: Comparison of perplexity values for 1.3b OPT model after pruning via different methods
at 96% pruning. Note that (Lee et al., 2021a) pruned 3.9 % of examples, while above Random and
SemDeDup prune 4% of examples. Due to compute restrictions we do not provide random seed
standard deviations.
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method Baseline (no pruning) Random SemDedup
validation set

C4 46.16 +/- 0.00 303.71 +/- 0.00 108.95 +/- 0.00
opt valid 55.69 +/- 0.00 347.35 +/- 0.00 109.68 +/- 0.00
prompts with answers 34.04 +/- 0.00 269.96 +/- 0.00 72.64 +/- 0.00

Figure A20: Comparison of perplexity values for 1.3b OPT model after pruning via different methods
at 20% pruning. Note that the Baseline column does not prune data (which is why the perplexities are
lower) and bolded numbers compare between Random and SemDedup. Due to compute restrictions
we do not provide random seed standard deviations.
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Figure A21: Percent Data Remaining versus ϵ for C4. The x-axis corresponds to different values
of ϵ from Section 2, and the y-axis represents the corresponding fraction of data in our subset of C4.
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Figure A22: SemDeDup performance at different fractions of data for the 125M OPT model. We
show results for the C4 validation set (top left), opt valid (top right), and prompts with answers
(bottoms). These are the same graphs as Figure A7, but for a wider range of percentage of data kept.
We note that SemDeDup consistently outperforms random pruning at lower percentages of data kept.

K K-MEANS CLUSTERING DETAILS

We use the faiss library for clustering. faiss is a library for efficient clustering on millions of
vectors with GPU support. We use Spherical k-means as we found it better for clustering on ImageNet.
Spherical k-means normalizes the cluster centroids after every iteration to have a unit length. This
requires the data to also be normalized before clustering. In all our experiments, we run 100 clustering
iterations for LAION440M and 20 iterations for C4. We found that centroids do not move after this
number of iterations.
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Figure A23: SemDeDup performance at different fractions of data for the 1.3B OPT model. We show
results for the C4 validation set (top left), opt valid (top right), and prompts with answers (bottoms).
These are similar to tables A19 and A20 but for a range of percentage of data kept (96 %, 90%, 80%).
We note that SemDeDup consistently outperforms random pruning at lower percentages of data kept.
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Figure A24: Percentage of Data Kept vs. Perplexity on individual validation sets within opt valid.
Runs are averages across 3 training seeds, and shaded regions represent 1 standard deviation from
the mean. The title of each plot represents the name of the individual validation set within opt valid.
Note that on all tasks, SemDedup significantly random pruning, especially at low percentages of data
kept.
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Figure A25: Percentage of Data Kept vs. Efficiency Gain on individual validation sets within
opt valid. Runs are averaged across training seeds where the model achieves baseline perplexity at
some point in training, and shaded regions represent 1 standard deviation from the mean. The title of
each plot represents the name of the individual validation set within opt valid.
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Keeping 90% data
text

It appears that you already have an account on this site associated with . To connect your existing
account...

Keeping 100% data (i.e. no pruning)
text

It appears that you already have an account on this site associated with. To connect your existing
account...
You are visiting the placeholder page for Wells Williams. This page is here because someone used
our placeholder...
You are visiting the placeholder page for Mathew Barrett. This page is here because someone used
our placeholder...
You are visiting the placeholder page for Marcus Slatar. This page is here because someone used our
placeholder...
You are visiting the placeholder page for Bernice Andrews. This page is here because someone used
our placeholder...
You are visiting the placeholder page for Emiko Chille. This page is here because someone used our
placeholder...
You are visiting the placeholder page for Landon Buckland. This page is here because Someone used
our placeholder...
....
You are visiting the placeholder page for Kylie Dickens. This page is here because someone used our
placeholder utility ...

Figure A26: Example of semantic de-duplication with SemDeDup (cluster 4500)
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Keeping 20% data
text

cheap jordan shoes from china free shipping,order maroon foams , jordan blue retro 12 , jordans sz
10 , all white 14s...
Booming business thanks to Cristiano Ronaldo! Nike Presents Cristiano Ronaldo – CR7 Winter
Collection. Cristiano Ronaldo ...

Keeping 90% data
text

Purchase from us, you can get max discount and free shipping.Free shipping and returns on Nike
Jordans at Nordstrom.com....
Product range. Adidas collections are divided into three groups: Sport Performance, Originals, and
Sport Style. Originals that ...
cool jordans for boys , foamposite paranorman , new black and white foams , lebron 1’s ,cheap
jordans online for sale ...
This Comfortable Nike Huarache Free Basketball And Running has 1600 x 900 pixel resolution with
jpeg format. ..
Top Rating: “Best high performance product.” Performance efficiency. That is the motto of our
textile engineers by...
cheap jordan shoes online free shipping order cheap jordans for sale free shipping. Air Jordan 1’s
new theme color matching ...
...
Trendy Men’s Nike Kyrie 1 Best Seller ’All Star’ Multicolor at high discount. Buy Nike Trainers -
The Kyrie 1 All Star comes ...

Figure A27: Example of semantically redundant de-duplication with SemDeDup (cluster 4900)
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