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ABSTRACT

Clustering data with incomplete features has garnered considerable scholarly at-
tention; however, the specific challenge of clustering sequential data with missing
attributes remains largely under-explored. Conventional heuristic methods gener-
ally address this issue by first imputing the missing features, thereby making the
clustering results heavily reliant on the quality of imputation. In this paper, we
introduce a novel clustering framework, termed ETC-IC, which directly clusters
incomplete data with rigorous theoretical guarantees, whilst concurrently leverag-
ing temporal semantic consistency to enhance clustering performance. Empirical
evaluations demonstrate that the proposed model consistently surpasses current
state-of-the-art methods in clustering human motion data.

1 INTRODUCTION

Subspace clustering serves as a fundamental tool in data analysis, modelling data as arising from
a union of lower-dimensional subspaces Xia et al. (2017). Formally, consider a dataset in RD,
comprising N instances, denoted as {xn ∈ RD}Nn=1. These data points are assumed to lie within a
union of K subspaces, represented by {Sk}Kk=1, each with an unknown dimension dk = dim(Sk),
where 0 < dk < D. The objective is to learn both the subspace features of unknown dimension and
the corresponding clustering assignment.

Despite the recent emergence of various subspace clustering methodologies Wang et al. (2023a); Li
et al. (2023); Fettal et al. (2023); Mo & Raj (2024); Tang et al. (2024); Li et al. (2024); Ma et al.
(2024); Gong et al. (2024), comparatively little attention has been devoted to the study of cluster-
ing with incomplete data. Although a few approaches Dung et al. (2021); Mahmood & Pimentel-
Alarcón (2022); Soni et al. (2023) have been proposed to address subspace clustering with missing
entries, these methods generally assume that data points are independently sampled from multiple
subspaces, thereby neglecting the explicit temporal information inherent in sequential data. For in-
stance, in the clustering of human motion data, once a particular motion begins, it typically persists
for a certain duration before transitioning—this temporal continuity, intrinsic to such datasets, is of
significant importance. Effectively leveraging this temporal information is crucial for the successful
clustering of sequential data. However, capturing this discriminative temporal information remains
an arduous challenge, primarily due to the intricacies of temporal dependencies and the complexity
involved in addressing missing features while exploring temporal semantics in a principled manner.

This paper introduces the Exploring Temporal Semantic for Incomplete Clustering (ETC-IC) frame-
work, which possesses the capability to seamlessly integrate temporal information while concur-
rently addressing the challenge of missing data. Firstly, to manage the issue of missing entries,
we employ an algebraic subspace analysis and develop a theoretically grounded alternative, thereby
ensuring accurate clustering even in the presence of incomplete data. Secondly, we explore the
temporal semantics inherent in sequential data by aligning data points and their temporal assign-
ments through a temporal semantic consistency constraint, thereby ensuring that data points with
similar temporal semantics are clustered together. The handling of missing data and the exploration
of temporal semantics are unified within a single cohesive framework, thereby demonstrating the
adaptability and versatility of the proposed method in addressing incomplete sequential data as re-
quired.

In summary, the principal contributions of this paper are as follows:
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• A Novel Clustering Framework for Incomplete Sequential Data: We present a clus-
tering framework distinguished by its remarkable adaptability in addressing the inherent
challenges posed by incomplete sequential data.

• Temporal Semantic Consistency in Clustering: We introduce an innovative temporal se-
mantic consistency constraint, which markedly enhances the efficacy of subspace clustering
for sequential data.

• Theoretical Analysis of Clustering Incomplete Sequential Data: We provide a rigorous
theoretical analysis, enabling an equivalent approach even in the presence of missing data,
whilst effectively exploring temporal semantics.

Unsupervised human motion segmentation is fundamental to the automatic discovery and compre-
hension of complex motion patterns without the need for labelled data Kuehne et al. (2011); Martinez
et al. (2017); MacKenzie (2024). Over the past decade, research has demonstrated that subspace
clustering yields promising results for this task Xia et al. (2017); Keuper et al. (2018); Zhou et al.
(2022). Nevertheless, few studies have addressed clustering in the presence of missing pixels or
frames. This paper employs five benchmark datasets for human motion segmentation to evaluate the
proposed method, demonstrating that ETC-IC consistently outperforms state-of-the-art techniques
in scenarios involving incomplete data.

2 RELATED WORKS

2.1 INCOMPLETE CLUSTERING

Clustering data with missing entries remains a critical domain within machine learning, wherein
the challenge lies in effective clustering despite incomplete observations. Enhanced methodologies
such as FGSSC employ a greedy strategy to mitigate errors by treating them as erasures Petukhov &
Kozlov (2015). SSC-EWZF extends clustering capabilities by estimating a kernel matrix based upon
available observations Yang et al. (2015). SCMD and GSSC-MD ensure subspace identification
through information-theoretic conditions and group-sparse regularisation, respectively Pimentel-
Alarcon & Nowak (2016); Pimentel-Alarcón et al. (2016). PTSC leverages Gaussian Process priors
for effective data segmentation Gholami & Pavlovic (2017), whilst PZF-SSC projects data onto
observed coordinate subspaces for enhanced clustering efficacy Tsakiris & Vidal (2018). Recent
advancements have increasingly focused on robust and versatile approaches, such as Non-Convex
Fusion Penalty Clustering (NCFPC), which employs `0 penalties to induce sparsity Poddar & Jacob
(2019), and Deep Structure-Preserving Autoencoders (DSPA), which project incomplete data into a
latent space whilst preserving its intrinsic geometric structure Choudhury & Pal (2019). PETRELS,
integrating ADMM with PETRELS, addresses the challenges of outlier detection and missing entries
Dung et al. (2021). FSC reduces inter-subspace distances to achieve effective clustering despite data
gaps Mahmood & Pimentel-Alarcón (2022), while MISS-DSG employs a mixed-integer framework
to optimise subspace assignment Soni et al. (2023).

However, existing research lacks a clustering framework equipped with the capacity to address, in
an optional manner, both incomplete data and sequential data, whilst providing rigorous theoretical
guarantees.

2.2 CLUSTERING LEVERAGING TEMPORAL INFORMATION

Clustering techniques that harness temporal information have demonstrated considerable efficacy in
the context of sequential data clustering. Zhou et al. Zhou et al. (2012) introduced a framework for
segmenting time series into meaningful clusters. The Ordered Subspace Clustering (OSC) method
Tierney et al. (2014) employs a consistency constraint to ensure temporal coherence, while Tem-
poral Subspace Clustering (TSC) Li et al. (2015) integrates non-negative dictionary learning with
temporal Laplacian regularisation. The Low-Rank Transfer Subspace (LTS) approach Wang et al.
(2018b) captures temporal correlations via a graph regulariser, whereas Consistency and Diversity
Induced Clustering (CDMS) Zhou et al. (2022) utilises transfer subspace learning for video data.
Other noteworthy methodologies, including Dual-Side Auto-Encoder (DSAE) Bai et al. (2020),
Deep Video Action Clustering (DVAC) Peng et al. (2021), and Velocity-Sensitive Dual-Side Auto-
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Encoder (VSDA) Bai et al. (2022), enhance representation learning by integrating spatio-temporal
features and temporal consistency strategies.

However, these methods primarily focus on data preprocessing without adequately exploring the
influence of temporal semantics on clustering Bai et al. (2022); Zhou et al. (2022); Wang et al.
(2023b). Consequently, they often fall short of ensuring that clustering outcomes faithfully capture
the temporal subtleties inherent in sequential data. Furthermore, existing works necessitate data
imputation prior to processing, thereby rendering their clustering performance highly susceptible to
the quality of data imputation.

2.3 UNSUPERVISED HUMAN MOTION SEGMENTATION

Unsupervised methodologies for human motion segmentation employ a diverse range of techniques
to adeptly process intricate, unlabeled dynamic motion data Gong et al. (2013). Progress in clus-
tering has significantly advanced the field; for instance, Zhou et al. Zhou et al. (2012) proposed an
unsupervised hierarchical bottom-up clustering framework that partitions a multidimensional time
series into distinct segments. Wang et al. Wang et al. (2022b) refine graphs for clustering by remov-
ing extraneous connections, Bai et al. Bai et al. (2022) derive neighbor consistency features, and
Zhou et al. Zhou et al. (2022) utilize a multi-mutual consistency learning strategy for decompos-
ing multi-layer feature spaces in affinity matrix construction. Significant contributions to enhancing
human motion segmentation include Zhu et al.’s Zhu et al. (2023) adaptive local-component-aware
graph convolutional network, Liang et al.’s Liang et al. (2023) locater with a dual-component mem-
ory system, and Shi et al.’s Shi et al. (2023) triDet framework, which incorporates a trident-head
and scalable-granularity perception layer. Despite these advancements, considerable challenges per-
sist in effectively harnessing temporal semantics to further improve human motion segmentation,
particularly in scenarios involving missing entries within human motion data.

3 METHODOLOGY

3.1 UNION OF SUBSPACES MODEL

Consider utilizing subspaces to approximate the data manifold x ∈ RD. Let U ∈ RD×d be a basis
matrix composed of d columns {ui}di=1. Furthermore, let o ∈ RD denote the offset of the affine
subspace, which must be orthogonal to the columns of U to ensure its uniqueness, i.e., UTo = 0.
The affine subspace model readily reduces to the linear subspace model when o = 0, thereby
allowing the model to effectively capture both linear and non-linear unions of subspaces (UoS).

A data point residing within a subspace can be modeled as x = Uv + o + ε, where ε represents
a stochastic term accounting for noise or bias due to subspace approximation errors. This noise
component ε is assumed to have zero mean and is orthogonal to the columns of U. The affine span
is thereby defined as Sa(U,o) = {x | x = Uv + o + ε,v ∈ Rd}, where v ∈ Rd are the subspace
coefficients for x. We assume the data points reside within a union of subspaces {Sa(Uk,ok)}Kk=1,
where Uk = [uk,1, . . . ,uk,dk ] ∈ RD×dk represents the basis of the k-th subspace and ok ∈ RD its
corresponding offset.

Partitioning the data into segments based on the learned UoS model begins with expressing ε as
ε = x−Uv−o. Since ε is orthogonal to U, we have UT(x−o−Uv) = 0, leading to the solution
for v:

v = (UTU)−1UT(x− o).

Substituting v back yields the residual ε as:

ε = x−U(UTU)−1UT(x− o)− o.

The squared distance between a data point x and the subspace Sa(U,o) is then given by ‖ε‖22, which
defines the subspace residual function:

ε(x,U,o) = ‖ε‖22 = ‖P⊥(x− o)‖22, (1)

where P⊥ = ID − U(UTU)−1UT projects onto the orthogonal complement of the subspace
spanned by U.
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Now, consider the scenario where some entries of the data point x are missing. Let Φ be a D ×D
diagonal matrix representing the non-missing indicator, where φj = 1 if the j-th entry is observed
and φj = 0 otherwise. Define m =

∑D
j=1 φj as the number of observed entries. The residual for x

in the presence of missing data is given by:
ξ(x,Φ,U,o) = ε(Φx,ΦU,Φo) = ‖PΦ

⊥Φ(x− o)‖22 (2)

where PΦ
⊥ = ID − ΦU(UTΦU)−1UTΦ.

Theorem 1. If ε(x,U,o) 6= 0, then there exist constants β1, β2 ≥ 0 and a finite constant C such
that, with probability at least 1− 4δ,

m

D
− β1 ≤

ξ(x,Φ,U,o)

ε(x,U,o)
≤ m

D
+ β2

holds when m ≥ C. (Proof provided in Appendix A.1.)

Theorem 1 asserts that ε(x,U,o) approximates D
mξ(x,Φ,U,o) with high probability when m ex-

ceeds a certain threshold. Moreover, if ε(x,U,o) = 0, then it follows that ξ(x,Φ,U,o) = 0 as
well.

3.2 TEMPORAL SEMANTICS CONSISTENCY

Our objective is to assign the data points {x1, . . . ,xN}, which may contain missing entries, to
subspaces {Sa(Uk,ok)}Kk=1 while ensuring that each data point and its neighbors with the same
temporal semantic belong to the same subspace. However, the temporal boundaries and durations
of clustering semantics are unknown, which poses a challenge to achieving temporal semantic con-
sistency on clustering assignment.

It is observed that the data point at time t is typically assigned to the same cluster as its preceding
and succeeding points. By considering these neighboring data points during subspace assignment,
the accuracy of clustering can be substantially improved. Thus, we propose a temporal semantics
consistency constraint, which enforces the assignment of a data point and its temporal neighbors to
the same subspace.

We propose an automatic discriminative searching scheme to determine the neighbors of each data
point. Mathematically, each xi is encouraged to be clustered together with its nearest sequential
neighbors. The right bound for the ith sample ri is equal to the min j ∈ {i + 1, i + 2, ..., N} that
satisfies ‖xj−xj+1‖2 > ‖xj−1−xj‖2 and ‖xj−xj+1‖2 > ‖xj+1−xj+2‖2. The left bound for the
ith sample li is equal to the max j ∈ {1, 2, ..., i− 1} that satisfies ‖xj−1−xj‖2 > ‖xj−2−xj−1‖2
and ‖xj−1 − xj‖2 > ‖xj − xj+1‖2. The physical implication is that a data point x is close to its
temporal neighbors. The neighbors of x’s neighbors are still considered x’s neighbors, and so on,
until no further neighbors can be identified.

Suppose Ni saves the index of spatio-temporal neighbors of the ith data point, and Ni = {j|j ∈
{li, li + 1, ..., ri}, j 6= i}. It is noteworthy that the neighbor set Ni is determined automatically,
requiring no manual parameter tuning. Consider using the data point whose index is in Ni to guide
the assignment of the data point xi. If xi is located in subspace S(Uk,ok), then its neighbors
in Ni are also encouraged to be located in subspace S(Uk,ok). The neighborhood cost for the
data point xi is the sum of distances between neighbors in Ni and the subspace S(Uk,ok), i.e.,∑
j∈Ni

D
mj
ξ(xj ,Φj ,Uk,ok).

3.3 LEARNING UOS BY EXPLOITING TEMPORAL SEMANTICS WITH MISSING ENTRIES

We propose the following optimization problem to learn the UoS model while accounting for in-
complete data and temporal semantics:

minimize
{Ck,Uk,ok}Kk=1

K∑
k=1

∑
i∈Ck

dk,i, subject to UT
kok = 0, ∀k, (3)

where

dk,i =
D

mi
ξ(xi,Φi,Uk,ok) +

1

|Ni|
∑
j∈Ni

D

mj
ξ(xj ,Φj ,Uk,ok),
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with |Ni|−1 serving to balance the influence of the temporal semantic consistency constraint.

The objective function of problem (3) promotes data points being proximate to their assigned sub-
spaces while also enforcing their temporal neighbors to reside within the same subspace. Although
problem (3) is inherently non-convex, we employ a transformation, as detailed in the following
theorem, to render the optimization tractable.
Theorem 2. The term dk,i in equation (3) can be equivalently expressed as

N∑
i=1

D

mi
ξ(xi,Φi,Uk,ok)

(
I(i ∈ Ck) + nk(i)

)
,

where nk(i) represents the number of occurrences of the data point xi as a spatio-temporal neighbor
of another data point within the k-th subspace. Specifically, nk(i) =

∑
j∈Ck

1
|Nj | I(i ∈ Nj), and

I(s) is an indicator function which evaluates to 1 if the condition s holds, and 0 otherwise. (The
proof is provided in the Appendix A.2.)

Based on Theorem 2, the optimization problem (3) can be reformulated as follows:

minimize
{Ck,Uk,ok}Kk=1

K∑
k=1

N∑
i=1

D

mi
ξ(xi,Φi,Uk,ok)wk,i, subject to UT

kok = 0, ∀k, (4)

where wk,i = I(i ∈ Ck) + nk(i).

3.4 AN ALTERNATING OPTIMIZATION ALGORITHM

Algorithm 1 ETC-IC algorithm.

1: Input: X ∈ RD×N .
2: Generate K orthogonal subspaces randomly.
3: Initialize wj,i = 1 for any j, i and Ni.
4: repeat
5: for k = 1 to K do
6: Ck ← {i ∈ {1, 2, ..., N} : k = li}
7: end for
8: for k = 1 to K do
9: 1) Diagonalize Wk with wk,i.

10: 2) Calculate o′k.
11: 3) Construct subspace base Uk.
12: 4) Calculate ok.
13: end for
14: until the objective function in (4) cannot be

decreased.
15: Output: {Ck}Kk=1.

Observe that problem (4) contains two vari-
able blocks. The variables {Uk,ok}Kk=1 de-
pend upon the subspace assignment {Ck}Kk=1,
and conversely, {Ck}Kk=1 is contingent upon
{Uk,ok}Kk=1. Hence, an alternating optimiza-
tion approach is well-suited for solving this
problem. Initially, we solve for {Uk,ok}
given the subspace assignment {Ck}Kk=1. Let
the objective function in problem (4) be de-
noted as J ({Uk,ok}Kk=1). By differentiating
J ({Uk,ok}Kk=1) with respect to ok and equat-
ing it to zero, we obtain the solution o′k, whose
j-th element is given by:

o′k,j =

∑N
i=1

wk,i
mi

φi,jxi,j∑N
i=1

wk,i
mi

φi,j

Note that while o′k might not satisfy the original
constraint of problem (4), it must still lie within
the subspace Sa(Uk,ok).

Define the mean-shifted data matrix for the k-th subspace as X̄k = [x̄k,1, x̄k,2, . . . , x̄k,N ] ∈ RD×N ,
where x̄k,i =

xi−o′k√
mi

= [x̄
(1)
k,i , x̄

(2)
k,i , . . . , x̄

(D)
k,i ]. Let Wk be anN×N diagonal matrix whose diagonal

elements are wk,1, wk,2, . . . , wk,N . Consequently, problem (4) can be reformulated as:

arg min
Uk∈RD×dk

N∑
i=1

‖(ID − ΦiUk(UT
kΦiUk)−1UT

k)Φix̄k,iw
1/2
k,i ‖

2
2 (5)

The optimization problem (5) is equivalent to maximizing Tr(UT
kSkUk), where the (a, b)-th ele-

ment of Sk is defined as:

(Sk)a,b =

∑N
i=1 wk,iφi,aφi,bx̄

(a)
k,i x̄

(b)
k,i∑N

i=1 wk,iφi,aφi,b

5
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The columns of Uk are required to be orthonormal, i.e., UT
kUk = Idk . The solution to (5) is found

by selecting the eigenvectors of Sk corresponding to the dk largest eigenvalues. It is worth noting
that if Φi = ID, then Sk = X̄kWkX̄

T
k . The proof follows standard principles from statistical signal

processing theory, such as those found in Kay (1993).

A pertinent question in equation (5) is how to determine d̂k for all k = 1, 2, . . . ,K. In practi-
cal applications, assuming the subspace dimensions d1, d2, . . . , dK are known in advance is often
unrealistic Vidal (2011). Even if these dimensions are known but differ, the challenge of estab-
lishing a one-to-one correspondence between {dk}Kk=1 and {d̂k}Kk=1 persists, given that the cluster
permutations are unknown. To address this, we propose an adaptive strategy to select d̂k for all
k = 1, 2, . . . ,K. Specifically, let λk,1 ≥ λk,2 ≥ · · · ≥ λk,D represent the D leading eigenvalues of
Sk. Then, for all k = 1, 2, . . . ,K, we set:

d̂k = arg maxi∈{1,2,...,D−1}(λk,i − λk,i+1)

Since the subspace offset o′k may not satisfy the constraint in problem (4), we present the following
proposition.
Proposition 3. If o′k lies on the affine subspace Sa(Uk,ok), then ok can be expressed as:

ok = (ID −Uk(UT
kUk)−1UT

k)o′k

satisfying UT
kok = 0. (Proof is provided in the Appendix A.3.)

Thus, given Uk and o′k, the subspace offset ok can be easily computed accordingly.

Next, we address the subspace assignment problem given the subspace information, i.e., fixing
{Uk,ok}Kk=1 and updating {Ck}Kk=1 by solving problem (4). This is accomplished by evaluating
the weighted combination of the residual from the data point to a given subspace, alongside the
residuals of its sequential neighbors, thereby assigning the estimated cluster label of the data point
xi to the li-th subspace, where

li = arg mink∈{1,2,...,K}ξ(xi,Φi,Uk,ok)wk,i.

Theorem 4. Given a data point x andK affine subspaces, let l = arg mink∈{1,2,...,K}ε(x,Uk,ok).
If ε(x,Ul,ol) < Ckε(x,Uk,ok) for all k 6= l, k ∈ {1, 2, . . . ,K}, where Ck ∈ (0, 1) is a finite
constant, then there exists a finite constant C0 such that:

l = arg mink∈{1,2,...,K}ξ(x,Φi,Uk,ok)

holds with probability at least 1 − 4(K − 1)δ when m > C0. (Proof is provided in the Appendix
A.4.)

Theorem 4 indicates that if the data point x is closest to the l-th subspace and distant from others,
then with high probability, the data point x with m non-missing entries will also be nearest to the
l-th subspace when m is sufficiently large. This implies that under minimal data loss, the proposed
subspace assignment method remains robust despite missing data.

The pseudo-code for the proposed subspace clustering method is presented in Algorithm 1. Initially,
K subspaces are randomly constructed, and then iterative optimization of the clustering assignment
is performed until the objective function in problem (4) cannot be further minimized.

4 EXPERIMENTAL RESULTS

Dataset. We assess the efficacy of the proposed method using five benchmark datasets for hu-
man motion segmentation, which have been widely utilized in prior studies Tierney et al. (2014);
Li et al. (2015); Wang et al. (2018b); Peng et al. (2021); Wang et al. (2022b; 2018a; 2022a); Cui
et al. (2021). The Weizmann (Weiz) dataset Gorelick et al. (2007) comprises 90 human motion se-
quences, encompassing ten distinct actions such as running, walking, and skipping, executed by nine

6
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(a) Keck (MAR) (d) UT (MAR)(b) Weiz (MAR) (c) MAD (MAR) (e) Mocap (MAR)

(e) Keck (MNAR) (h) UT (MNAR)(f) Weiz (NMAR) (g) MAD (MNAR) (i) Mocap (MNAR)
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Figure 1: The segmentation performance of different methods on four datasets when the data suffer
from pixel-level missing.

subjects in outdoor settings. The Multi-Modal Action Detection (MAD) dataset Huang et al. (2014)
includes 35 multi-modal motion sequences from 20 subjects, recorded in three different formats us-
ing Microsoft Kinect. The Keck Gesture (Keck) dataset Jiang et al. (2012) consists of 14 distinct
motions derived from military signal gestures, performed by three individuals. The UT-Interaction
(UT) dataset Ryoo & Aggarwal (2009) features 20 human motion sequences, each illustrating one
of six categories of human interaction, including punching, kicking, pushing, hugging, pointing, and
handshaking. Lastly, the Carnegie Mellon Action Capture (Mocap) dataset comprises skeletal mea-
surements from 149 subjects engaged in a diverse array of activities, with data selected from five
individuals performing between five to twelve actions, thereby providing comprehensive positional
and joint angle measurements over various temporal instances.

To demonstrate the effectiveness of the proposed method in managing partially observed data, we
conducted experiments under two distinct pixel-level scenarios of missing entries: Missing at Ran-
dom (MAR) and Missing Not at Random (MNAR). In the MAR scenario, pixels were randomly
omitted from each frame until the missing rate reached a predefined threshold. For the MNAR sce-
nario, we systematically removed multiple 20 × 20 pixel blocks from various regions within each
frame, repeating this process until the cumulative proportion of missing pixels reached the desig-
nated threshold. Furthermore, we examined the frame-level scenario, wherein entire frames were
missing. Under the MAR condition, frames were randomly removed until the specified missing rate
was attained, whereas in the MNAR condition, consecutive sequences of ten frames were removed at
random, ensuring that the overall frame missing rate was not less than the predetermined threshold.

Compared Methods. We evaluated the proposed method against clustering approaches capable of
handling missing entries, including SC-EWZF Yang et al. (2015), PZF-SSC Tsakiris & Vidal (2018),
NCFPC Poddar & Jacob (2019), PETRELS Dung et al. (2021), FSC Mahmood & Pimentel-Alarcón
(2022), and MISS-DSG Soni et al. (2023). For a comprehensive description of these methods,
please refer to Sec. 2.1. In all experiments, clustering accuracy (Acc) was employed as the primary
evaluation metric.

4.1 PERFORMANCE OF SUBSPACE CLUSTERING WITH MISSING ENTRIES

Fig. 1 illustrates the clustering outcomes (averaged over five trials) for all methods under both pixel-
level MAR and MNAR settings across all datasets. The proposed method consistently surpasses the
baseline approaches, achieving over 80% accuracy in scenarios without missing data. This superior
performance is attributable not only to the inherent robustness of the clustering algorithm but also to
the incorporation of the temporal semantic consistency constraint, which shall be further elucidated
in the subsequent ablation study. Furthermore, despite a higher propensity for errors in the MNAR
scenario compared to the MAR setting, the proposed method demonstrates significantly enhanced
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resilience—particularly at elevated missing rates—when compared with all baseline methods. Such
robustness is primarily due to the effective strategy for managing missing data, underpinned by the
theoretical assurances of our approach.

(a) Keck (MAR) (b) Keck (NMAR)
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Figure 2: Acc performance on the Keck dataset
when the data suffer from frame-level missing.

Fig. 2 (a) and (b) depict the clustering results
(averaged over five iterations) for all methods
under frame-level MAR and MNAR conditions
on the Keck dataset. Initially, linear interpola-
tion was employed to reconstruct the missing
frames, following which the proposed method
was applied to the completed human motion
data. The proposed approach exhibits markedly
enhanced robustness—particularly under con-
ditions of higher frame loss—compared to all
competing methods across varying levels of
missing data. Moreover, all methods demon-
strate inferior performance under the MNAR
setting in contrast to the MAR setting, princi-
pally due to the sequential loss of frames, which
disrupts the temporal continuity, thereby im-
pairing the accuracy of human motion segmentation. Notwithstanding this, the proposed ETC-IC
consistently attains the highest performance.
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Figure 3: (a) Skeleton action with 1∼3 missing joints;
(b) Performance with skeleton missing on Mocap
dataset.

To further assess the efficacy of the pro-
posed model in addressing human mo-
tion data with missing entries, we con-
sider the joint missing scenario, wherein
random markers—each representing the
three-dimensional spatial coordinates of a
human body joint—are absent. In the Mo-
cap dataset, each frame typically consists
of 31 to 41 joints, representing various
segments of the human anatomy. The data
for these joints encompass positional and
angular information in three-dimensional
space, with the precise count depending on
the specific motion and recording configu-
ration. The yellow skeleton in Fig. 3(a) il-
lustrates the missing joints resulting from
marker absence. Fig. 3(b) displays the performance of the proposed method in comparison with
baseline approaches across different levels of missing markers. The proposed ETC-IC method con-
sistently exhibits the most stable accuracy, irrespective of the degree of missing data.

4.2 QUANTITATIVE RESULT Ground Truth
PETRELS 
FSC 
MISS-DSG
ETC-IC

Figure 4: Visualization of clustering results on Keck dataset.
The 10 colors denote 10 different action clusters.

In Fig. 4, we illustrate the human mo-
tion segmentation outcomes obtained
by the proposed ETC-IC method in
comparison with several baseline ap-
proaches on the Keck dataset. The
baselines, which include PETRELS Dung et al. (2021), FSC Mahmood & Pimentel-Alarcón (2022),
and MISS-DSG Soni et al. (2023), treat each sample independently, leading to disordered clustering
results that inadequately reflect temporal continuity. Such methods frequently encounter difficulties
in preserving the integrity of individual clusters, often fragmenting them into multiple segments. In
stark contrast, our approach yields segments that are both continuous and coherent, thereby produc-
ing clustering outcomes characterized by distinctly preserved temporal semantics.
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Walk Run Jump One hand 
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Bend SkipSide jump Side walk Jumping 
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Two hands 
wave

Figure 5: Visualizations of example frames de-
picting different motions of Person ‘ido’ in the
Weiz Dataset.
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Figure 6: (a) Convergence demonstration of the
proposed method on the human motion data in the
Weiz dataset. (b) Visualizations of the dynamic
clustering assignment to subspaces during opti-
mization on the Weiz dataset. Different colors
represent different clusters/motions. GT stands
for ‘ground truth’.

Ground Truth JumpJumping jack

Proposed JumpJumping jack

Figure 7: Visualizations of false cases in human
motion segmentation on the human motion se-
quence in Weiz dataset.

To further elucidate the efficacy of the proposed
models, we commence by presenting visualiza-
tions of representative frames from the human
motion data in the Weiz dataset, as illustrated
in Fig. 5. Fig. 6(a) portrays the convergence
of the proposed method on the objective func-
tion value, evidencing that the proposed method
converges swiftly within 10 iterations. There-
after, we depict the human motion segmenta-
tion results at each iteration, as demonstrated
in Fig. 6(b). The proposed approach attains
convergence after 10 iterations, with substan-
tial adjustments taking place during the initial
three iterations. In subsequent iterations, the
segmentation stabilities, followed by a grad-
ual refinement of boundaries. Upon completion
of these boundary adjustments, the algorithm
reaches convergence.

In comparison with the ground truth, segmenta-
tion errors predominantly occur at the transition
boundaries between distinct motions, such as
between the seventh and eighth actions, specif-
ically ’jumping jack’ and ’jump’. We have dis-
cerned that the principal factors hindering clus-
tering efficacy are the stability of the frame
background and the explicitness of the actions.
Fig. 7 presents visual examples of misclas-
sified segments. As the ’jumping jack’ ac-
tion contains frames that are visually similar
to the initial frames of the ’jump’ action, the
proposed method occasionally misclassified the
commencement of the ’jump’ action as part of
the ’jumping jack’ action. The principal chal-
lenge in clustering actions lies in the inherently ambiguous nature of some actions, which often
results in ill-defined boundaries between them. While the clustering results may deviate from the
ground truth, such deviations do not inherently indicate that the results are unreasonable.

4.3 ABLATION STUDY Figure 8: Ablation study of the proposed ETC-IC
on temporal semantics.

Keck Weiz MAD UT Mocap
Non-temporal semantics 76.2 75.4 71.4 69.7 76.1
Proposed 86.3 81.1 85.1 83.5 82.9

Tab. 8 presents an ablation study on the pro-
posed ETC-IC method, assessing the signifi-
cance of incorporating temporal semantics. We
evaluated the impact of the temporal semantic
consistency constraint on the efficacy of ETC-IC across four datasets, each containing 10% missing
at random (MAR) data. The results indicate that the removal of this constraint results in a marked de-
cline in the performance of the proposed method. Nevertheless, even without temporal exploration,
ETC-IC continues to outperform the state-of-the-art techniques.

5 CONCLUSION

This paper introduces a clustering method that possesses the capability to seamlessly integrate tem-
poral information whilst concurrently addressing the challenge of missing data. We begin by align-
ing data points with their temporal dependencies through the imposition of a temporal semantic
consistency constraint, followed by an algebraic subspace analysis. A theoretically rigorous solu-
tion algorithm is then developed for an equivalent form, ensuring precise clustering results even in
the presence of incomplete data. Comprehensive experiments conducted on five benchmark human
action datasets consistently demonstrate the superiority of the proposed method.
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A APPENDIX

A.1 PROOF OF THEOREM 1

For the sake of written convenience, we use S to represent Sa(U,o) in the appendix section. In
order to detect from a very small number of frames whether there is energy in a vector x outside the
d-dimensional subspace S, we must first quantify how much information we can expect each frame
to provide. The authors in Candes & Recht (2012) defined the coherence of a subspace S to be the
quantity

ρ(S) :=
D

d
max

j∈{1,2,...,D}
||U(UTU)−1UTej ||22 (6)
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where ej ∈ RD is all zero vector expect the jth element is one. That is, ρ(S) measures the maximum
magnitude attainable by projecting a standard basis element onto S. Note that 1 ≤ ρ(S) ≤ D. For
a vector τ , we let ρ(τ ) denote the coherence of the subspace spanned by τ . By plugging in the
definition, we have

ρ(τ ) =
D||τ ||2∞
||τ ||22

Consider x = U(UTU)−1UT(x− o) + o+ ε, where U(UTU)−1UT(x− o) ∈ S is the projection
of x− o on S, and ε ∈ S⊥ is the residual vector of x to S. Since U(UTU)−1UTε = 0, we have

x− o−U(UTU)−1UT(x− o) = ε = ε−U(UTU)−1UTε (7)

For expression convenience, we denote xΦ = Φx, oΦ = Φo, and UΦ = ΦU. Thus, for the missing
entries case, equation (7) can be expressed as

xΦ − oΦ −UΦ(UT
ΦUΦ)−1UT

Φ(xΦ − oΦ)

= εΦ −UΦ(UT
ΦUΦ)−1UT

ΦεΦ (8)

Note that UΦ(UT
ΦUΦ)−1UT

ΦεΦ 6= 0.

ε(εΦ,UΦ,oΦ) = ||εΦ||22 − ||LΦU
T
ΦεΦ||22 (9)

where LT
ΦLΦ = (UT

ΦUΦ)−1. We also have

||LΦU
T
ΦεΦ||22 ≤ ||(UT

ΦUΦ)−1||2||UT
ΦεΦ||22 (10)

Lemma 5. 0 ≤ ||(UT
ΦUΦ)−1||2 ≤ D

m(1−γ) with probability at least 1 − δ, provided that γ < 1,
where

γ =

√
8dρ(S)

3m
log (

2d

δ
). (11)

Proof. Proof see AppendixB.

Lemma 6. 0 ≤ ||UT
ΦεΦ||22 ≤

(1+η)2m
D

dρ(S)
D ||ε||22 with probability at least 1− δ, where

η =

√
2ρ(τ )log (

1

δ
), ρ(τ ) =

D||τ ||2∞
||τ ||22

(12)

and τ = (I−U(UTU)−1UT)(x− o).

Proof. Proof see AppendixC.

Since Lemma 5 and Lemma 6, for equation 10, we have ||(UT
ΦUΦ)−1||2||UT

ΦεΦ||22 ≤
D

m(1−γ)
(1+η)2m

D
dρ(S)
D ||ε||22 with probability at least 1− 2δ. Thus, we have

0 ≤ ||LΦU
T
ΦεΦ||22 ≤

D

m(1− γ)

(1 + η)2m

D

dρ(S)

D
||ε||22 (13)

with probability at least 1− 2δ.

Lemma 7. m(1−α)
D ||ε||22 ≤ ||εΦ||22 ≤

m(1+α)
D ||ε||22 with probability at least 1− 2δ, where

α =

√
2ρ2(τ )

m
log (

1

δ
). (14)

Proof. Proof see AppendixD.
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Since Lemma 7 and equation 13, the term ε(εΦ,UΦ,oΦ) in (9) is bounded by (m(1−α)
D −

dρ(S)
(1+η)2

1−γ
D )||ε||22 ≤ ε(εΦ,UΦ,oΦ) ≤ m(1+α)

D ||ε||22 with probability at least 1− 4δ. Since ||ε||22 =

ε(x,U,o), we have(m(1−α)
D − dρ(S)

(1+η)2

1−γ
D )ε(x,U,o) ≤ ε(xΦ,UΦ,oΦ) ≤ m(1+α)

D ε(x,U,o) with
probability at least 1 − 4δ, where α, η, γ, ρ(S) are defined in (14), (12), (11), and (6). We also
requirem ≥ 8

3dρ(S)log ( 2d
δ ) to satisfy γ < 1 in Lemma 5. Thus, we have the following conclusion:

If ε(x,U,o) 6= 0, then there exist small β1, β2 and a finite constant C satisfying m
D − β1 ≤

ξ(x,Φ,U,o)
ε(x,U,o) ≤

m
D + β2 with m ≥ C with probability at least 1− 4δ, where

β1 =
mα

D
+
dρ(S) (1+η)2

1−γ

D
,β2 =

mα

D
,C =

8

3
dρ(S)log (

2d

δ
).

A.2 PROOF OF THEOREM 2

Recall equation 3, the cost of the frame located in the k-th subspace (Uk,ok) or belong to the k-th
subspace can be written as∑

i∈Ck

( D
mi

ξ(xi,Φi,Uk,ok) + 1/|Ni|
∑
j∈Ni

D

mi
ξ(xj ,Φj ,Uk,ok)

)

=

N∑
i=1

I(i ∈ Ck)
D

mi
ξ(xi,Φi,Uk,ok) + 1/|Ni|

N∑
i=1

I(i ∈ Ck)

N∑
j=1

I(j ∈ Ni)
D

mi
ξ(xj ,Φj ,Uk,ok)

=

N∑
i=1

I(i ∈ Ck)
D

mi
ξ(xi,Φi,Uk,ok) +

N∑
j=1

1/|Ni|
N∑
i=1

I(i ∈ Ck)I(j ∈ Ni)
D

mi
ξ(xj ,Φj ,Uk,ok)

=

N∑
i=1

I(i ∈ Ck)
D

mi
ξ(xi,Φi,Uk,ok) +

N∑
j=1

nk(j)
D

mi
ξ(xj ,Φj ,Uk,ok)

=

N∑
i=1

D

mi
ξ(xi,Φi,Uk,ok)

(
I(i ∈ Ck) + nk(i)

)
where nk(i) =

∑
j∈Ck 1/|Nj |I(i ∈ Nj).

A.3 PROOF OF PROPOSITION 3

Since ok is perpendicular to the subspace basis Uk,we have UT
kok = 0. Since o′k is located on the

subspace, we have ε(o′k,Uk,ok) = 0. Thus,

o′k −Uk(UT
kUk)−1UT

k(o′k − ok)− ok = 0

o′k −Uk(UT
kUk)−1UT

ko
′
k − ok = 0

(ID −Uk(UT
kUk)−1UT

k)o′k = ok

A.4 PROOF OF THEOREM 4

We first restate a corollary from Balzano et al. (2012). For the vector x and the subspace Si,
i ∈ {0, 1, 2, ...}.

Corollary 7.1. Let m > 8
3max
i 6=0

(
diρ(Si)log ( 2di

δ

)
for fixed δ > 0. Assume that sin2(θ0) <

Ci(m)sin2(θi), ∀i 6= 0. Then with probability at least 1 − 4(k − 1)δ, ‖φΦ − PS0
Ω
φΦ‖22 <

‖φΦ − PSiΩφΦ‖22,∀i 6= 0, where θ0 = sin−1
(
‖x−PS0x‖2
‖x‖2

)
, θi = sin−1

(
‖x−PSix‖2
‖x‖2

)
, PSiΩ =

Ui(U
T
iUi)

−1UT
i , and Ci(m) =

m(1−αi)−diµ(Si)
(1+ηi)

2

1−γi
m(1+α0) .
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Note that Ck(m)→ 1 as m→∞. The inequality sin2(θ0) < Ci(m)sin2(θi) illustrates the relation
between vector x, its corresponding subspace S0, and the subspace Si, i ∈ {1, 2, ...}. In this paper,
we have the following conclusion about the frame x, its corresponding subspace {Ul,ol}, and
other subspace {Uk,ok}, k 6= l, k ∈ {1, 2, ...,K}, that is ε(x,Ul,ol) < Ckε(x,Uk,ok), where

Ck =
m(1−αk)−dkρ(Sk)

(1+ηk)2

1−γk
m(1+α0)

‖x−ol‖22
‖x−ok‖22

and αk, ηk, γk is the same as the variable in Corollary 7.1,
which is defined in Theorem 1.

Similarly, the conclusion ‖φΦ − PS0
Ω
φΦ‖22 < ‖φΦ − PSiΩφΦ‖22 in Corollary 7.1 is equal to the fol-

lowing form in this paper, i.e., ε(Φx,ΦUl,Φol) < ε(Φx,ΦUk,Φok) for ∀k ∈ {1, 2, ...,K}, k 6= l.
Then, we have the following conclusion l = arg min

k∈{1,2,...,K}
ε(Φx,ΦUk,Φok) with m > C0, where

C0 = 8
3maxk dkρ(Sk)log ( 2dk

δ ).

B PROOF OF LEMMA 5

We use the Non-commutative Bernstein Inequality as follows. Let Xk = UΦ(k)U
T
Φ(k) −

1
r Ir, where

the notation UΦ(k) is as before, i.e. is the transpose of the Φ(k)th th row of U , and Ir is the r × r
identity matrix. Note that this random variable is zero mean.

We must compute ρ2
k and M . Since Φ(k) is chosen uniformly with replacement, the Xk are identi-

cally distributed, and ρ does not depend on k. For ease of notation we will denote UΦ(k) as Uk.

Using the fact that for positive semi-definite matrices, ‖A−B‖2 ≤ max{‖A‖2, ‖B‖2}, and recall-
ing again that ‖Uk‖22 = ‖UTek‖22 = ‖PSek‖22 ≤ rµ(S)/n, we have

‖UΦ(k)U
T
Φ(k) −

1

r
Ir‖2 ≤ max{rµ(S)

D
,

1

D
}

and we let M := rµ(S)/D.

For ρ, we note

‖E[XkX
T
k ]‖2 ≤ max{rµ(S)

D2
‖Ir‖2,

1

D2
} =

rµ(S)

D2

Thus we let ρ := rµ(S)/D2.

Now we can apply the Non-commutative Bernstein Inequality, Theorem 9. First we restrict τ
to be such that Mτ ≤ mρ2 to simplify the denominator of the exponent. Then we get that
2rexp

(
−τ2/2

2ρ2+Mτ/3

)
≤ 2rexp

(
−τ2/2

4
3m

rµ(S)
D2

)
and thus

P

[∥∥∥∑
k∈Φ

(UkU
T
k −

1

D
Ir)
∥∥∥ > τ

]
≤ 2rexp

( −3D2τ2

8mrµ(S)

)
Now take τ = γm/D with γ defined in the statement of Theorem 1. Since γ < 1 by
assumption,Mτ ≤ mρ2 holds and we have

P

[∥∥∥∑
k∈Φ

(UkU
T
k −

1

D
Ir)
∥∥∥ ≤ γm/D] ≥ 1− δ

where δ = 2rexp
(
−3D2τ2

8mrµ(S)

)
. We note that

∥∥∥∑k∈Φ UkU
T
k − m

D Ir

∥∥∥ ≤ γm/n implies that

the minimum singular value of
∑
k∈Φ UkU

T
k is at least (1 − γ)m/D. This in turn implies that∥∥∥(∑k∈Φ UkU

T
k

)−1∥∥∥
2
≤ D

(1−γ)m , which completes the proof.

C PROOF OF LEMMA 6

We use McDiarmid’s inequality in a very similar fashion to the proof of Lemma 1. Let Xi =
yΦ(i)UΦ(i), where Φ(i) refers to the i-th data index. Thus yΦ(i) is a scalar, and the notation UΦ(i)

refers to an r × 1 vector representing the transpose of the Φ(i) th row of U .
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Let our function f(X1, X2, ..., Xm) = ‖
∑m
i=1Xi‖2 = ‖UT

ΦyΦ‖2. To find the ti of the theorem we
first need to bound ‖Xi‖ for all i. Observe that ‖UΦ(i)‖2 = ‖UTei‖2 = ‖PSei‖2 ≤

√
rµ(S)/D by

assumption. Thus,
‖Xi‖2 ≤ |yΦ(i)|‖UΦ(i)‖2 ≤ ‖y‖∞

√
rµ(S)/n

Then observe |f(X1, X2, ..., Xm) − f(X1, X2, ..., X̂k, ..., Xm) is

∣∣∣∣∣∥∥∥∑m
i=1Xi

∥∥∥
2
−
∥∥∥∑i 6=kXi +

X̂k

∥∥∥
2

∣∣∣∣∣ ≤ 2‖y‖∞
√

rµ(S)
D . Here, the first two inequalities follow from the triangle inequality. Next

we calculate a bound for E[f(X1, X2, ..., Xm)] = E[‖
∑m
i=1Xi‖]. Assume again that the points are

taken uniformly with replacement. We have
∑r
k=1 U

2
jk = ‖PSej‖2 ≤ r

Dµ(S), from which we can

see that E

[∥∥∥∑m
i=1Xi

∥∥∥2

2

]
≤ m

D
rµ(S)
D ‖y‖22.

Since E[‖X‖2] ≤ E[‖X‖22]1/2 by Jensen’s inequality, we have that E[‖
∑m
i=1Xi‖2] ≤√

m
D

√
rµ(S)
D ‖y‖2. Letting ε = η

√
m
D

√
rµ(S)
D and plugging into Equation (15), we then have that

the probability is bounded by exp
(
−2η2mD

rµ(S)
D ‖y‖22

4m‖y‖2∞
rµ(S)
D

)
. Thus, the resulting probability bound is

P
[
‖UΦyΦ‖22 ≥ (1 + η)2mrµ(S)

D2
‖y‖22

]
≤ exp

(−η2m‖y‖22
2D‖y‖2∞

)
Substituting our definitions of µ(y) and η shows that the lower bound holds with probability at least
1− δ, where δ = exp

(
−η2m‖y‖22
2D‖y‖2∞

)
, completing the proof.

D PROOF OF LEMMA 7

Theorem 8. (McDiarmid’s Inequality McDiarmid et al. (1989)). Let X1, X2, ..., Xn be indepen-
dent random variables, and assume f is a function for which there exist ti, i = 1, ..., n satisfying

sup
x1,x2,...,xn,x̂i

|f(x1, x2, ..., xn)−f(x1, x2, ..., x̂i, ..., xn)| ≤ ti where x̂i indicates replacing the point

value xi with any other of its possible values. Call f(X1, ..., Xn) := Y . Then for any ε > 0,

P[Y ≥ E[Y ] + ε] ≤ exp
( −2ε2∑n

i==1 t
2
i

)
(15)

P[Y ≤ E[Y ]− ε] ≤ exp
( −2ε2∑n

i==1 t
2
i

)
(16)

Theorem 9. (Non-commutative Bernstein Inequality Gross et al. (2010); Recht (2011) ). Let
X1, X2, ..., Xm be independent zero-mean square r × r random matrices. Suppose ρ2

k =
max{‖E[XT

kXk]‖2, ‖E[XT
kXk]‖2} and ‖Xk‖2 ≤M almost surely for all k. Then for any τ > 0,

P
[∥∥∥ m∑

k=1

Xk

∥∥∥
2
> τ

]
≤ 2rexp

( −τ2/2∑m
k==1 ρ

2
k +Mτ/3

)

To prove this we use McDiarmid’s P inequality from Theorem 8 for the function f(X1, ..., Xm) =∑m
i=1Xi. The resulting inequality is more commonly referred to as Hoeffding’s inequality.

We begin with the first inequality. SetXi = y2
Φ(i). We seek a good value for ti. Since y2

Φ(i) ≤ ‖y‖
2
∞

for all i, we have ∣∣∣ m∑
i=1

Xi −
∑
i6=k

Xi − X̂k

∣∣∣ = |Xk − X̂k| ≤ 2‖y‖2∞
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We calculate E[
∑m
i=1Xi] as follows. Define I{} to be the indicator function, and assume that the

points are taken uniformly with replacement.

E[

m∑
i=1

Xi] = E[

m∑
i=1

y2
Φ(i)] =

m∑
i=1

E[

D∑
j=1

y2
j I{Φ(i)=j}] =

m

D
‖y‖22

Plugging into Equation (16), the left hand side is

P[

m∑
i=1

Xi ≤ E[

m∑
i=1

Xi]− ε] = P[

m∑
i=1

Xi ≤
m

D
‖y‖22 − ε]

and letting ε = αmD ‖y‖
2
2, we then have that this probability is bounded by exp(

−2α2(mD )2‖y‖42
4m‖y‖4∞

) Thus,
the resulting probability bound is

P
[
‖yΦ‖22 ≥ (1− α)

m

D
‖y‖22

]
≥ 1− exp

(−α2m‖y‖42
2D2‖y‖4∞

)
Substituting our definitions of µ(y) and α shows that the lower bound holds with probability at least
1 − δ, where δ = exp

(
−α2m‖y‖42
2D2‖y‖4∞

)
. The argument for the upper bound is identical after replacing

Equation (15) instead of (16). The Lemma now follows by applying the union bound
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