
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

RELATIVE ENTROPY PATHWISE POLICY
OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Score-function based methods for policy learning, such as REINFORCE and PPO,
have delivered strong results in game-playing and robotics, yet their high vari-
ance often undermines training stability. Using pathwise policy gradients, i.e.
computing a derivative by differentiating the objective function

::::::::
Improving

::
a
:::::
policy

::::::
through

::::::::::
state-action

:::::
value

::::::::
functions,

::::
e.g.

:::
by

::::::::::::
differentiating

::
Q

::::
with

::::::
regard

::
to

:::
the

:::::
policy, alleviates the variance issues. However, they require

:::
this

:::::::
requires an accu-

rate action-conditioned value function, which is notoriously hard to learn without
relying on replay buffers for reusing past off-policy data. We present an on-policy
algorithm that trains Q-value models purely from on-policy trajectories, unlock-
ing the possibility of using pathwise policy updates in the context of on-policy
learning. We show how to combine stochastic policies for exploration with con-
strained updates for stable training, and evaluate important architectural compo-
nents that stabilize value function learning. The result, Relative Entropy Pathwise
Policy Optimization (REPPO), is an efficient on-policy algorithm that combines
the stability of pathwise policy gradients with the simplicity and minimal mem-
ory footprint of standard on-policy learning. Compared to state-of-the-art on two
standard GPU-parallelized benchmarks, REPPO provides strong empirical per-
formance at superior sample efficiency, wall-clock time, memory footprint, and
hyperparameter robustness.

1 INTRODUCTION

Most modern on-policy algorithms, such as TRPO (Schulman et al., 2015) or PPO (Schulman et al.,
2017), use a score-based gradient estimator to update the policy. These methods have proven use-
ful for robotic control (Rudin et al., 2022; Kaufmann et al., 2023; Radosavovic et al., 2024), and
language-model fine-tuning (Ouyang et al., 2022; Touvron et al., 2023; Gao et al., 2023; Liu et al.,
2024), but are often plagued by training instability. Zeroth-order, score-based gradient approxima-
tion exhibits high variance (Greensmith et al., 2004), which leads to unstable learning (Ilyas et al.,
2020; Rahn et al., 2023), especially in high-dimensional continuous spaces (Li et al., 2018). In ad-
dition, it requires importance sampling to allow sample reuse, which exacerbates the high variance.

An alternativeare pathwise policy gradient estimators (Silver et al., 2014), where a
reparameterizeable policy class and a learned value function to approximate returns, are used
to obtain a gradient estimate. This low-variance estimator directly optimizes the predicted returns
and

:
,
:::::::::
commonly

::::
used

::
in
:::::::::

off-policy
::::::::
learning,

::
is

::
to

::::
learn

::
a
::::::::::::
parameterized

:::::::::
state-action

:::::
value

:::::::
function

:::
(Lillicrap et al., 2016; Fujimoto et al., 2018; Haarnoja et al., 2018)

:
,
:::
and

:::
use

::
it

::
to

:::::::
improve

:::
the

:::::
policy,

::
for

::::::::
example

:::
by

:::::
using

::
a
::::::::

pathwise
::::::

policy
::::::::

gradient
::::::::::::::::
(Silver et al., 2014)

:
.
::::::

Using
::

a
::::::::::::

parameterized
:::::::
surrogate

::::::::
function

:::
to

:::::::
improve

::::
the

:::::
policy

:
often leads to faster learning (Lillicrap et al., 2016)

. Furthermore, access to a state-action value estimate allows the agent to estimate the value of
on-policy actions that were not executed in the environment. Therefore, we can forgo importance
sampling , which greatly stabilizes multi-epoch training

:::
and

:::::
more

:::::
stable

::::::::
learning

:::::::
learning

:::
by

:::::::
reducing

:::
the

::::::::::
score-based

:::::::::
estimators

:::::::
variance

::::::::::::::::::::
(Mohamed et al., 2020)

:::
and

::
by

::::::::
allowing

::
us

::
to

::::::
remove

:::::::::
importance

::::::::
sampling

:::::::::
corrections.

However, the effectiveness of pathwise policy gradients
::::
these

::::::::::
approaches is bounded by the quality

of the approximate value function (Silver et al., 2014). As such, algorithms that use pathwise policy
gradients

:
a
::::::::::
state-action

::::
value

::::::::
function usually rely on improving value learning through off-policy

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Pathwise estimation

Score-based estimation

Importance
Sampling

Surrogate Value
Approximation

Gradient Estimation Practical Computation

Figure 1: Overview of the strategies used by REPPO and PPO to obtain policy gradient estimators.
Computing the gradient requires a mathematical transformation that allows for efficient estimation
from samples, and additional steps that make the computation tractable in practice.

training (Fujimoto et al., 2018; Haarnoja et al., 2018). Unfortunately, off-policy training requires
the use of replay buffers. Storing these replay buffers can be a challenge when the collected samples
cannot fit in memory. In addition, training with past data introduces various challenges for value
function fitting (Thrun & Schwartz, 1993; Baird, 1995; Van Hasselt, 2010; Sutton et al., 2016; Kumar
et al., 2021; Nikishin et al., 2022; Lyle et al., 2024; Hussing et al., 2024; Voelcker et al., 2025). This
raises our core question:

Can we train a robust
:::::
strong surrogate value function and effectively use

pathwise
:
it
:::
for policy gradient

::::::::::
improvement

:
in a fully on-policy setting without

large replay buffers?

Building on the progress in accurate value function learning (Sutton, 1988; Haarnoja et al., 2019;
Schwarzer et al., 2021; Hussing et al., 2024; Farebrother et al., 2024), we present an efficient on-
policy algorithm, Relative Entropy Pathwise Policy Optimization (REPPO), which uses the pathwise
gradient estimator with an accurate surrogate value function learned from on-policy data. REPPO
builds on the maximum entropy framework (Ziebart et al., 2008) to encourage exploration. It com-
bines this with a KL regularization scheme, inspired by the Relative Entropy Policy Search method
(Peters et al., 2010), which prevents aggressive policy updates from destabilizing the optimization.

Furthermore, we incorporate several
:::::::
evaluate

::::::
several

::::::::::
prominent

:
advances in neural network

architecture design to stabilize learning: categorical Q-learning (Farebrother et al., 2024),
normalized neural network architectures (Nauman et al., 2024a; Hussing et al., 2024), and
auxiliary tasks (Jaderberg et al., 2017).

:::::
These

:::::::::::
components

::::::
feature

:::
in

:::::
many

::::::
recent

:::::::
variants

:::
(Schwarzer et al., 2021; 2023; Nauman et al., 2024a; Hussing et al., 2024; Gallici et al., 2024; Lee et al., 2025a;b; Nauman et al., 2025; Fujimoto et al., 2024)
::
of

:::::::
common

:::::
value

:::::::
learning

:::::::::
algorithm

::::
such

::
as

::::
SAC

:::::::::::::::::::
(Haarnoja et al., 2018)

:
.
:::
We

::::
find

:::
that

:::::::::
categorical

:::::::::
Q-learning

:::
and

::::::::::::
normalization

::::
have

::
a

:::::
strong

::::::
impact

:::
on

:::
the

:::::::::::
performance,

:::::
while

::::::::
auxiliary

::::
tasks

::::
only

::::
show

:::::
small

::::::
impact,

:::
but

:::::::
become

:::::
more

:::::::
relevant

::::
when

::::::::
reducing

:::
the

::::::
amount

:::
of

:::::::
samples.

:

We test our approach in a variety of locomotion and manipulation environments from the Mujoco
Playground (Zakka et al., 2025) and ManiSkill (Tao et al., 2025) benchmarks, and show that REPPO
is competitive with tuned on-policy baselines in terms of sample efficiency and wall-clock time,
while using significantly smaller memory footprints than comparable off-policy algorithms. Fur-
thermore, we find that the proposed method is robust to the choice of hyperparameters. To this end,
our method offers stable performance across more than 30 tasks spanning multiple benchmarks with
a single hyperparameter set. In introducing REPPO, our work makes the following contributions:

1. We showcase that a
::::
using

:
a
::::::::::
state-action

:::::
value

:::::::
function

:::
and

:
a pathwise policy gradient can be

effective in on-policy RL. ,
::
as

::
it
::::::
allows

::::::::
on-policy

:::::
action

::::::::::
resampling,

::::::::
forgoing

:::::::::
importance

:::::::::
corrections.

:::::::::
However,

:::
this

:::::::
requires

:::::::
learning

:
a
::::::
highly

:::::::
accurate

::::::::::
state-action

:::::
value

:::::::
function.

:

2. We show how a joint entropy and policy deviation tuning objective can address the twin
problems of sufficient exploration and controlled policy updates.

3. We evaluate architectural components such as cross-entropy losses, layer normalization,
and auxiliary tasks for their efficacy in pathwise policy gradient-based on-policy learning.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

We provide sample implementations in both the JAX (Bradbury et al., 2018) and PyTorch (Paszke
et al., 2019) frameworks. Our code is available in the supplementary material of the submission.

2 BACKGROUND, NOTATION, AND DEFINITIONS

We consider the setting of the Markov Decision Process (MDP) (Puterman, 1994) , defined by the
tuple (X ,A,P, r, γ, ρ0), where X is the set of states, A is the set of actions, P(x′|x, a) is the
transition probability kernel, r(x, a) is the reward function, and γ ∈ [0, 1) is the discount factor.
We write Pπ(x

′|x) for the policy-conditioned transition kernel and Pn
π (y|x) for the n-step transi-

tion kernel. An agent interacts with the environment via a policy π(a|x), which defines a distri-
bution over actions given a state. The objective is to find a policy that maximizes the expected
discounted return, J(π) = Eπ [

∑∞
t=0 γ

tr(xt, at)] , where x0 ∼ ρ0 is the initial state distribu-
tion, and at ∼ π(·|xt). The state-action value function associated with a policy π are defined as
Qπ(x, a) = Eπ

[∑∞
t=0 γ

tr(xt, at)
∣∣∣x0 = x, a0 = a

]
. We use µπ(y|x) to denote the discounted sta-

tionary distribution over states y when starting in state x. When x ∼ µπ(·|y), y ∼ ρ0, we will simply
write µπ(x) to denote the probability of a state under the discounted occupancy distribution.1

2.1 POLICY GRADIENT LEARNING

Achieved returns (left) and path of four policies trained with different gradient estimation methods.
We compare a score-function based policy gradient estimator (blue) with three variants of pathwise
gradient estimators: using the ground truth objective function (orange), an inaccurate surrogate
model (green), and an accurate surrogate model (red). All PPG based methods show markedly
reduced variance in the policy updates.

A policy gradient approach (Sutton & Barto, 2018) is a general method for improving a (parame-
terized) policy πθ by estimating the gradient of the policy-return function J(πθ) with regard to the
policy parameters θ. The policy gradient theorem states that
∇θJ(πθ) = Ex∼µπ [Q

πθ (x, a)∇θ log πθ(a|x)]x∼µπ,a∼πθ(·|x)[Q
πθ (x, a)∇θ log πθ(a|x)]

:::::::::::::::::::::::::::::::::
. (1)

This identity is particularly useful as both the Q value and the stationary distribution can be estimated
by samples obtained from following the policy for sufficiently many steps in the environment.

An alternative approach, leveraged in off-policy learning, is the deterministic policy gradient
theorem (DPG) (Silver et al., 2014). To avoid confusion, as the DPG can also be used with
stochastic policies (Haarnoja et al., 2018), we refer to it as the pathwise policy gradient, following
Mohamed et al. (2020). The estimator for the DPG relies on access to a differentiable state-action
value function and a reparametrizeable policy class2

::::::::::
deterministic

::::::::::::
differentiable

::::::
policy

:::::::
πdet
θ (x).

While access to the true value function is an unrealistic assumption, we can use a trained surro-
gate model, Q̂, to obtain a biased estimate of the gradient

∇θJ(πθ) ≈ Ex∼µπ
[∇aQ̂

πθ (x, a)|a=πθ(x)∇θπθ(x)]x∼µπ
[∇aQ̂

πdet
θ (x, a)|a=πdet

θ (x)∇θπ
det
θ (x)]

:::::::::::::::::::::::::::::::::

.

(2)

::::::
Finally,

:::
the

:::::
DPG

::::
can

::
be

:::::::::
expanded

::
to

::::::::::::::::
reparameterizeable

:::::::::
stochastic

:::::::
policies2.

::::
We

:::::
term

:::
this

:::
the

:::::::
pathwise

::::::
policy

::::::::
gradient,

:::::::::
following

:::::::::::::::::::
Mohamed et al. (2020),

::::
but

:::
the

:::::::::::
formulation

:::
has

:::::
been

::::
used

::::::::::
prominently

::
in

:::::
prior

::::
work

:::::
such

::
as

:::::
SAC

::::::::::::::::::
(Haarnoja et al., 2018)

:
,
:::
just

:::::::
without

::
a
::::::
proper

:::::
name.

::::
The

:::::::
gradient

:::::::
estimator

::::
can

::
be

::::::::
obtained

::::
from

:::
the

::::::::
following

::::::::::
expectation

∇θJ(πθ) ≈ Ex∼µπ,ϵ∼p(ϵ)[∇aQ̂
πrep
θ (x, a)|a=πrep

θ (x,ϵ)∇θπ
rep
θ (x, ϵ)],

:::

(3)

:::::
where

::::::::
πrep
θ (x, ϵ)

::
is

:
a
::::::::::::::::
reparameterization

::
of

:::::::
πθ(a|x).:::

To
:::::
avoid

::::::::
notational

:::
we

::::
will

::::
write

:::::::
πθ(a|x)::::

from
:::
now

:::
on

::
to

::::::
always

:::::
mean

:::
the

:::::::::
appropriate

::::::::::::::::
reparameterization.

:

1A well-known issue of many policy gradient works is that in practice, they, perhaps erroneously, use
the undiscounted empirical state occupancy for optimization (Nota & Thomas, 2020). REPPO similarly uses
empirical samples without accounting for the discount factor in the objective.

2We discuss an extension to non-reparametrizeable, discrete policies in .
2
:::
We

:::::
discuss

::
an

::::::::
extension

::
to

:::::::::::::::::
non-reparametrizeable,

::::::
discrete

::::::
policies

::
in Appendix C.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

0 500 1000 1500 2000 2500

Iteration

0.0

0.5

1.0

1.5

2.0

2.5

R
et

ur
n

Comparison of Policy Optimization Methods

Score-based Policy Gradient
Pathwise Policy Gradient
Weak Surrogate PPG
Strong Surrogate PPG

SB PG Mean
DPG Mean
Weak Surrogate DPG Mean
Strong Surrogate DPG Mean
Optimum

(a)
::::::
Achieved

::::::
returns

::::
(left)

:::
and

::::
path

::
of

::::
four

::::::
policies

::::::
trained

::::
with

::::::
different

:::::::
gradient

::::::::
estimation

:::::::
methods.

:::
We

::::::
compare

::
a
:::::::::::
score-function

:::::
based

:::::
policy

:::::::
gradient

:::::::
estimator

:::::
(blue)

::::
with

:::::
three

::::::
variants

:::
of

:::::::
pathwise

::::::
gradient

::::::::
estimators:

:::::
using

:::
the

::::::
ground

::::
truth

:::::::
objective

::::::
function

::::::::
(orange),

::
an

::::::::
inaccurate

::::::::
surrogate

:::::
model

::::::
(green),

:::
and

::
an

::::::
accurate

::::::::
surrogate

:::::
model

::::
(red).

::::
All

::::
PPG

:::::
based

::::::
methods

:::::
show

:::::::
markedly

:::::::
reduced

::::::
variance

::
in
:::

the
:::::

policy
::::::
updates.

x1

x 2

REINFORCE

x1

IS REINFORCE

x1

PPO (Clipped IS)

x1

Pathwise PG

(b)
::::::
Gradient

::::
path

::::
over

::::
eight

::::
steps

::
in

:::
the

::::::
middle

::
of

:::
the

:::::::
trajectory,

::::::::
visualized

:::
per

::::::::
algorithm

:::
for

:
8
:::::
steps.

:::
For

:::::::
Reinforce

:::
and

::::
PPG,

::::
new

::::::
samples

:::
are

:::::
drawn

::
at

::::
every

::::
step.

:::
For

:::
the

::::::::
importance

:::::::
sampling

:::::
based

::::::::
algorithms,

:::
one

::
set

::
of

::::::
samples

::
is

::::::
sampled

::
at

:::
the

:::::::
beginning

:::
and

:::::::::
subsequent

::::
steps

:::
are

:::::::
conducted

:::::
using

::::::::
importance

::::::::
sampling.

Figure 2:
::::::::::
Visualization

::
of

:::::::
gradient

:::::
paths

:::
on

:
a
:::
2D

:::::::
example

::::::::
function.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

2.2 ILLUSTRATING
:::::::::::::::
UNDERSTANDING

::::::::
SOURCES

:::
OF

:::::::::
HARMFUL

::::::::::
VARIANCE

::
IN GRADIENT

ESTIMATION

To build additional intuition on the differences between different policy gradient estimators, we
conduct an illustrative experiment. Implementation details can be found in Appendix D.

On a simple objective g(x) we initialize four Gaussians and update their parameters to maximize
J(µ,Σ) = Ex∼N (·|µ,Σ)[g(x)] with four different methods: a score-based policy gradient (using
Equation 1), a pathwise policy gradient with the ground truth objective function, and two pathwise
policy gradients using learned approximations, one accurate and one inaccurate (all using Equa-
tion 3). We visualize the returns and the path of the mean estimates in Figure 2a.

::
In

::::::::
addition,

::
we

::::
zoom

:::
in

::
on

:::
the

::::::::
gradient

::::
paths

:::
of

:::
the

::::::::::
score-based

::::::::
estimator.

::::
We

::::::::
visualize

::::
100

:::::::
different

:::::
eight

:::
step

::::
paths

:::::
from

:::
the

::::::
middle

::
of

:::
the

:::::::::
trajectory.

:::::
Here,

:::
in

:::::::
addition

::
to

:::
the

::::::
vanilla

::::::::::
score-based

:::::::::
estimator,

::
we

:::
also

:::::
show

:::
an

:::::::::
importance

::::::::
sampling

::::
and

:
a
:::::::
clipped

:::::::::
importance

::::::::
sampling

:::::::::
estimator.

::::::
These

::::
paths

:::
are

::::::::
visualized

::
in

:
Figure 2b

:
.
:

The experiments shows that score-based gradient estimators have high variance, and can lead to
unstable policies which fail to optimize the target.

::
In

::::::::
addition,

::::
while

::::::::::
importance

::::::::
sampling

:::::::
increases

::
the

:::::::
sample

::::::::
efficiency

:::
of

:::
the

:::::::::
algorithm,

::
it

::::::
greatly

::::::::::
exacerbates

:::::
these

:::::::
variance

::::::
issues.

::::
We

::::
find

:::
that

:::::::
clipping

:::
the

::::
ratio

:::::::
estimate,

:::
as

:::::::
proposed

:::
by

:::::::::::::::::::
Schulman et al. (2017),

:::::::
prevents

:::::::::::
catastrophic

::::::::
instability,

:::
but

::::
does

:::
not

:::::
reduce

:::
the

:::::::
variance

:::::::::::
substantially.

:
On the other hand, using a pathwise gradient

:::::::
gradients

:
is
::::::::::
remarkably

:::::
stable

::::
and

::::::
exhibits

:::::
small

::::::::
variance.

::::::::
However,

::
it either requires access to the gradients

of the objective function, or a strong surrogate model.

To use pathwise gradients in on-policy learning, our goal is thus to learn a suitable value function that
allows us to estimate a low variance update direction without converging to a suboptimal solution.

3 RELATIVE ENTROPY PATHWISE POLICY OPTIMIZATION

We now present our algorithm for using pathwise policy gradient in an on-policy setting. Naively,
one could attempt to take an off-policy algorithm like SAC and train it solely with data from the
current policy. However, as Seo et al. (2025) recently showed, this can quickly lead to unstable
learning. To succeed in the on-policy regime, we need to be able to continually obtain new diverse
data, and compute stable and reliable updates. Combining a set of recent advances in both reinforce-
ment learning as well as neural network value function fitting, can satisfy these requirements. We
first introduce the core RL algorithm, and then elaborate on the architectural design of the method.

At its core, REPPO proceeds similar to other on-policy actor-critic algorithms through three distinct
phases: data gathering, value target estimation, and value and policy learning (see Algorithm 1).
To obtain diverse data, REPPO uses a maximum-entropy formulation, adapted to multi-step TD-
λ (Subsection 3.1), to encourage exploration. Finally, to ensure that policies do not collapse and
policy learning is stable, REPPO uses KL-constrained policy updates with a schedule that balances
entropy-driven exploration and policy constraints (Subsection 3.2).

3.1 VALUE FUNCTION LEARNING

Off-policy PPG methods like TD3 (Fujimoto et al., 2018) and SAC (Haarnoja et al., 2018) mostly
use single step Q learning, i.e. they use only immediate rewards for value function updates. This
is paired with large replay buffers to stabilize learning. While on-policy algorithms cannot use past
policy data, they can instead use low bias multi-step TD targets for stabilization (Fedus et al., 2020).
Therefore, multi-step TD-λ targets form the basis for our value learning objective.

:::
Note

::::
that

::::::
REPPO

:
is
:::::
more

::::::
closely

::::::
related

::
to

:::::::
SARSA

:::
than

::
to
:::::::::
Q-learning

:::::::::::::::::::
(Sutton & Barto, 2018)

:
,
:::
due

::
to

:::::
being

::::::::
on-policy.

In addition to multi-step returns, diverse data is crucial. To achieve a constant rate of exploration,
and prevent the policy from prematurely collapsing to a deterministic function, we leverage the
maximum entropy formulation for RL (Ziebart et al., 2008; Levine, 2018). The core aim of the
maximum entropy framework is to keep the policy sufficiently stochastic by solving a modified
policy objective which not only maximizes rewards but also penalizes the loss of entropy in the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

policy distribution. The maximum-entropy policy objective (Levine, 2018) can be defined as

JME(πθ) = Eπθ

[∞∑
t=0

γtr(xt, at) + αH[πθ(xt)]
]
, (4)

where H[πθ(x)] is the entropy of the policy evaluated at x, and α is a hyperparameter which trades
off reward maximization and entropy maximization. REPPO combines the maximum entropy ob-
jective with TD-λ estimates, resulting in the following target estimate

G(n)(xt, at) =

n−1∑
k=t

γk(r(xk, ak)− α log π(ak|xk)) + γnQ(xn, an) (5)

Gλ(x, a) =
1∑N

n=0 λ
n

N∑
n=0

λnG(n)(x, a), (6)

whereN is the maximum length of the future trajectory we obtain from the environment for the state-
action pair (x, a). Our implementation relies on the efficient backwards pass algorithm presented
by Daley & Amato (2019). Crucially, the targets are computed on-policy after a new data batch is
gathered, and the Q targets are not recomputed before gathering new data. Our Q learning loss is

LREPPO
Q

(
ϕ|{xi, ai}Bi=1

)
=

1

B

B∑
i=1

HL
[
Qϕ(xi, ai), G

λ(xi, ai)
]
+ Laux(fϕ(xi, ai), x

′
i), (7)

where
::
x′i:::::

refers
::
to

:::
the

::::
next

::::
state

::::::
sample

:::::::
starting

::::
from

:::
xi,::::

and HL is the HL-Gauss loss (see Subsec-
tion 3.3 and Subsection D.2), and Laux is presented in Subsection 3.3 and Subsection D.3.

Using purely on-policy targets allows us to remove several common off-policy stabilization compo-
nents from the value learning setup. REPPO does not require a pessimism bias, so we can forgo the
clipped double Q learning employed by many prior methods (Fujimoto et al., 2018). Tuning pes-
simistic updates carefully to allow for exploration is a difficult task (Moskovitz et al., 2021), so this
simplification increases the robustness of our method. We also do not need a target value function
copy, since we do not recompute the target at each step and it therefore remains on-policy.

3.2 POLICY LEARNING

A core problem with value-based on-policy optimization is controlling the size of the policy update,
as the value estimate is only accurate on the data covered by the prior policy. A large policy update
can therefore destabilize learning (Kakade & Langford, 2002). This problem has led to the develop-
ment of constrained policy update schemes, where the updated policy is prevented from deviating
too much from the behavioral (Peters et al., 2010; Schulman et al., 2015). To control the deviation,
we use the Kullback-Leibler (KL) divergence, also called the relative entropy (Peters et al., 2010),
as it can be justified theoretically through information geometry (Kakade, 2001; Peters & Schaal,
2008; Pajarinen et al., 2019), and is easy to approximate using samples.

:::::
Some

:::::
works

:::
in

:::
the

::::::::
literature

::::::::::::::::::::::::::::::::
(Neumann, 2011; Sokota et al., 2022)

::::
claim

::::
that

::::
the

::::::
reverse

:::::
mode

:::::
might

:::
be

:::::::::
preferable

:::
for

::::::
policy

::::::::::
constraints,

:::
as

::
it
:::

is
:::::::::::::
mode-seeking,

::::
and

:::
the

::::::::
forward

:::::
mode

::
is

:::::::::::::
mode-averaging.

:::::::::
However,

::::
this

:::::::
intuition

::::
does

:::
not

:::::::
cleanly

:::::::
translate

::
to
::::

our
::::::
setting.

:::
As

::::
our

::::::
policies

::
are

::::::::
unimodal

::::::::::::
tanh-squashed

:::::::::
Gaussian,

:::
the

::::
main

::::::
impact

::
of

:::
the

:::
KL

::::::::
direction

::
is

:::
that

:::
the

:::::::::::
reverse-mode

:::
KL

::
is

::::::
entropy

::::::::
reducing.

:::
As

:::
we

::::::::
explicitly

::::
aim

::
to

:::::::
increase

:::
the

:::::::
policy’s

:::::::
entropy

:::::
using

:::
the

::::::::
maximum

::::::
entropy

:::::::::::
formulation,

::::
using

::::::::::::
forward-mode

:::
KL

::::::
makes

:::
the

:::::::::::
optimization

::::
more

::::::
stable.

Policy Optimization Objective Our policy updates derive from a constrained optimization prob-
lem which includes both entropy and the KL constraint, and where θ′ is the behavior policy

:
,
:::
and

:::
εKL::::

and
:::
εH ::

are
:::
the

:::::::::
respective

:::
KL

::::
and

::::::
entropy

:::::::::
constraints

:

max
θ

Eρπ
θ′

x∼ρπ
θ′

:::::

[
JMEEa∼πθ(·|x)

::::::::

[
Q
:
(θx, a

:::
)

]]
(8)

subject to Ex∼ρπ
θ′

[
DKL

(
πθθ′

:
(·|
:
x) ∥πθ′θ(·|

:
x)

)]
≤ KLtarεKL

:::
(9)

Ex∼ρπ
θ′

[
H[πθ(x)]H[πθ(·|x)]

::::::::

]
≥ HtarεH

::
. (10)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

A similar combination of maximum entropy and KL divergence bound has been explored in vari-
ous forms (Abdolmaleki et al., 2015; Pajarinen et al., 2019; Akrour et al., 2019). However, while
previous approaches use complex solutions to this problem, such as approximate mirror descent,
line search, or heuristic clipping, we take a simpler approach. We relax the problem, which intro-
duces two hyperparameters, α for the entropy, and β for the KL. Inspired by Haarnoja et al. (2019),
REPPO automatically adapts these constraints when the policy violates them.

Policy Updates and Multiplier Tuning In the constrained objective, we introduce two hyper-
parameters, Htar and KLtar ::

εH:::
and

::::
εKL, which bound the entropy and KL divergence. The goal of

the Lagrangian parameters is to ensure that the policy stays close to these constraints. As we need
to ensure that they remain positive, we update them in log space with a gradient based root finding
procedure

α← α− ηα∇αe
αEx∼ρπ

θ′

[
(H[πθ(x)]H[πθ(·|x)]

::::::::
−HtarεH

::
)

]
(11)

β ← β − ηβ∇βe
βEx∼ρπ

θ′

[
(DKL(πθθ′

:
(·|
:
x)∥πθ′θ(·|

:
x))−KLtarεKL

:::
)

]
. (12)

Finally, to ensure our KL constraint it
::
is (approximately) maintained, we clip the actor loss based on

whether the constrained is currently violated. The full policy objective for REPPO is now

LREPPO
π (θ|{xi}Bi=1) =

1
B

∑B
i=1

{
−Q(xi, a) + eα log πθ(a|xi), if 1

k

∑k
j=1 log

πθ′ (aj |xi)
πθ(aj |xi)

< εKL

eβ 1
k

∑k
j=1 log

πθ′ (aj |xi)
πθ(aj |xi)

, otherwise
(13)

where a is sampled from πθ(·|xi) and aj from the past behavior policy πθ′(·|xi). :
,
:::
and

::
k

::::::
denotes

:::
how

:::::
many

:::::::
samples

:::
are

::::
used

::
to
:::::::::::
approximate

:::
the

::::
KL.

::
As

::::
with

:::
the

:::::
critic,

:::
the

:::::::::
optimized

:::
loss

::
is
::
a

::::
mean

:::
over

::
a
:::::::::
minibatch

::::
from

:::
the

::::::
rollout

:::::
data.

:
Note that contrary to other on-policy algorithms like PPO

and TRPO, we are not forced to use actions sampled from the behavior policy in the policy gradient
estimator, which removes the need for importance sampling correction. We will show that this
greatly improves the performance of REPPO in Subsection 4.1.

Jointly tuning the entropy and KL multipliers is a crucial component of REPPO. As the policy en-
tropy and KL are tied, letting the entropy of the behavior policy collapse results in a scenario where
the KL constraint prevents any policy updates. Furthermore, the entropy and KL terms are bal-
anced against the scale of the returns in the maximum entropy formulation. As the returns increase,
keeping the multipliers fixed will cause the model to ignore the constraints over time, accelerating
collapse. However, as we tune both in tandem, we find that our setup ensures a steady, constrained
amount of slack on the policy to improve while constantly exploring.

3.3 STABLE REPRESENTATION AND VALUE FUNCTION ARCHITECTURES

While the RL algorithm offers a strong foundation to obtain strong surrogate values, we also draw
on recent off-policy advances in value function learning that improve training through architecture
and loss design. We incorporate three major advancements into REPPO to further stabilize training.

Cross-entropy loss for regression The first choice is to replace the mean squared error in the critic
update with a more robust cross-entropy based loss function. For this, REPPO uses the HL-Gauss
loss (Farebrother et al., 2024). This technique was adapted from the distributional C51 algorithm
(Bellemare et al., 2017), which can lead to remarkably stable learning algorithms even in determin-
istic settings. Inspired by this insight and histogram losses for regression (Imani & White, 2018),
Farebrother et al. (2024) hypothesize that the benefits are due to the fact that many distributional al-
gorithms use a cross-entropy loss, which is scale invariant.

::::::::::::::::::
Palenicek et al. (2025)

::::::
further

::::::::
investigate

:::
and

::::::::
reinforce

:::
this

::::::
claim,

:::::::
showing

::::
that

:::::
stable

::::::::
gradients

:::::
arise

::::
from

::::::::::::
cross-entropy

:::::
based

::::::
losses.

:
We

present the mathematical form of the loss formulation in Subsection D.2. We find that a categorical
loss is a crucial addition, as our ablation experiments show (Subsection E.1), but alternatives like
C51 could easily work as well.

Layer Normalization Several recent works (Ball et al., 2023; Yue et al., 2023; Lyle et al., 2024;
Nauman et al., 2024a; Hussing et al., 2024; Gallici et al., 2024) have shown the importance of layer

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

normalization (Ba et al., 2016) for stable critic learning. Gallici et al. (2024) provides a thorough
theoretical analysis of the importance of normalization in on-policy learning, while Hussing et al.
(2024) focuses on assessing the empirical behavior of networks in off-policy learning with and
without normalization. As we operate in an on-policy regime where value function targets are more
stable, we find that normalization is not as critical for REPPO as it is for off-policy bootstrapped
methods; yet, we still see performance benefits in most environments from normalization.

Auxiliary tasks Auxiliary tasks (Jaderberg et al., 2017) can stabilize features in environments with
sparse rewards, where the lack of a reward signal can prevent learning meaningful representations
via the Q learning objective (Voelcker et al., 2024a). For REPPO, auxiliary tasks are especially
impactful when we decrease the number of samples used in each update batch (see Subsection E.1).
We provide a discussion of this auxiliary task setup, including the loss function, in Subsection D.3.

4 EXPERIMENTAL EVALUATION

We begin by evaluating whether pathwise estimators improve upon score-based estimation in on-
policy RL settings. We then compare our approach to baselines, evaluating final performance, sam-
ple and wall-clock efficiency, and stability of policy improvement. Our results demonstrate strong
performance of REPPO on all axes. Additional details on architectures, hyperparameters, and abla-
tions are provided in Subsection D.4 and Appendix E. A discrete variant of REPPO, along with its
architectural changes and experimental results, is presented in Appendix C.

Environments We evaluate REPPO on two major GPU-parallelized benchmark suites: 23
tasks from the mujoco playground DMC suite (Zakka et al., 2025) and 8 ManiSkill environments
(Tao et al., 2025), covering locomotion and manipulation, respectively. These tasks span high-
dimensional control, sparse rewards, and chaotic dynamics.

4.1 SCORE-BASED AND PATHWISE COMPARISON

REPPO offers an alternative to score-based policy gradient estimation in on-policy RL. However,
we also introduce several enhancements, including automated tuning of entropy and KL coefficients,
to improve value and policy learning. To assess the benefits of learned values and pathwise gradient
estimation over score-based methods, we conduct two experiments. First, we replace the pathwise
term −Q(x, a) in Equation 13 with the score function log π(a|x)[Q(x, a)]sg, denoted as REPPO
(score-based, Q). Second, we replace the gradient estimator with the GAE-based clipped objective
from PPO, denoted as REPPO (score-based, GAE). Aggregate results are presented in Figure 3.

Using the approximate Q function in the policy gradient objective provides a strong improvement
over PPO or REPPO with a clipped objective. Q score-based REPPO outperforms PPO, clarifying
:::::::
strongly

:::::::::
showcasing

:
the benefits of value function learning . This further

:::
and

::::::::
removing

:::::::::
importance

::::::::
sampling.

::::
This

::::
also shows that the REPPO framework can also be used with policy classes that are

not amenable to reparameterization, such as diffusion policies (Chi et al., 2024; Celik et al., 2025;
Ma et al., 2025), by using a score-based estimator together with the learned Q function. Interestingly,
combining the PPO objective with REPPO leads to slightly worse results than vanilla PPO. We find
that the high variance complicates

::
the

:
automatic parameter tuning

::::::
scheme.

0.60 0.75 0.90
REPPO (score-based, GAE)

PPO
REPPO (score-based, Q)

REPPO (pathwise)
Mean

0.60 0.75 0.90

Median

0.60 0.75 0.90

IQM

Normalized returns

Figure 3: Aggregate performance metrics on the mujoco playground benchmark. We compare
REPPO with two ablations: one using the score-based gradient estimator with the learned Q func-
tion, and another using an on-policy GAE estimate with importance sampling and clipping. For
additional context, we also report PPO results.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0.6 0.7 0.8

RPO
DPO

SAC (Brax, 5M)
FastTD3 (32k buf.)

FastTD3 (10,000k buf.)
PPO (Brax, 200M)

PPO (Brax)
PPO

REPPO
Mean

0.45 0.60 0.75 0.90

Median

0.60 0.75 0.90

IQM

Normalized returns

(a) Aggregate performance metrics on the mujoco playground DeepMind Control Suite benchmark. We com-
pare both REPPO and our PPO baseline at 50 million environment steps. We also report the performance of the
Brax PPO and SAC implementations provided by Zakka et al. (2025), as well as FastTD3 (Seo et al., 2025),
RPO (Rahman & Xue, 2023), and DPO (Lu et al., 2022).

0.75 0.80 0.85 0.90
PPO (100M)

PPO
REPPO

Mean

0.80 0.85 0.90 0.95

Median

0.85 0.90 0.95 1.00

IQM

Success Rate

(b) Aggregate success on the ManiSkill3 benchmark (Tao et al., 2025). We compare REPPO against a PPO
baseline provided by Tao et al. (2025) at 50 million environment steps. As some environments take more than
50 million steps for PPO to achieve strong performance, we report the final performance at 100 million steps.
While the mean confidence intervals are very broad, REPPO performs strongly on the IQM and median metrics.

Figure 4: Aggregate performance comparison on (a) mujoco playground DMC and (b) ManiSkill3.

4.2 BENCHMARK COMPARISON

We compare REPPO against the PPO and SAC results reported by Zakka et al. (2025) and Tao et al.
(2025). We report PPO baselines at 50M environment steps, and at the larger training horizon used
in the original papers (Zakka et al., 2025).

::::::
Results

:::::
taken

::::
from

:::::::::::::::::
Zakka et al. (2025)

::
are

:::::::
denoted

::
as

:::::::::
“PPO/SAC

:::::::
(Brax)”.

::::
To

:::::
ensure

::::
that

:::::
PPO

::
is

:::
not

::::::::::
undertuned

:::
for

:::
the

::::
50m

::::
step

::::::
regime

:::
we

:::::::
re-tuned

::
the

::::::::::::::
hyperparameters

:::
of

:::
the

:::::::::::::
implementation

::::::::
provided

::
by

:::::::::::::
Lu et al. (2022)

:
.
::::
SAC

::::::
results

:::
are

:::::::
reported

:
at
::::

5m
::::
steps

:::
as

:::
this

::::::::
amounts

::
to

::::::
similar

::::
total

:::::::
runtime

:::
as

:::
the

:::::
200m

::::
PPO

::::::
results

::::::::
(compare

::::::
results

::
in

:::::::::::::::
Zakka et al. (2025)

:
.
:::::::
Naively

:::::::
running

::::
SAC

::
at

::
a

:::::
larger

::::::
sample

::::::
budget

::::
and

:::::::::
wall-clock

::::::::
efficiency

:::
can

:::
lead

::
to
:::::::::

instability,
:::
as

::::::::::::::
Seo et al. (2025)

:::::::::::
demonstrates.

:
Furthermore, we include FastTD3 (Seo et al.,

2025) on DMC locomotion tasks, trained under two memory budgets: the default replay buffer
(10,485,760 transitions) and a constrained buffer similar in size to on-policy methods (32,768 tran-
sitions) to control for the the memory and performance trade-off. Finally, we compare against
Robust Policy Optimization (RPO) (Rahman & Xue, 2023) and Discovered Policy Optimization
(DPO) (Lu et al., 2022). However, even with some hyperparameter tuning, we were unable to get
perforamnce above

::::::
achieve

:
a
::::::
strong

::::::::::
performance

:::::::::::
improvement

:::::::
beyond the PPO baseline with these

appraoches
:::::::::
approaches.

For REPPO, we report results aggregated over 20 seeds across all tasks. We run 20 seeds for PPO and
5 for FastTD33, reporting aggregate scores with 95% bootstrapped confidence intervals (Agarwal
et al., 2021). To enable aggregation across tasks, returns on mujoco playground are normalized by
the maximum achieved by any algorithm, while for ManiSkill we report raw success rates, which
are naturally comparable across tasks.

Final Performance and Sample Efficiency We first investigate the performance of policies trained
using REPPO. We report aggregate performance at the end of training on both benchmarks in Fig-
ure 4. For both benchmarks, we also provide the corresponding training curves in Figure 5.

3We use fewer seeds for FastTD3 as we are unable to replicate the speed claimed in the paper. This is due
pytorch specific issues discussed in Appendix B, and because we use smaller GPUs for our experiments.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5

Environment steps ×107

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

re
tu

rn
s

DMC Comparison

REPPO
PPO
FastTD3 (10,000k buf.)

0 1 2 3 4 5

Environment steps ×107

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

R
at

e

Maniskill Comparison

REPPO
PPO

Figure 5: Aggregate sample efficiency curves for the benchmark environments. Settings are identical
to those in Figure 4. REPPO achieves higher performance at a faster rate in both benchmarks.

The aggregate results shown in Figure 4 and Figure 5 indicate that our proposed method achieves sta-
tistically significant performance improvements over PPOand SAC, as well as similar performance
to FastTD3 despite REPPO being fully on-policy. Although these results are most pronounced in
locomotion tasks, ManiSkill manipulation results show significant performance benefits over PPO
in terms of outlier-robust metrics (Chan et al., 2020a; Agarwal et al., 2021).

We find that PPO struggles on high-dimensional tasks such as HumanoidRun, even with large batch
sizes aimed at reducing policy gradient variance. Moreover, despite its approximate trust-region
updates, PPO suffers from performance drops and unstable training. This erratic behavior closely
mirrors the score-based policy gradient instability shown in Figure 2a. In contrast, REPPO exhibits
more stable improvements and lower variance across seeds.

0 200 400 600 800 1000 1200 1400

Seconds

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

re
tu

rn
s

DMC Comparison

REPPO
PPO
PPO (Brax, 200M)
SAC (Brax, 5M)

Figure 6: Wall-clock time comparison of
REPPO against common PPO

:::
and

:::::
SAC

implementations in JAX. REPPO matches
PPO

::::
other

:::::::::
algorithms’ s speed but achieves

higher return.

Wall-clock Time Wall-clock time is an impor-
tant metricin simulation, as it reflects the practi-
cal utility of an algorithm: faster training enables
more efficient hyperparameter search and experi-
mentation. However, measuring wall-clock time is
nuanced, as results heavily depend on implementa-
tion details and are difficult to reproduce. We discuss
these challenges across different frameworks in Ap-
pendix B. In Figure 6, we compare the wall-clock
performance of our approach against PPO

:::
and

:::::
SAC

in JAX. Other baselines lack JIT-compilable imple-
mentations, making direct comparisons less mean-
ingful.

The computational cost per update is higher for
REPPO than for PPO due to larger default networks
and gradient propagation through the critic–actor
chain. Nevertheless, both algorithms converge
::
on

:::::
most

:::::
tasks

:
in roughly 600–800 seconds, with

REPPO achieving about 33% higher normalized returns. This shows that the sample effi-
ciency of pathwise gradients can offset their higher per-update cost, yielding improved wall-
clock efficiency compared to score-based PPO.

:
In

:::::::::
addition,

:::
we

:::::
find

::::
that

:::::::::
jax-based

:::::
SAC,

:::::
which

::
is
::::::

tuned
::
to
::::::

trade
::::::
sample

::::
for

::::::::::::
computational

::::::::::
efficiency,

:::::::
slightly

:::::::::::
outperforms

:::::
PPO,

:::
but

::::
does

:::
not

::::::
match

:::::::
REPPO

:::
in

:::::::::::
performance.

:::::
We

:::::
note

::::
that

:::::
other,

:::::::
modern

:::::
SAC

::::::::::::::
implementations

::::::::::::::::::::::::::::::::::
(Nauman et al., 2024b; Lee et al., 2025a;b)

:
,
:::
are

::::
able

::
to

:::::::
achieve

:::::
better

:::::::::::
performance,

:::
but

:::
at

:::
the

:::
cost

::
of

::::::::::::
computational

::::::::
efficiency.

:

Reliable Policy Success We further investigate the stability of policy improvements using score-
based and pathwise policy gradients. Our guiding principle is that such updates should not cause
large drops in performance. To capture this, we adopt the “reliable success” metric, as proposed
in Chan et al. (2020b). We define an algorithm as reliably performant if, once its performance
exceeds a fixed threshold τ , it never drops below this threshold thereafter. At each timestep, we
track the number of runs that satisfy this criterion. This metric reflects the practical requirement that

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5

Environment steps ×107

0.0

0.2

0.4

0.6

0.8

1.0

%
of

ru
ns

w
ith

re
tu

rn
>

0.
9

DMC Comparison (Reliable success)

REPPO
PPO
FastTD3 (10,000k buf.)

0 1 2 3 4 5

Environment steps ×107

0.0

0.2

0.4

0.6

0.8

1.0

%
of

ru
ns

w
ith

su
cc

es
s
>

0.
9

Maniskill Comparison (Reliable success)

REPPO
PPO

Figure 7: Fraction of runs that achieve reliable performance as measured by our metric for policy
stability and reliability. REPPO’s immediately starts achieving high performance in some runs and
the number gradually increases indicating stable learning. PPO struggles to achieve high perfor-
mance initially and to maintain high performance throughout training.

a deployed algorithm should not suddenly degrade simply due to continued training. We report the
percentage of reliably successful runs for both REPPO and PPO in Figure 7.

On both DMC and ManiSkill benchmarks, REPPO achieves reliable performance improvements
quickly, with success rates and returns steadily increasing. By the end of training, about four out of
five runs have reached the threshold of τ = 0.9 without dropping below it, whereas PPO achieves
roughly 40 percentage points fewer reliably performant runs. We also find notable differences in
sample efficiency: PPO requires 5–10 million interactions before most envs become reliably perfor-
mant. Overall, these results show that, despite relying on a biased surrogate value model, pathwise
policy gradients enable stable long-term improvement.

5 CONCLUSION AND AVENUES FOR FUTURE WORK

In this paper we present REPPO, a highly performant but
::
yet

:
efficient on-policy algorithm that

leverages pathwise instead of score-based
::::::
trained

::::::::::
state-action

:::::
value

::::::::
functions

:::
and

::::::::
pathwise

:
policy

gradients. By balancing entropic exploration and KL-constraints, and incorporating recent advances
in neural network value function learning, REPPO is able to learn a high-quality surrogate function
sufficient for reliable gradient estimation. As a result, the algorithm outperforms PPO on two GPU-
parallelized benchmarks in terms of final return, sample efficiency and reliability while being on par
in terms of wall-clock time. In addition, the algorithm does not require storing large amount of data
making it competitive with recent advances in off-policy RL while requiring orders of magnitude
lower amounts of memory.

As our method opens a new area for algorithmic development, it leaves open many exciting avenues
for future work. As Seo et al. (2025) shows, using replay buffers can be beneficial to stabilize
learning as well. This opens the question if our Q learning objective can be expanded to use both on-
and off-policy data to maximize performance while minimizing memory requirements. Furthermore,
the wide literature on improvements on PPO, such as learned constraint objectives (Lu et al., 2022)
could be incorporated into REPPO.

::
We

::::
also

:::::::
observe

:::
that

::::::::
removing

:::
the

::::::::::
importance

::::::::
sampling

:::
step

::
in

::::
PPO

:::
has

:
a
::::::
crucial

::::::
impact

:::
on

:::::::::::
performance,

:::::
which

:::::::
suggests

::::::
further

:::::::
research

:::
on

:::
the

:::::::
trade-off

:::::::
between

::::::::
efficiency

:::
and

:::::::
stability

::
in

::::::::
on-policy

:::::::
gradient

:::::::::
estimation

::
is
:::::::
needed. Finally, better architectures such

as Nauman et al. (2024b), Lee et al. (2025a), Otto et al. (2021) might be transferable to our algorithm
and the rich literature on architectural improvements in off-policy RL can be expanded to include
on-policy value learning.

REFERENCES

Zaheer Abbas, Rosie Zhao, Joseph Modayil, Adam White, and Marlos C. Machado. Loss of plas-
ticity in continual deep reinforcement learning. In Proceedings of the Conference on Lifelong
Learning Agents, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Abbas Abdolmaleki, Rudolf Lioutikov, Jan R Peters, Nuno Lau, Luis Pualo Reis, and Gerhard
Neumann. Model-based relative entropy stochastic search. Advances in Neural Information Pro-
cessing Systems, 2015.

Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess, and Mar-
tin Riedmiller. Maximum a posteriori policy optimisation. In Proceedings of the International
Conference on Learning Representations, 2018.

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc G. Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. In Advances in Neural Infor-
mation Processing Systems, 2021.

Matthew Aitchison and Penny Sweetser. DNA: Proximal policy optimization with a dual network
architecture. In Advances in Neural Information Processing Systems, 2022.

Riad Akrour, Joni Pajarinen, Jan Peters, and Gerhard Neumann. Projections for approximate policy
iteration algorithms. In Proceedings of the International Conference on Machine Learning, 2019.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. In ArXiv, volume
abs/1607.06450, 2016.

Leemon Baird. Residual algorithms: Reinforcement learning with function approximation. In
Machine Learning. Springer, 1995.

Philip J. Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement learn-
ing with offline data. In Proceedings of the International Conference on Machine Learning, 2023.

Marc G. Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. In Proceedings of the International Conference on Machine Learning, 2017.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/jax-ml/jax.

Onur Celik, Zechu Li, Denis Blessing, Ge Li, Daniel Palenicek, Jan Peters, Georgia Chalvatzaki,
and Gerhard Neumann. DIME: Diffusion-based maximum entropy reinforcement learning. In
Proceedings of the International Conference on Machine Learning, 2025.

Stephanie Chan, Sam Fishman, John Canny, Anoop Korattikara, and Sergio Guadarrama. Mea-
suring the reliability of reinforcement learning algorithms. In Proceedings of the International
Conference on Learning Representations, 2020a.

Stephanie CY Chan, Samuel Fishman, John Canny, Anoop Korattikara, and Sergio Guadarrama.
Measuring the reliability of reinforcement learning algorithms. In Proceedings of the Interna-
tional Conference on Learning Representations, 2020b.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. The Inter-
national Journal of Robotics Research, 2024.

Petros Christodoulou. Soft actor-critic for discrete action settings. arXiv preprint arXiv:1910.07207,
2019.

Karl W Cobbe, Jacob Hilton, Oleg Klimov, and John Schulman. Phasic policy gradient. In Proceed-
ings of the 38th International Conference on Machine Learning, 2021.

Brett Daley and Christopher Amato. Reconciling λ-returns with experience replay. In Advances in
Neural Information Processing Systems, 2019.

Pierluca D’Oro, Max Schwarzer, Evgenii Nikishin, Pierre-Luc Bacon, Marc G. Bellemare, and
Aaron Courville. Sample-efficient reinforcement learning by breaking the replay ratio barrier. In
Proceedings of the International Conference on Learning Representations, 2023.

12

http://github.com/jax-ml/jax
http://github.com/jax-ml/jax

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jesse Farebrother, Jordi Orbay, Quan Vuong, Adrien Ali Taiga, Yevgen Chebotar, Ted Xiao, Alex Ir-
pan, Sergey Levine, Pablo Samuel Castro, Aleksandra Faust, Aviral Kumar, and Rishabh Agarwal.
Stop regressing: Training value functions via classification for scalable deep RL. In Proceedings
of the International Conference on Machine Learning, 2024.

William Fedus, Prajit Ramachandran, Rishabh Agarwal, Yoshua Bengio, Hugo Larochelle, Mark
Rowland, and Will Dabney. Revisiting fundamentals of experience replay. In Proceedings of the
International Conference on Machine Learning, 2020.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In Proceedings of the International Conference on Machine Learning, 2018.

Scott Fujimoto, Pierluca D’Oro, Amy Zhang, Yuandong Tian, and Michael Rabbat. Towards
general-purpose model-free reinforcement learning. In Proceedings of the International Con-
ference on Learning Representations, 2024.

Matteo Gallici, Mattie Fellows, Benjamin Ellis, Bartomeu Pou, Ivan Masmitja, Jakob Nicolaus
Foerster, and Mario Martin. Simplifying deep temporal difference learning. In Proceedings of the
International Conference on Learning Representations, 2024.

Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. In
Proceedings of the International Conference on Machine Learning, 2023.

Ignat Georgiev, Krishnan Srinivasan, Jie Xu, Eric Heiden, and Animesh Garg. Adaptive horizon
actor-critic for policy learningin contact-rich differentiable simulation. In Proceedings of the
International Conference on Machine Learning. PMLR, 2024.

Evan Greensmith, Peter L. Bartlett, and Jonathan Baxter. Variance reduction techniques for gradient
estimates in reinforcement learning. Journal of Machine Learning Research, 5, 2004.

Jakub Grudzien, Christian A Schroeder De Witt, and Jakob Foerster. Mirror learning: A unifying
framework of policy optimisation. In Proceedings of the International Conference on Machine
Learning, 2022.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In Proceedings of the
International Conference on Machine Learning, 2018.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Soft actor-critic algo-
rithms and applications. arXiv preprint arXiv:1812.05905, 2019.

Danijar Hafner, Timothy P. Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with dis-
crete world models. In Proceedings of the International Conference on Learning Representations,
2021.

Nicklas Hansen, Hao Su, and Xiaolong Wang. TD-MPC2: Scalable, robust world models for con-
tinuous control. In Proceedings of the International Conference on Learning Representations,
2024.

Marcel Hussing, Claas Voelcker, Igor Gilitschenski, Amir-massoud Farahmand, and Eric Eaton.
Dissecting deep RL with high update ratios: Combatting value divergence. In Reinforcement
Learning Conference, 2024.

Andrew Ilyas, Logan Engstrom, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry
Rudolph, and Aleksander Madry. A closer look at deep policy gradients. In Proceedings of
the International Conference on Learning Representations, 2020.

Ehsan Imani and Martha White. Improving regression performance with distributional losses. In
Proceedings of the International Conference on Machine Learning, 2018.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z. Leibo, David
Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. In
Proceedings of the International Conference on Learning Representations, 2017.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In
Proceedings of the International Conference on Learning Representations, 2017.

Scott Jordan, Yash Chandak, Daniel Cohen, Mengxue Zhang, and Philip Thomas. Evaluating the
performance of reinforcement learning algorithms. In Proceedings of the International Confer-
ence on Machine Learning, 2020.

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In
Proceedings of the International Conference on Machine Learning, 2002.

Sham M Kakade. A natural policy gradient. Advances in neural information processing systems,
2001.

Elia Kaufmann, Leonard Bauersfeld, Antonio Loquercio, Matthias Müller, Vladlen Koltun, and
Davide Scaramuzza. Champion-level drone racing using deep reinforcement learning. Nature,
620(7976):982–987, 2023.

Aviral Kumar, Rishabh Agarwal, Dibya Ghosh, and Sergey Levine. Implicit under-parameterization
inhibits data-efficient deep reinforcement learning. In Proceedings of the International Confer-
ence on Learning Representations, 2021.

Hojoon Lee, Dongyoon Hwang, Donghu Kim, Hyunseung Kim, Jun Jet Tai, Kaushik Subramanian,
Peter R. Wurman, Jaegul Choo, Peter Stone, and Takuma Seno. Simba: Simplicity bias for scaling
up parameters in deep reinforcement learning. In Proceedings of the International Conference on
Learning Representations, 2025a.

Hojoon Lee, Youngdo Lee, Takuma Seno, Donghu Kim, Peter Stone, and Jaegul Choo. Hyperspher-
ical normalization for scalable deep reinforcement learning. In Proceedings of the International
Conference on Machine Learning, 2025b.

Sergey Levine. Reinforcement learning and control as probabilistic inference: Tutorial and review.
arXiv preprint arXiv:1805.00909, 2018.

Jiajin Li, Baoxiang Wang, and Shengyu Zhang. Policy optimization with second-order advantage
information. In Proceedings of the International Joint Conference on Artificial Intelligence, 2018.

Zechu Li, Tao Chen, Zhang-Wei Hong, Anurag Ajay, and Pulkit Agrawal. Parallel q-learning:
Scaling off-policy reinforcement learning under massively parallel simulation. In Proceedings of
the International Conference on Machine Learning, 2023.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In Pro-
ceedings of the International Conference on Learning Representations, 2016.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

Chris Lu, Jakub Kuba, Alistair Letcher, Luke Metz, Christian Schroeder de Witt, and Jakob Foerster.
Discovered policy optimisation. Advances in Neural Information Processing Systems, 2022.

Clare Lyle, Zeyu Zheng, Evgenii Nikishin, Bernardo Avila Pires, Razvan Pascanu, and Will Dabney.
Understanding plasticity in neural networks. In Proceedings of the International Conference on
Machine Learning, 2023.

Clare Lyle, Zeyu Zheng, Khimya Khetarpal, Hado Van Hasselt, Razvan Pascanu, James Martens,
and Will Dabney. Disentangling the causes of plasticity loss in neural networks. In Proceedings
of the Conference on Lifelong Learning Agents, 2024.

Haitong Ma, Tianyi Chen, Kai Wang, Na Li, and Bo Dai. Efficient online reinforcement learning
for diffusion policy. In Proceedings of the International Conference on Machine Learning, 2025.

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous relax-
ation of discrete random variables. In Proceedings of the International Conference on Learning
Representations, 2017.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles Macklin,
David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, et al. Isaac gym: High performance
gpu-based physics simulation for robot learning. arXiv preprint arXiv:2108.10470, 2021.

Skander Moalla, Andrea Miele, Daniil Pyatko, Razvan Pascanu, and Caglar Gulcehre. No repre-
sentation, no trust: Connecting representation, collapse, and trust issues in PPO. In Advances in
Neural Information Processing Systems, 2024.

Shakir Mohamed, Mihaela Rosca, Michael Figurnov, and Andriy Mnih. Monte carlo gradient esti-
mation in machine learning. Journal of Machine Learning Research, 21(132):1–62, 2020.

Miguel Angel Zamora Mora, Momchil Peychev, Sehoon Ha, Martin Vechev, and Stelian Coros.
Pods: Policy optimization via differentiable simulation. In Proceedings of the International Con-
ference on Machine Learning, 2021.

Ted Moskovitz, Jack Parker-Holder, Aldo Pacchiano, Michael Arbel, and Michael Jordan. Tactical
optimism and pessimism for deep reinforcement learning. In Advances in Neural Information
Processing Systems, 2021.

Michal Nauman and Marek Cygan. Decoupled policy actor-critic: Bridging pessimism and risk
awareness in reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, 2025.

Michal Nauman, Michał Bortkiewicz, Piotr Miłoś, Tomasz Trzcinski, Mateusz Ostaszewski, and
Marek Cygan. Overestimation, overfitting, and plasticity in actor-critic: the bitter lesson of rein-
forcement learning. In Proceedings of the International Conference on Machine Learning, 2024a.

Michal Nauman, Mateusz Ostaszewski, Krzysztof Jankowski, Piotr Miłoś, and Marek Cygan. Big-
ger, regularized, optimistic: scaling for compute and sample-efficient continuous control. In
Advances in Neural Information Processing Systems, 2024b.

Michal Nauman, Marek Cygan, Carmelo Sferrazza, Aviral Kumar, and Pieter Abbeel. Bigger,
regularized, categorical: High-capacity value functions are efficient multi-task learners. In
The Thirty-ninth Annual Conference on Neural Information Processing Systems, 2025. URL
https://openreview.net/forum?id=zhOUfuOIzA.

Gerhard Neumann. Variational inference for policy search in changing situations. In Proceedings
of the International Conference on International Conference on Machine Learning, 2011.

Tianwei Ni, Benjamin Eysenbach, Erfan Seyedsalehi, Michel Ma, Clement Gehring, Aditya Ma-
hajan, and Pierre-Luc Bacon. Bridging state and history representations: Understanding self-
predictive RL. In Proceedings of the International Conference on Learning Representations,
2024.

Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron Courville. The
primacy bias in deep reinforcement learning. In Proceedings of the International Conference on
Machine Learning, 2022.

Chris Nota and Philip S. Thomas. Is the policy gradient a gradient? In Proceedings of the Interna-
tional Conference on Autonomous Agents and MultiAgent Systems, 2020.

Fabian Otto, Philipp Becker, Vien Anh Ngo, Hanna Carolin Maria Ziesche, and Gerhard Neumann.
Differentiable trust region layers for deep reinforcement learning. In Proceedings of the Interna-
tional Conference on Learning Representations, 2021.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35, 2022.

Joni Pajarinen, Hong Linh Thai, Riad Akrour, Jan Peters, and Gerhard Neumann. Compatible
natural gradient policy search. Machine Learning, 108(8), 2019.

Daniel Palenicek, Florian Vogt, Joe Watson, Ingmar Posner, and Jan Peters. Xqc: Well-conditioned
optimization accelerates deep reinforcement learning. arXiv preprint arXiv:2509.25174, 2025.

15

https://openreview.net/forum?id=zhOUfuOIzA

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Matteo Papini, Giorgio Manganini, Alberto Maria Metelli, and Marcello Restelli. Policy gradient
with active importance sampling. Reinforcement Learning Journal, 2:645–675, 2024.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An imperative style, high-performance
deep learning library. In Advances in Neural Information Processing Systems, 2019.

Jan Peters and Stefan Schaal. Natural actor-critic. In Neurocomputing, volume 71. Elsevier, 2008.

Jan Peters, Katharina Mülling, and Yasemin Altün. Relative entropy policy search. In Proceedings
of the AAAI Conference on Artificial Intelligence, 2010.

Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John
Wiley & Sons, Inc., USA, 1st edition, 1994. ISBN 0471619779.

Ilija Radosavovic, Tete Xiao, Bike Zhang, Trevor Darrell, Jitendra Malik, and Koushil Sreenath.
Real-world humanoid locomotion with reinforcement learning. Science Robotics, 9(89):eadi9579,
2024.

Md Masudur Rahman and Yexiang Xue. Robust policy optimization in deep reinforcement learning,
2023.

Nate Rahn, Pierluca D’Oro, Harley Wiltzer, Pierre-Luc Bacon, and Marc Bellemare. Policy op-
timization in a noisy neighborhood: On return landscapes in continuous control. Advances in
Neural Information Processing Systems, 36:30618–30640, 2023.

Nikita Rudin, David Hoeller, Philipp Reist, and Marco Hutter. Learning to walk in minutes using
massively parallel deep reinforcement learning. In Conference on robot learning, pp. 91–100.
PMLR, 2022.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In Proceedings of the 32nd International Conference on Machine Learning.
PMLR, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017.

Max Schwarzer, Ankesh Anand, Rishab Goel, R. Devon Hjelm, Aaron Courville, and Philip Bach-
man. Data-efficient reinforcement learning with self-predictive representations. In Proceedings
of the International Conference on Learning Representations, 2021.

Max Schwarzer, Johan Samir Obando Ceron, Aaron Courville, Marc G Bellemare, Rishabh Agar-
wal, and Pablo Samuel Castro. Bigger, better, faster: Human-level atari with human-level effi-
ciency. In Proceedings of the International Conference on Machine Learning, 2023.

Younggyo Seo, Carmelo Sferrazza, Haoran Geng, Michal Nauman, Zhao-Heng Yin, and Pieter
Abbeel. Fasttd3: Simple, fast, and capable reinforcement learning for humanoid control. arXiv
preprint arXiv:2505.22642, 2025.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In Proceedings of the International Conference on
Machine Learning, 2014.

Samuel Sokota, Ryan D’Orazio, J Zico Kolter, Nicolas Loizou, Marc Lanctot, Ioannis Mitliagkas,
Noam Brown, and Christian Kroer. A unified approach to reinforcement learning, quantal re-
sponse equilibria, and two-player zero-sum games. In Deep Reinforcement Learning Workshop
NeurIPS 2022, 2022.

Sanghyun Son, Laura Yu Zheng, Ryan Sullivan, Yi-Ling Qiao, and Ming Lin. Gradient informed
proximal policy optimization. In Advances in Neural Information Processing Systems, 2023.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

H. Francis Song, Abbas Abdolmaleki, Jost Tobias Springenberg, Aidan Clark, Hubert Soyer, Jack W.
Rae, Seb Noury, Arun Ahuja, Siqi Liu, Dhruva Tirumala, Nicolas Heess, Dan Belov, Martin
Riedmiller, and Matthew M. Botvinick. V-MPO: On-Policy Maximum a Posteriori Policy Opti-
mization for Discrete and Continuous Control. In Proceedings of the International conference on
Learning Representations, 2019.

Hyung Ju Suh, Max Simchowitz, Kaiqing Zhang, and Russ Tedrake. Do differentiable simulators
give better policy gradients? In Proceedings of the International Conference on Machine Learn-
ing, 2022.

Richard S Sutton. Learning to predict by the methods of temporal differences. In Machine learning,
volume 3. Springer, 1988.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. A Bradford
Book, 2nd edition, 2018.

Richard S Sutton, A Rupam Mahmood, and Martha White. An emphatic approach to the problem of
off-policy temporal-difference learning. In Journal of Machine Learning Research, volume 17.
MIT Press, 2016.

Yunhao Tang, Zhaohan Daniel Guo, Pierre Harvey Richemond, Bernardo Ávila Pires, Yash Chan-
dak, Rémi Munos, Mark Rowland, Mohammad Gheshlaghi Azar, Charline Le Lan, Clare Lyle,
and others. Understanding self-predictive learning for reinforcement learning. In Proceedings of
the International Conference on Machine Learning, 2023.

Stone Tao, Fanbo Xiang, Arth Shukla, Yuzhe Qin, Xander Hinrichsen, Xiaodi Yuan, Chen Bao,
Xinsong Lin, Yulin Liu, Tse kai Chan, Yuan Gao, Xuanlin Li, Tongzhou Mu, Nan Xiao, Arnav
Gurha, Viswesh Nagaswamy Rajesh, Yong Woo Choi, Yen-Ru Chen, Zhiao Huang, Roberto Ca-
landra, Rui Chen, Shan Luo, and Hao Su. Maniskill3: Gpu parallelized robotics simulation and
rendering for generalizable embodied ai. Robotics: Science and Systems, 2025.

Sebastian Thrun and Anton Schwartz. Issues in using function approximation for reinforcement
learning. In Connectionist Models Summer School, 1993.

Manan Tomar, Lior Shani, Yonathan Efroni, and Mohammad Ghavamzadeh. Mirror descent policy
optimization. In Proceedings of the International Conference on Learning Representations, 2022.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Hado Van Hasselt. Double q-learning. In Advances in Neural Information Processing Systems,
2010.

Claas Voelcker, Marcel Hussing, and Eric Eaton. Can we hop in general? a discussion of benchmark
selection and design using the hopper environment. In Finding the Frame: An RLC Workshop for
Examining Conceptual Frameworks, 2024a.

Claas Voelcker, Tyler Kastner, Igor Gilitschenski, and Amir-massoud Farahmand. When does self-
prediction help? understanding auxiliary tasks in reinforcement learning. In Reinforcement Learn-
ing Conference, 2024b.

Claas Voelcker, Marcel Hussing, Eric Eaton, Amir-massoud Farahmand, and Igor Gilitschenski.
MAD-TD: Model-augmented data stabilizes high update ratio RL. In Proceedings of the Interna-
tional Conference on Learning Representations, 2025.

Yuhui Wang, Hao He, and Xiaoyang Tan. Truly proximal policy optimization. In Uncertainty in
Artificial Intelligence, 2020.

Zhengpeng Xie, Qiang Zhang, Fan Yang, Marco Hutter, and Renjing Xu. Simple policy optimiza-
tion. In Proceedings of the International Conference on Machine Learning, 2025.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Jie Xu, Miles Macklin, Viktor Makoviychuk, Yashraj Narang, Animesh Garg, Fabio Ramos, and
Wojciech Matusik. Accelerated policy learning with parallel differentiable simulation. In Pro-
ceedings of the International Conference on Learning Representations, 2022.

Yang Yue, Rui Lu, Bingyi Kang, Shiji Song, and Gao Huang. Understanding, predicting and bet-
ter resolving q-value divergence in offline-RL. In Advances in Neural Information Processing
Systems, 2023.

Kevin Zakka, Baruch Tabanpour, Qiayuan Liao, Mustafa Haiderbhai, Samuel Holt, Jing Yuan Luo,
Arthur Allshire, Erik Frey, Koushil Sreenath, Lueder A. Kahrs, Carlo Sferrazza, Yuval Tassa, and
Pieter Abbeel. MuJoCo playground: An open-source framework for GPU-accelerated robot learn-
ing and sim-to-real transfer., 2025. URL https://github.com/google-deepmind/
mujoco_playground.

Brian D. Ziebart, Andrew Maas, J. Andrew Bagnell, and Anind K. Dey. Maximum entropy inverse
reinforcement learning. In Proceedings of the National Conference on Artificial Intelligence,
2008.

A EXTENDED RELATED WORK

Stabilizing On-Policy RL A fundamental issue with score-based approaches is their instability.
Therefore, various improvements to decrease gradient variance have been considered. Some works
have noted the difficulty of representation learning and have addressed this via decoupling the train-
ing of value and policy (Cobbe et al., 2021; Aitchison & Sweetser, 2022). Moalla et al. (2024) note
that feature learning problems can result from representation collapse, which can be mitigated using
auxiliary losses. There are also efforts to reduce the variance of gradients, e.g. by finding a policy
that minimizes the variance of the importance sampling factor (Papini et al., 2024) or modifying the
loss to ensure tighter total variational distance constraints (Xie et al., 2025).

Incorporating ground-truth gradient signal to stabilize training has also been studied, both for dy-
namical systems (Son et al., 2023) and differentiable robotics simulation (Mora et al., 2021; Xu
et al., 2022; Georgiev et al., 2024). However, access to a ground-truth gradient requires custom
simulators, and in contact-rich tasks, surrogate models can provide smoother gradients (Suh et al.,
2022).

Trust regions and constrained policy optimization Other approaches have used similar KL and
trust region constraint as REPPO. Schulman et al. (2015) and Peters et al. (2010) formulate the KL
constrained policy update as a constrained optimization problem. Peters et al. (2010) shows a closed
form solution to this problem, while Schulman et al. (2015) uses a conjugate gradient scheme to
solve the relaxed optimization problem. Schulman et al. (2017) replaces the Lagrangian formulation
with a clipping heuristic. However, clipping can lead to wrong gradient estimates (Ilyas et al., 2020)
and in some scenarios the clipping objective fails to bound the policy deviation (Wang et al., 2020).
Akrour et al. (2019) propose to project the policy onto the trust-region to sidestep the difficulty
associated with clipping. We find that our approach is simpler to implement and more general, as
we do not assume direct projection is possible.

Otto et al. (2021) propose to replace the various trust-region enforcement methods such as line-
search or clipping with differentiable trust-region layers in the policy neural network architecture.
While our method is slightly more general, as we make no assumption on the form of the policy
(aside from assuming gradient propagation through the sampling process is possible), trust-region
layers could easily be combined with REPPO for appropriate policy parameterizations.

Work on GPU-parallelized On-policy RL With the parallelization of many benchmarks on
GPUs (Makoviychuk et al., 2021; Zakka et al., 2025; Tao et al., 2025), massively-parallel on-policy
RL has become quite popular. While these environments provide simulation testbeds, algorithms
trained in such environments have shown to transfer to real-robots, allowing us to train them in
minutes rather than days (Rudin et al., 2022).

Hybridizing Off-policy and On-policy RL methods Most closely to our work, Parallel Q Net-
works (PQN) (Gallici et al., 2024) was established by using standard discrete action-space off-policy
techniques in the MPS setting. While our work shares several important features with this method,

18

https://github.com/google-deepmind/mujoco_playground
https://github.com/google-deepmind/mujoco_playground

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

we find that our additional insights on KL regularization and tuning is crucial for adapting the con-
cept to continuous action spaces. We also evaluate our approach on discrete action spaces (see
Appendix C). While PQN performs slightly better, likely owing to tuned exploration techniques, we
show that our method works robustly across both discrete and continuous action spaces.

Other methods, such as Parallel Q-Learning (Li et al., 2023) and FastTD3 (Seo et al., 2025) also
attempt to use deterministic policy gradient algorithms in the MPS setting, but still remain off-policy.
This has two major drawbacks compared to our work. The methods require very large replay buffers,
which can either limit the speed if data needs to be stored in regular CPU memory, or require very
large and expensive GPUs. In addition, the off-policy nature of these methods requires stabilizing
techniques such as clipped double Q learning, which has been shown to prevent exploration.

KL-based RL Finally, other works also build on top of the relative entropy policy search (Peters
et al., 2010). Maximum A Posteriori Policy Optimization (MPO) (Abdolmaleki et al., 2018) and
Variational MPO (Song et al., 2019) both leverage SAC style maximum entropy objectives and use
KL constraints to prevent policy divergence. However, both methods use off-policy data together
with importance sampling, which we forgo, do not tune the KL and entropy parameters, and crucially
do not make use of the deterministic policy gradient.

Going beyond relative entropy, the KL-based constraint formulation has been generalized to include
the class of mirror descent algorithms (Grudzien et al., 2022; Tomar et al., 2022). In addition,
Lu et al. (2022) meta-learns a constraint to automatically discover novel RL algorithms. These
advancements are largely orthogonal to our work and can be incorporated into REPPO in the future.

Instability in Off-policy RL Our method furthermore adapts many design decisions from recent
off-policy literature. Among these are layer normalizations, which have been studied by Nauman
et al. (2024a); Hussing et al. (2024); Nauman et al. (2024b); Gallici et al. (2024), auxiliary tasks
(Jaderberg et al., 2017; Schwarzer et al., 2021; 2023; Tang et al., 2023; Voelcker et al., 2024b; Ni
et al., 2024), and HL-Gauss (Farebrother et al., 2024), variants of which have been used by Hafner
et al. (2021); Hansen et al. (2024); Voelcker et al. (2025). Beyond these, there are several other
works which investigate architectures for stable off-policy value learning, such as Nauman et al.
(2024b); Lee et al. (2025a;b). A similar method to our KL regularization tuning objective has been
used by (Nauman & Cygan, 2025) to build an exploratory optimistic actor. While the technique
is very similar, we employ it in the context of the trust-region update, and show the importance of
jointly tuning the entropy and KL parameters. Finally, there are several papers which investigate the
impact of continual learning in off-policy reinforcement learning, including issues such as out-of-
distribution misgeneralization (Voelcker et al., 2025), plasticity loss (Nikishin et al., 2022; D’Oro
et al., 2023; Lyle et al., 2023; Abbas et al., 2023). Since many of these works focus specifically
on improving issues inherent in the off-policy setting, we did not evaluate all of these changes in
REPPO. However, rigorously evaluating what network architectures and stabilization methods can
help to further improve the online regime is an exciting avenue for future work.

B WALLCLOCK MEASUREMENT CONSIDERATIONS

Measuring wall-clock time has become a popular way of highlighting the practical utility of an
algorithm as it allows us to quickly deploy new models and iterate on ideas. Rigorous wall-clock
time measurement is a difficult topic, as many factors impact the wall-clock time of an algorithm.

We chose to not compare the jax and torch versions head-to-head as we found significant runtime
differences on different hardware, and the different compilation philosophies lead to different ben-
efits and drawbacks. For example, jax’ full jit-compilation trades a much larger initial overhead for
significantly faster execution, which can amortize itself depending on the number of timesteps taken.
This is the reason why we do not include FastTD3 in Figure 6, as only a PyTorch implementation of
the algorithm exists. FastTD3 and REPPO use similar algorithms and hyperparameters, therefore,
barring complexities like those discussed below, we expect them to perform at similar speeds.

More importantly, torch’s compilation libraries are built to accelerate standard supervised and gen-
erative workflows, but do not support RL primitives equally well. As the CPU needs to load ker-
nels during training which the GPU then executes, the CPU plays a much larger role in the speed
measurements of the torch-based variant of REPPO. Especially the tanh-squashed log probability
computation and the frequent resampling from the action space cannot be offloaded into an efficient

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

kernel without providing one manually, which we have not done. This is likely due to the fact that
torch keeps its random seed on the CPU. This is not a concern for jax, due to the fact that all kernels
are statically compiled when the program is first executed, and random seeds are handled explicitly
as part of the program state. Therefore, the CPU is under much lower load.

Instead of raw wall-clock time measurements, which can vary massively across framework and
hardware, we recommend that the community treat the question of wall-clock time more carefully.
While the actual time for an experiment can be of massive importance from a practical point of
view, the advantages and limitations of current frameworks can obscure exciting directions for future
work. For example REPPO is highly competitive with PPO when implemented in jax, but struggles
somewhat in torch due to framework specific design choices.

C DISCRETE REPPO (D-REPPO)

One of the major advantages of PPO in the zoo of RL algorithms is the fact that it can be used in
both continuous and discrete action settings. However, as we build on the DDPG/TD3/SAC line of
work, the exposition of our algorithm has focused on the continuous setting alone.

Nonetheless, it is easy to adapt our approach to the discrete action setting as well. Following the
proposal of Christodoulou (2019), we can circumvent the chained critic-actor gradient and compute
the value of the current policy, the entropy, and the KL bound in closed form

LD−REPPO
π,≤KL (θ|B) = − 1

|B|

|B|∑
i=1

|A|∑
j=1

πθ(aj |xi)
(
Q(xi, aj) + eα log πθ(aj |xi)

)
(14)

LD−REPPO
π,>KL (θ|B) = − 1

|B|

|B|∑
i=1

eβ
|A|∑
j=1

πθ′
:
(aj |xi) log

πθ′(aj |xi)
πθ(aj |xi)

(15)

LD−REPPO
π (θ|B) =

{
LD−REPPO
π,≤KL (θ|B), if

∑k
j=1 log

πθ′ (aj |xi)
πθ(aj |xi)

< εKL

LD−REPPO
π,>KL (θ|B), otherwise.

(16)

This variant of our algorithm still directly differentiates the full Q function objective, so can still
be seen as a pathwise implementation. But computing the expectation in closed form circumvents
the necessity to use a biased estimator for discrete sampling, such as the Gumbel-Softmax trick
(Maddison et al., 2017; Jang et al., 2017; Fujimoto et al., 2024).

To investigate the benefits of our approach in the discrete action setting, we compare it against PQN
(Gallici et al., 2024) and PPO. The main benefit of our approach over PQN is that it is a) a general
algorithm that unifies both discrete and continuous action spaces, due to the underlying actor critic
architecture, and b) that the principled entropy and KL objectives stabilize updates and encourages
continuing exploration without an epsilon greedy exploration strategy.

We find that our algorithm is able to perform roughly on-par with PQN in the Atari-10 suite of games
(cf. Table 1 and Figure 8) with only minor changes to the architecture to adapt to the Atari games
benchmark. Notably, suitable settings for the KL and entropy target remain consistent even for the
discrete action setting. We only find that the value of λ = 0.65 that is also recommended by Gallici
et al. (2024) is superior to our default value of 0.95, likely due to the higher variance of the return
in the atari games. While the high variance across Atari games makes drawing a clear conclusion
difficult, we find that PQN seems to achieve slightly better performance. We find that this is most
likely due to the fact that the algorithm adds explicit exploration noise, while we rely on the entropy
and conservative KL terms to pace policy improvement.

Table 1: Aggregated Human-Normalized Atari-10 scores with 95% confidence intervals.

Algorithm Mean [CI] Median [CI] IQM [CI]
REPPO 2.98 [2.64, 3.33] 1.68 [1.48, 1.82] 1.64 [1.54, 1.74]
PQN 3.35 [3.00, 3.76] 1.58 [1.48, 1.71] 1.64 [1.58, 1.71]

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

0.0 0.5 1.0 1.5 2.0
×108

0

500

1000

1500

Amidar-v5

0.0 0.5 1.0 1.5 2.0
×108

0

20000

40000

60000

80000
BattleZone-v5

0.0 0.5 1.0 1.5 2.0
×108

0

20

40

60

80

100
Bowling-v5

0.0 0.5 1.0 1.5 2.0
×108

−20

−10

0

10

20
DoubleDunk-v5

0.0 0.5 1.0 1.5 2.0
×108

0

2000

4000

6000

8000
Frostbite-v5

0.0 0.5 1.0 1.5 2.0
×108

0

10000

20000

30000

40000

50000
KungFuMaster-v5

0.0 0.5 1.0 1.5 2.0
×108

0

5000

10000

15000

20000
NameThisGame-v5

0.0 0.5 1.0 1.5 2.0
×108

0

25000

50000

75000

100000

125000
Phoenix-v5

0.0 0.5 1.0 1.5 2.0
×108

0

10000

20000

30000
Qbert-v5

0.0 0.5 1.0 1.5 2.0
×108

0

5000

10000

15000

20000

25000
Riverraid-v5

Timesteps

R
et

ur
n

(N
or

m
al

iz
ed

)

Algorithms
REPPO PQN

Figure 8: Per-environment results on the Atari-10 suite

D IMPLEMENTATION DETAILS AND HYPERPARAMETERS

In the following, we present implementation details on experiments, as well as a hyperparameter
overview.

D.1 TOY EXAMPLE

To obtain the gradient descent comparison in Subsection 2.2 we used the 6-hump camel function, a
standard benchmark in optimization. As our goal was not to show the difficulties of learning with
multiple optima, which affect any gradient-based optimization procedure, but rather smoothness of
convergence, we initialized all runs close to the global minimum. The surrogate functions were
small three layer, 16 unit MLPs. To obtain a strong and a weak version, we used differing numbers
of samples, visualized in Figure 9. Every algorithm was trained with five samples from the policy at
every iteration. Finally, we tested several learning rates. We chose a learning rate which allows the
ground-truth pathwise gradient to learn reliably. If a smaller gradient step size is chose, the Monte-
Carlo estimator converges more reliably, at the cost of significant additional computation. We also
tested subtracting a running average mean as a control variate from the Monte-Carlo estimate. While

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Figure 9: Samples used to train the surrogate function. On the left, we visualize the 32 sample
dataset to train the weak surrogate function, in the middle the 1024 datapoints to train the strong,
and on the right the full objective function.

this reduced variance significantly, it was still very easy to destabilize the algorithm by choosing a
larger step size or less data samples.

In total, our experiments further highlight a well known fact in gradient-based optimization: while a
MC-based gradient algorithm can be tuned for strong performance, it is often extremely dependent
on finding a very good set of hyperparameters. In contrast, pathwise estimators seem to work much
more reliably across a wider range of hyperparameters, which corroborates our insights on REPPO
hyperparameters robustly transfering across environemnts and benchmark suites.

D.2 HL-GAUSS EQUATIONS

Given a regression target y and a function approximation f(x), HL-Gauss transforms the regression
problem into a cross-entropy minimization. The regression target is reparameterized into a histogram
approximation hist of N (y, σ), with a fixed σ chosen heuristically. The number of histogram bins
h and minimum and maximum values are hyperparameters. Let hist(y)i be the probability value of
the histogram at the i-th bucket. The function approximation has an h-dimensional output vector of
logits. Then the loss function is

HL(f(x), y) =

h∑
i=1

hist(y)i · log
exp f(x)i∑h
j=1 exp f(x)j

.

The continuous prediction can be recovered by evaluating

ŷ = E[hist(f(x))] = ⟨hist(f(x)), vec(min,max, h)⟩,
where vec(min,max, h) is a vector with the center values of each bin ranging from min to max.

D.3 AUXILIARY TASK SETUP

A simple yet impactful auxiliary task is latent self prediction (Schwarzer et al., 2021; Voelcker et al.,
2024b; Fujimoto et al., 2024). In its simplest form, latent self-prediction is computed by separating
the critic into an encoder ϕ : X ×A → Z and a prediction head fc : Z → R. The full critic can then
be computed as Q(x, a) = fc(ϕ(x, a)). A self-predictive auxiliary loss adds a forward predictive
model fp : Z → Z and trains the encoder and forward model jointly to minimize

Laux(xt, at, xt+1, at+1) = |fp(ϕ(xt, at))− ϕ(xt+1, at+1)|2 . (17)

As our whole training is on-policy, we do not separate our encoder into a state-dependent and action
dependent part as many prior off-policy works have done. Instead we compute the targets on-policy
with the behavioral policy and minimize the auxiliary loss jointly with the critic loss.

Overall, the impact of the auxiliary task is the most varied across different environments. In some, it
is crucial for learning, while having a detrimental effect in others. We conjecture that the additional
learning objective helps retain information in the critic if the reward signal is not informative. In

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Environment
total time steps 50, 000, 000

n envs 1024
n steps 128
KLtar 0.1

Optimization
n epochs 8

n mini batches 64
batch size n envs × n steps

n mini batches = 2048
lr 3e− 4

maximum grad norm 0.5
Problem Discount

γ 1− 10
max env steps

λ 0.95

Critic Architecture
critic hidden dim 512

vmin 1
1−γ min r

vmax 1
1−γ max r

num HL-Gauss bins 151
num critic encoder layers 2

num critic head layers 2
num critic pred layers 2

Actor Architecture
actor hidden dim 512
num actor layers 3

RL Loss
β start 0.01

KLtar :::
εKL: 0.1

α start 0.01
Htar ::

εH:
0.5× dimA

aux loss mult 1.0

Table 2: Default REPPO hyperparameters

cases where the reward signal is sufficient and the policy gradient direction is easy to estimate,
additional training objectives might hurt performance. We encourage practitioners to investigate
whether their specific application domain and task benefits from the auxiliary loss.

D.4 REPPO MAIN EXPERIMENTS

In addition to the details laid out in the main paper, we briefly introduce the architecture and addi-
tional design decisions, as well as default hyperparameter settings.

The architecture for both critic encoder and heads, as well as the actor, consists of several nor-
malized linear layer blocks. As the activation function, we use silu/swift. As the optimizer, we
use Adam. We experimented with weight decay and learning rate schedules, but found them to be
harmful to performance. Hyperparameters are summarized in Table 2. We tune the discount factor
γ and the minimum and maximum values for the HL-Gauss representation automatically for each
environment, similar to previous work (Hansen et al., 2024). This makes the hyperparameters, to-
gether with the algorithm description, and the source code, a complete algorithm specification in
the sense of Jordan et al. (2020), as we only vary hyperparameters across environments following
simple equations on clear, domain sepcific hyperparameters such as the size of the action space and
the length of the experiment.

For all environments, we use observation normalization statistics computed as a simple running
average of mean and standard deviation. We found this to be important for performance, similar
as in other on policy algorithms. Since we do not hold data in a replay buffer, we do not need to
account for environment normalization in a specialized manner, and can simply use an environment
wrapper.

For more exact details on the architecture we refer to interested readers to the codebase.

E ADDITIONAL RESULTS

In the following, we provide additional results and further clarification on existing experiments in
Section 4.

E.1 DESIGN ABLATIONS

We run ablation experiments investigating the impact of the design components used in REPPO.
In these experiments, we remove the cross-entropy loss via HL-Gauss, layer normalization, the
auxiliary self-predictive loss, or the KL regularization of the policy updates. To understand the

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

0.6 0.7 0.8
REPPO, no KL clip
REPPO, reverse KL

REPPO (no KL)
REPPO (no HL-Gauss)

REPPO (no normalization)
REPPO (no aux loss)

REPPO
Mean

0.60 0.75 0.90

Median

0.60 0.75 0.90

IQM

Normalized returns

(a) Large dataset size ablation (128× 1024).

0.60 0.75
REPPO (32k buf., no KL)

REPPO (32k buf., no HL-Gauss)
REPPO (32k buf., no normalization)

REPPO (32k buf., no aux loss)
REPPO (32k buf.)

REPPO
Mean

0.4 0.6 0.8 1.0

Median

0.45 0.60 0.75 0.90

IQM

Normalized returns

(b) Small dataset size ablation (32× 1024).

Figure 10: Ablation on components and data size on the DMC benchmark. Both values are signifi-
cantly smaller than the replay buffer sizes used in standard off-policy RL algorithms like SAC and
FastTD3. The HL-Gauss loss and KL regularization provide a clear benefit at both data scales. The
normalization and auxiliary loss become more important when less data is available, highlighting
that some stability problems can also be overcome with scaling data.

0.64 0.72 0.80
FastTD3 (32k buf.)
REPPO (32k buf.)

FastTD3 (10,000k buf.)
REPPO

Mean

0.7 0.8 0.9 1.0

Median

0.7 0.8 0.9

IQM

Normalized returns

Figure 11:
:::::::::
Comparison

:::
of

:::::::::
aggregate

:::::::::::
performance

::::::::
between

:
REPPO

:::
and

:::::::::
FastTD3.

::
REPPO

:
is

:::::::::
competitive

:::::
with

:::
the

:::::
large

::::::
buffer

::::::::
FastTD3

::::::
version

::::
and

:::::::::::
outperforms

::::::::
FastTD3

:::::
when

:::::::
memory

::
is

::::::
limited.

importance of each component for on-policy learning we conduct these ablations for two scales of
batch sizes - the default 131, 072 on-policy transitions, as well as the smaller batch size of 32, 768.

As shown in Figure 10, our results indicate that both the KL regularization of the policy updates and
the categorical Q-learning via HL-Gauss are necessary to achieve strong performance independent
of the size of the on-policy data used to update our model. We find that the KL divergence is
the only component that, when removed, leads to a decrease in performance below the levels of
PPO, which clarifies the central importance of relative entropy regularization for REPPO. Removing
normalization has minor negative effects on performance which become worse at smaller buffer
sizes. This is consistent with the literature on layer normalization in RL. Similarly, the auxiliary
self-predictive loss has a more clearly negative impact on performance when the batch size becomes
smaller. We note that auxiliary loss has an inconsistent impact on the training generally, where it is
strongly beneficial in some environments, but harmful in others.

E.2 MEMORY DEMANDS

Our final result concerns itself with memory demands. Recent advances in off-policy algorithms
have shown great performance when large buffer sizes are available (Seo et al., 2025). When dealing
with complex observations such as images, on-policy algorithms which do not require storing past

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

::::
Num

::::
envs

: ::::
Num

:::::
steps

::::
Num

::::::::::
minibatches

: ::::::
Epochs

: :::::::
Updates

:::
per

:::::
batch

:::::
Large

::::
data

::::
1024

: :::
128

::
64

: :
8

:::
512

:::::::
Medium

::::
data

::::
1024

: ::
32

: ::
16

: :
8

:::
128

:::::
Small

::::
data

::::
1024

: :
8

:
4

:
8

::
32

:

:::
Tiny

::::
data

: :::
256

:
8

:
1

:
8

:
8

(a) Comparison of aggregate performance between and FastTD3. is competitive with
:::::
Dataset

:::::::::::
configurations

::
for

the large buffer FastTD3 version and outperforms FastTD3 when memory is limited
:::
data

::::::
scaling

:::::::::
experiment.

0.45 0.60 0.75
PPO (tiny data)

PPO (small data)
PPO (medium data)

PPO (large data)
REPPO (tiny data)

REPPO (small data)
REPPO (medium data)

REPPO (large data)
Mean

0.4 0.6 0.8

Median

0.4 0.6 0.8 1.0

IQM

Normalized returns

(b)
::::::::
Aggregated

::::::::::
performance

::
of

::::::
REPPO

:::
and

::::
PPO

:::::
under

::::::
different

:::::
batch

:::::
dataset

:::::
sizes.

:::
The

:::::
mean

:::::::::
performance

:
of
:::::::

REPPO
::::
drops

:::::::::::
monotonically

::::
with

::::::::
decreasing

:::::
batch

:::
size,

:::::
while

::::
PPO

:::::
shows

::
its

::::::
highest

:::::::::
performance

::::
with

:
a

::::::
medium

:::
and

::::
small

::::::
dataset

:::
size.

Figure 12:
:::::::::
Experiment

::
to

::::::::
compare

::
the

::::::
impact

:::
of

::::
batch

:::::
datset

::::
size

:::
on

:::::::
different

::::::::
on-policy

:::::::::
algorithms.

data have a large advantage. In terms of data storage requirements, our algorithm is comparable with
PPO, yet it remains to answer how well REPPO compares to algorithms that are allowed to store
a large amount of data. For this, we compare against the recent FastTD3 (Seo et al., 2025) which
also uses GPU-parallelized environments but operates off-policy. We compare REPPO against the
original FastTD3 and we also re-run FastTD3 with access to a significantly smaller buffer equivalent
to the REPPO buffer. We report the results in Figure 11.

The results demonstrate that REPPO is on par or better in terms of performance on mean and IQM
with the FastTD3 approach. This is despite the fact that REPPO uses a buffer that is two to three
orders of magnitude smaller. When decreasing the buffer size of FastTD3, the algorithm’s perfor-
mance drops by a large margin while REPPO is barely affected by a smaller buffer. We find that
FastTD3 with a smaller buffer can retain performance on lower dimensional, easier tasks but suffers
on harder tasks that may be of greater interest in practice. In summary, REPPO is competetive with
recent advances in off-policy learning with significantly lower memory and storage requirements.

E.3
:::::
DATA

::::::::
SCALING

::
To

::::::
further

:::::::::
understand

:::::
what

::::::
enables

:::::::
REPPO

::
to

:::::::
perform

::::
well,

:::
we

::::
take

:
a
:::::::
detailed

::::
look

::
at

:::
the

:::::::
interplay

:::::::
between

:::::
batch

:::
size

::::
and

:::::::
gradient

:::::
steps.

::
In

:::
our

::::::
default

::::::::::::
configuration,

:::::::
REPPO

::::
uses

::::
very

::::
long

::::::
rollouts

:::
and

:
a
::::
high

:::::::
number

::
of

:::::::
parallel

::::::::::::
environments,

::
as

::::
well

::
as

:
a
:::::
large

::::::
number

:::
of

:::::
policy

::::
and

::::
value

:::::::
function

:::::
update

:::::
steps.

:::::
PPO

::
on

:::
the

::::
other

:::::
hand

:::::
works

::::
best

::
at

::::::
smaller

::::::
dataset

:::::
sizes.

:::
We

::::::::
therefore

::
set

:::
up

::::::
REPPO

:::
and

::::
PPO

:::::::
training

::::
runs

::::::
across

::
4

:::::::
datasets,

:::::::
varying

:::
the

::::::
rollout

::::::
length.

::::
To

::::
keep

:::
the

::::
total

:::::::
number

::
of

:::::::
gradient

::::
steps

:::
and

:::
the

::::::::
minibatch

::::
size

:::
the

:::::
same,

:::
we

::::::
reduced

:::
the

:::::::
number

::
of

::::::::::
minibatches

:::::::::::
proportionally

::
to

::
the

:::::
batch

::::
size.

::::
The

:::::::
settings

:::
are

::::::::::
summarized

::
in Figure 12a.

:::::
Note

:::
that

::
in
:::
the

:::::
large

:::::::
settings,

:::
the

:::
data

:::::::
becomes

:::::
more

::::::::
off-policy.

:::::
Both

::::
PPO

::::
and

:::::::
REPPO

::::
have

::::::
explicit

:::::
ways

::
to

::::
deal

::::
with

::::
this,

:::::::
clipping

:::
and

::
the

::::
KL

:::::::::::
minimization

::::
term

:::::::::::
respectively,

:::
but

:::
the

:::::::
clipping

::::
term

:::
in

::::
PPO

::
is

::::
only

:
a
::::::::
heuristic

::
to

::::::
prevent

::::
large

:::::::::
importance

::::::::
sampling

::::::
ratios.

:::::::::
Comparing

:::
the

:::::::::::
performance

::
of

::::
both

::::::::::
approaches

::::
(see Figure 12b

:
),
:::
we

:::::::
observe

:
a
:::::
clear

::::::
pattern.

::::
The

::::
mean

:::::::::::
performance

::
of

:::::::
REPPO

:::::
drops

:::::::
steeply

::::
with

:::::::::
decreasing

::::::
dataset

:::::
size.

::::
PPO

:::
on

:::
the

:::::
other

::::
hand

::::
does

::::
best

::
in

:::
the

:::::::
medium

::::
and

:::::
small

::::::
dataset

:::::::
regimes.

:::::
This

:::::::::
highlights

:::
the

:::::::
different

:::::::::::
mechanisms

::
on

:::::
which

::::
both

:::::::::
algorithms

:::::::
operate.

:::::::
Larger

:::::::
datasets

:::::
allow

:::
the

::::::
trained

::
Q
::::::::

function
::
to

:::::::::
generalize

:::::
better,

::::::
similar

::
to

:::
the

:::::
insight

:::::::::
presented

::
in Figure 2a.

:::
On

:::
the

:::::
other

:::::
hand,

::
for

:::::
PPO

::
the

::::::
dataset

::::
size

:::::
needs

::
to

::
be

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

::::
large

::::::
enough

::
to
:::::

allow
:::
for

:::::
stable

::::::::
gradient

:::::::::
estimation,

:::
but

:::
not

::
so

:::::
large

:::
that

::::
too

:::::
many

:::::::
gradient

:::::
update

::::
steps

:::
are

:::::::::
necessary.

::::
This

::
is
:::::::

because
::::::::

clipping
:::
can

:::::::
prevent

::::::
further

:::::::
learning,

::::
and

:::::
many

::::::
update

::::
steps

:::
can

:::::::::
exacerbate

:::::::
varaince

:::::
issues

::::
with

::::::::::
importance

::::::::
sampling.

:

::::
Note

::::
that

::
at

:::::
some

:::::
point,

:::::::
REPPO

::::
will

::::::
likely

::::
also

::::
stop

:::::::::
improving

::::
with

::::::
larger

:::::::
datasets

::::
and

::::
more

:::::::
gradient

:::::
update

::::::
steps.

:::
We

:::
see

::::
that

:::
the

:::::::::::
performance

:::::::::
differences

:::::::
between

:::
the

:::::::
medium

::::
and

:::
the

::::
large

::::::
dataset

::
at

:::
not

::
as

::::::
strong

::
as
:::::

with
::::::
smaller

::::::::
datasets.

:::::::
REPPO

::::::
cannot

::::::::
continue

::
to

:::::
learn

:::
on

::::
fixed

::::
data

::::::
forever,

:::
by

::::::
design,

::
as

:::
the

:::
KL

:::::::::
divergence

:::::::
between

::::
two

::::::::::
consecutive

::::::
policies

::
is

::::::::::
constrained.

::::::::
However,

::
we

::::
can

::::::::::
hypothesize

:::::
based

:::
on

:::
the

::::::::
empirical

::::::::
evidence

:::
that

:::::::
REPPO

::
is
::::
able

::
to
:::::

scale
:::::
more

::::::::
gracefully

::::
with

::::
large

:::::::
amounts

::
of

:::::
data.

E.4 PER ENVIRONMENT SAMPLE EFFICIENCY CURVES

Finally, we provide sample efficiency curves per environment in Figure 13, Figure 14, and Figure 15.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5
×107

0.00

0.25

0.50

0.75

1.00
PickSingleYCB-v1

0 1 2 3 4 5
×107

0.00

0.25

0.50

0.75

1.00
PegInsertionSide-v1

0 1 2 3 4 5
×107

0.00

0.25

0.50

0.75

1.00

UnitreeG1TransportBox-v1

0 1 2 3 4 5
×107

0.0

0.2

0.4

0.6

0.8

UnitreeG1PlaceAppleInBowl-v1

0 1 2 3 4 5
×107

0.00

0.25

0.50

0.75

1.00

LiftPegUpright-v1

0 1 2 3 4 5
×107

0.00

0.25

0.50

0.75

1.00

PokeCube-v1

0 1 2 3 4 5
×107

0.00

0.25

0.50

0.75

1.00

PullCube-v1

0 1 2 3 4 5
×107

0.00

0.25

0.50

0.75

1.00

RollBall-v1

Timesteps

Su
cc

es
s

R
at

e

Algorithms
PPO REPPO

Figure 13: Per-environment results on the ManiSkill suite

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5
×107

0

250

500

750

1000

AcrobotSwingup

0 1 2 3 4 5
×107

0

250

500

750

1000

AcrobotSwingupSparse

0 1 2 3 4 5
×107

0

250

500

750

1000

BallInCup

0 1 2 3 4 5
×107

0

250

500

750

1000

CartpoleBalance

0 1 2 3 4 5
×107

0

250

500

750

1000

CartpoleBalanceSparse

0 1 2 3 4 5
×107

0

250

500

750

1000

CartpoleSwingup

0 1 2 3 4 5
×107

0

250

500

750

1000

CartpoleSwingupSparse

0 1 2 3 4 5
×107

0

250

500

750

1000

CheetahRun

0 1 2 3 4 5
×107

0

250

500

750

1000

FingerSpin

0 1 2 3 4 5
×107

0

250

500

750

1000

FingerTurnEasy

0 1 2 3 4 5
×107

0

250

500

750

1000

FingerTurnHard

0 1 2 3 4 5
×107

0

250

500

750

1000

FishSwim

Timesteps

R
et

ur
n

Algorithms
REPPO PPO PPO (Brax) FastTD3 (10,000k buf.)

Figure 14: Per-environment results on the mujoco playground DMC suite

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5
×107

0

250

500

750

1000

HopperHop

0 1 2 3 4 5
×107

0

250

500

750

1000

HopperStand

0 1 2 3 4 5
×107

0

250

500

750

1000

PendulumSwingup

0 1 2 3 4 5
×107

0

250

500

750

1000

ReacherEasy

0 1 2 3 4 5
×107

0

250

500

750

1000

ReacherHard

0 1 2 3 4 5
×107

0

250

500

750

1000

WalkerRun

0 1 2 3 4 5
×107

0

250

500

750

1000

WalkerWalk

0 1 2 3 4 5
×107

0

250

500

750

1000

WalkerStand

0 1 2 3 4 5
×107

0

250

500

750

1000

HumanoidStand

0 1 2 3 4 5
×107

0

250

500

750

1000

HumanoidWalk

0 1 2 3 4 5
×107

0

250

500

750

1000

HumanoidRun

Timesteps

R
et

ur
n

Algorithms
PPO PPO (Brax) FastTD3 (10,000k buf.) REPPO

Figure 15: Per-environment results on the mujoco playground DMC suite

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

F PSEUDOCODE

Algorithm 1: Pseudocode for Relative Entropy Pathwise Policy Optimization

Input: Environment E , actor network πθ, critic network Qϕ, hyperparameters
Output: Trained policy πθ
// Initialize networks
Actor πθ, behavior policy πθ′ with θ′ = θ, critic Qϕ with encoder fϕ, entropy and KL

temperature α and β
for iteration = 1 to Niterations do

// Step 1: Collect rollout with behavior policy
for step = 1 to Nsteps do

// Apply exploration noise scaling
Sample action at ∼ πθ′(·|xt)
Execute at in environment, observe (xt+1, rt, dt)
Compute approximate Vt+1 ← Qϕ(xt+1, at+1) with at+1 ∼ πθ′(·|xt+1)
Compute ψt ← fϕ(xt+1, at+1)
// Maximum entropy augmented reward, see Subsection 3.1
r̃t ← rt − α log πθ(at+1|xt+1)
Store transition (xt, at, r̃t, xt+1, dt, Vt+1, ψt)

end
// Step 2: Compute TD-λ targets, see Subsection 3.1
for t = T − 1 down to 0 do

Gλ
t ← r̃t + γ[(1− dt)(λGλ

t+1 + (1− λ)Vt+1)]
end
// Step 3: Update networks for multiple epochs
for epoch = 1 to Nepochs do

Shuffle data and create mini-batches
for each mini-batch b = {(x, a,Gλ, ψ)i}Bi=1 do

// Categorical critic update, see Subsection 3.3
LQ ← 1

B

∑
CrossEntropy(Qϕ(xi, ai),Cat(Gλ

i))
// Auxiliary task, see Subsection 3.3
Laux ← 1

B

∑ ||fϕ(xi, ai)− ψi||2]
Update critic: ϕ← ϕ− αQ∇ϕ(LQ + βLaux)
// Actor update with entropy and KL regularization, see

Subsection 3.1 and Subsection 3.2
Sample action a′i ∼ πθ(·|xi)
Sample k actions āi ∼ πθ′(·|xi)
Compute KL divergence: DKL(xi)←

∑k
j=1 log

πθ′ (āj |xi)
πθ(āj |xi)

Policy loss: Lπ ← 1
B

∑
Qϕ(xi, a

′
i)− eα log πθ(a

′
i|xi)− eβDKL(xi)

(Alternatively, compute clipped objective)

Update actor: θ ← θ + ηπ∇θLπ

Entropy α update: α← α− ηα∇αe
α(1

B

∑H[πθ(xi)]− εH)

KL β update: β ← β − ηβ∇βe
β(1

B

∑
DKL(xi)]− εKL)

end
end
// Behavior Policy Update
θ′ ← θ

end
return Trained policy πθ

30

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

RELATIVE ENTROPY PATHWISE POLICY
OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Score-function based methods for policy learning, such as REINFORCE and PPO,
have delivered strong results in game-playing and robotics, yet their high variance
often undermines training stability. Improving a policy through state-action value
functions, e.g. by differentiating Q with regard to the policy, alleviates the vari-
ance issues. However, this requires an accurate action-conditioned value function,
which is notoriously hard to learn without relying on replay buffers for reusing
past off-policy data. We present an on-policy algorithm that trains Q-value mod-
els purely from on-policy trajectories, unlocking the possibility of using pathwise
policy updates in the context of on-policy learning. We show how to combine
stochastic policies for exploration with constrained updates for stable training, and
evaluate important architectural components that stabilize value function learn-
ing. The result, Relative Entropy Pathwise Policy Optimization (REPPO), is an
efficient on-policy algorithm that combines the stability of pathwise policy gra-
dients with the simplicity and minimal memory footprint of standard on-policy
learning. Compared to state-of-the-art on two standard GPU-parallelized bench-
marks, REPPO provides strong empirical performance at superior sample effi-
ciency, wall-clock time, memory footprint, and hyperparameter robustness.

1 INTRODUCTION

Most modern on-policy algorithms, such as TRPO (Schulman et al., 2015) or PPO (Schulman et al.,
2017), use a score-based gradient estimator to update the policy. These methods have proven use-
ful for robotic control (Rudin et al., 2022; Kaufmann et al., 2023; Radosavovic et al., 2024), and
language-model fine-tuning (Ouyang et al., 2022; Touvron et al., 2023; Gao et al., 2023; Liu et al.,
2024), but are often plagued by training instability. Zeroth-order, score-based gradient approxima-
tion exhibits high variance (Greensmith et al., 2004), which leads to unstable learning (Ilyas et al.,
2020; Rahn et al., 2023), especially in high-dimensional continuous spaces (Li et al., 2018). In ad-
dition, it requires importance sampling to allow sample reuse, which exacerbates the high variance.

An alternative, commonly used in off-policy learning, is to learn a parameterized state-action value
function (Lillicrap et al., 2016; Fujimoto et al., 2018; Haarnoja et al., 2018), and use it to improve the
policy, for example by using a pathwise policy gradient (Silver et al., 2014). Using a parameterized
surrogate function to improve the policy often leads to faster and more stable learning learning by
reducing the score-based estimators variance (Mohamed et al., 2020) and by allowing us to remove
importance sampling corrections.

However, the effectiveness of these approaches is bounded by the quality of the approximate value
function (Silver et al., 2014). As such, algorithms that use a state-action value function usually
rely on improving value learning through off-policy training (Fujimoto et al., 2018; Haarnoja et al.,
2018). Unfortunately, off-policy training requires the use of replay buffers. Storing these replay
buffers can be a challenge when the collected samples cannot fit in memory. In addition, training
with past data introduces various challenges for value function fitting (Thrun & Schwartz, 1993;
Baird, 1995; Van Hasselt, 2010; Sutton et al., 2016; Kumar et al., 2021; Nikishin et al., 2022; Lyle
et al., 2024; Hussing et al., 2024; Voelcker et al., 2025). This raises our core question:

Can we train a strong surrogate value function and effectively use it for policy
improvement in a fully on-policy setting without large replay buffers?

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Pathwise estimation

Score-based estimation

Importance
Sampling

Surrogate Value
Approximation

Gradient Estimation Practical Computation

Figure 1: Overview of the strategies used by REPPO and PPO to obtain policy gradient estimators.
Computing the gradient requires a mathematical transformation that allows for efficient estimation
from samples, and additional steps that make the computation tractable in practice.

Building on the progress in accurate value function learning (Sutton, 1988; Haarnoja et al., 2019;
Schwarzer et al., 2021; Hussing et al., 2024; Farebrother et al., 2024), we present an efficient on-
policy algorithm, Relative Entropy Pathwise Policy Optimization (REPPO), which uses the pathwise
gradient estimator with an accurate surrogate value function learned from on-policy data. REPPO
builds on the maximum entropy framework (Ziebart et al., 2008) to encourage exploration. It com-
bines this with a KL regularization scheme, inspired by the Relative Entropy Policy Search method
(Peters et al., 2010), which prevents aggressive policy updates from destabilizing the optimization.

Furthermore, we evaluate several prominent advances in neural network architecture design to sta-
bilize learning: categorical Q-learning (Farebrother et al., 2024), normalized neural network archi-
tectures (Nauman et al., 2024a; Hussing et al., 2024), and auxiliary tasks (Jaderberg et al., 2017).
These components feature in many recent variants (Schwarzer et al., 2021; 2023; Nauman et al.,
2024a; Hussing et al., 2024; Gallici et al., 2024; Lee et al., 2025a;b; Nauman et al., 2025; Fujimoto
et al., 2024) of common value learning algorithm such as SAC (Haarnoja et al., 2018). We find that
categorical Q-learning and normalization have a strong impact on the performance, while auxiliary
tasks only show small impact, but become more relevant when reducing the amount of samples.

We test our approach in a variety of locomotion and manipulation environments from the Mujoco
Playground (Zakka et al., 2025) and ManiSkill (Tao et al., 2025) benchmarks, and show that REPPO
is competitive with tuned on-policy baselines in terms of sample efficiency and wall-clock time,
while using significantly smaller memory footprints than comparable off-policy algorithms. Fur-
thermore, we find that the proposed method is robust to the choice of hyperparameters. To this end,
our method offers stable performance across more than 30 tasks spanning multiple benchmarks with
a single hyperparameter set. In introducing REPPO, our work makes the following contributions:

1. We showcase that using a state-action value function and a pathwise policy gradient can
be effective in on-policy RL, as it allows on-policy action resampling, forgoing importance
corrections. However, this requires learning a highly accurate state-action value function.

2. We show how a joint entropy and policy deviation tuning objective can address the twin
problems of sufficient exploration and controlled policy updates.

3. We evaluate architectural components such as cross-entropy losses, layer normalization,
and auxiliary tasks for their efficacy in pathwise policy gradient-based on-policy learning.

We provide sample implementations in both the JAX (Bradbury et al., 2018) and PyTorch (Paszke
et al., 2019) frameworks. Our code is available in the supplementary material of the submission.

2 BACKGROUND, NOTATION, AND DEFINITIONS

We consider the setting of the Markov Decision Process (MDP) (Puterman, 1994) , defined by the
tuple (X ,A,P, r, γ, ρ0), where X is the set of states, A is the set of actions, P(x′|x, a) is the
transition probability kernel, r(x, a) is the reward function, and γ ∈ [0, 1) is the discount factor.
We write Pπ(x

′|x) for the policy-conditioned transition kernel and Pn
π (y|x) for the n-step transi-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

tion kernel. An agent interacts with the environment via a policy π(a|x), which defines a distri-
bution over actions given a state. The objective is to find a policy that maximizes the expected
discounted return, J(π) = Eπ [

∑∞
t=0 γ

tr(xt, at)] , where x0 ∼ ρ0 is the initial state distribu-
tion, and at ∼ π(·|xt). The state-action value function associated with a policy π are defined as
Qπ(x, a) = Eπ

[∑∞
t=0 γ

tr(xt, at)
∣∣∣x0 = x, a0 = a

]
. We use µπ(y|x) to denote the discounted sta-

tionary distribution over states y when starting in state x. When x ∼ µπ(·|y), y ∼ ρ0, we will simply
write µπ(x) to denote the probability of a state under the discounted occupancy distribution.1

2.1 POLICY GRADIENT LEARNING

A policy gradient approach (Sutton & Barto, 2018) is a general method for improving a (parame-
terized) policy πθ by estimating the gradient of the policy-return function J(πθ) with regard to the
policy parameters θ. The policy gradient theorem states that

∇θJ(πθ) = Ex∼µπ,a∼πθ(·|x)[Q
πθ (x, a)∇θ log πθ(a|x)]. (1)

This identity is particularly useful as both the Q value and the stationary distribution can be estimated
by samples obtained from following the policy for sufficiently many steps in the environment.

An alternative approach, leveraged in off-policy learning, is the deterministic policy gradient the-
orem (DPG) (Silver et al., 2014). The estimator for the DPG relies on access to a differentiable
state-action value function and a deterministic differentiable policy πdet

θ (x). While access to the
true value function is an unrealistic assumption, we can use a trained surrogate model, Q̂, to obtain
a biased estimate of the gradient

∇θJ(πθ) ≈ Ex∼µπ [∇aQ̂
πdet
θ (x, a)|a=πdet

θ (x)∇θπ
det
θ (x)]. (2)

Finally, the DPG can be expanded to reparameterizeable stochastic policies2. We term this the path-
wise policy gradient, following Mohamed et al. (2020), but the formulation has been used promi-
nently in prior work such as SAC (Haarnoja et al., 2018), just without a proper name. The gradient
estimator can be obtained from the following expectation

∇θJ(πθ) ≈ Ex∼µπ,ϵ∼p(ϵ)[∇aQ̂
πrep
θ (x, a)|a=πrep

θ (x,ϵ)∇θπ
rep
θ (x, ϵ)], (3)

where πrep
θ (x, ϵ) is a reparameterization of πθ(a|x). To avoid notational we will write πθ(a|x) from

now on to always mean the appropriate reparameterization.

2.2 UNDERSTANDING SOURCES OF HARMFUL VARIANCE IN GRADIENT ESTIMATION

To build additional intuition on the differences between different policy gradient estimators, we
conduct an illustrative experiment. Implementation details can be found in Appendix D.

On a simple objective g(x) we initialize four Gaussians and update their parameters to maximize
J(µ,Σ) = Ex∼N (·|µ,Σ)[g(x)] with four different methods: a score-based policy gradient (using
Equation 1), a pathwise policy gradient with the ground truth objective function, and two pathwise
policy gradients using learned approximations, one accurate and one inaccurate (all using Equa-
tion 3). We visualize the returns and the path of the mean estimates in Figure 2a. In addition, we
zoom in on the gradient paths of the score-based estimator. We visualize 100 different eight step
paths from the middle of the trajectory. Here, in addition to the vanilla score-based estimator, we
also show an importance sampling and a clipped importance sampling estimator. These paths are
visualized in Figure 2b.

The experiments shows that score-based gradient estimators have high variance, and can lead to
unstable policies which fail to optimize the target. In addition, while importance sampling increases
the sample efficiency of the algorithm, it greatly exacerbates these variance issues. We find that
clipping the ratio estimate, as proposed by Schulman et al. (2017), prevents catastrophic instability,

1A well-known issue of many policy gradient works is that in practice, they, perhaps erroneously, use
the undiscounted empirical state occupancy for optimization (Nota & Thomas, 2020). REPPO similarly uses
empirical samples without accounting for the discount factor in the objective.

2We discuss an extension to non-reparametrizeable, discrete policies in Appendix C.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

0 500 1000 1500 2000 2500

Iteration

0.0

0.5

1.0

1.5

2.0

2.5

R
et

ur
n

Comparison of Policy Optimization Methods

Score-based Policy Gradient
Pathwise Policy Gradient
Weak Surrogate PPG
Strong Surrogate PPG

SB PG Mean
DPG Mean
Weak Surrogate DPG Mean
Strong Surrogate DPG Mean
Optimum

(a) Achieved returns (left) and path of four policies trained with different gradient estimation methods. We
compare a score-function based policy gradient estimator (blue) with three variants of pathwise gradient es-
timators: using the ground truth objective function (orange), an inaccurate surrogate model (green), and an
accurate surrogate model (red). All PPG based methods show markedly reduced variance in the policy updates.

x1

x 2

REINFORCE

x1

IS REINFORCE

x1

PPO (Clipped IS)

x1

Pathwise PG

(b) Gradient path over eight steps in the middle of the trajectory, visualized per algorithm for 8 steps. For
Reinforce and PPG, new samples are drawn at every step. For the importance sampling based algorithms, one
set of samples is sampled at the beginning and subsequent steps are conducted using importance sampling.

Figure 2: Visualization of gradient paths on a 2D example function.

but does not reduce the variance substantially. On the other hand, using a pathwise gradients is
remarkably stable and exhibits small variance. However, it either requires access to the gradients of
the objective function, or a strong surrogate model.

To use pathwise gradients in on-policy learning, our goal is thus to learn a suitable value function that
allows us to estimate a low variance update direction without converging to a suboptimal solution.

3 RELATIVE ENTROPY PATHWISE POLICY OPTIMIZATION

We now present our algorithm for using pathwise policy gradient in an on-policy setting. Naively,
one could attempt to take an off-policy algorithm like SAC and train it solely with data from the
current policy. However, as Seo et al. (2025) recently showed, this can quickly lead to unstable
learning. To succeed in the on-policy regime, we need to be able to continually obtain new diverse
data, and compute stable and reliable updates. Combining a set of recent advances in both reinforce-
ment learning as well as neural network value function fitting, can satisfy these requirements. We
first introduce the core RL algorithm, and then elaborate on the architectural design of the method.

At its core, REPPO proceeds similar to other on-policy actor-critic algorithms through three distinct
phases: data gathering, value target estimation, and value and policy learning (see Algorithm 1).
To obtain diverse data, REPPO uses a maximum-entropy formulation, adapted to multi-step TD-
λ (Subsection 3.1), to encourage exploration. Finally, to ensure that policies do not collapse and
policy learning is stable, REPPO uses KL-constrained policy updates with a schedule that balances
entropy-driven exploration and policy constraints (Subsection 3.2).

3.1 VALUE FUNCTION LEARNING

Off-policy PPG methods like TD3 (Fujimoto et al., 2018) and SAC (Haarnoja et al., 2018) mostly
use single step Q learning, i.e. they use only immediate rewards for value function updates. This

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

is paired with large replay buffers to stabilize learning. While on-policy algorithms cannot use past
policy data, they can instead use low bias multi-step TD targets for stabilization (Fedus et al., 2020).
Therefore, multi-step TD-λ targets form the basis for our value learning objective. Note that REPPO
is more closely related to SARSA than to Q-learning (Sutton & Barto, 2018), due to being on-policy.

In addition to multi-step returns, diverse data is crucial. To achieve a constant rate of exploration,
and prevent the policy from prematurely collapsing to a deterministic function, we leverage the
maximum entropy formulation for RL (Ziebart et al., 2008; Levine, 2018). The core aim of the
maximum entropy framework is to keep the policy sufficiently stochastic by solving a modified
policy objective which not only maximizes rewards but also penalizes the loss of entropy in the
policy distribution. The maximum-entropy policy objective (Levine, 2018) can be defined as

JME(πθ) = Eπθ

[∞∑
t=0

γtr(xt, at) + αH[πθ(xt)]
]
, (4)

where H[πθ(x)] is the entropy of the policy evaluated at x, and α is a hyperparameter which trades
off reward maximization and entropy maximization. REPPO combines the maximum entropy ob-
jective with TD-λ estimates, resulting in the following target estimate

G(n)(xt, at) =

n−1∑
k=t

γk(r(xk, ak)− α log π(ak|xk)) + γnQ(xn, an) (5)

Gλ(x, a) =
1∑N

n=0 λ
n

N∑
n=0

λnG(n)(x, a), (6)

whereN is the maximum length of the future trajectory we obtain from the environment for the state-
action pair (x, a). Our implementation relies on the efficient backwards pass algorithm presented
by Daley & Amato (2019). Crucially, the targets are computed on-policy after a new data batch is
gathered, and the Q targets are not recomputed before gathering new data. Our Q learning loss is

LREPPO
Q

(
ϕ|{xi, ai}Bi=1

)
=

1

B

B∑
i=1

HL
[
Qϕ(xi, ai), G

λ(xi, ai)
]
+ Laux(fϕ(xi, ai), x

′
i), (7)

where x′i refers to the next state sample starting from xi, and HL is the HL-Gauss loss (see Subsec-
tion 3.3 and Subsection D.2), and Laux is presented in Subsection 3.3 and Subsection D.3.

Using purely on-policy targets allows us to remove several common off-policy stabilization compo-
nents from the value learning setup. REPPO does not require a pessimism bias, so we can forgo the
clipped double Q learning employed by many prior methods (Fujimoto et al., 2018). Tuning pes-
simistic updates carefully to allow for exploration is a difficult task (Moskovitz et al., 2021), so this
simplification increases the robustness of our method. We also do not need a target value function
copy, since we do not recompute the target at each step and it therefore remains on-policy.

3.2 POLICY LEARNING

A core problem with value-based on-policy optimization is controlling the size of the policy update,
as the value estimate is only accurate on the data covered by the prior policy. A large policy update
can therefore destabilize learning (Kakade & Langford, 2002). This problem has led to the develop-
ment of constrained policy update schemes, where the updated policy is prevented from deviating
too much from the behavioral (Peters et al., 2010; Schulman et al., 2015). To control the deviation,
we use the Kullback-Leibler (KL) divergence, also called the relative entropy (Peters et al., 2010),
as it can be justified theoretically through information geometry (Kakade, 2001; Peters & Schaal,
2008; Pajarinen et al., 2019), and is easy to approximate using samples.

Some works in the literature (Neumann, 2011; Sokota et al., 2022) claim that the reverse mode
might be preferable for policy constraints, as it is mode-seeking, and the forward mode is mode-
averaging. However, this intuition does not cleanly translate to our setting. As our policies are
unimodal tanh-squashed Gaussian, the main impact of the KL direction is that the reverse-mode
KL is entropy reducing. As we explicitly aim to increase the policy’s entropy using the maximum
entropy formulation, using forward-mode KL makes the optimization more stable.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Policy Optimization Objective Our policy updates derive from a constrained optimization prob-
lem which includes both entropy and the KL constraint, and where θ′ is the behavior policy, and
εKL and εH are the respective KL and entropy constraints

max
θ

Ex∼ρπ
θ′

[
Ea∼πθ(·|x) [Q(x, a)]

]
(8)

subject to Ex∼ρπ
θ′
[DKL (πθ′(·|x) ∥πθ(·|x))] ≤ εKL (9)

Ex∼ρπ
θ′
[H[πθ(·|x)]] ≥ εH. (10)

A similar combination of maximum entropy and KL divergence bound has been explored in vari-
ous forms (Abdolmaleki et al., 2015; Pajarinen et al., 2019; Akrour et al., 2019). However, while
previous approaches use complex solutions to this problem, such as approximate mirror descent,
line search, or heuristic clipping, we take a simpler approach. We relax the problem, which intro-
duces two hyperparameters, α for the entropy, and β for the KL. Inspired by Haarnoja et al. (2019),
REPPO automatically adapts these constraints when the policy violates them.

Policy Updates and Multiplier Tuning In the constrained objective, we introduce two hyper-
parameters, εH and εKL, which bound the entropy and KL divergence. The goal of the Lagrangian
parameters is to ensure that the policy stays close to these constraints. As we need to ensure that
they remain positive, we update them in log space with a gradient based root finding procedure

α← α− ηα∇αe
αEx∼ρπ

θ′
[(H[πθ(·|x)]− εH)] (11)

β ← β − ηβ∇βe
βEx∼ρπ

θ′
[(DKL(πθ′(·|x)∥πθ(·|x))− εKL)] . (12)

Finally, to ensure our KL constraint is (approximately) maintained, we clip the actor loss based on
whether the constrained is currently violated. The full policy objective for REPPO is now

LREPPO
π (θ|xi) =

{
−Q(xi, a) + eα log πθ(a|xi), if 1

k

∑k
j=1 log

πθ′ (aj |xi)
πθ(aj |xi)

< εKL

eβ 1
k

∑k
j=1 log

πθ′ (aj |xi)
πθ(aj |xi)

, otherwise
(13)

where a is sampled from πθ(·|xi) and aj from the past behavior policy πθ′(·|xi), and k denotes
how many samples are used to approximate the KL. As with the critic, the optimized loss is a mean
over a minibatch from the rollout data. Note that contrary to other on-policy algorithms like PPO
and TRPO, we are not forced to use actions sampled from the behavior policy in the policy gradient
estimator, which removes the need for importance sampling correction. We will show that this
greatly improves the performance of REPPO in Subsection 4.1.

Jointly tuning the entropy and KL multipliers is a crucial component of REPPO. As the policy en-
tropy and KL are tied, letting the entropy of the behavior policy collapse results in a scenario where
the KL constraint prevents any policy updates. Furthermore, the entropy and KL terms are bal-
anced against the scale of the returns in the maximum entropy formulation. As the returns increase,
keeping the multipliers fixed will cause the model to ignore the constraints over time, accelerating
collapse. However, as we tune both in tandem, we find that our setup ensures a steady, constrained
amount of slack on the policy to improve while constantly exploring.

3.3 STABLE REPRESENTATION AND VALUE FUNCTION ARCHITECTURES

While the RL algorithm offers a strong foundation to obtain strong surrogate values, we also draw
on recent off-policy advances in value function learning that improve training through architecture
and loss design. We incorporate three major advancements into REPPO to further stabilize training.

Cross-entropy loss for regression The first choice is to replace the mean squared error in the critic
update with a more robust cross-entropy based loss function. For this, REPPO uses the HL-Gauss
loss (Farebrother et al., 2024). This technique was adapted from the distributional C51 algorithm
(Bellemare et al., 2017), which can lead to remarkably stable learning algorithms even in determin-
istic settings. Inspired by this insight and histogram losses for regression (Imani & White, 2018),
Farebrother et al. (2024) hypothesize that the benefits are due to the fact that many distributional al-
gorithms use a cross-entropy loss, which is scale invariant. Palenicek et al. (2025) further investigate
and reinforce this claim, showing that stable gradients arise from cross-entropy based losses. We
present the mathematical form of the loss formulation in Subsection D.2. We find that a categorical

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

loss is a crucial addition, as our ablation experiments show (Subsection E.1), but alternatives like
C51 could easily work as well.

Layer Normalization Several recent works (Ball et al., 2023; Yue et al., 2023; Lyle et al., 2024;
Nauman et al., 2024a; Hussing et al., 2024; Gallici et al., 2024) have shown the importance of layer
normalization (Ba et al., 2016) for stable critic learning. Gallici et al. (2024) provides a thorough
theoretical analysis of the importance of normalization in on-policy learning, while Hussing et al.
(2024) focuses on assessing the empirical behavior of networks in off-policy learning with and
without normalization. As we operate in an on-policy regime where value function targets are more
stable, we find that normalization is not as critical for REPPO as it is for off-policy bootstrapped
methods; yet, we still see performance benefits in most environments from normalization.

Auxiliary tasks Auxiliary tasks (Jaderberg et al., 2017) can stabilize features in environments with
sparse rewards, where the lack of a reward signal can prevent learning meaningful representations
via the Q learning objective (Voelcker et al., 2024a). For REPPO, auxiliary tasks are especially
impactful when we decrease the number of samples used in each update batch (see Subsection E.1).
We provide a discussion of this auxiliary task setup, including the loss function, in Subsection D.3.

4 EXPERIMENTAL EVALUATION

We begin by evaluating whether pathwise estimators improve upon score-based estimation in on-
policy RL settings. We then compare our approach to baselines, evaluating final performance, sam-
ple and wall-clock efficiency, and stability of policy improvement. Our results demonstrate strong
performance of REPPO on all axes. Additional details on architectures, hyperparameters, and abla-
tions are provided in Subsection D.4 and Appendix E. A discrete variant of REPPO, along with its
architectural changes and experimental results, is presented in Appendix C.

Environments We evaluate REPPO on two major GPU-parallelized benchmark suites: 23
tasks from the mujoco playground DMC suite (Zakka et al., 2025) and 8 ManiSkill environments
(Tao et al., 2025), covering locomotion and manipulation, respectively. These tasks span high-
dimensional control, sparse rewards, and chaotic dynamics.

4.1 SCORE-BASED AND PATHWISE COMPARISON

REPPO offers an alternative to score-based policy gradient estimation in on-policy RL. However,
we also introduce several enhancements, including automated tuning of entropy and KL coefficients,
to improve value and policy learning. To assess the benefits of learned values and pathwise gradient
estimation over score-based methods, we conduct two experiments. First, we replace the pathwise
term −Q(x, a) in Equation 13 with the score function log π(a|x)[Q(x, a)]sg, denoted as REPPO
(score-based, Q). Second, we replace the gradient estimator with the GAE-based clipped objective
from PPO, denoted as REPPO (score-based, GAE). Aggregate results are presented in Figure 3.

Using the approximate Q function in the policy gradient objective provides a strong improvement
over PPO or REPPO with a clipped objective. Q score-based REPPO outperforms PPO, strongly
showcasing the benefits of value function learning and removing importance sampling. This also
shows that the REPPO framework can be used with policy classes that are not amenable to repa-
rameterization, such as diffusion policies (Chi et al., 2024; Celik et al., 2025; Ma et al., 2025), by

0.60 0.75 0.90
REPPO (score-based, GAE)

PPO
REPPO (score-based, Q)

REPPO (pathwise)
Mean

0.60 0.75 0.90

Median

0.60 0.75 0.90

IQM

Normalized returns

Figure 3: Aggregate performance metrics on the mujoco playground benchmark. We compare
REPPO with two ablations: one using the score-based gradient estimator with the learned Q func-
tion, and another using an on-policy GAE estimate with importance sampling and clipping. For
additional context, we also report PPO results.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0.6 0.7 0.8

RPO
DPO

SAC (Brax, 5M)
FastTD3 (32k buf.)

FastTD3 (10,000k buf.)
PPO (Brax, 200M)

PPO (Brax)
PPO

REPPO
Mean

0.45 0.60 0.75 0.90

Median

0.60 0.75 0.90

IQM

Normalized returns

(a) Aggregate performance metrics on the mujoco playground DeepMind Control Suite benchmark. We com-
pare both REPPO and our PPO baseline at 50 million environment steps. We also report the performance of the
Brax PPO and SAC implementations provided by Zakka et al. (2025), as well as FastTD3 (Seo et al., 2025),
RPO (Rahman & Xue, 2023), and DPO (Lu et al., 2022).

0.75 0.80 0.85 0.90
PPO (100M)

PPO
REPPO

Mean

0.80 0.85 0.90 0.95

Median

0.85 0.90 0.95 1.00

IQM

Success Rate

(b) Aggregate success on the ManiSkill3 benchmark (Tao et al., 2025). We compare REPPO against a PPO
baseline provided by Tao et al. (2025) at 50 million environment steps. As some environments take more than
50 million steps for PPO to achieve strong performance, we report the final performance at 100 million steps.
While the mean confidence intervals are very broad, REPPO performs strongly on the IQM and median metrics.

Figure 4: Aggregate performance comparison on (a) mujoco playground DMC and (b) ManiSkill3.

using a score-based estimator together with the learned Q function. Interestingly, combining the
PPO objective with REPPO leads to slightly worse results than vanilla PPO. We find that the high
variance complicates the automatic parameter tuning scheme.

4.2 BENCHMARK COMPARISON

We compare REPPO against the PPO and SAC results reported by Zakka et al. (2025) and Tao et al.
(2025). We report PPO baselines at 50M environment steps, and at the larger training horizon used
in the original papers (Zakka et al., 2025). Results taken from Zakka et al. (2025) are denoted as
“PPO/SAC (Brax)”. To ensure that PPO is not undertuned for the 50m step regime we re-tuned
the hyperparameters of the implementation provided by Lu et al. (2022). SAC results are reported
at 5m steps as this amounts to similar total runtime as the 200m PPO results (compare results in
Zakka et al. (2025). Naively running SAC at a larger sample budget and wall-clock efficiency
can lead to instability, as Seo et al. (2025) demonstrates. Furthermore, we include FastTD3 (Seo
et al., 2025) on DMC locomotion tasks, trained under two memory budgets: the default replay
buffer (10,485,760 transitions) and a constrained buffer similar in size to on-policy methods (32,768
transitions) to control for the the memory and performance trade-off. Finally, we compare against
Robust Policy Optimization (RPO) (Rahman & Xue, 2023) and Discovered Policy Optimization
(DPO) (Lu et al., 2022). However, even with some hyperparameter tuning, we were unable to
achieve a strong performance improvement beyond the PPO baseline with these approaches.

For REPPO, we report results aggregated over 20 seeds across all tasks. We run 20 seeds for PPO and
5 for FastTD33, reporting aggregate scores with 95% bootstrapped confidence intervals (Agarwal
et al., 2021). To enable aggregation across tasks, returns on mujoco playground are normalized by
the maximum achieved by any algorithm, while for ManiSkill we report raw success rates, which
are naturally comparable across tasks.

3We use fewer seeds for FastTD3 as we are unable to replicate the speed claimed in the paper. This is due
pytorch specific issues discussed in Appendix B, and because we use smaller GPUs for our experiments.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5

Environment steps ×107

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

re
tu

rn
s

DMC Comparison

REPPO
PPO
FastTD3 (10,000k buf.)

0 1 2 3 4 5

Environment steps ×107

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

R
at

e

Maniskill Comparison

REPPO
PPO

Figure 5: Aggregate sample efficiency curves for the benchmark environments. Settings are identical
to those in Figure 4. REPPO achieves higher performance at a faster rate in both benchmarks.

Final Performance and Sample Efficiency We first investigate the performance of policies trained
using REPPO. We report aggregate performance at the end of training on both benchmarks in Fig-
ure 4. For both benchmarks, we also provide the corresponding training curves in Figure 5.

The aggregate results shown in Figure 4 and Figure 5 indicate that our proposed method achieves
statistically significant performance improvements over PPO, as well as similar performance to
FastTD3 despite REPPO being fully on-policy. Although these results are most pronounced in
locomotion tasks, ManiSkill manipulation results show significant performance benefits over PPO
in terms of outlier-robust metrics (Chan et al., 2020a; Agarwal et al., 2021).

We find that PPO struggles on high-dimensional tasks such as HumanoidRun, even with large batch
sizes aimed at reducing policy gradient variance. Moreover, despite its approximate trust-region
updates, PPO suffers from performance drops and unstable training. This erratic behavior closely
mirrors the score-based policy gradient instability shown in Figure 2a. In contrast, REPPO exhibits
more stable improvements and lower variance across seeds.

0 200 400 600 800 1000 1200 1400

Seconds

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

re
tu

rn
s

DMC Comparison

REPPO
PPO
PPO (Brax, 200M)
SAC (Brax, 5M)

Figure 6: Wall-clock time comparison of
REPPO against PPO and SAC implementa-
tions in JAX. REPPO matches other algo-
rithms’ speed but achieves higher return.

Wall-clock Time Wall-clock time is an important
metric, as it reflects the practical utility of an algo-
rithm: faster training enables more efficient hyperpa-
rameter search and experimentation. However, mea-
suring wall-clock time is nuanced, as results heavily
depend on implementation details and are difficult
to reproduce. We discuss these challenges across
different frameworks in Appendix B. In Figure 6,
we compare the wall-clock performance of our ap-
proach against PPO and SAC in JAX. Other base-
lines lack JIT-compilable implementations, making
direct comparisons less meaningful.

The computational cost per update is higher for
REPPO than for PPO due to larger default networks
and gradient propagation through the critic–actor
chain. Nevertheless, both algorithms converge
on most tasks in roughly 600–800 seconds, with
REPPO achieving about 33% higher normalized returns. This shows that the sample efficiency
of pathwise gradients can offset their higher per-update cost, yielding improved wall-clock effi-
ciency compared to score-based PPO. In addition, we find that jax-based SAC, which is tuned to
trade sample for computational efficiency, slightly outperforms PPO, but does not match REPPO in
performance. We note that other, modern SAC implementations (Nauman et al., 2024b; Lee et al.,
2025a;b), are able to achieve better performance, but at the cost of computational efficiency.

Reliable Policy Success We further investigate the stability of policy improvements using score-
based and pathwise policy gradients. Our guiding principle is that such updates should not cause
large drops in performance. To capture this, we adopt the “reliable success” metric, as proposed
in Chan et al. (2020b). We define an algorithm as reliably performant if, once its performance

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5

Environment steps ×107

0.0

0.2

0.4

0.6

0.8

1.0

%
of

ru
ns

w
ith

re
tu

rn
>

0.
9

DMC Comparison (Reliable success)

REPPO
PPO
FastTD3 (10,000k buf.)

0 1 2 3 4 5

Environment steps ×107

0.0

0.2

0.4

0.6

0.8

1.0

%
of

ru
ns

w
ith

su
cc

es
s
>

0.
9

Maniskill Comparison (Reliable success)

REPPO
PPO

Figure 7: Fraction of runs that achieve reliable performance as measured by our metric for policy
stability and reliability. REPPO’s immediately starts achieving high performance in some runs and
the number gradually increases indicating stable learning. PPO struggles to achieve high perfor-
mance initially and to maintain high performance throughout training.

exceeds a fixed threshold τ , it never drops below this threshold thereafter. At each timestep, we
track the number of runs that satisfy this criterion. This metric reflects the practical requirement that
a deployed algorithm should not suddenly degrade simply due to continued training. We report the
percentage of reliably successful runs for both REPPO and PPO in Figure 7.

On both DMC and ManiSkill benchmarks, REPPO achieves reliable performance improvements
quickly, with success rates and returns steadily increasing. By the end of training, about four out of
five runs have reached the threshold of τ = 0.9 without dropping below it, whereas PPO achieves
roughly 40 percentage points fewer reliably performant runs. We also find notable differences in
sample efficiency: PPO requires 5–10 million interactions before most envs become reliably perfor-
mant. Overall, these results show that, despite relying on a biased surrogate value model, pathwise
policy gradients enable stable long-term improvement.

5 CONCLUSION AND AVENUES FOR FUTURE WORK

In this paper we present REPPO, a highly performant yet efficient on-policy algorithm that leverages
trained state-action value functions and pathwise policy gradients. By balancing entropic exploration
and KL-constraints, and incorporating recent advances in neural network value function learning,
REPPO is able to learn a high-quality surrogate function sufficient for reliable gradient estimation.
As a result, the algorithm outperforms PPO on two GPU-parallelized benchmarks in terms of final
return, sample efficiency and reliability while being on par in terms of wall-clock time. In addi-
tion, the algorithm does not require storing large amount of data making it competitive with recent
advances in off-policy RL while requiring orders of magnitude lower amounts of memory.

As our method opens a new area for algorithmic development, it leaves open many exciting avenues
for future work. As Seo et al. (2025) shows, using replay buffers can be beneficial to stabilize
learning as well. This opens the question if our Q learning objective can be expanded to use both on-
and off-policy data to maximize performance while minimizing memory requirements. Furthermore,
the wide literature on improvements on PPO, such as learned constraint objectives (Lu et al., 2022)
could be incorporated into REPPO. We also observe that removing the importance sampling step in
PPO has a crucial impact on performance, which suggests further research on the trade-off between
efficiency and stability in on-policy gradient estimation is needed. Finally, better architectures such
as Nauman et al. (2024b), Lee et al. (2025a), Otto et al. (2021) might be transferable to our algorithm
and the rich literature on architectural improvements in off-policy RL can be expanded to include
on-policy value learning.

REFERENCES

Zaheer Abbas, Rosie Zhao, Joseph Modayil, Adam White, and Marlos C. Machado. Loss of plas-
ticity in continual deep reinforcement learning. In Proceedings of the Conference on Lifelong
Learning Agents, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Abbas Abdolmaleki, Rudolf Lioutikov, Jan R Peters, Nuno Lau, Luis Pualo Reis, and Gerhard
Neumann. Model-based relative entropy stochastic search. Advances in Neural Information Pro-
cessing Systems, 2015.

Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess, and Mar-
tin Riedmiller. Maximum a posteriori policy optimisation. In Proceedings of the International
Conference on Learning Representations, 2018.

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc G. Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. In Advances in Neural Infor-
mation Processing Systems, 2021.

Matthew Aitchison and Penny Sweetser. DNA: Proximal policy optimization with a dual network
architecture. In Advances in Neural Information Processing Systems, 2022.

Riad Akrour, Joni Pajarinen, Jan Peters, and Gerhard Neumann. Projections for approximate policy
iteration algorithms. In Proceedings of the International Conference on Machine Learning, 2019.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. In ArXiv, volume
abs/1607.06450, 2016.

Leemon Baird. Residual algorithms: Reinforcement learning with function approximation. In
Machine Learning. Springer, 1995.

Philip J. Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement learn-
ing with offline data. In Proceedings of the International Conference on Machine Learning, 2023.

Marc G. Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. In Proceedings of the International Conference on Machine Learning, 2017.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/jax-ml/jax.

Onur Celik, Zechu Li, Denis Blessing, Ge Li, Daniel Palenicek, Jan Peters, Georgia Chalvatzaki,
and Gerhard Neumann. DIME: Diffusion-based maximum entropy reinforcement learning. In
Proceedings of the International Conference on Machine Learning, 2025.

Stephanie Chan, Sam Fishman, John Canny, Anoop Korattikara, and Sergio Guadarrama. Mea-
suring the reliability of reinforcement learning algorithms. In Proceedings of the International
Conference on Learning Representations, 2020a.

Stephanie CY Chan, Samuel Fishman, John Canny, Anoop Korattikara, and Sergio Guadarrama.
Measuring the reliability of reinforcement learning algorithms. In Proceedings of the Interna-
tional Conference on Learning Representations, 2020b.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. The Inter-
national Journal of Robotics Research, 2024.

Petros Christodoulou. Soft actor-critic for discrete action settings. arXiv preprint arXiv:1910.07207,
2019.

Karl W Cobbe, Jacob Hilton, Oleg Klimov, and John Schulman. Phasic policy gradient. In Proceed-
ings of the 38th International Conference on Machine Learning, 2021.

Brett Daley and Christopher Amato. Reconciling λ-returns with experience replay. In Advances in
Neural Information Processing Systems, 2019.

Pierluca D’Oro, Max Schwarzer, Evgenii Nikishin, Pierre-Luc Bacon, Marc G. Bellemare, and
Aaron Courville. Sample-efficient reinforcement learning by breaking the replay ratio barrier. In
Proceedings of the International Conference on Learning Representations, 2023.

11

http://github.com/jax-ml/jax
http://github.com/jax-ml/jax

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jesse Farebrother, Jordi Orbay, Quan Vuong, Adrien Ali Taiga, Yevgen Chebotar, Ted Xiao, Alex Ir-
pan, Sergey Levine, Pablo Samuel Castro, Aleksandra Faust, Aviral Kumar, and Rishabh Agarwal.
Stop regressing: Training value functions via classification for scalable deep RL. In Proceedings
of the International Conference on Machine Learning, 2024.

William Fedus, Prajit Ramachandran, Rishabh Agarwal, Yoshua Bengio, Hugo Larochelle, Mark
Rowland, and Will Dabney. Revisiting fundamentals of experience replay. In Proceedings of the
International Conference on Machine Learning, 2020.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In Proceedings of the International Conference on Machine Learning, 2018.

Scott Fujimoto, Pierluca D’Oro, Amy Zhang, Yuandong Tian, and Michael Rabbat. Towards
general-purpose model-free reinforcement learning. In Proceedings of the International Con-
ference on Learning Representations, 2024.

Matteo Gallici, Mattie Fellows, Benjamin Ellis, Bartomeu Pou, Ivan Masmitja, Jakob Nicolaus
Foerster, and Mario Martin. Simplifying deep temporal difference learning. In Proceedings of the
International Conference on Learning Representations, 2024.

Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. In
Proceedings of the International Conference on Machine Learning, 2023.

Ignat Georgiev, Krishnan Srinivasan, Jie Xu, Eric Heiden, and Animesh Garg. Adaptive horizon
actor-critic for policy learningin contact-rich differentiable simulation. In Proceedings of the
International Conference on Machine Learning. PMLR, 2024.

Evan Greensmith, Peter L. Bartlett, and Jonathan Baxter. Variance reduction techniques for gradient
estimates in reinforcement learning. Journal of Machine Learning Research, 5, 2004.

Jakub Grudzien, Christian A Schroeder De Witt, and Jakob Foerster. Mirror learning: A unifying
framework of policy optimisation. In Proceedings of the International Conference on Machine
Learning, 2022.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In Proceedings of the
International Conference on Machine Learning, 2018.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Soft actor-critic algo-
rithms and applications. arXiv preprint arXiv:1812.05905, 2019.

Danijar Hafner, Timothy P. Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with dis-
crete world models. In Proceedings of the International Conference on Learning Representations,
2021.

Nicklas Hansen, Hao Su, and Xiaolong Wang. TD-MPC2: Scalable, robust world models for con-
tinuous control. In Proceedings of the International Conference on Learning Representations,
2024.

Marcel Hussing, Claas Voelcker, Igor Gilitschenski, Amir-massoud Farahmand, and Eric Eaton.
Dissecting deep RL with high update ratios: Combatting value divergence. In Reinforcement
Learning Conference, 2024.

Andrew Ilyas, Logan Engstrom, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry
Rudolph, and Aleksander Madry. A closer look at deep policy gradients. In Proceedings of
the International Conference on Learning Representations, 2020.

Ehsan Imani and Martha White. Improving regression performance with distributional losses. In
Proceedings of the International Conference on Machine Learning, 2018.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z. Leibo, David
Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. In
Proceedings of the International Conference on Learning Representations, 2017.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In
Proceedings of the International Conference on Learning Representations, 2017.

Scott Jordan, Yash Chandak, Daniel Cohen, Mengxue Zhang, and Philip Thomas. Evaluating the
performance of reinforcement learning algorithms. In Proceedings of the International Confer-
ence on Machine Learning, 2020.

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In
Proceedings of the International Conference on Machine Learning, 2002.

Sham M Kakade. A natural policy gradient. Advances in neural information processing systems,
2001.

Elia Kaufmann, Leonard Bauersfeld, Antonio Loquercio, Matthias Müller, Vladlen Koltun, and
Davide Scaramuzza. Champion-level drone racing using deep reinforcement learning. Nature,
620(7976):982–987, 2023.

Aviral Kumar, Rishabh Agarwal, Dibya Ghosh, and Sergey Levine. Implicit under-parameterization
inhibits data-efficient deep reinforcement learning. In Proceedings of the International Confer-
ence on Learning Representations, 2021.

Hojoon Lee, Dongyoon Hwang, Donghu Kim, Hyunseung Kim, Jun Jet Tai, Kaushik Subramanian,
Peter R. Wurman, Jaegul Choo, Peter Stone, and Takuma Seno. Simba: Simplicity bias for scaling
up parameters in deep reinforcement learning. In Proceedings of the International Conference on
Learning Representations, 2025a.

Hojoon Lee, Youngdo Lee, Takuma Seno, Donghu Kim, Peter Stone, and Jaegul Choo. Hyperspher-
ical normalization for scalable deep reinforcement learning. In Proceedings of the International
Conference on Machine Learning, 2025b.

Sergey Levine. Reinforcement learning and control as probabilistic inference: Tutorial and review.
arXiv preprint arXiv:1805.00909, 2018.

Jiajin Li, Baoxiang Wang, and Shengyu Zhang. Policy optimization with second-order advantage
information. In Proceedings of the International Joint Conference on Artificial Intelligence, 2018.

Zechu Li, Tao Chen, Zhang-Wei Hong, Anurag Ajay, and Pulkit Agrawal. Parallel q-learning:
Scaling off-policy reinforcement learning under massively parallel simulation. In Proceedings of
the International Conference on Machine Learning, 2023.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In Pro-
ceedings of the International Conference on Learning Representations, 2016.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

Chris Lu, Jakub Kuba, Alistair Letcher, Luke Metz, Christian Schroeder de Witt, and Jakob Foerster.
Discovered policy optimisation. Advances in Neural Information Processing Systems, 2022.

Clare Lyle, Zeyu Zheng, Evgenii Nikishin, Bernardo Avila Pires, Razvan Pascanu, and Will Dabney.
Understanding plasticity in neural networks. In Proceedings of the International Conference on
Machine Learning, 2023.

Clare Lyle, Zeyu Zheng, Khimya Khetarpal, Hado Van Hasselt, Razvan Pascanu, James Martens,
and Will Dabney. Disentangling the causes of plasticity loss in neural networks. In Proceedings
of the Conference on Lifelong Learning Agents, 2024.

Haitong Ma, Tianyi Chen, Kai Wang, Na Li, and Bo Dai. Efficient online reinforcement learning
for diffusion policy. In Proceedings of the International Conference on Machine Learning, 2025.

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous relax-
ation of discrete random variables. In Proceedings of the International Conference on Learning
Representations, 2017.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles Macklin,
David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, et al. Isaac gym: High performance
gpu-based physics simulation for robot learning. arXiv preprint arXiv:2108.10470, 2021.

Skander Moalla, Andrea Miele, Daniil Pyatko, Razvan Pascanu, and Caglar Gulcehre. No repre-
sentation, no trust: Connecting representation, collapse, and trust issues in PPO. In Advances in
Neural Information Processing Systems, 2024.

Shakir Mohamed, Mihaela Rosca, Michael Figurnov, and Andriy Mnih. Monte carlo gradient esti-
mation in machine learning. Journal of Machine Learning Research, 21(132):1–62, 2020.

Miguel Angel Zamora Mora, Momchil Peychev, Sehoon Ha, Martin Vechev, and Stelian Coros.
Pods: Policy optimization via differentiable simulation. In Proceedings of the International Con-
ference on Machine Learning, 2021.

Ted Moskovitz, Jack Parker-Holder, Aldo Pacchiano, Michael Arbel, and Michael Jordan. Tactical
optimism and pessimism for deep reinforcement learning. In Advances in Neural Information
Processing Systems, 2021.

Michal Nauman and Marek Cygan. Decoupled policy actor-critic: Bridging pessimism and risk
awareness in reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, 2025.

Michal Nauman, Michał Bortkiewicz, Piotr Miłoś, Tomasz Trzcinski, Mateusz Ostaszewski, and
Marek Cygan. Overestimation, overfitting, and plasticity in actor-critic: the bitter lesson of rein-
forcement learning. In Proceedings of the International Conference on Machine Learning, 2024a.

Michal Nauman, Mateusz Ostaszewski, Krzysztof Jankowski, Piotr Miłoś, and Marek Cygan. Big-
ger, regularized, optimistic: scaling for compute and sample-efficient continuous control. In
Advances in Neural Information Processing Systems, 2024b.

Michal Nauman, Marek Cygan, Carmelo Sferrazza, Aviral Kumar, and Pieter Abbeel. Bigger,
regularized, categorical: High-capacity value functions are efficient multi-task learners. In
The Thirty-ninth Annual Conference on Neural Information Processing Systems, 2025. URL
https://openreview.net/forum?id=zhOUfuOIzA.

Gerhard Neumann. Variational inference for policy search in changing situations. In Proceedings
of the International Conference on International Conference on Machine Learning, 2011.

Tianwei Ni, Benjamin Eysenbach, Erfan Seyedsalehi, Michel Ma, Clement Gehring, Aditya Ma-
hajan, and Pierre-Luc Bacon. Bridging state and history representations: Understanding self-
predictive RL. In Proceedings of the International Conference on Learning Representations,
2024.

Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron Courville. The
primacy bias in deep reinforcement learning. In Proceedings of the International Conference on
Machine Learning, 2022.

Chris Nota and Philip S. Thomas. Is the policy gradient a gradient? In Proceedings of the Interna-
tional Conference on Autonomous Agents and MultiAgent Systems, 2020.

Fabian Otto, Philipp Becker, Vien Anh Ngo, Hanna Carolin Maria Ziesche, and Gerhard Neumann.
Differentiable trust region layers for deep reinforcement learning. In Proceedings of the Interna-
tional Conference on Learning Representations, 2021.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35, 2022.

Joni Pajarinen, Hong Linh Thai, Riad Akrour, Jan Peters, and Gerhard Neumann. Compatible
natural gradient policy search. Machine Learning, 108(8), 2019.

Daniel Palenicek, Florian Vogt, Joe Watson, Ingmar Posner, and Jan Peters. Xqc: Well-conditioned
optimization accelerates deep reinforcement learning. arXiv preprint arXiv:2509.25174, 2025.

14

https://openreview.net/forum?id=zhOUfuOIzA

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Matteo Papini, Giorgio Manganini, Alberto Maria Metelli, and Marcello Restelli. Policy gradient
with active importance sampling. Reinforcement Learning Journal, 2:645–675, 2024.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An imperative style, high-performance
deep learning library. In Advances in Neural Information Processing Systems, 2019.

Jan Peters and Stefan Schaal. Natural actor-critic. In Neurocomputing, volume 71. Elsevier, 2008.

Jan Peters, Katharina Mülling, and Yasemin Altün. Relative entropy policy search. In Proceedings
of the AAAI Conference on Artificial Intelligence, 2010.

Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John
Wiley & Sons, Inc., USA, 1st edition, 1994. ISBN 0471619779.

Ilija Radosavovic, Tete Xiao, Bike Zhang, Trevor Darrell, Jitendra Malik, and Koushil Sreenath.
Real-world humanoid locomotion with reinforcement learning. Science Robotics, 9(89):eadi9579,
2024.

Md Masudur Rahman and Yexiang Xue. Robust policy optimization in deep reinforcement learning,
2023.

Nate Rahn, Pierluca D’Oro, Harley Wiltzer, Pierre-Luc Bacon, and Marc Bellemare. Policy op-
timization in a noisy neighborhood: On return landscapes in continuous control. Advances in
Neural Information Processing Systems, 36:30618–30640, 2023.

Nikita Rudin, David Hoeller, Philipp Reist, and Marco Hutter. Learning to walk in minutes using
massively parallel deep reinforcement learning. In Conference on robot learning, pp. 91–100.
PMLR, 2022.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In Proceedings of the 32nd International Conference on Machine Learning.
PMLR, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017.

Max Schwarzer, Ankesh Anand, Rishab Goel, R. Devon Hjelm, Aaron Courville, and Philip Bach-
man. Data-efficient reinforcement learning with self-predictive representations. In Proceedings
of the International Conference on Learning Representations, 2021.

Max Schwarzer, Johan Samir Obando Ceron, Aaron Courville, Marc G Bellemare, Rishabh Agar-
wal, and Pablo Samuel Castro. Bigger, better, faster: Human-level atari with human-level effi-
ciency. In Proceedings of the International Conference on Machine Learning, 2023.

Younggyo Seo, Carmelo Sferrazza, Haoran Geng, Michal Nauman, Zhao-Heng Yin, and Pieter
Abbeel. Fasttd3: Simple, fast, and capable reinforcement learning for humanoid control. arXiv
preprint arXiv:2505.22642, 2025.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In Proceedings of the International Conference on
Machine Learning, 2014.

Samuel Sokota, Ryan D’Orazio, J Zico Kolter, Nicolas Loizou, Marc Lanctot, Ioannis Mitliagkas,
Noam Brown, and Christian Kroer. A unified approach to reinforcement learning, quantal re-
sponse equilibria, and two-player zero-sum games. In Deep Reinforcement Learning Workshop
NeurIPS 2022, 2022.

Sanghyun Son, Laura Yu Zheng, Ryan Sullivan, Yi-Ling Qiao, and Ming Lin. Gradient informed
proximal policy optimization. In Advances in Neural Information Processing Systems, 2023.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

H. Francis Song, Abbas Abdolmaleki, Jost Tobias Springenberg, Aidan Clark, Hubert Soyer, Jack W.
Rae, Seb Noury, Arun Ahuja, Siqi Liu, Dhruva Tirumala, Nicolas Heess, Dan Belov, Martin
Riedmiller, and Matthew M. Botvinick. V-MPO: On-Policy Maximum a Posteriori Policy Opti-
mization for Discrete and Continuous Control. In Proceedings of the International conference on
Learning Representations, 2019.

Hyung Ju Suh, Max Simchowitz, Kaiqing Zhang, and Russ Tedrake. Do differentiable simulators
give better policy gradients? In Proceedings of the International Conference on Machine Learn-
ing, 2022.

Richard S Sutton. Learning to predict by the methods of temporal differences. In Machine learning,
volume 3. Springer, 1988.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. A Bradford
Book, 2nd edition, 2018.

Richard S Sutton, A Rupam Mahmood, and Martha White. An emphatic approach to the problem of
off-policy temporal-difference learning. In Journal of Machine Learning Research, volume 17.
MIT Press, 2016.

Yunhao Tang, Zhaohan Daniel Guo, Pierre Harvey Richemond, Bernardo Ávila Pires, Yash Chan-
dak, Rémi Munos, Mark Rowland, Mohammad Gheshlaghi Azar, Charline Le Lan, Clare Lyle,
and others. Understanding self-predictive learning for reinforcement learning. In Proceedings of
the International Conference on Machine Learning, 2023.

Stone Tao, Fanbo Xiang, Arth Shukla, Yuzhe Qin, Xander Hinrichsen, Xiaodi Yuan, Chen Bao,
Xinsong Lin, Yulin Liu, Tse kai Chan, Yuan Gao, Xuanlin Li, Tongzhou Mu, Nan Xiao, Arnav
Gurha, Viswesh Nagaswamy Rajesh, Yong Woo Choi, Yen-Ru Chen, Zhiao Huang, Roberto Ca-
landra, Rui Chen, Shan Luo, and Hao Su. Maniskill3: Gpu parallelized robotics simulation and
rendering for generalizable embodied ai. Robotics: Science and Systems, 2025.

Sebastian Thrun and Anton Schwartz. Issues in using function approximation for reinforcement
learning. In Connectionist Models Summer School, 1993.

Manan Tomar, Lior Shani, Yonathan Efroni, and Mohammad Ghavamzadeh. Mirror descent policy
optimization. In Proceedings of the International Conference on Learning Representations, 2022.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Hado Van Hasselt. Double q-learning. In Advances in Neural Information Processing Systems,
2010.

Claas Voelcker, Marcel Hussing, and Eric Eaton. Can we hop in general? a discussion of benchmark
selection and design using the hopper environment. In Finding the Frame: An RLC Workshop for
Examining Conceptual Frameworks, 2024a.

Claas Voelcker, Tyler Kastner, Igor Gilitschenski, and Amir-massoud Farahmand. When does self-
prediction help? understanding auxiliary tasks in reinforcement learning. In Reinforcement Learn-
ing Conference, 2024b.

Claas Voelcker, Marcel Hussing, Eric Eaton, Amir-massoud Farahmand, and Igor Gilitschenski.
MAD-TD: Model-augmented data stabilizes high update ratio RL. In Proceedings of the Interna-
tional Conference on Learning Representations, 2025.

Yuhui Wang, Hao He, and Xiaoyang Tan. Truly proximal policy optimization. In Uncertainty in
Artificial Intelligence, 2020.

Zhengpeng Xie, Qiang Zhang, Fan Yang, Marco Hutter, and Renjing Xu. Simple policy optimiza-
tion. In Proceedings of the International Conference on Machine Learning, 2025.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Jie Xu, Miles Macklin, Viktor Makoviychuk, Yashraj Narang, Animesh Garg, Fabio Ramos, and
Wojciech Matusik. Accelerated policy learning with parallel differentiable simulation. In Pro-
ceedings of the International Conference on Learning Representations, 2022.

Yang Yue, Rui Lu, Bingyi Kang, Shiji Song, and Gao Huang. Understanding, predicting and bet-
ter resolving q-value divergence in offline-RL. In Advances in Neural Information Processing
Systems, 2023.

Kevin Zakka, Baruch Tabanpour, Qiayuan Liao, Mustafa Haiderbhai, Samuel Holt, Jing Yuan Luo,
Arthur Allshire, Erik Frey, Koushil Sreenath, Lueder A. Kahrs, Carlo Sferrazza, Yuval Tassa, and
Pieter Abbeel. MuJoCo playground: An open-source framework for GPU-accelerated robot learn-
ing and sim-to-real transfer., 2025. URL https://github.com/google-deepmind/
mujoco_playground.

Brian D. Ziebart, Andrew Maas, J. Andrew Bagnell, and Anind K. Dey. Maximum entropy inverse
reinforcement learning. In Proceedings of the National Conference on Artificial Intelligence,
2008.

A EXTENDED RELATED WORK

Stabilizing On-Policy RL A fundamental issue with score-based approaches is their instability.
Therefore, various improvements to decrease gradient variance have been considered. Some works
have noted the difficulty of representation learning and have addressed this via decoupling the train-
ing of value and policy (Cobbe et al., 2021; Aitchison & Sweetser, 2022). Moalla et al. (2024) note
that feature learning problems can result from representation collapse, which can be mitigated using
auxiliary losses. There are also efforts to reduce the variance of gradients, e.g. by finding a policy
that minimizes the variance of the importance sampling factor (Papini et al., 2024) or modifying the
loss to ensure tighter total variational distance constraints (Xie et al., 2025).

Incorporating ground-truth gradient signal to stabilize training has also been studied, both for dy-
namical systems (Son et al., 2023) and differentiable robotics simulation (Mora et al., 2021; Xu
et al., 2022; Georgiev et al., 2024). However, access to a ground-truth gradient requires custom
simulators, and in contact-rich tasks, surrogate models can provide smoother gradients (Suh et al.,
2022).

Trust regions and constrained policy optimization Other approaches have used similar KL and
trust region constraint as REPPO. Schulman et al. (2015) and Peters et al. (2010) formulate the KL
constrained policy update as a constrained optimization problem. Peters et al. (2010) shows a closed
form solution to this problem, while Schulman et al. (2015) uses a conjugate gradient scheme to
solve the relaxed optimization problem. Schulman et al. (2017) replaces the Lagrangian formulation
with a clipping heuristic. However, clipping can lead to wrong gradient estimates (Ilyas et al., 2020)
and in some scenarios the clipping objective fails to bound the policy deviation (Wang et al., 2020).
Akrour et al. (2019) propose to project the policy onto the trust-region to sidestep the difficulty
associated with clipping. We find that our approach is simpler to implement and more general, as
we do not assume direct projection is possible.

Otto et al. (2021) propose to replace the various trust-region enforcement methods such as line-
search or clipping with differentiable trust-region layers in the policy neural network architecture.
While our method is slightly more general, as we make no assumption on the form of the policy
(aside from assuming gradient propagation through the sampling process is possible), trust-region
layers could easily be combined with REPPO for appropriate policy parameterizations.

Work on GPU-parallelized On-policy RL With the parallelization of many benchmarks on
GPUs (Makoviychuk et al., 2021; Zakka et al., 2025; Tao et al., 2025), massively-parallel on-policy
RL has become quite popular. While these environments provide simulation testbeds, algorithms
trained in such environments have shown to transfer to real-robots, allowing us to train them in
minutes rather than days (Rudin et al., 2022).

Hybridizing Off-policy and On-policy RL methods Most closely to our work, Parallel Q Net-
works (PQN) (Gallici et al., 2024) was established by using standard discrete action-space off-policy
techniques in the MPS setting. While our work shares several important features with this method,

17

https://github.com/google-deepmind/mujoco_playground
https://github.com/google-deepmind/mujoco_playground

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

we find that our additional insights on KL regularization and tuning is crucial for adapting the con-
cept to continuous action spaces. We also evaluate our approach on discrete action spaces (see
Appendix C). While PQN performs slightly better, likely owing to tuned exploration techniques, we
show that our method works robustly across both discrete and continuous action spaces.

Other methods, such as Parallel Q-Learning (Li et al., 2023) and FastTD3 (Seo et al., 2025) also
attempt to use deterministic policy gradient algorithms in the MPS setting, but still remain off-policy.
This has two major drawbacks compared to our work. The methods require very large replay buffers,
which can either limit the speed if data needs to be stored in regular CPU memory, or require very
large and expensive GPUs. In addition, the off-policy nature of these methods requires stabilizing
techniques such as clipped double Q learning, which has been shown to prevent exploration.

KL-based RL Finally, other works also build on top of the relative entropy policy search (Peters
et al., 2010). Maximum A Posteriori Policy Optimization (MPO) (Abdolmaleki et al., 2018) and
Variational MPO (Song et al., 2019) both leverage SAC style maximum entropy objectives and use
KL constraints to prevent policy divergence. However, both methods use off-policy data together
with importance sampling, which we forgo, do not tune the KL and entropy parameters, and crucially
do not make use of the deterministic policy gradient.

Going beyond relative entropy, the KL-based constraint formulation has been generalized to include
the class of mirror descent algorithms (Grudzien et al., 2022; Tomar et al., 2022). In addition,
Lu et al. (2022) meta-learns a constraint to automatically discover novel RL algorithms. These
advancements are largely orthogonal to our work and can be incorporated into REPPO in the future.

Instability in Off-policy RL Our method furthermore adapts many design decisions from recent
off-policy literature. Among these are layer normalizations, which have been studied by Nauman
et al. (2024a); Hussing et al. (2024); Nauman et al. (2024b); Gallici et al. (2024), auxiliary tasks
(Jaderberg et al., 2017; Schwarzer et al., 2021; 2023; Tang et al., 2023; Voelcker et al., 2024b; Ni
et al., 2024), and HL-Gauss (Farebrother et al., 2024), variants of which have been used by Hafner
et al. (2021); Hansen et al. (2024); Voelcker et al. (2025). Beyond these, there are several other
works which investigate architectures for stable off-policy value learning, such as Nauman et al.
(2024b); Lee et al. (2025a;b). A similar method to our KL regularization tuning objective has been
used by (Nauman & Cygan, 2025) to build an exploratory optimistic actor. While the technique
is very similar, we employ it in the context of the trust-region update, and show the importance of
jointly tuning the entropy and KL parameters. Finally, there are several papers which investigate the
impact of continual learning in off-policy reinforcement learning, including issues such as out-of-
distribution misgeneralization (Voelcker et al., 2025), plasticity loss (Nikishin et al., 2022; D’Oro
et al., 2023; Lyle et al., 2023; Abbas et al., 2023). Since many of these works focus specifically
on improving issues inherent in the off-policy setting, we did not evaluate all of these changes in
REPPO. However, rigorously evaluating what network architectures and stabilization methods can
help to further improve the online regime is an exciting avenue for future work.

B WALLCLOCK MEASUREMENT CONSIDERATIONS

Measuring wall-clock time has become a popular way of highlighting the practical utility of an
algorithm as it allows us to quickly deploy new models and iterate on ideas. Rigorous wall-clock
time measurement is a difficult topic, as many factors impact the wall-clock time of an algorithm.

We chose to not compare the jax and torch versions head-to-head as we found significant runtime
differences on different hardware, and the different compilation philosophies lead to different ben-
efits and drawbacks. For example, jax’ full jit-compilation trades a much larger initial overhead for
significantly faster execution, which can amortize itself depending on the number of timesteps taken.
This is the reason why we do not include FastTD3 in Figure 6, as only a PyTorch implementation of
the algorithm exists. FastTD3 and REPPO use similar algorithms and hyperparameters, therefore,
barring complexities like those discussed below, we expect them to perform at similar speeds.

More importantly, torch’s compilation libraries are built to accelerate standard supervised and gen-
erative workflows, but do not support RL primitives equally well. As the CPU needs to load ker-
nels during training which the GPU then executes, the CPU plays a much larger role in the speed
measurements of the torch-based variant of REPPO. Especially the tanh-squashed log probability
computation and the frequent resampling from the action space cannot be offloaded into an efficient

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

kernel without providing one manually, which we have not done. This is likely due to the fact that
torch keeps its random seed on the CPU. This is not a concern for jax, due to the fact that all kernels
are statically compiled when the program is first executed, and random seeds are handled explicitly
as part of the program state. Therefore, the CPU is under much lower load.

Instead of raw wall-clock time measurements, which can vary massively across framework and
hardware, we recommend that the community treat the question of wall-clock time more carefully.
While the actual time for an experiment can be of massive importance from a practical point of
view, the advantages and limitations of current frameworks can obscure exciting directions for future
work. For example REPPO is highly competitive with PPO when implemented in jax, but struggles
somewhat in torch due to framework specific design choices.

C DISCRETE REPPO (D-REPPO)

One of the major advantages of PPO in the zoo of RL algorithms is the fact that it can be used in
both continuous and discrete action settings. However, as we build on the DDPG/TD3/SAC line of
work, the exposition of our algorithm has focused on the continuous setting alone.

Nonetheless, it is easy to adapt our approach to the discrete action setting as well. Following the
proposal of Christodoulou (2019), we can circumvent the chained critic-actor gradient and compute
the value of the current policy, the entropy, and the KL bound in closed form

LD−REPPO
π,≤KL (θ|B) = − 1

|B|

|B|∑
i=1

|A|∑
j=1

πθ(aj |xi) (Q(xi, aj) + eα log πθ(aj |xi)) (14)

LD−REPPO
π,>KL (θ|B) = − 1

|B|

|B|∑
i=1

eβ
|A|∑
j=1

πθ′(aj |xi) log
πθ′(aj |xi)
πθ(aj |xi)

(15)

LD−REPPO
π (θ|B) =

{
LD−REPPO
π,≤KL (θ|B), if

∑k
j=1 log

πθ′ (aj |xi)
πθ(aj |xi)

< εKL

LD−REPPO
π,>KL (θ|B), otherwise.

(16)

This variant of our algorithm still directly differentiates the full Q function objective, so can still
be seen as a pathwise implementation. But computing the expectation in closed form circumvents
the necessity to use a biased estimator for discrete sampling, such as the Gumbel-Softmax trick
(Maddison et al., 2017; Jang et al., 2017; Fujimoto et al., 2024).

To investigate the benefits of our approach in the discrete action setting, we compare it against PQN
(Gallici et al., 2024) and PPO. The main benefit of our approach over PQN is that it is a) a general
algorithm that unifies both discrete and continuous action spaces, due to the underlying actor critic
architecture, and b) that the principled entropy and KL objectives stabilize updates and encourages
continuing exploration without an epsilon greedy exploration strategy.

We find that our algorithm is able to perform roughly on-par with PQN in the Atari-10 suite of games
(cf. Table 1 and Figure 8) with only minor changes to the architecture to adapt to the Atari games
benchmark. Notably, suitable settings for the KL and entropy target remain consistent even for the
discrete action setting. We only find that the value of λ = 0.65 that is also recommended by Gallici
et al. (2024) is superior to our default value of 0.95, likely due to the higher variance of the return
in the atari games. While the high variance across Atari games makes drawing a clear conclusion
difficult, we find that PQN seems to achieve slightly better performance. We find that this is most
likely due to the fact that the algorithm adds explicit exploration noise, while we rely on the entropy
and conservative KL terms to pace policy improvement.

Table 1: Aggregated Human-Normalized Atari-10 scores with 95% confidence intervals.

Algorithm Mean [CI] Median [CI] IQM [CI]
REPPO 2.98 [2.64, 3.33] 1.68 [1.48, 1.82] 1.64 [1.54, 1.74]
PQN 3.35 [3.00, 3.76] 1.58 [1.48, 1.71] 1.64 [1.58, 1.71]

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

0.0 0.5 1.0 1.5 2.0
×108

0

500

1000

1500

Amidar-v5

0.0 0.5 1.0 1.5 2.0
×108

0

20000

40000

60000

80000
BattleZone-v5

0.0 0.5 1.0 1.5 2.0
×108

0

20

40

60

80

100
Bowling-v5

0.0 0.5 1.0 1.5 2.0
×108

−20

−10

0

10

20
DoubleDunk-v5

0.0 0.5 1.0 1.5 2.0
×108

0

2000

4000

6000

8000
Frostbite-v5

0.0 0.5 1.0 1.5 2.0
×108

0

10000

20000

30000

40000

50000
KungFuMaster-v5

0.0 0.5 1.0 1.5 2.0
×108

0

5000

10000

15000

20000
NameThisGame-v5

0.0 0.5 1.0 1.5 2.0
×108

0

25000

50000

75000

100000

125000
Phoenix-v5

0.0 0.5 1.0 1.5 2.0
×108

0

10000

20000

30000
Qbert-v5

0.0 0.5 1.0 1.5 2.0
×108

0

5000

10000

15000

20000

25000
Riverraid-v5

Timesteps

R
et

ur
n

(N
or

m
al

iz
ed

)

Algorithms
REPPO PQN

Figure 8: Per-environment results on the Atari-10 suite

D IMPLEMENTATION DETAILS AND HYPERPARAMETERS

In the following, we present implementation details on experiments, as well as a hyperparameter
overview.

D.1 TOY EXAMPLE

To obtain the gradient descent comparison in Subsection 2.2 we used the 6-hump camel function, a
standard benchmark in optimization. As our goal was not to show the difficulties of learning with
multiple optima, which affect any gradient-based optimization procedure, but rather smoothness of
convergence, we initialized all runs close to the global minimum. The surrogate functions were
small three layer, 16 unit MLPs. To obtain a strong and a weak version, we used differing numbers
of samples, visualized in Figure 9. Every algorithm was trained with five samples from the policy at
every iteration. Finally, we tested several learning rates. We chose a learning rate which allows the
ground-truth pathwise gradient to learn reliably. If a smaller gradient step size is chose, the Monte-
Carlo estimator converges more reliably, at the cost of significant additional computation. We also
tested subtracting a running average mean as a control variate from the Monte-Carlo estimate. While

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Figure 9: Samples used to train the surrogate function. On the left, we visualize the 32 sample
dataset to train the weak surrogate function, in the middle the 1024 datapoints to train the strong,
and on the right the full objective function.

this reduced variance significantly, it was still very easy to destabilize the algorithm by choosing a
larger step size or less data samples.

In total, our experiments further highlight a well known fact in gradient-based optimization: while a
MC-based gradient algorithm can be tuned for strong performance, it is often extremely dependent
on finding a very good set of hyperparameters. In contrast, pathwise estimators seem to work much
more reliably across a wider range of hyperparameters, which corroborates our insights on REPPO
hyperparameters robustly transfering across environemnts and benchmark suites.

D.2 HL-GAUSS EQUATIONS

Given a regression target y and a function approximation f(x), HL-Gauss transforms the regression
problem into a cross-entropy minimization. The regression target is reparameterized into a histogram
approximation hist of N (y, σ), with a fixed σ chosen heuristically. The number of histogram bins
h and minimum and maximum values are hyperparameters. Let hist(y)i be the probability value of
the histogram at the i-th bucket. The function approximation has an h-dimensional output vector of
logits. Then the loss function is

HL(f(x), y) =

h∑
i=1

hist(y)i · log
exp f(x)i∑h
j=1 exp f(x)j

.

The continuous prediction can be recovered by evaluating

ŷ = E[hist(f(x))] = ⟨hist(f(x)), vec(min,max, h)⟩,
where vec(min,max, h) is a vector with the center values of each bin ranging from min to max.

D.3 AUXILIARY TASK SETUP

A simple yet impactful auxiliary task is latent self prediction (Schwarzer et al., 2021; Voelcker et al.,
2024b; Fujimoto et al., 2024). In its simplest form, latent self-prediction is computed by separating
the critic into an encoder ϕ : X ×A → Z and a prediction head fc : Z → R. The full critic can then
be computed as Q(x, a) = fc(ϕ(x, a)). A self-predictive auxiliary loss adds a forward predictive
model fp : Z → Z and trains the encoder and forward model jointly to minimize

Laux(xt, at, xt+1, at+1) = |fp(ϕ(xt, at))− ϕ(xt+1, at+1)|2 . (17)

As our whole training is on-policy, we do not separate our encoder into a state-dependent and action
dependent part as many prior off-policy works have done. Instead we compute the targets on-policy
with the behavioral policy and minimize the auxiliary loss jointly with the critic loss.

Overall, the impact of the auxiliary task is the most varied across different environments. In some, it
is crucial for learning, while having a detrimental effect in others. We conjecture that the additional
learning objective helps retain information in the critic if the reward signal is not informative. In

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Environment
total time steps 50, 000, 000

n envs 1024
n steps 128
KLtar 0.1

Optimization
n epochs 8

n mini batches 64
batch size n envs × n steps

n mini batches = 2048
lr 3e− 4

maximum grad norm 0.5
Problem Discount

γ 1− 10
max env steps

λ 0.95

Critic Architecture
critic hidden dim 512

vmin 1
1−γ min r

vmax 1
1−γ max r

num HL-Gauss bins 151
num critic encoder layers 2

num critic head layers 2
num critic pred layers 2

Actor Architecture
actor hidden dim 512
num actor layers 3

RL Loss
β start 0.01
εKL 0.1
α start 0.01
εH 0.5× dimA

aux loss mult 1.0

Table 2: Default REPPO hyperparameters

cases where the reward signal is sufficient and the policy gradient direction is easy to estimate,
additional training objectives might hurt performance. We encourage practitioners to investigate
whether their specific application domain and task benefits from the auxiliary loss.

D.4 REPPO MAIN EXPERIMENTS

In addition to the details laid out in the main paper, we briefly introduce the architecture and addi-
tional design decisions, as well as default hyperparameter settings.

The architecture for both critic encoder and heads, as well as the actor, consists of several nor-
malized linear layer blocks. As the activation function, we use silu/swift. As the optimizer, we
use Adam. We experimented with weight decay and learning rate schedules, but found them to be
harmful to performance. Hyperparameters are summarized in Table 2. We tune the discount factor
γ and the minimum and maximum values for the HL-Gauss representation automatically for each
environment, similar to previous work (Hansen et al., 2024). This makes the hyperparameters, to-
gether with the algorithm description, and the source code, a complete algorithm specification in
the sense of Jordan et al. (2020), as we only vary hyperparameters across environments following
simple equations on clear, domain sepcific hyperparameters such as the size of the action space and
the length of the experiment.

For all environments, we use observation normalization statistics computed as a simple running
average of mean and standard deviation. We found this to be important for performance, similar
as in other on policy algorithms. Since we do not hold data in a replay buffer, we do not need to
account for environment normalization in a specialized manner, and can simply use an environment
wrapper.

For more exact details on the architecture we refer to interested readers to the codebase.

E ADDITIONAL RESULTS

In the following, we provide additional results and further clarification on existing experiments in
Section 4.

E.1 DESIGN ABLATIONS

We run ablation experiments investigating the impact of the design components used in REPPO.
In these experiments, we remove the cross-entropy loss via HL-Gauss, layer normalization, the
auxiliary self-predictive loss, or the KL regularization of the policy updates. To understand the

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

0.6 0.7 0.8
REPPO, no KL clip
REPPO, reverse KL

REPPO (no KL)
REPPO (no HL-Gauss)

REPPO (no normalization)
REPPO (no aux loss)

REPPO
Mean

0.60 0.75 0.90

Median

0.60 0.75 0.90

IQM

Normalized returns

(a) Large dataset size ablation (128× 1024).

0.60 0.75
REPPO (32k buf., no KL)

REPPO (32k buf., no HL-Gauss)
REPPO (32k buf., no normalization)

REPPO (32k buf., no aux loss)
REPPO (32k buf.)

REPPO
Mean

0.4 0.6 0.8 1.0

Median

0.45 0.60 0.75 0.90

IQM

Normalized returns

(b) Small dataset size ablation (32× 1024).

Figure 10: Ablation on components and data size on the DMC benchmark. Both values are signifi-
cantly smaller than the replay buffer sizes used in standard off-policy RL algorithms like SAC and
FastTD3. The HL-Gauss loss and KL regularization provide a clear benefit at both data scales. The
normalization and auxiliary loss become more important when less data is available, highlighting
that some stability problems can also be overcome with scaling data.

0.64 0.72 0.80
FastTD3 (32k buf.)
REPPO (32k buf.)

FastTD3 (10,000k buf.)
REPPO

Mean

0.7 0.8 0.9 1.0

Median

0.7 0.8 0.9

IQM

Normalized returns

Figure 11: Comparison of aggregate performance between REPPO and FastTD3. REPPO is com-
petitive with the large buffer FastTD3 version and outperforms FastTD3 when memory is limited.

importance of each component for on-policy learning we conduct these ablations for two scales of
batch sizes - the default 131, 072 on-policy transitions, as well as the smaller batch size of 32, 768.

As shown in Figure 10, our results indicate that both the KL regularization of the policy updates and
the categorical Q-learning via HL-Gauss are necessary to achieve strong performance independent
of the size of the on-policy data used to update our model. We find that the KL divergence is
the only component that, when removed, leads to a decrease in performance below the levels of
PPO, which clarifies the central importance of relative entropy regularization for REPPO. Removing
normalization has minor negative effects on performance which become worse at smaller buffer
sizes. This is consistent with the literature on layer normalization in RL. Similarly, the auxiliary
self-predictive loss has a more clearly negative impact on performance when the batch size becomes
smaller. We note that auxiliary loss has an inconsistent impact on the training generally, where it is
strongly beneficial in some environments, but harmful in others.

E.2 MEMORY DEMANDS

Our final result concerns itself with memory demands. Recent advances in off-policy algorithms
have shown great performance when large buffer sizes are available (Seo et al., 2025). When dealing
with complex observations such as images, on-policy algorithms which do not require storing past
data have a large advantage. In terms of data storage requirements, our algorithm is comparable with
PPO, yet it remains to answer how well REPPO compares to algorithms that are allowed to store

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Num envs Num steps Num minibatches Epochs Updates per batch
Large data 1024 128 64 8 512

Medium data 1024 32 16 8 128
Small data 1024 8 4 8 32
Tiny data 256 8 1 8 8

(a) Dataset configurations for the data scaling experiment.

0.45 0.60 0.75
PPO (tiny data)

PPO (small data)
PPO (medium data)

PPO (large data)
REPPO (tiny data)

REPPO (small data)
REPPO (medium data)

REPPO (large data)
Mean

0.4 0.6 0.8

Median

0.4 0.6 0.8 1.0

IQM

Normalized returns

(b) Aggregated performance of REPPO and PPO under different batch dataset sizes. The mean performance
of REPPO drops monotonically with decreasing batch size, while PPO shows its highest performance with a
medium and small dataset size.

Figure 12: Experiment to compare the impact of batch datset size on different on-policy algorithms.

a large amount of data. For this, we compare against the recent FastTD3 (Seo et al., 2025) which
also uses GPU-parallelized environments but operates off-policy. We compare REPPO against the
original FastTD3 and we also re-run FastTD3 with access to a significantly smaller buffer equivalent
to the REPPO buffer. We report the results in Figure 11.

The results demonstrate that REPPO is on par or better in terms of performance on mean and IQM
with the FastTD3 approach. This is despite the fact that REPPO uses a buffer that is two to three
orders of magnitude smaller. When decreasing the buffer size of FastTD3, the algorithm’s perfor-
mance drops by a large margin while REPPO is barely affected by a smaller buffer. We find that
FastTD3 with a smaller buffer can retain performance on lower dimensional, easier tasks but suffers
on harder tasks that may be of greater interest in practice. In summary, REPPO is competetive with
recent advances in off-policy learning with significantly lower memory and storage requirements.

E.3 DATA SCALING

To further understand what enables REPPO to perform well, we take a detailed look at the interplay
between batch size and gradient steps. In our default configuration, REPPO uses very long rollouts
and a high number of parallel environments, as well as a large number of policy and value function
update steps. PPO on the other hand works best at smaller dataset sizes. We therefore set up REPPO
and PPO training runs across 4 datasets, varying the rollout length. To keep the total number of
gradient steps and the minibatch size the same, we reduced the number of minibatches proportionally
to the batch size. The settings are summarized in Figure 12a. Note that in the large settings, the data
becomes more off-policy. Both PPO and REPPO have explicit ways to deal with this, clipping and
the KL minimization term respectively, but the clipping term in PPO is only a heuristic to prevent
large importance sampling ratios.

Comparing the performance of both approaches (see Figure 12b), we observe a clear pattern. The
mean performance of REPPO drops steeply with decreasing dataset size. PPO on the other hand
does best in the medium and small dataset regimes. This highlights the different mechanisms on
which both algorithms operate. Larger datasets allow the trained Q function to generalize better,
similar to the insight presented in Figure 2a. On the other hand, for PPO the dataset size needs to be
large enough to allow for stable gradient estimation, but not so large that too many gradient update
steps are necessary. This is because clipping can prevent further learning, and many update steps
can exacerbate varaince issues with importance sampling.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Note that at some point, REPPO will likely also stop improving with larger datasets and more
gradient update steps. We see that the performance differences between the medium and the large
dataset at not as strong as with smaller datasets. REPPO cannot continue to learn on fixed data
forever, by design, as the KL divergence between two consecutive policies is constrained. However,
we can hypothesize based on the empirical evidence that REPPO is able to scale more gracefully
with large amounts of data.

E.4 PER ENVIRONMENT SAMPLE EFFICIENCY CURVES

Finally, we provide sample efficiency curves per environment in Figure 13, Figure 14, and Figure 15.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5
×107

0.00

0.25

0.50

0.75

1.00
PickSingleYCB-v1

0 1 2 3 4 5
×107

0.00

0.25

0.50

0.75

1.00
PegInsertionSide-v1

0 1 2 3 4 5
×107

0.00

0.25

0.50

0.75

1.00

UnitreeG1TransportBox-v1

0 1 2 3 4 5
×107

0.0

0.2

0.4

0.6

0.8

UnitreeG1PlaceAppleInBowl-v1

0 1 2 3 4 5
×107

0.00

0.25

0.50

0.75

1.00

LiftPegUpright-v1

0 1 2 3 4 5
×107

0.00

0.25

0.50

0.75

1.00

PokeCube-v1

0 1 2 3 4 5
×107

0.00

0.25

0.50

0.75

1.00

PullCube-v1

0 1 2 3 4 5
×107

0.00

0.25

0.50

0.75

1.00

RollBall-v1

Timesteps

Su
cc

es
s

R
at

e

Algorithms
PPO REPPO

Figure 13: Per-environment results on the ManiSkill suite

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5
×107

0

250

500

750

1000

AcrobotSwingup

0 1 2 3 4 5
×107

0

250

500

750

1000

AcrobotSwingupSparse

0 1 2 3 4 5
×107

0

250

500

750

1000

BallInCup

0 1 2 3 4 5
×107

0

250

500

750

1000

CartpoleBalance

0 1 2 3 4 5
×107

0

250

500

750

1000

CartpoleBalanceSparse

0 1 2 3 4 5
×107

0

250

500

750

1000

CartpoleSwingup

0 1 2 3 4 5
×107

0

250

500

750

1000

CartpoleSwingupSparse

0 1 2 3 4 5
×107

0

250

500

750

1000

CheetahRun

0 1 2 3 4 5
×107

0

250

500

750

1000

FingerSpin

0 1 2 3 4 5
×107

0

250

500

750

1000

FingerTurnEasy

0 1 2 3 4 5
×107

0

250

500

750

1000

FingerTurnHard

0 1 2 3 4 5
×107

0

250

500

750

1000

FishSwim

Timesteps

R
et

ur
n

Algorithms
REPPO PPO PPO (Brax) FastTD3 (10,000k buf.)

Figure 14: Per-environment results on the mujoco playground DMC suite

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5
×107

0

250

500

750

1000

HopperHop

0 1 2 3 4 5
×107

0

250

500

750

1000

HopperStand

0 1 2 3 4 5
×107

0

250

500

750

1000

PendulumSwingup

0 1 2 3 4 5
×107

0

250

500

750

1000

ReacherEasy

0 1 2 3 4 5
×107

0

250

500

750

1000

ReacherHard

0 1 2 3 4 5
×107

0

250

500

750

1000

WalkerRun

0 1 2 3 4 5
×107

0

250

500

750

1000

WalkerWalk

0 1 2 3 4 5
×107

0

250

500

750

1000

WalkerStand

0 1 2 3 4 5
×107

0

250

500

750

1000

HumanoidStand

0 1 2 3 4 5
×107

0

250

500

750

1000

HumanoidWalk

0 1 2 3 4 5
×107

0

250

500

750

1000

HumanoidRun

Timesteps

R
et

ur
n

Algorithms
PPO PPO (Brax) FastTD3 (10,000k buf.) REPPO

Figure 15: Per-environment results on the mujoco playground DMC suite

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

F PSEUDOCODE

Algorithm 1: Pseudocode for Relative Entropy Pathwise Policy Optimization

Input: Environment E , actor network πθ, critic network Qϕ, hyperparameters
Output: Trained policy πθ
// Initialize networks
Actor πθ, behavior policy πθ′ with θ′ = θ, critic Qϕ with encoder fϕ, entropy and KL

temperature α and β
for iteration = 1 to Niterations do

// Step 1: Collect rollout with behavior policy
for step = 1 to Nsteps do

// Apply exploration noise scaling
Sample action at ∼ πθ′(·|xt)
Execute at in environment, observe (xt+1, rt, dt)
Compute approximate Vt+1 ← Qϕ(xt+1, at+1) with at+1 ∼ πθ′(·|xt+1)
Compute ψt ← fϕ(xt+1, at+1)
// Maximum entropy augmented reward, see Subsection 3.1
r̃t ← rt − α log πθ(at+1|xt+1)
Store transition (xt, at, r̃t, xt+1, dt, Vt+1, ψt)

end
// Step 2: Compute TD-λ targets, see Subsection 3.1
for t = T − 1 down to 0 do

Gλ
t ← r̃t + γ[(1− dt)(λGλ

t+1 + (1− λ)Vt+1)]
end
// Step 3: Update networks for multiple epochs
for epoch = 1 to Nepochs do

Shuffle data and create mini-batches
for each mini-batch b = {(x, a,Gλ, ψ)i}Bi=1 do

// Categorical critic update, see Subsection 3.3
LQ ← 1

B

∑
CrossEntropy(Qϕ(xi, ai),Cat(Gλ

i))
// Auxiliary task, see Subsection 3.3
Laux ← 1

B

∑ ||fϕ(xi, ai)− ψi||2]
Update critic: ϕ← ϕ− αQ∇ϕ(LQ + βLaux)
// Actor update with entropy and KL regularization, see

Subsection 3.1 and Subsection 3.2
Sample action a′i ∼ πθ(·|xi)
Sample k actions āi ∼ πθ′(·|xi)
Compute KL divergence: DKL(xi)←

∑k
j=1 log

πθ′ (āj |xi)
πθ(āj |xi)

Policy loss: Lπ ← 1
B

∑
Qϕ(xi, a

′
i)− eα log πθ(a

′
i|xi)− eβDKL(xi)

(Alternatively, compute clipped objective)

Update actor: θ ← θ + ηπ∇θLπ

Entropy α update: α← α− ηα∇αe
α(1

B

∑H[πθ(xi)]− εH)

KL β update: β ← β − ηβ∇βe
β(1

B

∑
DKL(xi)]− εKL)

end
end
// Behavior Policy Update
θ′ ← θ

end
return Trained policy πθ

29

	Introduction
	Background, notation, and definitions
	Policy gradient learning
	Understanding sources of harmful variance in gradient estimation

	Relative Entropy Pathwise Policy Optimization
	Value function learning
	Policy Learning
	Stable Representation and Value Function Architectures

	Experimental Evaluation
	Score-based and Pathwise Comparison
	Benchmark comparison

	Conclusion and avenues for future work
	Extended Related Work
	Wallclock Measurement Considerations
	Discrete REPPO (D-REPPO)
	Implementation details and hyperparameters
	Toy example
	HL-Gauss Equations
	Auxiliary Task Setup
	REPPO Main Experiments

	Additional Results
	Design Ablations
	Memory demands
	Data scaling
	Per Environment Sample Efficiency Curves

	Pseudocode
	90d2fd3c-e09e-4005-8004-66efd6b3e173.pdf
	Introduction
	Background, notation, and definitions
	Policy gradient learning
	Understanding sources of harmful variance in gradient estimation

	Relative Entropy Pathwise Policy Optimization
	Value function learning
	Policy Learning
	Stable Representation and Value Function Architectures

	Experimental Evaluation
	Score-based and Pathwise Comparison
	Benchmark comparison

	Conclusion and avenues for future work
	Extended Related Work
	Wallclock Measurement Considerations
	Discrete REPPO (D-REPPO)
	Implementation details and hyperparameters
	Toy example
	HL-Gauss Equations
	Auxiliary Task Setup
	REPPO Main Experiments

	Additional Results
	Design Ablations
	Memory demands
	Data scaling
	Per Environment Sample Efficiency Curves

	Pseudocode

