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Abstract

Continual learning aims to sequentially learn new tasks without forgetting previous
tasks’ knowledge (catastrophic forgetting). One factor that can cause forgetting is
the interference between the gradients on losses from different tasks. When the
gradients on the current task’s loss are in opposing directions to those on previous
tasks’ losses, updating the model for the current task may cause performance
degradation on previous tasks. In this paper, we first identify causes of the above
interference, and hypothesize that correlations between data representations are a
key factor of interference. We then propose a method for promoting appropriate
correlations between arbitrary tasks’ data representations (i.e., global alignment)
in individual task learning. Specifically, we learn the data representation as a
task-specific composition of pre-trained token representations shared across all
tasks. Then the correlations between different tasks’ data representations are
grounded by correlations between pre-trained token representations. We explore
different ways to learn such compositions. Without experience replay, our model
achieves SOTA performance in continual learning tasks. It also achieves advanced
class-incremental performance through task-incremental training.

1 Introduction

Continual Learning (CL) aims to develop models that can sequentially learn from streams of data and
tasks, an important need for many real-world applications [35, 18]. One main challenge in developing
CL models lies in reducing catastrophic forgetting, where models forget knowledge obtained from
previous tasks after learning new tasks [38, 44, 15].

Catastrophic forgetting can happen when there is interference during task learning, especially in
models that use shared parameters for all tasks [46]. Specifically, when learning a new task, if the
model’s gradients on the new task’s loss are contradictory (e.g. in opposing directions) to those on
the previous tasks’ loss, the model will be updated towards a direction that increases the losses on
previous tasks, causing forgetting. In this paper, we first identify factors that may lead to interference
by analyzing the dot product between models’ (flattened) gradients on losses from two tasks. Then,
we design methods to address interference based on each factor.

Our analysis in Section 3 shows that interference mainly depends on two factors: correlations between
hidden representations of the data from different tasks; and correlations between columns of the
classifier (which we call class vectors) that map data representations to corresponding classes.

To address interference caused by the first factor, we want models to learn aligned data representations
that do not have destructive correlations (i.e., leading to interference) when switching tasks and during
task learning. Specifically, this requires models to accommodate future task representations when
learning the current task. This motivates learning data representations based on some (well-correlated)
global representations, for which we use pre-trained token representations for language data [11].
Specifically, we compose data representations as task-specific interpolations of pre-trained token
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Figure 1: Overview of our methods. Task i’s data representations are denoted as hi with pre-
trained token representations as grey dots in the ‘Representation’ block. Correlations between
aligned data representations from different tasks depends on correlations between pre-trained token
representations. In the ‘Class Vectors’ block, class vectors for different classes have different focuses
on representations after probing, which can reduce interference caused by overlapped representations.

representations. This allows the correlations between tasks’ data representations to be grounded by
correlations between pre-trained representations. We design three transformer-based [54] models that
target such global alignment: (1). learning data representations by interpolating the pre-trained token
representations through the attention mechanism; (2). the above model with additional neighborhood
information to expand the search space of task information; (3). a controlled LoRA [20] model that
adapts the pre-trained token representation with a small scaling factor.

To address interference caused by the second factor, we first train the classifier only when switching
the task and then tune the whole model. This probing first strategy was first proposed in [27] to reduce
representation distortion in single-task learning. Here we use it to reduce interference especially when
there are destructive correlations between representations (e.g., caused by overlapping representations
[5]). Probing enables different class vectors to focus on different features in data representations when
switching tasks, which is useful when different tasks’ representations are overlapped unexpectedly.

An overall view of our methods is in Fig. 1. Evaluations show that both the aligned representations
and the probing first strategy improve CL performance in multiple settings. Specifically, global
alignment models perform well in class-incremental evaluation after task-incremental training.

In conclusion, we make the following key contributions in this paper:
1. We identify factors that cause interference in CL, and propose to address the interference

issues by learning aligned representations and applying the probing first strategy.
2. We design three models to learn aligned representations, which learn task-specific attention

with different levels of adaptations on pre-trained token representations.
3. We conduct extensive experiments on multiple CL settings. Results show that our models

can significantly reduce forgetting even without the use of experience replay.

2 Related Work

Continual Learning CL Models can be divided into three main categories: regularization-based
models which constrain the deviation of new parameters from the older ones [25, 62, 1, 29]; replay-
based models which reduce forgetting by rehearsing on real or pseudo samples from previous
tasks [35, 7] or generative models [49, 24]; and architecture-based models which learn evolving
architectures for sequential tasks, with their capacities for each task carefully assigned [48, 60].

CL in NLP is an emerging area [32, 3]. MBPA++ [10] uses experience replay and local adaptation
to mitigate forgetting; LAMOL [53] generates pseudo samples for replay; IDBR [21] disentangles
task-agnostic and task-specific information; CTR [23] uses a capsule network for knowledge transfer.
All the above models are based on pre-trained LM [11, 4, 43]. Recent works show that pre-training
can alleviate catastrophic forgetting [59, 39, 28]. Our work is also based on the pre-trained LM, but
we use it for alignment purposes without experience replay.

Alignment in CL Recent CL works have studied the importance of alignment between different
tasks’ learning. Riemer et al. [46] aligns gradients between tasks to reduce destructive interference;
Guo et al. [16] preserves holistic information for future tasks. If the previously learned knowledge
does not align with that for future tasks, models may abruptly change previously learned knowledge
and cause forgetting [5, 36, 22]. However, previous works focus on the alignment between observed
tasks, which lack a global view and can cause forgetting in the future [26]. Instead, our work achieves
alignment by pre-trained semantic features, which are general even to unseen future tasks.
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Adaptation Models With limited trainable parameters, our alignment models have connections to
adaptation models, which originally aimed at parameter efficiency. Different adaptation models add
limited trainable parameters on the frozen transformer layer [19, 40, 17, 20]; or selectively update
existing parameters [42, 61]. Recent works do adaptation by prompt tuning [31, 30, 34], which learns
prompt embeddings for target tasks.

Adaptation models have also been used for CL [57, 13, 56, 45, 50]. However, most works use
the models’ parameter efficiency to construct progressive memory. Whether different adaptation
structures influence CL, why and how they help remain unexplored. Our model has a similar form to
adaptation models after derivation, but our design focuses on representation alignment rather than
computational efficiency, with no progressive memory.

3 Problem Statement

In this paper, we focus on the catastrophic forgetting caused by cross-task interference [46, 47]. We
conduct a case study to identify factors of the interference in Section 3, which motivates our global
alignment approach in Section 4.

3.1 Continual Learning Settings

Tasks and Data We consider the setting where models continually learn a sequence of tasks, with
the condition that the previous tasks’ data becomes inaccessible when learning new tasks. We denote
a representative data for each task i as (xi, yi), where xi is the model input and yi ∈ ci is its class
logit. ci is the set of all class logits in task i, and we denote the set of class logits across all T tasks as
C = {ci}Ti=1.

Scenarios We consider two CL scenarios: task-incremental learning and class-incremental learning.
The main difference between them is that at inference time for task i the model knows its task-specific
classes ci in task-incremental learning (task-aware), while the model has to predict the class from all
classes C in class-incremental learning (task-agnostic) [37].

Models Our models consist of an encoder that encodes the input xi to a d-dimensional representation
hi ∈ Rd, and a matrix of class vectors (i.e., a classifier) v ∈ Rd×|C| whose yi-th column vyi

maps
the hidden representation hi to the space of the class yi. The probability of yi being predicted by
the model is calculated by the softmax function: p(yi|hi) = softmax(hT

i v)yi . At training time, the
softmax is computed over classes in each task, while at inference time the softmax is computed over
the range of classes specified in the task- or class-incremental scenarios. We sequentially train each
task with the cross-entropy loss: L(hi, yi) = − log p(yi|hi) for task i’s data (xi, yi).

3.2 Cross-Task Interference

According to Riemer et al. [46], catastrophic forgetting can occur when a model learns a new task if
its gradients on the new task’s loss are contradictory (e.g. in opposing directions) to its gradients for
the previous tasks’ losses. In other words, the gradient descent for the new task might update the
model towards a direction that increases its losses on previous tasks, and thus cause forgetting.

In this section, we analyze factors that can lead to interference between gradients. Specifically,
we study a case based on a representative toy model. The model’s encoder contains two linear
layers with corresponding weight matrices denoted by Wl ∈ Rd×d, where l indexes the layers. The
encoder outputs the representation: hi = W2W1xi for data in task i. Here the input xi ∈ Rd is a
d-dimensional vector.

Suppose we are learning task j after task i using gradient descent. Consider (xi, yi), (xj , yj), two
arbitrary data instances in tasks i and j respectively. The interference between gradients of the weight
matrix Wl with respect to the cross-entropy loss is given by:

I(Wl) = ∇WlL(hi, yi) · ∇WlL(hj , yj).

Destructive interference occurs when I(Wl) < 0, which can cause the model to forget task i’s
knowledge after updating Wl for task j. On the other hand, when I(Wl) > 0, the gradients of two
tasks can enhance each other which encourages knowledge transfer across tasks [46].
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Figure 2: T-SNE plots of all tasks’ data representations after learning the first (with classes Village,
Athlete) and last task. Under the vanilla sequential learning in (a), after the first task, representations
of data from unseen tasks are overlapped. This may cause interference when switching tasks, which
makes representations indistinguishable after learning the last task. With our global alignment model
(Wire-Neigh) in (b), representations remain distinguishable after the first and last tasks.

We expand I(Wl) below. For simplicity, we calculate gradients related to the yi-th and yj-th class
vectors in the matrix v:

I(Wl;vyi
,vyj

) =
(
p(yi|hi)− 1

)(
p(yj |hj)− 1

)︸ ︷︷ ︸
product of probability terms≥0

(hl−1
i )Thl−1

j︸ ︷︷ ︸
correlation between

hidden representations

vT
yi
Ωl+1vyj︸ ︷︷ ︸

correlation between
class vectors

. (1)

hl−1
i =

{
Wl−1xi, l=2

xi, l=1
is the hidden representation at the (l-1)-th layer, Ωl+1 =

{
I, l=2

(Wl+1)TWl+1, l=1

is about the weight matrix at the (l+1)-th layer. The class vector vyi
∈ Rd is the yi-th column of the

classifier v, mapping the output representation to the space of class yi.

Based on Eq. 1, I(Wl) depends on the correlation between data’s hidden representations at the (l-1)-
th layer; and the correlation between class vectors transformed by weight matrices of the subsequent
(e.g. (l+1)-th) layers. To address the interference issue, we discuss each correlation below.

Correlations Between Hidden Representations We consider correlations between different hidden
representations at two time points (Fig. 2): (1) The model has learned task i and is switching to
learn task j. At this time, the model’s hidden representations of task j’s data should not destructively
interfere with those of task i’s data, even though the model hasn’t been trained for task j yet. (2)
After learning Task j. At this time, the model should still produce good hidden representations for
task i’s data, even though it no longer has access to task i’s training data.

Some previous works address the interference issue by forcing models to learn different tasks in
orthogonal subspaces [9, 14, 55]. However, they may constrain models’ knowledge transfer ability as
I(Wl) will always be 0. Other works minimize the destructive interference at time (2), by learning
task j with the replay of task i’s data [46, 47, 2]. However, if hidden representations do not correlate
well when switching to task j, they may cause and propagate interference in task j’s learning (Fig. 2
(a)). Then even with replay, representations of task i’s data may drift towards representations of task
j data, leading to disruptive model updates [5].

Our work tackles correlations of hidden representations at both time points. When learning across
tasks, the model is expected to produce aligned hidden representations of both the current and
previous tasks’ data at all times. The aligned representations should have appropriate correlations,
which will not lead to destructive interference but retain the model’s ability for knowledge transfer.
To achieve this, we encourage the model to learn data representations for each task as different
(task-specific) interpolations of pre-trained token representations. This then enables the correlations
between data representations to be grounded by correlations between pre-trained token representations
(details are in Section 4).

Correlations Between Class Vectors The interference also depends on correlations between class
vectors. Assuming no shared classes in task i and j, the class vector vyi is not involved in learning
task j and thus remains unchanged after task i. When learning the class vector vyj for task j, we
denote vyj at the time step t as vyj ,t. Then the correlation between class vectors vyi and vyj ,t is:

vT
yi
vyj ,t = vT

yi
vyj ,0 − αvT

yi

∑
t
∇vyj

L(hj,t, yj), (2)

where hj,t is the output data representation at time step t, vyj ,0 is the initialization of the class vector
vyj

, α is the learning rate.
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In Eq. 2, the correlation of class vectors depends on the initialization of the class vector vyj ,0

and the learning of data representations hj,t (in the gradient∇vyj
L(hj,t, yj)). The learning of the

representation hj,t depends on the correlations between representations, which we have discussed
above. In addition, we hypothesize that a good initialization of class vectors can help mitigate the
interference problem. To obtain suitable initialization for class vectors, we apply the probing then
fine-tuning (PF) strategy [27] which first learns the class vectors (classifier) only and then fine-tune
the whole model. We describe details in Section 4.

4 Methodology

In this section, we introduce our models that align data representations and initialize class vectors.
First, we introduce our global alignment models which learn task data representations as interpolations
of pre-trained token representations. Then we discuss the probing and then fine-tuning strategy and
the effects of initializing the class vectors for CL.

4.1 Data Representation as Interpolation of Pre-Trained Token Representations

Pre-trained Token Representations In this paper, we focus on language models which are typically
pre-trained in a self-supervised manner [11, 41]. For example, some models are pre-trained by the
masked language modeling objective, which first masks tokens in input texts and then learns models
to predict masked tokens. By pre-training, models learn semantic relationships between tokens.

We consider transformer-based [54] language models. Typically, for an arbitrary task1, the input of
the model is a sequence of n tokens. At the l-th transformer layer, denote the input representations
of all tokens as Gl−1 = [gl−1

1 , ...,gl−1
n ]T (l ≥ 1) where each token representation is an Rd vector.

Then the output token representation is:

Gl = Attn(Gl−1Wl
q,G

l−1Wl
k)G

l−1Wl
v, (3)

where Wl
q and Wl

k ∈ Rd×d are query and key matrices, Attn(Q,K) = softmax
(
QKT /

√
d
)

is
a function calculating the attention matrix based on the query Q and key K. The initial token
representation G0 is the output of an embedding layer in the model. A feed-forward layer is applied
after self-attention for token-wise transformation. We omit it here for simplicity.

After pre-training, we obtain contextual token representations Gl at each layer l using the pre-trained
matrices Wl

q , Wl
k and Wl

v . Such token representations contain semantic information of input tokens,
which are general enough to accommodate diverse uses in different downstream tasks. We refer to
representations Gl as pretrained token representations.

Data Representations To address a downstream task, models learn a data representation that
summarizes the task-specific information in the entire input. Typically, these data representations are
learned by fine-tuning all parameters in the pre-trained model. This type of full fine-tuning has been
shown to distort the pre-trained token representations [27] and may not consider correlations between
data representations across tasks. This does not fit the alignment goal stated in Section 3.2.

To align data representations across tasks, we propose to wire (interpolate) the pre-trained token
representations to construct the data representation. Our proposal is based on the following hypothesis:

Task-specific information of data can be composed from the general semantics of tokens in that data.

For example, given the input text ‘Some actors have so much charisma that you’d be happy to listen
to them reading the phone book’ from ‘positive’ class in a sentiment analysis task, a composition of
tokens {charisma, happy} can convey the information of ‘positive’.

Based on the hypothesis and the fact that pre-trained token representations contain the information of
general token semantics, appropriately interpolating pre-trained token representations can represent
task-specific information in the data. Since correlations between pre-trained token representations are
general across tasks, this type of composition aligns data representations from different tasks.

Alignment Effect For an arbitrary task, the pre-trained token representations Gl can be interpolated
to yield the data representation at the l-th layer as: hl =

(
blGl

)T
where bl ∈ R1×n is a learnable

1For an arbitrary task, we do not specify the task id i by subscripts in the notations for simplicity.
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Figure 3: Comparison between alignment models. Modules in blue are pre-trained and in orange are
learnable. Representations in grey are mainly adapted and in blue are close to the pre-trained ones.
We specify hidden representations for [CLS] and any other token as hl

[CLS] and hl
others.

stochastic row vector with weights for the interpolation. To assess the alignment effect of this scheme,
we obtain the correlation between data representations hl

i and hl
j from task i and j as:

(hl
i)

Thl
j = bl

iG
l
i(G

l
j)

T (bl
j)

T , (4)

where bl
i, b

l
j are learned interpolations, Gl

i, G
l
j are pre-trained token representations for data in task

i and j.

At any time step, the correlation between data representations is grounded by the correlation between
pre-trained token representations: Eq. 4 involves the correlation Gl

i(G
l
j)

T between pre-trained token
representations; and the task-specific interpolation weights bl

i, b
l
j are also learned with the guidance

of Gl
i and Gl

j respectively. This grounding to pre-trained token representations thus aligns the data
representations across tasks.

4.2 Global Alignment Models

We develop global alignment models to learn data representations as interpolations of pre-trained
token representations. Parameters in models are trained by the cross-entropy loss for each task.
Following common practice in traditional models, we append a [CLS] token to the input text and use
the representation of [CLS] as the data representation, denoted as hl

[CLS].

Fixed Wiring Applying the interpolation weights bl on pre-trained token representation Gl generated
by Eq. 3, we have blGl = blAttn(Gl−1Wl

q,G
l−1Wl

k)G
l−1Wl

v. Since the product of a stochastic
row vector and a row-stochastic matrix is stochastic, blAttn(Gl−1Wl

q,G
l−1Wl

k) can be viewed as
task-specific attention on the pre-trained token representations Gl−1.

Based on this, we develop a fixed wiring model that learns task-specific attention for [CLS] only,
while using the pre-trained parameters to compute hidden representations of other tokens as the
pre-trained representations G. In the model, the task-specific attention is calculated as the attention
from [CLS]’s query, using a new learnable key matrix ∆Wl

k and the pre-trained query matrix Wl
q.

Formally, the data representation hl
[CLS] is:

(hl
[CLS])

T = Attn((hl−1
[CLS])

TWl
q,G

l−1∆Wl
k)G

l−1Wl
v, (5)

where h0
[CLS] is the pre-trained embedding of [CLS]. ∆Wl

k is low-ranked [20] for efficiency.

By constraining non-cls tokens’ hidden representations to be close to the pre-trained token representa-
tions, the fixed-wiring model may have limited learning capacity. To avoid this, we design two other
methods with improved model capacity, which we describe below.

Wiring with Neighbor Attention Sometimes, the task information may not be easy to extract from
pre-trained representations of input tokens. For example, in a text entailment task, give a sentence
pair ‘The boy is crying; He’s happy about the view.’ with the label ‘contradiction’. The pre-trained
representations of task-related tokens ‘crying’ and ‘happy’ may not be negatively correlated, which
makes the model hard to learn their contradiction. However, ‘crying’ usually has a neighbor token
‘sad’, and pre-trained representations of ‘sad’ and ‘happy’ are more likely to have negative correlations.
Therefore, using the information of ’sad’ may make the model easier to learn the task.

Therefore, to increase the model capacity while preserving its alignment ability, we retain the guidance
of pre-trained token representations while exploring the tokens’ neighborhood to better search for the
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task-specific information. The data representation can be written as:

(hl
[CLS])

T = Attn((hl−1
[CLS])

TWl
q,G

l−1
expand∆Wl

k)G
l−1
expandW

l
v, (6)

where Gexpand = [Gl−1;Gl−1
nei ] concatenates input tokens’ pre-trained representations Gl−1 and

their neighbors’ representations Gl−1
nei .

Since each token has its own neighbors, to obtain the data representation hl
[CLS] in Eq. 6, we first

adapt each pre-trained token representation individually to incorporate task-specific information from
their neighbors. Then we calculate task-specific attention on adapted token representations, using the
attention mechanism in Eq. 5. Specifically, we adapt the p-th pre-trained token representation gl

p by:

(gl
p)

T ← (1− s) · (gl
p)

T + s ·Attn((gl−1
p )TWl

q,G
l−1
nei,p∆Wl

k)G
l−1
nei,pW

l
v,

where Gl−1
nei,p ∈ Rk×d contains k neighbor representations for the p-th token, and G0

nei,p is the
pre-trained embedding of the neighbor tokens. s ∈ R is a scaling factor. The neighbor tokens
are selected by comparing cosine similarities between token embeddings. To stay close to the
pre-trained token representations but incorporate task-specific information, we update the neighbor
representations as: Gl

nei,p = (1− s) · expand(gl
p) + s ·Attn(Gl−1

nei,pW
l
q,G

l−1
nei,p∆Wl

k)G
l−1
nei,pW

l
v ,

where expand(gl
p) ∈ Rk×d is the matrix which duplicates gl

p for k tokens.

Gnei provides extra capacity in learning data representations. Meanwhile, the alignment effect is
preserved by controlling the scale s, and making the neighborhood Gnei not deviate far away from
pre-trained token representations G.

Controlled-LoRA Another way to increase the model capacity is to adapt representations of all
tokens (including both [CLS] and other tokens in the text) by learning low-rank matrices added to the
pre-trained query and value matrices (LoRA [20]). This has the model capacity close to fine-tuning,
while keeping reference to the pre-trained parameters.

Denote the input representations of all tokens at layer l as Hl−1, where H0 = G0 is the pre-trained
token embeddings. In LoRA, all token representations are updated by the same attention mechanism,
with a learnable query and value matrices ∆Wl

q and ∆Wl
v . The data representation hl

[CLS] is:

(hl
[CLS])

T = Attn((hl−1
[CLS])

T (Wl
q + s ·∆Wl

q),H
l−1Wl

k)H
l−1(Wl

v + s ·∆Wl
v). (7)

When s = 0, we have Hl = Gl. When s > 0, the added query and value matrices not only learn
the task-specific attention, but also adapt the token representations which can deviate away from the
pre-trained ones. To keep alignment with pre-trained token representations, we control the scaling
factor s to make adapted token representations close to the pre-trained ones.

4.3 Initialization of Class Vectors

Although data representations are grounded by pre-trained token representations, at the start time of
learning task j after task i, the interpolation for task j’s data may not be well learned. In this case,
properly initializing class vectors of classes in task j can help reduce interference.

To initialize the new class vectors when switching tasks, we adopt the probing and then fine-tuning
(PF) strategy first proposed in Kumar et al. [27]: when learning a new task, it first freezes the encoder
and only trains the classifier for the task (probing); and then tunes the encoder and classifier together
(fine-tuning). This is beneficial in the case, for example, when the two tasks have similar input
distributions but target different classes (e.g., news sentiment analysis vs. news categorization). In
this case, data representations for two tasks may overlap when switching tasks. However, the class
vectors can focus on different features in data representations after probing. Therefore, the correlation
between class vectors may be small (or 0) and can reduce the interference.

5 Experiments

5.1 Datasets and Metrics

We evaluate four sequences of CL tasks: (1) Yahoo: a split of Yahoo dataset for news question-answer
categorization [63] with 5 disjoint tasks containing 2 classes each; (2) DB: a split of DBPedia data for
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Table 1: Results for task-incremental learning using BERT-base encoder. We report the averaged
accuracy (ACC) and forgetting (FGT) with their standard deviations (std) on five random seeds. Bold
scores are the best scores and underline scores are the second best. ‘OOT’ means out of time.

Model Yahoo DB News Series All

ACC std FGT std ACC std FGT std ACC std FGT std ACC std FGT std

Classifier-only Probing 88.43 0.06 — 99.30 0.03 — 74.81 0.46 — 89.84 0.16 —

Adaptation FT 73.07 5.32 18.67 5.41 73.15 5.36 24.90 5.17 59.98 8.94 21.13 7.44 60.92 5.09 30.53 4.95

Models Adapter 79.85 1.83 11.86 1.83 98.70 1.10 1.19 1.10 65.43 4.73 15.53 4.29 76.31 8.31 15.97 8.31

LoRA 86.32 1.35 5.61 1.35 88.63 10.25 11.25 10.27 69.59 4.16 12.43 4.14 77.37 10.33 14.89 10.61

Prefix 89.75 0.80 3.04 0.79 99.83 0.04 0.07 0.04 75.03 0.97 6.13 0.98 87.53 0.94 3.80 0.85

CL ER 87.42 0.52 5.61 0.68 91.05 10.20 8.70 10.14 75.47 3.93 7.81 5.27 66.42 5.17 24.91 4.60

Models A-GEM 89.43 0.58 2.95 0.64 94.71 4.70 5.98 5.49 75.90 3.34 6.60 3.84 71.60 9.38 19.40 8.15

MBPA++ 86.50 2.23 5.30 2.26 97.17 3.22 2.65 3.16 72.55 4.12 7.23 2.99 82.60 0.97 9.09 1.31

IDBR (-R) 89.32 1.17 2.19 1.08 96.47 4.01 3.39 3.99 72.36 2.20 6.50 3.17 84.09 0.64 7.00 0.58

IDBR 90.48 0.55 1.32 0.64 99.84 0.03 0.04 0.03 76.90 1.98 3.24 2.50 88.89 0.49 2.21 0.48

CTR 87.06 0.98 1.02 0.74 99.04 0.81 0.25 0.30 75.12 2.32 2.55 2.19 OOT —
L2P 90.82 0.58 0.60 0.56 99.63 0.36 0.29 0.36 73.99 2.36 3.43 2.42 87.30 1.60 3.30 3.19

CODA 88.33 1.12 0.40 0.34 99.33 0.23 0.37 0.25 75.13 1.02 0.69 0.74 87.95 0.33 2.76 0.38

Alignment Wire-Fixed 91.11 0.24 0.70 0.28 99.85 0.02 0.03 0.02 76.28 1.18 3.66 0.84 88.63 1.05 3.55 1.02

Models +PF 90.99 0.25 0.73 0.29 99.88 0.01 0.02 0.00 77.75 1.19 1.81 1.04 90.18 0.31 1.79 0.17

(ours) Wire-Neigh 90.98 0.28 0.89 0.36 99.86 0.01 0.02 0.01 77.10 0.99 2.81 0.52 88.71 0.31 3.44 0.51

+PF 91.10 0.19 0.63 0.23 99.88 0.01 0.01 0.01 77.90 0.45 1.98 1.08 89.87 0.37 2.03 0.33

C-LoRA 90.72 0.89 1.47 0.97 99.79 0.05 0.11 0.05 74 .83 2.58 5.80 2.69 87.95 0.97 4.71 1.14

+PF 91.38 0.19 0.61 0.22 99.89 0.01 0.01 0.01 78.59 0.85 2.42 0.94 89.48 0.64 3.00 0.83

Non-CL MTL 91.69 0.26 — 99.61 0.41 — 79.67 1.99 — 90.75 0.46 —

Wikipedia article classification [63] with 7 disjoint tasks containing 2 classes each; (3) News Series:
a sequence of tasks on news-related data, including AG_news (news classification, 4 classes), MRPC
(paraphrase detection, 2 classes) [12], RTE (text entailment, 2 classes) [58] and SST (sentiment
analysis, 2 classes) [51]; (4). All: All tasks in the above sequences. For each task, we randomly
sample 1245 samples per class, which is the least number of class samples in our datasets.

We train alignment and adaptation models in task-incremental (Task-IL) settings, where in-task classes
are specified during training. Then we evaluate models on both Task-IL and Class-IL inferences,
where in-task classes are not specified for Class-IL inference [37]. We measure models’ average
accuracy and forgetting (Appendix B) over five random seeds.

5.2 Models

We compare different models on the pre-trained BERT-base model, including:

Alignment Models (ours): (1) Wire-Fixed: the model freezes pre-trained token representations and
learns task-specific attention for data representations (i.e. [CLS] token). (2) Wire-Neigh: the wiring
model with neighbor attention. We set s = 0.1. For computation efficiency, we fix the number of
neighbors as k = 5, and randomly select neighbors from top-K (K = 20) nearest neighbors to
control the range of neighborhood. (3) C-LoRA: the controlled LoRA model with the scaling factor
s = 0.1. For both Wiring and C-LoRA models, we set the matrix rank r = 8. We also evaluate above
models with the probing then fine-tuning (PF) strategy, denoted as Model+PF.

Adaptation Models: (1) Fine-tuning (FT): fine-tuning all parameters sequentially. (2) Prefix Tuning
(Prefix) [33]: freezing the pre-trained parameters and adding learnable embeddings to attention layers.
(3) Adapter [19]: freezing the pre-trained parameters and injecting learnable linear projections after
self-attention. (4) LoRA [20]: the LoRA model with suggested scaling s = 1 for single task learning.

CL Models: (1) ER: the FT model storing all seen examples and performs sparse (1%) experience
replay. (2) A-GEM [7]: the FT model constraining gradients to prevent degrading performance on
previous tasks. (3) MBPA++ [10]: the FT model that stores and retrieves samples to locally adapt the
model at inference time like [52]. (4) IDBR [21]: the FT model with information-disentanglement-
based regularization and replay. We also compare to IDBR without replay, denoted as IDBR(-R). (5)
CTR [23]: an adapter-based model with capsules and task transfer routing. (6) L2P [57]: a prompt-
based model that dynamically prompts for different data and tasks. (7) CODA [50]: a prompt-based
model that learns attention over extensive prompt components for tasks. (8). ERACE [5]: a model
for class-IL that calculates the current task’s loss over in-task classes, while calculating the replay
loss over all seen classes in the replay buffer. We also show the performance of MTL, which is an FT
model jointly trained on all tasks (not CL). Detailed settings for models are shown in Appendix A.
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Figure 4: (a). Class-IL accuracy after the last task. Dashed lines show accuracies of ERACE, which
replays previous tasks’ data with Class-IL loss. (b). Average Class-IL accuracies after each task.

Table 2: Tokens decoded from data representations by the pre-trained MLM decoder. Red tokens are
tokens related to target classes in inputs; blue tokens are those related to red tokens in decodings.

Data Task Yahoo (news categorization, target class: Science) DB (article classification, target class: Film)
(Task 1) Sentence 1 what is the meaning of blog? No One Man

Sentence 2 is a little space of paper of webpage space where u can
write a little sentence expressing a general idea that repre-
sents what u feel or think.

No One Man is a 1932 American drama film starring Car-
ole Lombard and Ricardo Cortez and directed by Lloyd
Corrigan. It is based on a novel by Rupert Hughes.

Top-10 FT 1 A One a h An an 2 x and . the ; : all its , his their as
Decoded LoRA Every ##nt End then X : end E G . from to pro Sc card into B in stick long
Tokens Wire-Fixed blog ##ly user ##log Facebook blogs ##ing : Twitter web and released , . - ( directed made / Western

of [CLS] Wire-Neigh blog post site posting @ web page content crawl a . and directed is , 2 film - produced released
C-LoRA . : content blog Wikipedia posting ; # post page is , film . of and are but - follows

5.3 Results

Alignment models are effective in Task-IL and Class-IL without replay. Results for Task-IL are
shown in Table 1. Our alignment models forget less than CL models that use experience replay during
fine-tuning. They also outperform adaptation models including Adapter, uncontrolled LoRA and
prefix tuning. This suggests the reduced forgetting in our alignment models is not just due to tuning
fewer parameters, a feature in common with the adaptation models. In particular, C-LoRA performs
better than the original LoRA model, which does not control the scaling factor for alignment. Results
for Class-IL are shown in Fig. 4. On DB, alignment models achieve advanced Class-IL performance
close to ERACE, a strong Class-IL model with replay, even under the Task-IL training where models
are not trained on out-task classes. On Yahoo, alignment models also forget less than FT and LoRA.

Wiring models forget less. Without the probing and fine-tuning (PF) strategy, wiring models achieve
best performances in all Task-IL experiments and Class-IL on DB (Fig. 4). We hypothesize that the
good performance of wiring models is due to the strong alignment effect achieved by referencing
the pre-trained token representations. With improved capacity brought by neighbors, Wire-Neigh
outperforms Wire-Fixed on hard tasks like those in News Series. However, wiring models may
have less capacity compared to models with more adaptations, which can limit their classification
(separation) capability in Class-IL (e.g. Class-IL on Yahoo).

PF reduces forgetting. Fig. 4 shows that applying the PF strategy improves CL performance for
all models. Although C-LoRA itself performs worse than wiring models in Task-IL, with PF it
outperforms wiring models on 3/4 sequences. It also achieves best performance on Yahoo Class-IL.
We hypothesize that is because PF can reduce interference when data representations have destructive
correlations, as discussed in Section 3.2. Generally, PF and alignment on representations compensate
each other on reducing interference. When the alignment effect is strong (e.g., wiring models), the
improvement caused by PF is not very significant. However, when the alignment effect is not as
strong (e.g., C-LoRA, LoRA, FT), PF can significantly improve models’ performance in CL.

5.4 Additional Analysis and Ablations
Table 3: Alignment quantification on
SNLI and News Series. We report Re-
call@20 on three random seeds.

Model SNLI News Series

FT 6.80 ± 1.72 7.74 ± 3.3
C-LoRA 14.53 ± 0.63 23.13 ± 2.75

Wire-Fixed 37.01 ± 1.54 27.80 ± 1.48
Wire-Neigh 36.24 ± 1.83 32.32± 2.58

Interpretability of Alignment Models Since alignment
models learn data representations as the interpolation of
pre-trained token representations, we interpret learned
data representations using the pre-trained MLM decoder.
Specifically, we decode data representations to the token
space by the pre-trained decoder and then get the tokens
with top-10 probabilities. This helps us understand how
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data representations are closed to pre-trained token representations the model aligns to. Results are
shown in Table 2. From the table, decoded tokens of alignment models are close to tokens that are
related to target classes, while those of non-alignment models (FT, LoRA) are hard to interpret.

We also quantify the model’s alignment ability using E-SNLI data [6], where each data’s task-related
tokens are annotated by human. We calculate the Recall@20 of annotated task-related tokens being
retrieved from data representations, on SNLI and News Series data. The results are shown in Table 3.
Results suggest that wiring models have more alignment ability than C-LoRA, in both in-task (SNLI)
and CL evaluations on similar NLI tasks (News Series).

This interpretability may explain the effectiveness of alignment models in Class-IL: even when trained
with local classes, data representations in each task are correlated to pre-trained token representations
that relate to all tasks’ classes. This may help to separate representations from different tasks.

Table 4: Average ACC with different s in C-LoRA,
Wire-Neigh on News Series.

Model s = 0 0.1 0.4 0.7 1.0

Wire-Neigh 76.28 77.10 72.59 68.18 66.59
C-LoRA 74.81 74.83 72.99 71.02 69.59

+PF 74.81 78.59 77.41 76.83 76.81

Influence of Scaling Factor We show Task-IL
accuracies of different scaling factors s for Wire-
Neigh and C-LoRA in Table 4. C-LoRA’s CL
performance tends to decrease when s increases.
This may be due to the decrease of the global
alignment effect, which increases the interfer-
ence. After applying PF, C-LoRA’s accuracy
first increases and then slightly decreases. This may be because PF reduces the interference caused
by the class vectors, and the model can fully utilize its global alignment ability when increasing
plasticity. However, when the scaling factor goes too large, the loss of alignment will lead to more
forgetting even with PF. For Wire-Neigh, the observation is similar to C-LoRA: when s goes up,
the model’s accuracy first increases and then decreases because of the trade-offs between global
alignment and plasticity. And since Wire-Neigh interpolate pre-trained token representations with
their neighbor representations, the increase of s leads to the decrease of pre-trained information. And
therefore we observe a more rapid performance drop when s increases.

Table 5: Average ACC with different
neighborhood range K in Wire-Neigh.

K Yahoo DB News Series

5 99.86 91.16 76.90
20 99.86 90.98 77.10
50 99.86 91.16 77.20

100 99.87 91.13 76.58

Influence of Neighborhood In Wire-Neigh, we randomly
select five neighbor tokens from top-K nearest neighbors.
Here we study the effect of the range of neighborhood
with different K value in Table 5. For relatively simple
sequences DB and Yahoo, Wire-Neigh under different K
has stable performance. However, for hard sequence News
Series, when K increases, the model has more neighbor
information (more capacity) to solve the task, which first
improves its CL performance. However, when K is too large (K = 100), the neighbor information
may become noisy, which makes the CL performance drop.

6 Limitation

We discuss our limitations in model and assumption perspectives: For models, without replaying
previous data, there can be a problem of shifting attention; e.g. the model shifts attention on previous
task-related tokens after learning new tasks. This may lead to forgetting, which we leave as our future
study. For assumptions, our model assumes we have a pre-trained model. For domains that do not
have well-established pre-trained semantic features, our model may not be immediately applicable.
However, since fundamental models are consistently established and shown to be beneficial across
different domains, we can expect our models to apply to more domains in the future.

7 Conclusion

In this paper, we investigate methods to address correlations between data representations and class
vectors to reduce interference when training across tasks. Specifically, for alignment, we propose to
learn data representations as task-specific compositions of pre-trained token representations. To learn
the composed representations, we propose wiring models with or without neighbor attention and a
controlled LoRA model. To address correlations between class vectors, we adopt the probing and
then fine-tuning strategy, which can effectively reduce interference even when the representations
do not correlate well. Experiments show that our models can successfully learn the composed
representations for alignment and achieve SOTA performance in CL.
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A Detailed Experimental Settings

We provide detailed experimental settings in addition to the main paper Section 5. We train all models
(except ERACE) via Task-IL training, while evaluating them in both Task-IL and Class-IL settings.
We perform all experiments on one Nvidia RTX A6000 machine.

• Probing: We fix the encoder and only train the classifier. We train 5 epochs for each
taskwith the learning rate 5e-4.

• FT: We fine-tune the whole model, including the encoder and classifier. We train 3 epochs
for each task in BERT, with the learning rate 2e-5.

• Adapter: we select learning rates from {5e-5, 1e-4, 1e-3} and train {5, 20} epochs for each
task. For all continual learning tasks, we train with the learning rate 5e-5 and 20 epochs.
The rank of Adapter projection r is 32 as suggested in the original paper.

• LoRA (C-LoRA): we select learning rates from {5e-4, 1e-3} and train LoRA for {5, 8}
epochs for each task.

• Wire-Fixed and Wire-Neigh: we select learning rates from {2e-4, 5e-4, 1e-3} and train
{5, 8} epochs for each task. The rank of the learnable key matrix is 8. For Wire-Neigh, the
number of neighbors is 5. In practice, they are randomly sampled from a larger neighborhood
ranging from {10, 20,50,100}. We set the mixing ratio as s = 0.1.

• IDBR: We train IDBR with the learning rate 3e-5 for 3 epoches per task. We follow the
k-means memory selection rule, and the replay batch size is 16 (training batch size) ×
number of tasks in the memory.

• CTR: We follow the settings in the original paper, training 5 epochs for each task.
• L2P: We have the prompt pool with 100 prompt tokens and select 50 of them to prepend to

the input. We train the model with the learning rate 1e-3 for 20 epochs for each task.
• CODA: We have the prompt component size 20 for each task, and set the prompt length as

20. We train the model with the learning rate 1e-3 for 10 epochs for each task.
• ER: We apply sparse experience replay with 1% replay ratio. At each replay time, we

sample 32 samples from the memory and perform one-step gradient descent based on them.
• A-GEM: We store all previous data in the memory. At each gradient step, we randomly

extract 32 samples from the memory and apply the A-GEM gradient projection.
• MBPA++: We fine-tune the model with ER and then adapt the model at the inference time.

At the inference time, we retrieve 32 nearest samples in the memory for local adaptation.

B Evaluation Metrics

Recall@k Denote the set of task-related tokens of the i-th sample as reli, the set of top-k tokens
predicted from the learned data representation as predi@k. The metric Recall@k calculates the
proportion of task-related tokens reli that are predicted in predi@k, which is defined as:

Recall@k = Ei

[ |predi@k ∩ reli|
|reli|

]
.

Because each data instance in E-SNLI has 5-10 task-related tokens, we use Recall@20 for evaluation.

Average Accuracy and Forgetting We use the average accuracy and average forgetting similar in
[8] to evaluate the performance in CL scenarios. The specific definitions are described below.

• Average Accuracy (ACC ∈ [0,1]): Let ai,j be the performance of the model on the test set
of task j after the model is trained on task i. The average accuracy after training on all task
T is:

ACCT =
1

T

T∑
j=1

aT,j .

In this paper, we select T as the end of CL task sequence.
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• Average Forgetting (FGT ∈ [-1,1]): Denote fi,j as the forgetting on task j after the model
is trained on task i. fi,j is calculated by:

fi,j = max
l∈{1,...,i−1}

al,j − ai,j .

And the forgetting after training on the task T is:

FGTT =
1

T

T−1∑
j=1

fT,j .

Our forgetting score divides the number T of all tasks instead of T − 1. We do this to make
the above metrics also indicate models’ capacities on single tasks, i.e. single-task capacity ≈
ACCT + FGTT .

C Computation Costs

In this section, we discuss the computation costs of alignment models. All our models use shared
parameters across tasks, which do not progressively increase parameters. Since the learnable new
matrices in our models are all low-ranked, they require limited usage of additional memory. So we
focus on the models’ time consumption. For all models, we have the number of input tokens as n.

C-LoRA Our controlled LoRA model has the same time complexity as LoRA.

Wire-Fixed In the Wire-Fixed model, besides forwarding the pre-trained model to computing
pre-trained token representations, we need extra computation for Eq. 5. Since we only query for the
[CLS] token, the extra time complexity is O(n).

Wire-Neigh In Wire-Neigh, the extra time consumption comes from searching for neighbors and
updating the neighbor representations. We find neighbors for each token based on their embeddings
at the embedding layer. The time complexity is O(V n+ V logV ) for computing the cosine similarity
and sorting, where V is the size of the token vocabulary. Then the k neighbor representations are
updated for each layer, with a complexity of O(nk2).
In practice, since the embedding layer is fixed in our model, for each data instance we only need to
find their neighbors once and then store the neighbor indices for iterative training (i.e., for several
training epochs). The neighbor selection can also be accelerated by reducing the search space of
neighbor tokens, for example, only searching neighbors from frequently used tokens instead of the
whole vocabulary.

Wire-Neigh also needs extra memory to store neighbor representations and update them. To control
the extra consumption of memory, we keep the number of neighbors as k = 5 and randomly
sample neighbors from top-K similar tokens to control the range of the neighborhood. We leave the
improvement of Wire-Neigh’s efficiency for future works.

Computation induced by PF Another computation costs come in the probing stage, in which
we fix the encoder and only train the classifier. This takes less than 40% training time (including
language model forwarding) and 30% GPU memory compared to full fine-tuning.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: This paper studies some key factors of forgetting in continual learning and
proposes an approach to mitigate that problem.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We included a limitation section (Section 6).
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This paper is not for theoretically proofing something.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have included our detailed experimental settings in Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]
Justification: We are cleaning our code and will release the code soon.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We included details in Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report mean and standard deviation from 5 runs.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We included this information in our Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We followed it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work does not have negative societal impacts. For positive impacts, since
we study the CL problem training tasks sequentially without revisiting previous tasks or
data, we have a positive impact on security. However, this is not our key point so we do not
discuss it in the paper.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

21

https://neurips.cc/public/EthicsGuidelines


• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We used open-source datasets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new assets introduced.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No these types of studies.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: NA.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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