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Abstract

We present EASE, a novel method for learn-001
ing sentence embeddings via contrastive learn-002
ing between sentences and their related entities.003
The advantage of using entity supervision is004
twofold: (1) entities have been shown to be005
a strong indicator of text semantics and thus006
should provide rich training signals for sen-007
tence embeddings; (2) entities are defined in-008
dependently of languages and thus offer useful009
cross-lingual alignment supervision. We eval-010
uate EASE against other unsupervised models011
both in monolingual and multilingual settings.012
We show that EASE exhibits competitive or013
better performance in English semantic textual014
similarity (STS) and short text clustering (STC)015
tasks and it significantly outperforms baseline016
methods in multilingual settings on a variety017
of tasks. Our EASE model and newly con-018
structed multilingual STC dataset, MewsC-16,019
have been made publicly available to catalyze020
future research on sentence embeddings.021

1 Introduction022

The current dominant approach to learning sen-023

tence embeddings is fine-tuning general-purpose024

pretrained language models, such as BERT (Devlin025

et al., 2019), with a particular training supervision.026

The type of supervision can be natural language027

inference data (Reimers and Gurevych, 2019), ad-028

jacent sentences (Yang et al., 2021), or a parallel029

corpus for multilingual models (Feng et al., 2020).030

In this paper, we explore a type of supervision031

that has been under-explored in the literature: entity032

hyperlink annotations from Wikipedia. Their ad-033

vantage is twofold: (1) entities have been shown to034

be a strong indicator of text semantics (Gabrilovich035

and Markovitch, 2007; Yamada et al., 2017, 2018;036

Ling et al., 2020) and thus should provide rich train-037

ing signals for sentence embeddings; (2) entities038

are defined independently of languages and thus039

offer a useful cross-lingual alignment supervision040

(Iacer Calixto and Pasini, 2021; Xiaoze Jian and041

Figure 1: Illustration of the main concept behind EASE.
On the basis of a contrastive framework, sentences are
embedded in the neighborhood of their hyperlink en-
tity embeddings and kept apart from irrelevant entities.
Here, we share the entity embeddings across languages
for multilingual models to facilitate cross-lingual align-
ment of the representation.

Duan, 2021; Nishikawa et al., 2021). The extensive 042

multilingual support of Wikipedia alleviates the 043

need for a parallel resource to train well-aligned 044

multilingual sentence embeddings, especially for 045

low-resource languages. To demonstrate the effec- 046

tiveness of entity-based supervision, we present 047

EASE (Entity-Aware contrastive learning of Sen- 048

tence Embeddings), which produces high-quality 049

sentence embeddings in both monolingual and mul- 050

tilingual settings. 051

EASE learns sentence embeddings with two 052

types of objectives: (1) our novel entity contrastive 053

learning (CL) loss between sentences and their re- 054

lated entities (Figure 1); (2) the self-supervised CL 055

loss with dropout noise. The entity CL objective 056

pulls the embeddings of sentences and their related 057

entities close while keeping unrelated entities apart. 058

The objective is expected to arrange the sentence 059

embeddings in accordance with semantics captured 060

by the entities. To further exploit the knowledge in 061

Wikipedia and improve the learned embeddings, we 062
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also introduce a method for mining hard negatives063

based on the entity type. The second objective, the064

self-supervised CL objective with dropout noise065

(Gao et al., 2021; Liu et al., 2021), is combined066

with the first one to enable sentence embeddings to067

capture fine-grained text semantics. We evaluate068

our model against other state-of-the-art unsuper-069

vised sentence embedding models, and show that070

EASE exhibits competitive or better performance071

on semantic textual similarity (STS) and short text072

clustering (STC) tasks.073

We also apply EASE to multilingual settings. To074

facilitate the evaluation of the high-level semantics075

of multilingual sentence embeddings, we construct076

a multilingual text clustering dataset, MewsC-16077

(Multilingual Short Text Clustering Dataset for078

News in 16 languages). Multilingual EASE is079

trained using the entity embeddings shared across080

languages. We show that, given the cross-lingual081

alignment supervision from the shared entities,082

multilingual EASE significantly outperforms the083

baselines in multilingual STS, STC, parallel sen-084

tence matching, and cross-lingual document classi-085

fication tasks.086

We further demonstrate the effectiveness of the087

multilingual entity CL in a more realistic scenario088

for low-resource languages. Using multilingual089

entity CL, we fine-tune a competitive multilingual090

sentence embedding model, LaBSE (Feng et al.,091

2020), and show that the tuning improves the per-092

formance of parallel sentence matching for low-093

resource languages under-supported by the model.094

Finally, we analyze the EASE model by studying095

ablated models and the multilingual properties of096

the sentence embeddings to shed light on the source097

of the improvement in the model.098

2 Related Work099

2.1 Sentence Embeddings100

Sentence embeddings, which represent the mean-101

ing of sentences in the form of a dense vector, have102

been actively studied. One of the earliest meth-103

ods is Paragraph Vector (Le and Mikolov, 2014)104

in which sentence embeddings are trained to pre-105

dict words within the text. Subsequently, various106

kinds of training tasks have been explored includ-107

ing reconstructing or predicting adjacent sentences108

(Kiros et al., 2015; Logeswaran and Lee, 2018) and109

solving a natural language inference (NLI) task110

(Conneau et al., 2017).111

Recently, with the advent of general-purpose112

pretrained language models such as BERT (De- 113

vlin et al., 2019), it has become increasingly com- 114

mon to fine-tune pretrained models to produce 115

high-quality sentence embeddings, revisiting the 116

aforementioned supervision signals (Reimers and 117

Gurevych, 2019; Yang et al., 2021), and using self- 118

supervised objectives based on contrastive learn- 119

ing (CL). In this paper, we present a CL objective 120

with entity-based supervision. We train our EASE 121

model with entity CL together with self-supervised 122

CL with dropout noise and show that the entity CL 123

improves the quality of sentence embeddings. 124

Contrastive learning The basic idea of con- 125

trastive representation learning is to pull semanti- 126

cally similar samples close and keep dissimilar sam- 127

ples apart (Hadsell et al., 2006). CL for sentence 128

embeddings can be classified by the type of posi- 129

tive pairs used. As representative examples, several 130

methods use entailment pairs as positive pairs in 131

NLI datasets (Gao et al., 2021; Zhang et al., 2021). 132

To alleviate the need for an annotated dataset, self- 133

supervised approaches are also being actively stud- 134

ied. Typical self-supervised methods involve gen- 135

erating positive pairs by using data augmentation 136

techniques, including discrete operations such as 137

word deletion and shuffling (Yan et al., 2021; Meng 138

et al., 2021), back-translation (Fang et al., 2020), 139

and dropout noise within transformer layers (Gao 140

et al., 2021; Liu et al., 2021). Contrastive tension 141

(CT)-BERT (Carlsson et al., 2021) regards as pos- 142

itive pairs the outputs of the same sentence from 143

two individual encoders. DeCLUTR (Giorgi et al., 144

2021) uses different spans of the same document. 145

In contrast to these methods that perform CL be- 146

tween sentences, our method performs CL between 147

sentences and their associated entities. 148

Multilingual sentence embeddings Another yet 149

closely related line of research is focused on learn- 150

ing multilingual sentence embeddings, which cap- 151

ture semantics across multiple languages. Early 152

competitive methods typically utilize the sequence- 153

to-sequence objective with parallel corpora to learn 154

multilingual sentence embeddings (Schwenk and 155

Douze, 2017; Artetxe and Schwenk, 2019); re- 156

cently fine-tuned multilingual pretrained models 157

have achieved state-of-the-art performance (Feng 158

et al., 2020; Goswami et al., 2021). However, one 159

drawback of such approaches is that, to achieve 160

strong results for a particular language pair, they 161

need rich parallel or semantically related sentence 162
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pairs, which are not necessarily easy to obtain.163

In this work, we explore the utility of Wikipedia164

entity annotations, which are aligned across lan-165

guages and already available in over 300 languages.166

We also show that the entity CL in a multilin-167

gual scenario effectively improves the alignment168

of sentence embeddings between English and low-169

resource languages not well supported in an exist-170

ing multilingual model.171

2.2 Learning Representations Using172

Entity-based Supervision173

Entities have been conventionally used to model174

text semantics (Gabrilovich and Markovitch, 2007,175

2006). Several recently proposed methods learn176

text representations based on entity-based super-177

vision by predicting entities from their relevant178

text (Yamada et al., 2017) or entity-masked sen-179

tences (Ling et al., 2020). In the proposed EASE180

model, the existing self-supervised CL method181

based on BERT (Gao et al., 2021) is extended using182

entity-based supervision with carefully designed183

hard negatives. Moreover, it is applied to the multi-184

lingual setting by leveraging the language-agnostic185

nature of entities.186

3 Model and Training Data187

In this section, we describe the components of our188

learning method for sentence embeddings, EASE,189

which is trained using entity hyperlink annotations190

available in Wikipedia.191

3.1 Contrastive Learning with Entities192

Given pairs of a sentence and a semantically related193

entity (positive entity) D = {(si, ei)}mi=1, we train194

our model to predict the entity embedding ei ∈ Rde195

from the sentence embedding si ∈ Rds . Following196

the contrastive framework in Chen et al. (2020),197

the training loss for (si, ei) with a minibatch of N198

pairs is:199

lei = − log
esim(si,Wei)/τ∑N
j=1 e

sim(si,Wej)/τ
, (1)200

where W ∈ Rde×ds is a learnable matrix weight, τ201

is a temperature hyperparameter, and sim(·) is the202

cosine similarity s⊤1 s2
∥s1∥·∥s2∥ .203

Data We construct the sentence-entity paired204

datasets from the January 2019 version of205

Wikipedia dump. We split text in the articles into206

sentences using polyglot.1 For each sentence, 207

we extract the hyperlink entities as semantically 208

related entities.2 Each entity forms a training in- 209

stance (si, ei) for the sentence. We restrict the 210

entities to those that appear more than ten times as 211

hyperlinks in the training corpus. They are con- 212

verted into Wikidata entities, which are shared 213

across languages, by using inter-language links ob- 214

tained from the March 2020 version of the Wikidata 215

dump.3 216

3.2 Hard Negative Entities 217

The introduction of hard negatives (data that are 218

difficult to distinguish from an anchor point) has 219

been reported to be effective in improving CL mod- 220

els (Gao et al., 2021; Robinson et al., 2021). We 221

introduce a hard negative mining technique that 222

finds negative entities similar to the positive entity 223

but yet unrelated to the sentence. 224

Specifically, for each positive entity, we collect 225

hard negative entity candidates that satisfy the fol- 226

lowing two conditions: (1) entities with the same 227

type as the positive entity. Entity types are defined 228

as the entities in the “instance of” relation on Wiki- 229

data, following the work of Xiong et al. (2020). 230

If there are more than one appropriate type, we 231

randomly choose one; (2) entities that do not ap- 232

pear on the same Wikipedia page. Our assumption 233

here is that entities on the same page are topically 234

related to the positive entity and thus are not ap- 235

propriate for negative data. Finally, we randomly 236

choose one of the candidates to construct hard nega- 237

tive training data. For example, the “Studio Ghibli” 238

entity has the type “animation studio” and one of 239

the hard negative entity candidates is “Walt Disney 240

Animation Studios”. 241

Given datasets with hard negative entities D = 242

{(si, ei, e−i )}mi=1, the loss function is 243

lei = − log
esim(hi,Wei)/τ∑N

j=1(e
sim(hi,Wej)/τ + e

sim(hi,We−
j
)/τ

)
. (2) 244

3.3 Pretrained Entity Embeddings 245

We initialize entity embeddings using English en- 246

tity embeddings pretrained on Wikipedia. These 247

1https://polyglot.readthedocs.io/en/
latest/Tokenization.html

2In a preliminary experiment, we also tried constructing
entity-sentence paired data from entities and the first sentence
on their page, and found that the current approach performs
better.

3https://en.wikipedia.org/wiki/Help:
Interlanguage_links
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embeddings are trained using the open-source248

Wikipedia2Vec tool (Yamada et al., 2020) and249

the January 2019 English Wikipedia dump. The250

vector dimension is set to 768, which is the same251

as those of the hidden representations of the base252

pretrained models, and the other hyperparameters253

to their default values. The parameters of the entity254

embedding matrix are updated during the training255

process.256

3.4 Self-supervised Contrastive Learning with257

Dropout Noise258

Self-supervised CL with dropout noise, which in-259

puts a sentence and predicts itself using dropout as260

noise, is an effective method for learning sentence261

embeddings in an unsupervised way (Liu et al.,262

2021; Gao et al., 2021). We combine this method263

with our entity CL.264

Given two embeddings with different dropout265

masks si, s
+
i , the training loss of self-supervised266

CL lsi is defined by267

lsi = − log
esim(si,s

+
i )/τ∑N

j=1 e
sim(si,s

+
j )/τ

. (3)268

In summary, our total loss is269

leasei = λlei + lsi , (4)270

where le and ls are defined in Equations (2) and271

(3) respectively, and λ denotes a hyperparameter272

that defines the balance between the entity CL and273

self-supervised CL with dropout noise. The details274

on the hyperparameters of the models can be found275

in Appendix A.276

4 Experiment: Monolingual277

We first evaluate EASE in monolingual settings.278

We fine-tune monolingual pre-trained language279

models using only English Wikipedia data.280

4.1 Setup281

We use one million pairs sampled from the En-282

glish entity-sentence pairs described in Section 3283

as training data. In this setting, we train sentence284

embedding models from pre-trained checkpoints of285

BERT (Devlin et al., 2019) or RoBERTa (Liu et al.,286

2019) and take the [CLS] representation as the sen-287

tence embedding. We add a linear layer after the288

output sentence embeddings only during training,289

as in Gao et al. (2021).290

Model 7 STS avg. 8 STC avg.

GloVe embedding (avg.) 61.3† 56.4
BERT (avg.) 52.6 50.9
CT-BERTbase 72.1 61.6
SimCSE-BERTbase 76.3 57.1
EASE-BERTbase 77.0 63.1
RoBERTa (avg.) 53.5 40.9
DeCLUTR-RoBERTabase 70.0 60.0
SimCSE-RoBERTabase 76.6 57.4
EASE-RoBERTabase 76.8 58.6

Table 1: Sentence embedding performance on seven
monolingual STS tasks (Spearman’s correlation) and
eight monolingual STC tasks (clustering accuracy). The
highest values among the models with the same pre-
trained encoder are in bold. †: results from Reimers
and Gurevych (2019); all other results are reproduced
or reevaluated by us using published checkpoints. The
complete results are available in Appendix G.

We compare our method with unsupervised sen- 291

tence embedding methods including average GloVe 292

embeddings (Pennington et al., 2014), average 293

embeddings of vanilla BERT or RoBERTa, and 294

previous state-of-the-art approaches such as Sim- 295

CSE (Gao et al., 2021), CT (Carlsson et al., 2021), 296

and DeCLUTR (Giorgi et al., 2021). 297

We evaluate sentence embeddings by using two 298

tasks: STS and STC. These tasks are supposed to 299

measure the degree of sentence embeddings captur- 300

ing fine-grained and broad semantic structures. 301

Semantic textual similarity STS is a measure of 302

the capability of capturing graded similarity of sen- 303

tences. We use seven monolingual STS tasks: STS 304

2012-2016 (Agirre et al., 2012, 2013, 2014, 2015, 305

2016), STS Benchmark (Cer et al., 2017), and 306

SICK-Relatedness (Marelli et al., 2014). Follow- 307

ing the settings of Reimers and Gurevych (2019), 308

we calculate Spearman’s rank correlation coeffi- 309

cient between the cosine similarity of the sentence 310

embeddings and the ground truth similarity scores. 311

Short text clustering Another important aspect 312

of sentence embeddings is the ability to capture cat- 313

egorical semantic structure, i.e., to map sentences 314

from the same categories close together and those 315

from different categories far apart (Zhang et al., 316

2021). We also evaluate sentence embeddings 317

using eight benchmark datasets for STC (Zhang 318

et al., 2021) to investigate how well our method 319

can encode high-level categorical structures into 320

sentence embeddings. These datasets contain 321

short sentences, ranging from 6 to 28 average 322
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Model EN-EN AR-AR ES-ES EN-AR EN-DE EN-TR EN-ES EN-FR EN-IT EN-NL Avg.

mBERTbase (avg.) 54.4 50.9 56.7 18.7 33.9 16.0 21.5 33.0 34.0 35.3 35.4
SimCSE-mBERTbase 78.3 62.5 76.7 26.2 55.6 23.8 37.9 48.1 49.6 50.3 50.9
EASE-mBERTbase 79.3 62.8 79.4 31.6 59.8 26.4 53.7 59.2 59.4 60.7 57.2
XLM-Rbase (avg.) 52.2 25.5 49.6 15.7 21.3 12.1 10.6 16.6 22.9 23.9 25.0
SimCSE-XLM-Rbase 77.9 63.4 80.6 36.3 56.2 28.9 38.9 51.8 52.6 54.2 54.1
EASE-XLM-Rbase 80.6 65.3 80.4 34.2 59.1 37.6 46.5 51.2 56.6 59.5 57.1

Table 2: Spearman’s correlation for multilingual semantic textual similarity on extended version of STS 2017
dataset.

Model ar ca cs de en eo es fa fr ja ko pl pt ru sv tr Avg.
mBERTbase (avg.) 27.0 27.2 44.3 36.2 37.9 25.6 41.1 35.0 25.9 44.2 31.0 35.0 30.1 23.4 28.9 34.9 33.0
SimCSE-mBERTbase 30.1 26.9 41.3 32.5 37.3 27.2 36.2 36.9 29.0 48.9 33.9 37.6 37.9 27.1 26.9 35.3 34.1
EASE-mBERTbase 31.9 29.6 38.8 38.5 30.2 34.5 37.2 36.7 30.4 49.3 36.2 40.0 41.0 27.0 30.5 44.7 36.0
XLM-Rbase (avg.) 26.0 24.7 28.2 29.4 23.0 23.5 22.1 36.6 23.6 38.8 22.0 24.2 32.8 18.0 33.2 26.0 27.0
SimCSE-XLM-Rbase 24.6 26.3 34.6 28.6 33.4 31.7 32.9 35.9 29.1 41.1 31.1 33.1 30.0 26.0 32.9 37.2 31.8
EASE-XLM-Rbase 25.3 26.7 43.2 37.0 34.9 34.2 37.2 42.4 32.0 46.0 32.8 41.6 33.4 31.3 27.2 41.8 35.4

Table 3: Clustering accuracy for multilingual short text clustering on MewsC-16 dataset.

words in length, from a variety of domains such323

as news, biomedical, and social network service324

(Twitter). We cluster the sentence embeddings325

using K-Means (MacQueen, 1967) and compute326

the clustering accuracy using the Hungarian algo-327

rithm (Munkres, 1957) averaged over three inde-328

pendent runs.329

4.2 Results330

Table 1 shows the evaluation results for the seven331

STS and eight STC tasks. Overall, our EASE meth-332

ods significantly improve the performance of the333

base models (i.e., BERT and RoBERTa), and on334

average outperform the previous state-of-the-art335

methods on all tasks except STC with the RoBERTa336

backbone. The most significant improvement is ob-337

served for EASE-BERT, with an average improve-338

ment of 61.6% to 63.1% over the previous best339

result for STC tasks. These results suggest that340

EASE is able to measure the semantic similarity341

between sentences, and simultaneously excel at342

capturing high-level categorical semantic structure.343

5 Experiment: Multilingual344

To further explore the advantage of entity annota-345

tions as cross-lingual alignment supervision, we346

test EASE in multilingual settings: we fine-tune347

multilingual pre-trained language models using348

Wikipedia data in multiple languages.349

5.1 Setup350

We sample 50,000 pairs for each language and351

use them together as training data from the entity-352

sentence paired data in 18 languages.4 As our pri- 353

mary baseline model, we use a SimCSE model 354

trained using the same multilingual data as EASE 355

(i.e., sentences in entity-sentence paired data). In 356

this setting, we start fine-tuning from pre-trained 357

checkpoints of mBERT or XLM-R (Conneau et al., 358

2020) and take mean pooling to obtain sentence em- 359

beddings for both training and evaluation on both 360

EASE and SimCSE. We also tested other pooling 361

methods, but mean pooling was the best in this 362

experiment for both models (Appendix B). 363

5.2 Multilingual STS and STC 364

We evaluate our method using the extended version 365

of the STS 2017 dataset (Reimers and Gurevych, 366

2020), which contains annotated sentences for ten 367

language pairs: EN-EN, AR-AR, ES-ES, EN-AR, 368

EN-DE, EN-TR, EN-ES, EN-FR, EN-IT, and EN- 369

NL. We compute Spearman’s rank correlation as 370

in Section 4.1. We also conduct experiments on 371

our newly introduced multilingual STC dataset de- 372

scribed as follows: 373

MewsC-16 To evaluate the ability of sen- 374

tence embeddings to encode high-level cate- 375

gorical concepts in a multilingual setting, we 376

constructed MewsC-16 (Multilingual Short Text 377

Clustering Dataset for News in 16 languages) from 378

Wikinews.5 MewsC-16 contains topic sentences 379

4We chose 18 languages (ar, ca, cs, de, en, eo, es, fa, fr,
it, ja, ko, nl, pl, pt, ru, sv, tr) present in both the MewsC-16
dataset (see Section 5.2) and the extended version of STS
2017.

5https://en.wikinews.org/wiki/Main_
Page
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Model ar ca cs de eo es fr it ja ko nl pl pt ru sv tr Avg.

mBERTbase (avg.) 20.6 49.2 32.8 62.8 12.2 57.7 55.6 50.8 38.6 33.1 54.8 40.2 58.5 51.4 45.8 30.1 43.4
SimCSE-mBERTbase 16.4 51.5 30.7 57.0 18.2 54.8 54.5 49.9 39.6 28.1 52.7 37.9 53.6 46.8 45.5 25.0 41.4
EASE-mBERTbase 32.1 66.5 47.7 74.2 26.1 70.1 66.7 65.3 59.2 46.8 69.2 55.4 69.1 64.4 59.4 38.1 56.9
XLM-Rbase (avg.) 10.3 15.3 16.5 49.6 7.5 36.4 30.8 25.6 15.0 19.3 45.2 24.1 42.0 37.4 42.8 17.9 27.2
SimCSE-XLM-Rbase 38.4 57.6 55.7 80.6 46.0 68.9 70.4 66.4 60.0 54.1 73.1 65.3 75.1 71.1 76.7 56.4 63.5
EASE-XLM-Rbase 42.6 65.1 63.8 87.2 56.1 75.9 74.1 70.8 68.2 60.5 77.9 71.9 80.6 76.5 79.2 60.9 69.4

Table 4: Accuracy on Tatoeba dataset averaged over forward and backward directions (en to target language and
vice-versa).

Model Avg.

mBERTbase (avg.) 17.3
SimCSE-mBERTbase 16.8
EASE-mBERTbase 25.4
XLM-Rbase (avg.) 9.4
SimCSE-XLM-Rbase 28.5
EASE-XLM-Rbase 32.1

Table 5: Average accuracy for 94
languages not included in EASE
training on Tatoeba.

Model en (dev) de es fr it ja ru zh Avg.
mBERTbase (avg.) 89.5 68.0 68.1 70.6 62.7 61.2 61.5 69.6 65.9
SimCSE-mBERTbase 88.4 62.3 73.2 78.2 64.3 63.7 61.3 75.0 68.3
EASE-mBERTbase 89.0 69.9 69.2 80.1 66.8 62.8 64.4 73.2 69.5
XLM-Rbase (avg.) 90.9 82.7 79.8 72.1 72.5 71.1 69.6 71.4 74.2
SimCSE-XLM-Rbase 90.7 74.9 74.1 81.5 70.3 71.7 70.1 76.6 74.2
EASE-XLM-Rbase 90.6 77.9 75.6 83.9 72.6 72.8 71.1 81.6 76.5

Table 6: Classification accuracy for zero-shot cross-lingual text classifica-
tion on MLDoc dataset.

from Wikinews articles in 13 categories and 16 lan-380

guages. More detailed information is available in381

Appendix E. We perform clustering and compute382

accuracy for each language as in Section 4.1.383

Tables 2 and 3 show the results of our mul-384

tilingual STS and STC experiments. Overall,385

EASE substantially outperforms the correspond-386

ing base models (i.e., mBERT and XLM-R) on387

both tasks. Similar to the results for the monolin-388

gual setting, the average performance of EASE389

exceeds that of SimCSE for multilingual STC390

tasks with an improvement of 34.1% to 36.0% for391

mBERT and 31.8% to 35.4% for XLM-R. This392

result suggests that even in a multilingual setting,393

EASE can encode high-level categorical semantic394

structures into sentence embeddings. Moreover,395

EASE performs better than SimCSE on multilin-396

gual STS tasks, which is a slightly different result397

than for the monolingual setting. More specifi-398

cally, the performance of EASE-mBERT is bet-399

ter than that of SimCSE-mBERT (50.9 vs 57.2),400

and that of EASE-XLM-R is better than that of401

SimCSE-XLM-R (54.1 vs 57.1). This indicates402

that cross-lingual alignment supervision by lever-403

aging language-independent entities is beneficial404

in learning multilingual sentence embeddings.405

5.3 Cross-lingual Parallel Matching406

We evaluate EASE on the Tatoeba dataset (Artetxe407

and Schwenk, 2019) to assess more directly its abil-408

ity to capture cross-lingual semantics. This task409

is to retrieve the correct target sentence for each410

query sentence, given a set of parallel sentences. 411

We perform the retrieval using the cosine similar- 412

ity scores of the sentence embeddings. For each 413

language-pair dataset, we compute the retrieval ac- 414

curacy averaged over the forward and backward 415

directions (English to the target language and vice- 416

versa). 417

Table 4 shows the evaluation results for the lan- 418

guages in the CL training data. EASE significantly 419

outperforms the corresponding base models and 420

SimCSE for all languages. Notably, the mean per- 421

formance of EASE-mBERT is better than that of 422

vanilla mBERT by 13.5 percentage points. This 423

indicates that EASE can capture cross-lingual se- 424

mantics owing to the cross-lingual supervision of 425

entity annotations, which aligns semantically sim- 426

ilar sentences across languages. One interesting 427

observation is that the performance of SimCSE- 428

mBERT is worse than that of vanilla mBERT. We 429

conjecture that this is because the SimCSE model 430

is trained using only the positive sentence pairs 431

within the same language, which sometimes leads 432

to less language-neutral representations. 433

To further explore the cross-lingual ability of 434

EASE, we evaluate it on languages not included in 435

the EASE training set (Table 5). The results show 436

that EASE performs robustly on these languages 437

as well, which suggests that, in EASE, the cross- 438

lingual alignment effect propagates to other lan- 439

guages not used in additional training with EASE 440

(Kvapilíková et al., 2020). 441
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Setting
EASE-BERTbase EASE-RoBERTabase EASE-mBERTbase EASE-XLM-Rbase

STS avg. STS avg. mSTS avg. mSTS avg.

Full model 76.9 76.8 57.2 57.1
w/o self-supervised CL 65.3 66.1 49.3 53.1
w/o hard negative 75.3 76.1 53.8 52.7
w/o Wikipedia2Vec 73.8 76.3 52.1 54.3
w/o all (vanilla model) 31.4 43.6 35.4 25.0

Table 7: Results of ablation study.

5.4 Cross-lingual Zero-shot Transfer442

We further evaluate our sentence embeddings on443

a downstream task in which sentence embeddings444

are used as input features, especially in the cross-445

lingual zero-shot transfer setting. For evaluation446

in this setting, we use MLDoc (Schwenk and447

Li, 2018), a cross-lingual document classification448

dataset that classifies news articles in eight lan-449

guages into four categories. We train a linear classi-450

fier using sentence embeddings as input features on451

the English training data, and evaluate the resulting452

classifier in the remaining languages. To directly453

evaluate the ability of the resulting sentence em-454

beddings, we do not update the parameters of the455

sentence encoder but only train the linear classifier456

in this setting. The detailed settings are shown in457

Appendix D.458

As shown in Table 6, our EASE models achieve459

the best average performance on both back-bones,460

suggesting that multilingual embeddings learned461

with the CL are also effective in the cross-lingual462

transfer setting.463

6 Case Study: Fine-tuning Supervised464

Model with EASE465

Existing multilingual sentence representation mod-466

els trained on a large parallel corpus do not always467

perform well, especially for languages that are not468

included in the training data. In contrast, EASE469

requires only the Wikipedia text corpus, which is470

available in more than 300 languages.6 Thus, one471

possible use case for EASE would be to comple-472

ment the performance of existing models in low-473

resource languages by exploiting the Wikipedia474

data in those languages.475

To test this possibility, we fine-tune LaBSE476

(Feng et al., 2020), which is trained on both mono-477

lingual and bilingual data in 109 languages, with478

6https://meta.wikimedia.org/wiki/List_
of_Wikipedias

0

5

10

15

20

kab pam cor br mhr

LaBSE LaBSE + EASE (en + xx)

Figure 2: Results of fine-tuning LaBSE with EASE
framework on Tatoeba dataset.

our EASE framework in five low-resource lan- 479

guages (kab, pam, cor, tr, mhr). These languages 480

are not present in the original training corpus, so 481

the model performed particularly poorly on these 482

languages. We fine-tune the model using 5,000 483

pairs each from English and the corresponding lan- 484

guage data. 485

As shown in Figure 2, EASE improves the per- 486

formance of LaBSE across all target languages, 487

which is an intriguing result considering that 488

LaBSE has already been trained on about six bil- 489

lion parallel corpora. These results suggest the 490

potential benefit of combining EASE with other 491

models using parallel corpora, especially for lan- 492

guages without or with a few parallel corpora. 493

7 Analysis 494

7.1 Ablation Study 495

We conduct ablations to better understand how 496

each component of EASE contributes to its per- 497

formance. We measure the performance of the 498

models using monolingual STS in the monolingual 499

setting and multilingual STS in the multilingual 500

setting, without one of the following components: 501

the self-supervised CL loss, hard negatives, and 502

Wikipedia2Vec initialization (Table 7). As a result, 503

we find all of the components to make an important 504
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Figure 3: lalign − luniform plot of BERT-based (or
mBERT-based) models in monolingual (left) and multi-
lingual (right) settings.

contribution to the performance.505

It is worth mentioning that entity CL alone (i.e.,506

w/o self-supervised CL) also improves the baseline507

performance significantly. The performance contri-508

butions in the multilingual setting are particularly509

significant (53.1 for XLM-R and 49.3 for mBERT)510

and comparable to those for the SimCSE models.511

These results suggest that CL with entities by it-512

self is effective in learning multilingual sentence513

embeddings.514

7.2 Alignment and Uniformity515

To further understand the source of the performance516

improvement with EASE, we evaluate two key517

properties to measure the quality of the represen-518

tations by contrastive learning (Wang and Isola,519

2020): alignment measures the closeness of repre-520

sentations between positive pairs; uniformity mea-521

sures how well the representations are uniformly522

distributed. We let f(x) denote the normalized rep-523

resentation of x, and compute the two measures524

using525

lalign ≜ E
(x,x+)∼ppos

∥f(x)− f(x+)∥2, (5)526

luniform ≜ log E
x,y

i.i.d.∼ pdata

e−2∥f(x)−f(y)∥2 , (6)527

where ppos denotes positive pairs and pdata denotes528

the entire data distribution. We compute these met-529

rics using BERT-based models on the STS-B devel-530

opment set data. For investigation in the multilin-531

gual setting, we compute them using mBERT-based532

models on the multilingual STS data used in the533

experiment Section 5. We compute the averages of534

alignment and uniformity for each language pair.535

For each setting, we take STS pairs with a score536

higher than 4 in the 0-to-5 scale as ppos and all STS537

sentences as pdata.538

As shown in Figure 3, the trends are similar in 539

both settings: (1) both EASE and SimCSE signifi- 540

cantly improve uniformity compared with that for 541

the vanilla model; (2) EASE is inferior to SimCSE 542

in terms of uniformity and superior in terms of 543

alignment. This result suggests that entity CL does 544

not have the effect of biasing embeddings towards a 545

more uniform distribution. Instead, it has the effect 546

of aligning semantically similar samples, which 547

leads to the improved performance of the resultant 548

sentence embeddings. 549

8 Discussion and Conclusion 550

Our experiments have demonstrated that entity su- 551

pervision in EASE improves the quality of sentence 552

embeddings both in the monolingual setting and, 553

in particular, the multilingual setting. As recent 554

studies have shown, entity annotations can be used 555

as anchors to learn quality cross-lingual representa- 556

tions (Iacer Calixto and Pasini, 2021; Xiaoze Jian 557

and Duan, 2021; Nishikawa et al., 2021), and our 558

work is another demonstration of their utility, par- 559

ticularly in sentence embeddings. One promising 560

future direction is exploring how to better exploit 561

the cross-lingual nature of entities. 562

Our experiments also demonstrate the utility of 563

Wikipedia as a multilingual database. As described 564

in Section 6, Wikipedia entity annotations can com- 565

pensate for the lack of parallel resources in learning 566

cross-lingual representations. Wikipedia currently 567

supports more than 300 languages, and around 568

half of them have over 10,000 articles.7 Moreover, 569

Wikipedia is ever growing; it is expected to include 570

more and more languages.8 This will motivate 571

researchers to develop methods for multilingual 572

models including low-resource languages in the 573

aid of entity annotations in Wikipedia. 574

However, the reliance on Wikipedia for train- 575

ing data may limit the application of the models 576

to specific domains (e.g., general or encyclopedia 577

domains). To apply EASE to other domains, one 578

may need to annotate text from the domain either 579

manually or automatically. Future work can inves- 580

tigate the effectiveness of the entity CL in other 581

domains and possibly its the combination with an 582

entity linking system. 583

7https://meta.wikimedia.org/wiki/List_
of_Wikipedias

8https://incubator.wikimedia.org/wiki/
Incubator:Main_Page
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A Training Details879

We implement our EASE model by using transformers9 libraries. For the monolingual settings, we880

use the STS-B development set as in (Gao et al., 2021). For multilingual settings, we use the STS-B and881

SICK-R development set. In this setting, we simply concatenate the entity-sentence paired data for all 18882

languages and randomly sample from the concatenated data to construct batches.10 In both settings, we883

train our model for one epoch, compute evaluation scores every 250 training steps on the development884

data, and keep the best model. We conduct a grid-search for batch size ∈ {64, 128, 256, 512} and learning885

rate ∈ {3e− 05, 5e− 05}. The chosen hyperparameters for each model is shown in Table 8.886

Model Batch size Learning Rate

SimCSE-mBERTbase 128 3e-05
SimCSE-XLM-Rbase 128 3e-05
EASE-BERTbase 64 3e-05
EASE-RoBERTabase 128 5e-05
EASE-mBERTbase 256 5e-05
EASE-XLM-Rbase 64 3e-05

Table 8: Hyperparameters for experiment.

For the loss balancing term λ and softmax temperature τ in the EASE models (section 3), we empirically887

find that λ = 0.01, τ = 100 for the monolingual setting and τ = 10 for the multilingual setting work888

well.889

Computing Infrastructure We run the experiments on a server with AMD EPYC 7302 16-Core CPU890

and a NVIDIA A100-PCIE-40GB GPU. The training of EASE takes approximately 1 hour.891

B Pooling Methods for SimCSE and EASE892

We compare several pooling methods on both SimCSE and EASE in the multilingual setting: [CLS] with893

MLP; [CLS] with MLP during training only; [CLS] without MLP; mean pooling. Table 9 shows the894

evaluation results based on the STS-B and SICK-R development set.895

Pooler SimCSE EASE

[CLS] pooling
w/ MLP 63.0 65.0
w/ MLP (train) 72.0 73.3
w/o MLP 72.0 73.4

mean pooling 72.1 73.8

Table 9: Average Spearman’s correlation for different pooling methods for SimCSE and EASE in multilingual
setting on STS-B and SICK-R development set.

The mean pooling representation performs best on both models. We thus use mean pooling on both896

models in Section 5.897

9https://huggingface.co/docs/transformers/index
10In our preliminary experiments, we also tested a setting in which data in the same language were used within the same batch;

we did not observe a consistent improvement in the performance of either the SimCSE or EASE models.

12



C Parallel Sentence Mining 898

We evaluate the multilingual sentence embeddings with the parallel sentence mining task using the 899

BUCC 2018 shared task dataset (Zweigenbaum et al., 2018). The task is to find the parallel pairs given 900

monolingual sentence pools in two languages, with 2–3% of the sentences being parallel, to find the 901

parallel pairs. 902

Each model uses the raw embedding output and performance is evaluated without fine-tuning. We 903

first encode all sentences into embeddings and compute the cosine similarity scores between all possible 904

sentence pairs. We then retrieve the sentence pairs with above a fixed threshold and compute the F1 score 905

using the ground-truth parallel pairs. 906

As the test set is not publicly available, we use the sample set to tune the threshold of the parallel 907

sentence mining and the training set for evaluation, which is a common practice in similar studies (Hu 908

et al., 2020; Feng et al., 2020). 909

The results are summarized in Table 10. Our EASE models outperform the SimCSE baselines across the 910

languages, demonstrating that the entity contrastive objective improves the alignment of the multilingual 911

sentence embeddings without a parallel corpora. However, performance is significantly poor than that of 912

LaBSE, which is trained using massive amounts of parallel corpora, suggesting that we still need parallel 913

resources to be competitive on this task. 914

en-de en-fr en-ru en-zh

SimCSE-mBERTbase 13.2 19.2 7.9 11.5
EASE-mBERTbase 26.9 33.8 24.2 32.9

SimCSE-XLM-Rbase 31.8 32.3 28.9 19.9
EASE-XLM-Rbase 33.3 33.2 33.6 23.4

LaBSE 89.0 88.2 84.7 74.2

Table 10: The F1 scores on BUCC 2018 the training set. Retrieval is performed in forward search, i.e., English
sentences as the targets and the other language as the queries.

D Detailed Settings for MLDoc Experiment 915

We use the english.train.1000 and english.dev datasets for the training and validation data, respectively. 916

We conduct a grid-search for batch size ∈ {32, 64, 128} and learning rate ∈ {0.1, 0.01, 0.001} using 917

validation data 11. We run the experiment three times with different random seeds and record the average 918

scores. 919

Model Batch size Learning Rate

mBERTbase(avg.) 32 0.1
XLM-Rbase(avg.) 32 0.1
SimCSE-mBERTbase 32 0.1
SimCSE-XLM-Rbase 32 0.01
EASE-mBERTbase 32 0.01
EASE-XLM-Rbase 32 0.01

Table 11: Hyperparameters for MLDoc experiment
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E Construction of MewsC-16 Dataset920

To construct the MewsC-16 dataset, we collect sentences for each category in each language from the921

Wikinews dump.11 We first select 13 topic categories in the English Wikinews 12 that are also defined922

in other languages (Science and technology, Politics and conflicts, Environment, Sports, Health, Crime923

and law, Obituaries, Disasters and accidents, Culture and entertainment, Economy and business, Weather,924

Education, Media). We then collect pages with topic categories for each language and remove the pages925

with two or more topic categories. We clean the text on each page with the Wikiextractor tool13,926

and split it into sentences by using the polyglot sentence tokenizer. Finally, we use the first sentence927

assuming that it well represents the topic of the entire article (Baxendale, 1958; Edmundson, 1969). The928

corpus statistics for each language are shown in Table 12.929

Language # of sentences # of label types Language # of sentences # of label types

ar 2,243 11 fr 10,697 13
ca 3,310 11 ja 1,984 12
cs 1,534 9 ko 344 10
de 6,398 8 pl 7,247 11
en 12,892 13 pt 8,921 11
eo 227 8 ru 1,406 12
es 6,415 11 sv 584 7
fa 773 9 tr 459 7

total 65,425 13

Table 12: Corpus statistics for MewsC-16

11https://dumps.wikimedia.org/backup-index.html
12https://en.wikinews.org/wiki/Category:News_articles_by_section
13https://github.com/attardi/wikiextractor
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F Baselines 930

For average GloVe embedding (Pennington et al., 2014), we use open-source GloVe vectors trained on 931

Wikipedia and Gigaword with 300 dimensions.14 We use the pretrained model from HuggingFace’s 932

Transformers15 for vanilla pretrained language models, including BERT (bert-base-uncased) (Devlin 933

et al., 2019), RoBERTa (roberta-base) (Liu et al., 2019), mBERT (bert-base-multilingual-cased) and 934

XLM-R (xlm-roberta-base) (Conneau et al., 2020). We use the published checkpoints for unsupervised 935

SimCSE (Gao et al., 2021)16, CT (Carlsson et al., 2021)17, and DeCLUTR (Giorgi et al., 2021).18 936

G Monolingual STS and STC 937

Table 13 and 14 show the complete results for seven STS tasks and eight STC tasks. For STS, the average 938

EASE performance is slightly better than that of SimCSE, although the advantage is not consistent across 939

tasks. For most of the STC tasks, EASE consistently outperforms SimCSE. These results indicate that 940

EASE stands out at capturing high-level categorical semantic structures and that its ability to measure 941

sentence semantic similarity is comparable to or better than that of SimCSE. 942

Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

GloVe embeddings (avg.) 55.1 70.7 59.7 68.3 63.7 58.0 53.8 61.3
BERTbase (avg.) 30.9 59.9 47.7 60.3 63.7 47.3 58.2 52.6
BERTbase-flow 58.4 67.1 60.9 75.2 71.2 68.7 64.5 66.6
BERTbase-whitening 57.8 66.9 60.9 75.1 71.3 68.2 63.7 66.3
IS-BERTbase

♡ 56.8 69.2 61.2 75.2 70.2 69.2 64.3 66.6
CT-BERTbase 61.6 76.8 68.5 77.5 76.5 74.3 69.2 72.1
SimCSE-BERTbase 68.4 82.4 74.4 80.9 78.6 76.9 72.2 76.3
EASE-BERTbase 72.8 81.8 73.7 82.3 79.5 78.9 69.7 77.0
RoBERTabase (avg.) 32.1 56.3 45.2 61.3 62.0 55.4 62.0 53.5
RoBERTabase (first-last avg.) 40.9 58.7 49.1 65.6 61.5 58.6 61.6 56.6
DeCLUTR-RoBERTabase 52.4 75.2 65.5 77.1 78.6 72.4 68.6 70.0
SimCSE-RoBERTabase 68.7 82.6 73.6 81.5 80.8 80.5 67.9 76.5
EASE-RoBERTabase 70.9 81.5 73.5 82.6 80.5 80.0 68.4 76.8

Table 13: Spearman’s correlation for monolingual semantic textual similarity tasks.

Model AG Bio G-S G-T G-TS SO SS Tweet Avg.

GloVe embeddings (avg.) 83.2 30.7 59.0 58.3 67.4 29.9 70.4 52.1 56.4
BERTbase (avg.) 79.8 32.5 55.0 47.0 62.4 21.7 64.0 44.6 50.9
CT-BERTbase 79.2 38.7 65.5 60.7 69.8 67.9 55.5 55.2 61.6
SimCSE-BERTbase 74.4 34.3 59.5 57.8 64.4 49.6 64.3 52.1 57.1
EASE-BERTbase 85.8 36.2 60.5 60.4 67.0 68.1 71.7 54.8 63.1
RoBERTabase (avg.) 66.5 26.6 47.9 42.8 58.3 16.7 30.0 38.6 40.9
DeCLUTR-RoBERTabase 80.7 41.0 65.2 60.5 69.6 32.9 73.6 56.8 60.0
SimCSE-RoBERTabase 69.8 37.3 60.0 58.0 66.6 69.3 48.3 50.0 57.4
EASE-RoBERTabase 69.4 39.3 60.7 57.7 66.3 73.9 49.4 51.8 58.6

Table 14: Clustering accuracy for monolingual short text clustering tasks.

14https://nlp.stanford.edu/projects/glove/
15https://github.com/huggingface/transformers
16https://github.com/princeton-nlp/SimCSE
17https://github.com/FreddeFrallan/Contrastive-Tension
18https://github.com/JohnGiorgi/DeCLUTR
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