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Abstract
Muon is a recent optimizer that relies on matrix
orthogonalization of updates and has been shown
to improve large language model (LLM) train-
ing. It does so by introducing additional momen-
tum and Newton-Schulz iteration to the stochas-
tic spectral descent method (SSD). However, it
incurs higher communication cost if tensor paral-
lelism is enabled, and its hyperparameter transfer
properties are not yet fully explored. We first
introduce block-wise orthogonalization, splitting
weight matrices into independent tiles that are
orthogonalized separately and recombined and
empirically analyze its influence on training. This
retains the validation loss while allowing up to
16x tensor parallel splits of weight matrices. Sec-
ond, we show that under spectral regularization a
single learning rate transfers when depth, width
of the model, and token count are co-scaled under
Chinchilla guidelines. Finally, we show that a
higher weight decay value of 0.1 underperforms
during the first 80% of the training but outper-
forms lower values after that, which can be at-
tributed to the tighter spectral norm constraint.
Based on this, we propose weight decay clipping
and scheduling to capture both regimes. Over-
all, we demonstrate experimentally for nanoGPT
models from 124M to 1.4B parameters that spec-
tral regularization, both with block-wise and full-
matrix orthogonalization, allows for learning rate
transfer across multiple scaling dimensions and
better generalization with weight decay due to
the tighter spectral norm constraint. The code
is available at https://anonymous.4open.
science/r/MuonSBW-23A2.

1. Introduction
Optimization is one of the driving forces behind the rapid
development of deep learning – and LLMs in particular.
It is closely connected to the scaling laws through feature
learning: with specific parameterization and learning-rate
scaling (maximal update parameterization, µP) (Yang et al.,
2021; 2023), training remains stable, and hyperparameters,

such as learning rate, transfer when scaling model size (e.g.,
width (Yang & Hu, 2021) or depth (Yang et al., 2024)).

Adam (Kingma & Ba, 2015) – augmented with decoupled
weight decay (AdamW) (Loshchilov & Hutter, 2019) – is
the default LLM optimizer, yet it has some disadvantages.
First, it is heuristically derived with the need of bias correc-
tion and storing running statistics for every parameter, which
as the consequence increases its complexity and memory
footprint. More importantly, it is known to have instabilities
during the training, known as “loss spikes” (Molybog et al.,
2023), which is especially problematic when training larger
models and requires regular re-starts during the training
from the latest checkpoints (Chowdhery et al., 2022). Hy-
perparameters also fail to transfer across width unless one
uses µP scaling (Littwin & Yang, 2023).

Recently, an alternative, Muon, was proposed in (Jordan
et al., 2024; Bernstein & Newhouse, 2024). It enjoys a
faster convergence compared to AdamW during NanoGPT
speed-runs (Jordan et al., 2024) and is designed for more
stable training using the spectral update condition for feature
learning (Yang et al., 2023; Pethick et al., 2025).

Nevertheless, both Muon and Scion have limitations. First,
if a weight matrix is split among several devices, it should
be gathered on one to compute at every iteration. This leads
to higher communication costs. Moreover, Muon optimizes
layers 1 and L with AdamW, while Scion proposes to use
a different norm for layers 1 and L, leading to a costly hy-
perparameter search. Lastly, while there has been evidence
of learning rate transfer when scaling models in width in
(Pethick et al., 2025; Bernstein, 2025), it is not clear if there
is learning transfer when scaling in depth or even more real-
istically – co-scale in depth, width and the number of tokens
(depth-width-token co-scaling).

The latter scaling is known as the Chinchilla scaling
law (Hoffmann et al., 2022). This is a widely used ap-
proach to scale the number of tokens during the pre-training
proportional to the number of the parameters in the model.
The transfer of learning rate when scaling the number of
tokens has been a long-standing challenge with a recent
attempt in (Bjorck et al., 2025), which gave a rule-of-thumb
to transfer the learning rate across token horizon. Learning
rate transfer during the depth-width-token co-scaling is an
even more challenging open problem (Everett et al., 2024).
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Figure 1. MuonSBW is more parallelizable than MuonS with comparable performance. Here, for two datasets - OpenWebText
(Gokaslan et al., 2019) and C4 (Raffel et al., 2019) – we investigate for 124M nanoGPT model (Karpathy, 2022) with 1x Chinchilla
scaling (Hoffmann et al., 2022) the influence of splitting the momentum gradient matrix introduced in Section 3 into smaller blocks
of equal size before the orthogonalization in three ways: i) square blocks (H = W); ii) column splits (H = 1); iii) row splits (W = 1).
Increasing the number of blocks initially improves loss (row split, TP = 4), and eventually leads to worsening of the loss, which might be
explained by the increasing spectral norm of the weights as we discuss in Appendix E.

In this work, we empirically show how we can attempt to
solve all of the aforementioned limitations, by combining
the scaling update rule suggested by Muon and Scion to-
gether with the spectral norm constraint on all layers and
block-wise orthogonalization. We name these approaches
MuonS and MuonSBW respectively.

1.1. Our Contributions

Our contributions are as follows.

• MuonSBW. In Section 4 and Section 5.2, we propose
MuonSBW, a more parallelizable version of MuonS, and
show in Figure 1 that it is stable in validation loss up to
16x tensor parallelism when training on OpenWebText
as well as C4. Moreover, we see that the 4x parallelism
slightly outperforms the MuonS baseline discussed in
Section 5.1 in more detail.

• Joint scaling transfer. Next, in Section 5.3, we show
that by only relying on the scaling of updates which are
known to enable feature learning and allow for learning
rate transfer only in width, we observe that surprisingly
learning rate transfers when scaling width, depth of the
model and the number of tokens simultaneously. We also
confirm the finding on the C4 dataset in Appendix G.1.

• Static weight decay. We further investigate in Sec-
tion 5.4 the influence of weight decay for MuonSBW
and in Appendix D for other optimizers. We see that for
5x Chinchilla and bigger models, higher weight decay
consistently outperforms lower weight decay values after
around 80% of the training run, while being worse than
other weight decay values before that.

• Dynamic weight decay. We attribute the aforementioned
behavior to a lower spectral norm as discussed in Fig-
ure 5 and Appendix E. In Section 5.6, we further propose
weight decay schedules to improve the performance.

2. Related Work
Throughout this paper, we are interested in solving the un-
constrained optimization problem

min
X∈X

F (X) (1)

for a non-convex F : X → R . During the training of a
neural network, we search for weights X that solve (1). The
compositional structure of neural networks with layers of
matrices has spurred research on the non-Euclidean norms
used during the optimization (Yang et al., 2023; Jordan et al.,
2024; Bernstein & Newhouse, 2024; Pethick et al., 2025;
Carlson et al., 2015b;a; 2016; Large et al., 2024), which
we discuss in more detail in the following. By minimizing
quadratic upper bound at the current iterate Xt we can solve
(1) by the steepest descent update for general norms (Nes-
terov, 2010; Mądry, 2015; Carlson et al., 2016) (for more
details see Appendix A)

Xt+1 = Xt −
∥∇F (Xt)∥∗

L

(
∇F (Xt)

)#
∥·∥,(

∇F (Xt)
)#
∥·∥ ∈ argmax

∥H∥=1

⟨∇F (Xt), H⟩.
(2)

Stochastic Spectral Descent (SSD). In (Carlson et al.,
2015b;a; 2016), the authors applied gradient descent for gen-
eral norms to neural networks. Concretely, they proposed
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Table 1. Optimizers difference. Muon (Jordan et al., 2024) and
Scion (Pethick et al., 2025) use SSD for some of the layers of
the network, while for others they suggest to use an equivalent
of AdamW (for Muon) or Signum (Bernstein et al., 2018) (for
Scion). We suggest using spectral descent for all layers, which
we abbreviate as MuonS together with its block-wise version as
MuonSBW, which effectively requires only one learning rate to
tune.

Method First layer Middle layers Last layer

Scion Signum Spectral Signum
Muon AdamW Spectral AdamW

MuonSBW (ours) Spectral Spectral Spectral

to replace the gradient oracle ∇F (·) with the stochastic
gradient oracle ∇f(·, ξ) and perform the update (2) with
respect to the matrix norm, namely the spectral norm, since
for the neural networks the iterates are structured as weight
matrices. This led to significant speed-ups when training
smaller feedforward and convolutional neural networks as
well as Restricted Boltzmann Machines (RBMs) and other
probabilistic models.

Muon. When using the spectral norm (largest singular value
of a matrix) σmax(·) in (2), the sharp operator (X)#σmax(·) is
a semi-orthogonal matrix closest to X , which can be com-
puted using singular value decomposition (SVD). In (Jor-
dan et al., 2024), however, the authors replaced SVD with
Newton-Schulz iteration (NS), which is more efficient on
modern GPUs. Moreover, they incorporated an additional
momentum term in SSD. This allowed for speed-ups com-
pared with AdamW during both nanoGPT (Karpathy, 2022)
and CIFAR-10 (Krizhevsky & Hinton, 2009) speed-runs.
However, their algorithm does not apply SSD for each layer.
Instead, it still uses AdamW for the first and last layers of a
neural network (see Table 1).

Distributed Shampoo As discussed in (Bernstein & New-
house, 2024), Shampoo (Gupta et al., 2018) without accu-
mulation can be viewed as SSD. It is therefore interesting
to understand approaches for distributed optimization with
it. In (Shi et al., 2023a), the authors propose in Section 4.2
to allow for tensor parallelism by strategy called “block-
ing”, which effectively applies Shampoo on each of the
blocks. This served as an inspiration for our approach that
we introduce in Section 4 and investigate in more detail in
Section 5.2.

Scion. The Stochastic Conditional Gradient with Opera-
tor Norms (Scion) optimizer introduced in (Pethick et al.,
2025) is a concurrent work based on the Stochastic Condi-
tional Gradient method (SCG) that provides a control over
the norm in each layer of a neural network. The authors
proposed using the ∥ · ∥∞ norm in SCG for the first and
last layers, effectively applying the Signum optimizer for
them. For the other layers, they follow propose to use spec-

tral norm as in Muon and SSD. Learning rates for these
two different norms (spectral and ∥ · ∥∞) should be tuned
separately. Because our first aim is to speed up the hyper-
parameter search by simplifying the algorithm, we instead
use SSD with spectral norm constraint for all layers (see
Table 1).

Moonlight. In (Liu et al., 2025), the authors have trained
big Mixture-of-Experts models (MoE) with 3B and 16B
parameters for longer than 17x Chinchilla using both Muon
and AdamW. Muon improves the Pareto frontier achiev-
ing a lower loss with much less training FLOPs. They
further compare it with AdamW and show that Muon is ap-
proximately 2x more computationally efficient compared to
AdamW. On this big scale, they show, among other findings,
that a higher weight decay of 0.1 for most of the training
run performs worse for Muon while starting to outperform
less and no weight decay at the end of the training. Because
this scale is not out of reach for many academic labs, in Sec-
tion 5.4 we investigate if this phenomenon is happening at a
smaller scale, for models with up to 758M parameters and
with 1x and 5x Chinchilla scaling. Moreover, in Figure 5
and Appendix E, we show that better generalization occurs
when spectral norm is constrained more tightly.

3. Muon
In this section we introduce the Muon algorithm with weight
decay and its main properties. We discuss it in more detail
in Appendix B.

Norm. In (Bernstein & Newhouse, 2024), the authors show
that algorithms, such as SGD, Adam, and Shampoo (Gupta
et al., 2018) are all related to each other via the steepest
descent problem (8) discussed in Appendix A by the choice
of the norm || · || – l2, l∞, and σmax(·) – respectively. Muon,
similarly to Shampoo, uses on the steepest descent updates
with respect to the spectral norm.

Algorithm. For ηt, λ ≥ 0 and a neural network with L
layers, Muon is orthogonalizing updates to weight matrices
W l

t for layers l ∈ {2, . . . , L − 1} at each time step t to
compute the steepest descent direction (X)#||·||RMS→RMS

=√
dl
out

dl
in

Ortho(Gl
t) with respect to the RMS-to-RMS opera-

tor norm (more details are in Appendix B):

W l
t+1 = W l

t − ηt

(√dlout
dlin

Ortho(Gl
t) + λW l

t

)
, (3)

where Gl
t ∈ Rdl

out×dl
in is the momentum stochastic gradient

Gl
t = (1− αt)G

l
t−1 + αt∇f(W l

t , ξt). (4)

3
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Figure 2. MuonS and MuonSBW enjoy learning rate transfer during depth-width-token co-scaling. We are training nanoGPT on
OpenWebText with 1x Chinchilla scaling. For both MuonS and MuonSBW learning rate transfers well, unlike for AdamW. Moreover,
MuonSBW enjoys a better transfer: the same learning rate of 0.01 is the best across all sizes (see Table 2), staying the best also for another
dataset, C4, in Figure 20 in Appendix. We report optimal learning rate values together with achieved validation loss in Table 2.

Ortho(Gl
t) returns the closest semi-orthogonal matrix:

Ortho(Gl
t) = argminO∈Oml×nl

∥O −Gl
t∥F , (5)

where one minimizes over semi-orthogonal matrices.

Om×n := {A ∈ Rm×n | AA⊤ = Im×m or A⊤A = In×n}.

4. Block-wise Orthogonalization
Inspired by (Shi et al., 2023b), we propose to i) split the
momentum gradient matrix before orthogonalization into
tensor parallel splits (TP) row-, column-, or block-wise, do-
ing so in sub-matrices of equal dimensions; ii) compute with
NS orthogonalized sub-matrices; iii) concatenate later it as
one matrix. The influence of this varying granularity can
be seen in Figure 1, showing how we interpolate between
the two modes of orthogonalizing the whole matrix on the
left (TP = 20) and orthogonalizing an increasing number of
sub-blocks separately until TP = 24.

5. Experiments
We train the original nanoGPT (Karpathy, 2022), without
changing its initialization, on OpenWebText (Gokaslan et al.,
2019) and C4 (Raffel et al., 2019) datasets. In all exper-
iments, we increase the size of the model by increasing
the number of its layers (depth scaling); set the number of
attention heads to be equal to the number of layers, while
increasing the embedding dimension proportionally by the
factor 64 (width scaling); moreover, for each experiment
we use 1x or 5x Chinchilla scaling for the number of tokens
depending on the setting (token number scaling). In the
experiments, we train and analyze models of different sizes,

from 124M up to 1.43B parameters, more precisely (we
include the number of layers in the brackets): 124M (12),
215M (15), 345M (18), 524M (21), 758M (24), 1.43B (30).
For more details, see Appendix H.

5.1. Orthogonalizing All Layers
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Figure 3. By tuning only one hyperparameter, MuonS is bet-
ter than Muon. We train nanoGPT on OpenWebText with 1x
Chinchilla. We increase the size of the model by simultaneously
increasing its depth and width, represented by the number of layers
in the legend. We can also observe that for both algorithms there
is a transfer of learning rate.
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Table 2. For MuonS and MuonSBW we observe learning
rate transfer during depth-width-token co-scaling. We train
nanoGPT models on OpenWebText with 1x Chinchilla scaling. We
plot validation losses for all tested learning rate values in Figure 4.

Size AdamW MuonS MuonSBW

LR Loss LR Loss LR Loss

124M 5.0e-04 4.2912 0.05 3.5668 0.01 3.5557
215M 5.0e-04 3.5657 0.05 3.1932 0.01 3.1743
345M 0.002 3.1019 0.02 2.9692 0.01 2.9522
524M 0.002 2.8785 0.02 2.7876 0.01 2.7892
758M 0.002 2.7271 0.02 2.6839 0.02 2.6885
1.43B 0.001 2.5435 0.05 2.5377 0.01 2.5377

In the original Muon implementation, AdamW was chosen
for the first and last layers. However, to speed up hyper-
parameter training, stabilize the training, and simplify the
optimizer, we use the spectral norm constraint for all layers,
which we name MuonS. When optimizing one learning rate
and keeping the rest of the hyperparameters fixed (more de-
tails are in Appendix H), it outperforms Muon and AdamW
for all model sizes, as can be seen in Figure 3 and Figure 2.
Tuning additional hyperparameters can, of course, lead to
better performance, as we demonstrate in Appendix C.

5.2. Analyzing Block-wise Orthogonalization

One of the downsides of the Muon optimizer is the need to
gather the update matrix Gl

t on one device, which incurs ad-
ditional communication costs during tensor parallel training.
For a naive implementation, it can save communication cost
during Allgather operation of dout×din orthogonalizing the
update matrix for each layer. To understand the influence of
block-wise orthogonalization on the validation loss achieved
by the model, we compare in Figure 1 several different ways
of splitting (sharding) the update matrix Gl

t. We find that
doing row-wise orthogonalization even improves the loss at
4x tensor parallelism and stays stable in validation loss up to
16x tensor parallelism. Degradation in validation loss can be
attributed to the increase of the spectral norm as we discuss
in Appendix 5.2. As for row-wise 4x tensor parallelism we
observed a better performance than the baseline MuonS, we
use it as our default setting for MuonSBW in the rest of the
experiments. In the next Section, we show the transfer of
learning rate during depth-width-token co-scaling.

5.3. Learning Rate Transfer

Next, in Figure 2, we increase the number of layers and thus
the size of the network and observe that, unlike AdamW,
our suggested optimizers MuonS and MuonSBW, together
with the block-wise versions, transfer well. We also report
the best validation losses and the learning rates achieving it

in Table 2. Surprisingly, for MuonSBW the same learning
rate 0.01 is the best for all model sizes, but one, with 24
layers. However, there the learning rate 0.01 is second best
and achieves a loss of 2.6896, close to the best.

5.4. Influence of Static Weight Decay
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Figure 4. Higher weight decay of 0.1 consistently outperforms
only at the end of the training. Here, for MuonSBW, we vary
weight decay for 5x Chinchilla. Similar observation was already
made in (Liu et al., 2025), however only for one training run
at a much larger scale and only for the MoE architecture. In
Appendix D, we observe similar trend for 1x Chinchilla scaling
and in Appendix G.2 - for models trained on C4.

Further, we investigate the influence of weight decay by
training models with 5x Chinchilla scaling. We can ob-
serve in Figure 4 that throughout most of the training for
all model sizes, the higher weight decay 0.1 has a higher
validation loss than the lower weight decay values. In the
end, roughly at the last 80% of the training (more details
are in Appendix D), the value of 0.1 results in significantly
lower validation loss. This can be attributed to the spectral
norm, as we discuss in the next section.

5.5. Investigating Spectral Norms

To better understand the reason behind the suddenly better
performance of the higher weight decay at the end of the
training, we analyze the spectral norm of the 124M model
for the LM head. We observe in Figure 5 the following:
i) (on the left) a higher weight decay value of 0.1 has a
significantly lower spectral norm, in line with the optimiza-
tion constrained to the spectral norm-ball that it induces,
as we discuss in Appendix B.2; ii) (in the middle) increas-
ing the number of splits of the gradient update matrix for
MuonSBW leads to a higher spectral norm that indicates a
gradually worse approximation of the orthogonalization due
to a higher number of splits, which still works well in prac-
tice as we can see in Figure 1; iii) (on the right) MuonSBW
has the lowest spectral norm, likely due to the spectral norm
being enforced on the first and last layers additionally, com-
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Figure 5. Higher weight decay of leads to a significantly lower spectral norm. For the 124M model, we compute the spectral norm of
the last layer, LM head, while varying weight decay, number of tensor parallel splits for MuonSBW, and optimizer. We see that a higher
weight decay of 0.1, on the left, leads to a significantly lower spectral norm, which might explain its better generalization properties.

pared to Muon, which uses AdamW for them. In addition,
we computed the spectral norm for each of the layers: 124M
model has 12 layers or transformer blocks, each containing
4 weight matrices: 2 in MLP and 2 in self-attention. For
each layer/block, we take the maximal spectral norm across
4 weight matrices, computed with singular value decomposi-
tion (SVD) for higher precision, and report it across training
steps. We discuss it further in Appendix E.

5.6. Dynamic Weight Decay
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Figure 6. Clipping weight decay at the end improves the val-
idation loss. For the 345M model and 5x Chinchilla scaling,
clipping at the 80% of the training improves the validation loss.
See Appendix D for more experiments and details.

We observed in Section 5.4 that the weight decay of 0.1
outperforms at the end of training, likely due to the tighter
constraints on the spectral norm throughout the training, as
we observed in the previous section and Appendix E. Here,

we investigate whether the spectral norm constraint should
be relaxed by decreasing weight decay towards the end of
the training. For this, we try three weight decay schedules:

Cutoff: wc(t) = 0.1 ·χt≤tmax·tc , where weight decay is 0.1
up until the cutoff proportion tc ∈ [0, 1] and 0 after that;

Polynomial, wp(t) = 0.1 · tk

tkmax
;

Inverse Polynomial, wp(t) = 0.1 · (1− tk

tkmax
).

For the 124M model, we show in Figure 6 that decreas-
ing weight decay towards the end of the training reduces
validation loss - both using Cutoff and Inverse Polynomial
schedules. Thus, we take the simpler schedule, Cutoff, and
train a larger 345M model, with the results in Figure 6. We
confirm that the Cutoff schedule achieves a lower validation
loss than the baseline. More details are in the Appendix D.

6. Discussion
Conclusion. For the Muon optimizer, we propose using the
spectral norm constraint for all layers to speed up the hyper-
parameter search, perform block-wise orthogonalization to
improve communication efficiency when using tensor paral-
lelism, and observe learning rate transfer across model sizes
when co-scaling depth, width, and the number of tokens.
Additionally, we investigate in more detail the weight decay
and CBS of the proposed optimizers.

Limitations. While we show that block-wise orthogonaliza-
tion works, achieving the best results with row-wise shard-
ing, we do not implement it in Megatron-LM or a similar
framework, which would be important for a better adoption,
and leave it for future work. Moreover, we investigate the
learning rate transfer and behavior of block-wise orthogonal-
ization and weight decay empirically and leave theoretical
understanding for future work as well. Lastly, due to the
high computational cost, we provide results for one seed.
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A. Steepest Descent for General Norms
L-smoothness. Assume that F is differentiable with L-Lipschitz gradient with respect to a general norm ∥ · ∥ (that is F is
L-smooth with respect to ∥ · ∥),

∥∇F (X)−∇F (Y )∥∗ ≤ L ∥X − Y ∥, ∀X,Y ∈ X , (6)

where ∥ · ∥∗ is the dual norm
∥G∥∗ = sup

∥X∥≤1

⟨G,X⟩, (7)

Then for X = Rn by descent lemma (Nesterov, 2018) for all X,Y this implies (and for F convex it is equivalent
by (Nesterov, 2018))

F (Y ) ≤ F (X) + ⟨∇F (X), Y −X⟩+ L

2
∥Y −X∥2. (8)

Inequality (8) provides a quadratic upper bound (majoriser) of F around X . Minimizing this surrogate at the current iterate
Xt allows to solve (1) by the steepest descent update for general norms (Nesterov, 2010; Mądry, 2015; Carlson et al., 2016)

Xt+1 = Xt −
∥∇F (Xt)∥∗

L

(
∇F (Xt)

)#
∥·∥

(
∇F (Xt)

)#
∥·∥ ∈ argmax

∥H∥=1

⟨∇F (Xt), H⟩. (9)

For the Euclidean ℓ2 norm,
(
∇F (Xt)

)#
∥·∥2

= ∇F (Xt)
∥∇F (Xt)∥2

, so the steepest descent step in (2) reduces to gradient descent
(GD) with step size 1/L. The standard GD Xt+1 = Xt − ηt∇F (Xt) with an arbitrary ηt is therefore not the steepest
descent update unless ηt = 1/L. Note as well that for the standard GD L-smoothness is a sufficient descent condition,
guaranteeing that F (Xt+1) < F (Xt), as long as ηt < 2

L .

Neural Networks. It is well known that neural networks do not admit L-smoothness with respect to the Euclidean
norm (Cohen et al., 2021; Zhang et al., 2020; Large et al., 2024). On the other hand, while global (or even local) L-
smoothness is sufficient for monotone descent, neural network training can succeed without it: full-batch GD stabilizes at
λmax ≈ 2/η – hovering right at or just above the strict upper bound for the sufficient descent condition – yet still converges
(Cohen et al., 2021; Arora et al., 2022). In such cases, we can interpret L not as a Lipschitz constant, but as the “sharpness”
(Bernstein & Newhouse, 2024) – by decreasing sharpness, we increase the step size.

B. More Details on Muon
B.1. Feature learning.

The spectral norm is motivated by recent work (Yang et al., 2023), where feature learning condition is derived for MLP with
weight matrices W l

t ∈ Rdl
out×dl

in . It requires that for each step t and each layer l the following holds:

σmax(W
l
t ) = Θ

(√ dlin
dlout

)
,

σmax(W
l
t+1−W l

t ) = Θ
(√ dlin

dlout

)
.

It holds for (2) with the norm ||W l
t ||RMS→RMS =

√
dl
in

dl
out

σmax(W
l
t ), ||x||RMS :=

√
1
dl
in

∑dl
in

i=1 x
2
i .

B.2. Constrained Optimization via Weight Decay.

By explicitly choosing different norms for each layer, the concurrent work of (Pethick et al., 2025) builds on the Stochastic
Conditional Gradient method (SCG), introduced in (Mokhtari et al., 2020). Concretely, in (Pethick et al., 2025), the authors
rewrite Muon update (3) by constraining ηt ∈ (0, 1) and λ ∈ [0, 1] as follows

W l
t+1 = (1− ηtλ)W

l
t + ηt lmo||·||RMS→RMS

(Gl
t). (10)

9
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Here, lmo stands for linear minimization oracle defined as

lmo∥·∥,r(X) ∈ argmin
{S∈X | ∥S∥≤r}

⟨X,S⟩.

and can be expressed via sharp operator: lmo∥·∥,r(X) = −r(X)#∥·∥.

The formulation in (10) makes it clear that when ηt ∈ (0, 1) and λ = 1, we recover SCG, which minimizes our main
objective (1) in the norm-ball of radius D := {X ∈ X | ∥X∥ ≤ r}.
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C. Tuning more hyperparameters
In this paper, we focus on MuonS and its parallelizable version, MuonSBW, that require tuning only one hyperparameter.
However, in this section, we want to understand the performance of optimizers when tuning more hyperparameters. As this
requires expensive testing of all combinations of hyperparameters, we focus on varying two hyperparameters for 124M
nanoGPT model with 1x Chinchilla scaling. For this, we train it on OpenWebText.

Table 3. Optimal learning rates and valida-
tion losses for MuonS and Scion optimizers.
Here, we train nanoGPT models on OpenWeb-
Text. Best and second-best validation losses per
model size are highlighted.

Layers MuonS Scion

LR Loss LR Loss

12 0.05 3.5668 0.05 3.4342
15 0.05 3.1932 0.05 3.1311
18 0.02 2.9692 0.02 2.9305
21 0.02 2.7876 0.02 2.7798
24 0.02 2.6839 0.02 2.6826
30 0.05 2.5377 0.02 2.5214

Muon optimizer uses two optimizers depending on the layer: for the first,
last layers, and 1D tensors AdamW is used, while for all others – optimizers
based on SSD with momentum and NS iteration. By tuning a separate
learning rate for the AdamW-optimized tensors for Muon optimizer in
Table 4 and our proposed MuonS (AdamW is used only for 1D tensors) in
Table 5, we see that we can achieve a better loss in both cases. While the best
performance is achieved with the Muon in this full sweep, note in the case of
MuonS that the influence of the second learning rate is not as strong as it is
used only for 1D tensors – a property we would like to have in the optimizer
that requires tuning only one hyperparameter. For completeness, in Table 6
we have additionally analyzed the performance of MuonS with normalized
momentum SGD for 1D tensors. Because performance in validation loss is
worse than that of MuonS when using AdamW for 1D tensors in Table 5.

Next, in Figure 7 and Table 3 we observe that following the optimizer
suggested in Scion (Pethick et al., 2025) that uses a different norm constraint for the input and output layers can also improve
performance. Concretely, in Scion (Pethick et al., 2025), the authors propose to enforce the ℓ∞ norm for the input and
output layers, while keeping the spectral norm for the rest of the layers. Thus, we separately tune the learning rate for the
spectral norm-constrained layers and ℓ∞ norm-constrained ones.

2
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Figure 7. By tuning additional hyperparameter, Scion opti-
mizer can outperform MuonS. Here, we show that by tuning
an additional hyperparameter for first and last layers, we can
achieve a better performance than MuonS. This becomes less
evident for larger models. See Table 3 for the optimal learning
rate and validation loss values.

Because it has been shown in Scion (Pethick et al., 2025)
that such an optimizer enjoys the learning rate transfer when
scaling the width, we are interested in both tuning two hyper-
parameters and testing the learning rate transfer when doing
depth-width-token co-scaling, which was the case for Muon,
MuonS and MuonSBW (see Section 5.3 and Figure 3), with
MuonSBW and MuonS having more consistent behavior of
the validation loss when varying learning rate (optimal learn-
ing rate is the same for the smallest and the largest models)
during such co-scaling. For Scion, we observe in Figure 7
that up-scaling the learning rate by factor 10 for the input and
output layers leads to better performance in validation loss and
learning rate transfer during depth-width-token co-scaling. We
see, however, that MuonS has more consistent behavior of the
validation loss and the difference in the achieved validation
loss decreases with model scale. This might imply that tuning
this additional hyperparameter is less relevant at bigger model
scales.
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Table 4. Muon validation losses for 124M nanoGPT model trained on OpenWebText. Here, A stands for the learning rate used for tensors
optimized with AdamW - first and last layers, together with 1D tensors. M stands for the learning rate used for all the other tensors
optimized with Muon. Here, blue cells denote the best validation loss achieved when using the same learning rate during the optimization
(faster search), and green - best validation loss achieved when using different learning rates during the optimization (longer search).

M
A

1e-04 2e-04 5e-04 1e-03 2e-03 5e-03 1e-02 2e-02 5e-02 1e-01 2e-01 5e-01

1e-04 5.9390 5.7853 5.6063 5.5068 5.4671 5.4352 5.4355 5.4525 5.4670 5.5710 5.8037 7.2642
2e-04 5.9344 5.7719 5.5703 5.4461 5.3390 5.2956 5.3305 5.3804 5.4107 5.5289 5.7673 7.0563
5e-04 5.7813 5.6212 5.4087 5.2653 5.1457 5.0251 5.0733 5.2154 5.2319 5.3614 5.6518 6.6242
1e-03 5.5489 5.3877 5.1773 5.0298 4.8968 4.7512 4.7525 4.9443 4.9166 5.0906 5.5074 6.4771
2e-03 5.1832 5.0178 4.8000 4.6233 4.4614 4.3365 4.3910 4.5600 4.5663 4.7187 5.3250 6.5286
5e-03 4.5376 4.3326 4.0997 3.9685 3.8631 3.8181 3.9197 4.0588 4.0772 4.1451 4.9531 6.7412
1e-02 4.2066 4.0190 3.7967 3.6850 3.6212 3.6203 3.7142 3.8321 3.8488 3.9396 4.5877 6.6117
2e-02 4.0653 3.8872 3.6785 3.5718 3.5327 3.5427 3.6310 3.7162 3.7234 3.8101 4.4429 7.4264
5e-02 3.9382 3.7602 3.5800 3.5127 3.4983 3.5136 3.6266 3.6957 3.7353 3.8357 5.2475 6.6402
1e-01 4.2107 3.9947 3.8332 3.7574 3.7060 3.7826 3.8502 3.8895 3.7817 3.9937 5.0316 8.2968
2e-01 6.6563 6.4079 6.1657 6.0540 6.0091 6.0897 6.2917 6.2566 6.4390 6.4332 6.7816 10.9911
5e-01 7.4857 7.0731 6.8243 6.6584 6.5182 6.6184 6.7522 6.9997 6.9901 7.1735 7.2850 10.9911

Table 5. MuonS validation losses for 124M NanoGPT model trained on OpenWebText. Here, A stands for the learning rate used for
tensors optimized with AdamW - only 1D tensors. M stands for the learning rate used for all the other tensors optimized with Muon. Here,
blue cells denote the best validation loss achieved when using the same learning rate during the optimization (faster search), and green -
best validation loss achieved when using different learning rates during the optimization (longer search).

M
A

1e-04 2e-04 5e-04 1e-03 2e-03 5e-03 1e-02 2e-02 5e-02 1e-01 2e-01 5e-01

1e-04 7.4393 7.3879 7.2704 7.1551 7.0565 6.9783 6.9340 6.9035 6.8836 6.8830 6.8920 6.9085
2e-04 6.7325 6.6915 6.5970 6.5000 6.4076 6.3227 6.2774 6.2477 6.2320 6.2371 6.2522 6.2887
5e-04 5.7924 5.7705 5.7127 5.6501 5.5853 5.5140 5.4755 5.4517 5.4398 5.4456 5.4601 5.4903
1e-03 5.1101 5.0963 5.0629 5.0259 4.9886 4.9470 4.9251 4.9049 4.8959 4.9077 4.9602 5.0222
2e-03 4.4332 4.4351 4.4122 4.3942 4.3753 4.3543 4.3387 4.3267 4.3178 4.3099 4.3175 4.3879
5e-03 3.8076 3.8017 3.7966 3.7913 3.7880 3.7827 3.7728 3.7644 3.7581 3.7715 3.7981 3.8709
1e-02 3.6474 3.6429 3.6366 3.6465 3.6345 3.6426 3.6259 3.6264 3.6227 3.6148 3.6449 3.7259
2e-02 3.8047 3.7775 3.7681 3.7593 3.7375 3.7167 3.6623 3.6181 3.5622 3.5577 3.5773 3.6933
5e-02 4.8114 4.8270 4.8160 4.7428 4.6636 4.4013 3.9651 3.7402 3.5668 3.5463 3.6068 5.4322
1e-01 5.4238 5.4633 5.6575 5.5914 5.4680 5.2629 4.8798 4.0335 3.8014 3.8496 4.9753 7.1162
2e-01 6.1991 6.2095 6.1799 6.1810 6.1312 5.9375 5.4313 5.2340 4.9602 5.4483 6.8416 10.9911
5e-01 10.9911 10.9911 10.9911 10.9911 10.9911 8.6015 6.6321 6.3084 6.3822 9.0017 10.9911 10.9911

Table 6. MuonS validation losses for 124M nanoGPT model trained on OpenWebText. Here, S stands for the learning rate used for tensors
optimized with normalized momentum SGD - only 1D tensors. M stands for the learning rate used for all the other tensors optimized with
Muon. Here, blue cells denote the best validation loss achieved when using the same learning rate during the optimization (faster search),
and green - best validation loss achieved when using different learning rates during the optimization (longer search).

M
S

1e-04 2e-04 5e-04 1e-03 2e-03 5e-03 1e-02 2e-02 5e-02 1e-01 2e-01 5e-01

1e-04 7.4963 7.4931 7.4829 7.4684 7.4390 7.3606 7.2610 7.1347 6.9964 6.9355 6.9013 6.8954
2e-04 6.7780 6.7749 6.7684 6.7567 6.7337 6.6738 6.5937 6.4869 6.3559 6.2962 6.2648 6.2522
5e-04 5.8165 5.8144 5.8109 5.8027 5.7872 5.7440 5.6818 5.5949 5.4850 5.4250 5.3693 5.3035
1e-03 5.1273 5.1253 5.1207 5.1127 5.0986 5.0580 5.0080 4.9378 4.8401 4.7620 4.7015 4.6365
2e-03 4.4485 4.4444 4.4424 4.4397 4.4303 4.4018 4.3694 4.3194 4.2404 4.1591 4.0989 4.0658
5e-03 3.8122 3.8069 3.8047 3.8057 3.8024 3.7889 3.7795 3.7649 3.7386 3.7246 3.7150 3.7245
1e-02 3.6490 3.6450 3.6458 3.6449 3.6563 3.6417 3.6248 3.6292 3.6189 3.6148 3.6112 3.6230
2e-02 3.8423 3.7921 3.7862 3.7783 3.7711 3.7764 3.7556 3.7265 3.6867 3.6416 3.6111 3.5986
5e-02 4.8113 4.8326 4.7843 4.8653 4.7846 4.7352 4.5963 4.1807 3.9549 3.8951 3.9050 3.8143
1e-01 5.5294 5.6321 5.5654 5.7361 5.4144 5.3642 5.3437 5.2497 4.7069 4.6061 4.8194 5.6131
2e-01 6.2283 6.2298 5.9690 6.0936 6.1978 5.9463 6.1157 5.7292 5.3737 5.5721 6.3683 7.7045
5e-01 10.9911 10.9911 10.9911 10.9911 10.9911 10.9911 10.9911 9.2089 6.7458 7.5215 10.9911 10.9911
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Figure 8. For MuonSBW, higher weight decay of 0.1 consistently outperforms only at the end of the training. Here, for MuonSBW,
we vary weight decay for 1x Chinchilla. One can see that with 1x Chinchilla scaling it is still visible that at the end of the training higher
weight decay of 0.1 consistently outperforms lower weight decay values while being significantly worse before. However, this occurs at
the earlier proportion of the training run than using 5x scaling (see Figure 4).

D. Extended Weight Decay Evaluation
In Section 5.4 and Figure 4 for MuonSBW overtrained with 5x Chinchilla scaling, we investigated the influence of weight
decay on validation loss. There, the weight decay of 0.1 started to perform better than the lower weight decay values only
after 70% of the training run for the 124M model, 78% for the 345M model, 82% for the 524M model, and 84% for the
758M model with a mean of 77%. That is, the bigger the model is and the longer we train (because we co-scale tokens when
scaling model size), the later 0.1 weight decay value improves the validation loss.

In this section, we continue training nanoGPT on OpenWebText and do it for additional optimizers, Muon, MuonS, AdamW,
as well as for 1x Chinchilla and 5x Chinchilla scaling.

MuonSBW. First, we train using MuonSBW introduced in Section 4, but with fewer tokens, using 1x Chinchilla scaling. In
this setting, as we observe in Figure 8 that a similar trend holds – MuonSBW with the weight decay of 0.1 outperforms in
validation loss only at the end of the training, however it starts outperforming at the earlier proportion of the training run
than with 5x Chinchilla scaling: the weight decay of 0.1 started to perform better than the lower weight decay values only
after 32% of the training run for the 124M model, 64% for the 345M model, 68% for the 524M model, and 71% for the
758M model with a mean of 59%.

AdamW. Next, to understand if similar behavior happens for AdamW, we first train it with 5x and then 1x Chinchilla scaling.
In both settings, as we observe in Figure 9 for the 5x Chinchilla scaling and in Figure 10 for the 1x Chinchilla scaling, the
weight decay of 0.1 outperforms in validation loss only at the end of the training, similar to MuonSBW. However, for both
5x and 1x Chinchilla scaling we observe it only for models of larger sizes – with 524M and 758M parameters, and the
difference of performance with higher weight decay is less prominent. Concretely, with the 5x Chinchilla scaling, AdamW
with a weight decay of 0.1 started to perform better than the lower weight decay values only after 14% of the training run
for the 124M model, 9% for the 345M model, 68% for the 524M model, and 68% for the 758M model with a mean of 40%.
For 1x Chinchilla scaling, it starts outperforming already early in the training: after 20% of the training run for the 124M
model, 5% for the 345M model, 3% for the 524M model, and 3% for the 758M model with a mean of 8%.
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Figure 9. For AdamW, higher weight decay of 0.1 outperforms at the end of the training only for bigger models. When varying
weight decay values for AdamW, for 5x Chinchilla, we can see that higher weight decay of 0.1 outperforms lower weight decay values at
the end of the training only for larger models, 524M and 758M ones.
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Figure 10. For AdamW, higher weight decay of 0.1 outperforms at the end of the training only for bigger models. When varying
weight decay values for AdamW, for 1x Chinchilla, we can see that, similarly to 5x Chinchilla (see Figure 9), higher weight decay of 0.1
outperforms lower weight decay values at the end of the training only for larger models, 524M and 758M ones. The difference becomes
less visible however.
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MuonS. Similarly, we train with MuonS first with a 5x and then 1x Chinchilla scaling. In both settings, as we observe in
Figure 11 for the 5x Chinchilla scaling and in Figure 12 for the 1x Chinchilla scaling, the weight decay of 0.1 outperforms
in validation loss only at the end of the training, similar to MuonSBW. Concretely, with the 5x Chinchilla scaling, MuonS
with a weight decay of 0.1 started to perform better than the lower weight decay values after 82% of the training run for the
124M model, 89% for the 345M model, 93% for the 524M model, and 99% for the 758M model with a mean of 91%. Thus,
this improvement occurs later than for MuonSBW. For 1x Chinchilla scaling, it also occurs later in the training: after 66% of
the training run for the 124M model, 79% for the 345M model, 81% for the 524M model, and 84% for the 758M model
with a mean of 78%.

Muon. Similarly for Muon, we first train nanoGPT on OpenWebText with 5x and then 1x Chinchilla scaling. In both
settings, as we observe in Figure 13 for the 5x Chinchilla scaling and in Figure 14 for the 1x Chinchilla scaling, the weight
decay of 0.1 outperforms in validation loss only at the end of the training, similar to MuonSBW. However, for the case of
the 5x Chinchilla, we observe a “loss spike” at the end of training. Such “loss spikes” have been observed when training
models with AdamW (Molybog et al., 2023), which might be relevant here since Muon uses AdamW to optimize the first
and the last layers. In our experiments, with the 5x Chinchilla scaling, Muon with a weight decay of 0.1 started to perform
better than the lower weight decay values after 61% of the training run for the 124M model, 77% for the 345M model, 84%
for the 524M model, and 89% for the 758M model with a mean of 78%. For 1x Chinchilla scaling, it starts outperforming
after 37% of the training run for the 124M model, 53% for the 345M model, 63% for the 524M model, and 68% for the
758M model with a mean of 55%. In both cases, it is similar to MuonSBW.
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Figure 11. For MuonS, higher weight decay of 0.1 consistently outperforms only at the end of the training. Here, we vary weight
decay for 5x Chinchilla. In this setting, at the end of the training higher weight decay of 0.1 consistently outperforms lower weight decay
values while being significantly worse before. This behavior is similar to using MuonSBW (see Figure 4).
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Figure 12. For MuonS, only at the end of the training higher weight decay of 0.1 consistently outperforms. Here, for MuonS, we
vary weight decay for 1x Chinchilla. In this setting, it is still visible that at the end of the training higher weight decay of 0.1 consistently
outperforms lower weight decay values while being significantly worse before. However, this occurs at the earlier proportion of the
training run than using 5x scaling (see Figure 11).
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Figure 13. For Muon, higher weight decay of 0.1 consistently outperforms only at the end of the training. Here, we vary weight
decay for 5x Chinchilla. In this setting, at the end of the training higher weight decay of 0.1 consistently outperforms lower weight decay
values while being significantly worse before. This behavior is similar to using MuonSBW (see Figure 4). For the largest model we see a
“loss spike” – an undesired artefact, which sometimes occurs for AdamW (Molybog et al., 2023).
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Figure 14. For Muon, higher weight decay of 0.1 consistently outperforms only at the end of the training. For 1x Chinchilla, this
occurs at the earlier proportion of the training run than using 5x scaling (see Figure 13).
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D.1. Weight Decay Schedule

In Section 5.4, we show that for the larger model with 345M parameters, the Cutoff schedule outperforms the baseline
(constant weight decay of 0.1) at 80% of the data. Here, for the smaller model with 124M parameters, we do ablation for
different schedules introduced in Section 5.4. For it, we observe in Figure 15 that decreasing weight decay with the Inverse
Polynomial Schedule leads to similar gains. This, together with the observations in Section 5.4, might indicate that the
weight decay becomes less important at the end of the training. We analyze it further from the perspective of a spectral norm
in the next section.
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Figure 15. Clipping weight decay at 80% of the training and Inverse Polynomial Schedule helps. For MuonSBW, with weight decay
clipping (Cutoff Schedule), we can improve compared to the fixed weight decay by turning the weight decay off at the last 80% of the
training. We observe similar gains for the Inverse Polynomial Schedule.
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E. Investigating Spectral Norms for All Layers
E.1. Influence of the Number of Splits
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Figure 16. Increasing the number of tensor parallel splits (TP) in MuonSBW leads to higher spectral norms across all layers. For
the 124M model, we compute the maximal spectral norms across weight matrices in one layer (block of the transformer) varying the
number of row-wise splits.

First, in Figure 16, we observe that increasing the number of row-wise tensor parallel splits (TP) for MuonSBW, introduced
in Section 4, consistently increases the spectral norms for all layers. We take row-wise splits, as they had the lowest
validation loss, close to the MuonS baseline (no block-wise orthogonalization is used) as we could see in Figure 1.

E.2. Influence of the Weight Decay
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Figure 17. Increasing the weight decay value in MuonSBW leads to lower spectral norms across all layers. For the 124M model, we
compute the maximal spectral norms across weight matrices in one layer (block of the transformer) varying the number of row-wise splits.

Next, in Figure 17, we see that for MuonSBW we also have a consistent decrease of the spectral norms for all layers when
increasing the weight decay value.

E.3. Influence of the Optimizer
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Figure 18. MuonSBW obtains lower spectral norms than Muon. For the 124M model, we compute the maximal spectral norms across
weight matrices in one layer (block of the transformer) varying the number of row-wise splits.
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Lastly, in Figure 18, we can notice a consistent decrease in the spectral norm for all layers, when using MuonSBW, compared
to Muon, which in turn attains lower spectral norms compared to AdamW.

F. Critical Batch Size
For a better understanding of MuonS and MuonSBW, we analyze its critical batch size introduced in (Zhang et al., 2025) on
the OpenWebText dataset and compare it to AdamW. For this, we use 1x Chinchilla scaling and achieve a loss of 3.2 with a
baseline optimizer, AdamW, with the smallest batch size of 27 to ensure that we can also achieve it in other settings. We
choose the 345M model as this is the smallest model, which does not have big differences in the best validation loss obtained
when comparing AdamW, MuonS and MuonSBW (see Figure 2). In addition, for each batch size, we vary 5 learning rates
and choose the best. The maximum number of steps for each batch size is such that it preserves the 1x Chinchilla scaling. In
this setting, in Figure 19, we observe that CBS for AdamW is higher; however, it requires more steps for each batch size and
scales much worse for higher batch sizes. Moreover, it does not achieve the target loss for the largest batch size of 212.
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Figure 19. While CBS for AdamW is higher, it requires more steps for each batch size and scales much worse for higher batch sizes.
For 345M nanoGPT model, we vary batch size during the training using 1x Chinchilla scaling (thus the number of optimization steps is
changed accordingly) to understand, how optimizers influence CBS. Note that for batch size 212 AdamW does not reach the target loss.

G. Results for C4 Dataset
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Figure 20. MuonSBW enjoys learning rate transfer during
depth-width-token co-scaling for C4 dataset. Similar to ob-
servations in Figure 2 for OpenWebText, we observe for another
dataset, C4, that the MuonSBW learning rate transfers when
simultaneously scaling model depth, width, and number of to-
kens, while for AdamW it does not.

In this section, we investigate how some of the properties
of MuonSBW observed with nanoGPT on the OpenWebText
dataset transfer to the C4 dataset. We already saw in Figure 1
that MuonSBW has a similar scaling behavior when increasing
the number of tensor parallel splits (TP) for OpenWebText and
C4. Here, we further compare its learning rate transfer and
weight decay influence in the following sections.

G.1. Learning rate transfer

First, we compare the learning rate transfer of MuonSBW and
AdamW. We can see in Figure 20 a behavior similar to that
we already observed for OpenWebText in Figure 2 – there
is learning rate transfer for MuonSBW during depth-width-
token co-scaling, unlike for AdamW. Furthermore, the optimal
learning rate for OpenWebText of 0.01 is also the best here.
Due to the time and compute constraints we train the models
here up to 24 layers, while for the experiment in Figure 20 we
trained one more size of the model, with 30 layers.
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G.2. Static Weight Decay

In addition, for two model sizes, 124M and 345M, in Figure 22 we show the behavior of static weight decay when training
with MuonSBW and 5x Chinchilla scaling. Similarly to models trained on OpenWebText (see Section 5.4), we observe that
a higher weight decay value of 0.1 outperforms other weight decay values only at the end of the training run.
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Figure 21. Higher weight decay of 0.1 consistently outperforms only at the end of the training. Similar to previous observations in
Section 5.4, we observe for MuonSBW additionally on C4 dataset, that a higher weight decay value of 0.1 initially performs worse and
then, at the end of the training, better than lower constant values in validation loss.

G.3. Dynamic Weight Decay

Finally, we try the weight decay schedules proposed in Section 5.6 for MuonSBW trained on C4. We see that similarly to
OpenWebText (see Appendix D.1), increasing Cutoff proportion and the degree in Inverse Polynomial schedule decreases
the validation loss. However, it remains comparable to the baseline with the constant weight decay value of 0.1, while on
OpenWebText we observe improvement in the validation loss for these both schedules.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Cutoff proportion

3.19

3.20

3.21

3.22

3.23

3.24

Va
lid

at
io

n 
Lo

ss

Cutoff Schedule

20 21 22 23 24

Polynomial degree

Polynomial Schedule

20 21 22 23 24

Inverse Polynomial degree

Inverse Polynomial Schedule

Constant wd = 0.1
Constant wd = 0.0

Figure 22. Clipping weight decay at 80% of the training and Inverse Polynomial Schedule. Motivated by previous observations in
Section 5.4, we investigate for MuonSBW additionally on C4 dataset, if clipping weight decay or varying it throughout the training has
influence on the performance of the model. We see that clipping it at 90% of the training outperforms the baseline weight decay slightly.
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H. Experimental Details
Here, we provide more details of our experimental setting used throughout the paper. They remain consistent across all
experiments in the paper, unless we specify otherwise.

H.1. Model Hyperparameters

We used the original nanoGPT model (Karpathy, 2022) without changing its initialization with a block size of 1024 and
vocabulary size of 50304 (GPT-2 vocabulary size of 50257, padded up to the nearest multiple of 64 for efficiency). When
we increase the number of layers, we consider the following model sizes, together with the number of layers in brackets:
124M (12), 215M (15), 345M (18), 524M (21), 758M (24), 1.43B (30). We do depth-width-token co-scaling, by setting the
number of heads in the nanoGPT to be the same as the number of layers, and additionally setting the embedding dimension
to be four times the number of heads (and thus layers).

H.2. Optimizer Hyperparameters

For all optimizers, we use the cosine learning rate schedule with the linear warm-up until 2% of the training and decay it
until the end of the training. By default, we use 1x Chinchilla scaling, that is, the number of tokens used is twenty times the
number of model parameters. Following the nanoGPT codebase, we also use gradient clipping of the global norm at 1.0.

AdamW. By default, we set the weight decay to 0.1 and β1 with β2 to 0.9 and 0.95, respectively.

Muon. Spectral norm constraint is used for all layers, but the 1D tensors, together with the first and last layers, are optimized
with AdamW. By default, we set the Nesterov momentum to 0.9, AdamW β1 and β2 to 0.9 and 0.95, and AdamW weight
decay to 0.01. The orthogonalization is approximated with the quintic NS iteration using 6 steps. If not explicitly specified,
we use the same learning rate for the layers optimized with the spectral norm constraint and AdamW.

MuonS. We use the same setting as for Muon, with the difference that we use the spectral norm constraint for all layers, and
we use AdamW for 1D tensors, unless specified otherwise.

MuonSBW. We use the same setting as for MuonS, however, we perform NS iteration on either row-, column-, or block-wise
splits as described in Section 4 and concatenate them afterwards.

Scion. We use the same setting as for MuonS; however, for the first and last layers, we use ℓ∞ norm constraint, which
implies sign updates. Unless otherwise specified, we increase the learning rate for the first and last layers with the ℓ∞ norm
constraint by a factor 10.

H.3. Details About Datasets

OpenWebText (Gokaslan et al., 2019). Train split contains 9B tokens and validation split – 4M tokens.

C4 (Raffel et al., 2019; for AI, 2019). We use the “en” part of the dataset. The train split contains 175B tokens, and the
validation split – 87M tokens.

H.4. Details About the Compute

For all our experiments, we were training models using three types of nodes with 8 NVIDIA GPUs each: A100, L40S, and
A10G. Each training run was done on one full node, depending on the RAM required.
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