
Under review as submission to TMLR

An Empirical Comparison of O�-policy Prediction Learning

Algorithms on the Collision Task

Anonymous authors
Paper under double-blind review

Abstract

O�-policy prediction—learning the value function for one policy from data generated while
following another policy—is one of the most challenging subproblems in reinforcement
learning. This paper presents empirical results with eleven prominent o�-policy learning
algorithms that use linear function approximation: five Gradient-TD methods, two Emphatic-
TD methods, O�-policy TD(⁄), Vtrace, and variants of Tree Backup and ABQ that are
derived in this paper such that they are applicable to the prediction setting. Our experiments
used the Collision task, a small o�-policy problem analogous to that of an autonomous car
trying to predict whether it will collide with an obstacle. We assessed the performance of
the algorithms according to their learning rate, asymptotic error level, and sensitivity to
step-size and bootstrapping parameters. By these measures, the eleven algorithms can be
partially ordered on the Collision task. In the top tier, the two Emphatic-TD algorithms
learned the fastest, reached the lowest errors, and were robust to parameter settings. In the
middle tier, the five Gradient-TD algorithms and O�-policy TD(⁄) were more sensitive to
the bootstrapping parameter. The bottom tier comprised Vtrace, Tree Backup, and ABQ;
these algorithms were no faster and had higher asymptotic error than the others. Our results
are definitive for this task, though of course experiments with more tasks are needed before
an overall assessment of the algorithms’ merits can be made.

1 Introduction

In reinforcement learning, it is not uncommon to learn the value function for one policy while following
another policy. For example, the Q-learning algorithm (Watkins, 1989; Watkins & Dayan, 1992) learns the
value of the greedy policy while the agent may select its actions according to a di�erent, more exploratory,
policy. The first policy, the one whose value function is being learned, is called the target policy while the more
exploratory policy generating the data is called the behavior policy. When these two policies are di�erent,
as they are in Q-learning, the problem is said to be one of o�-policy learning, whereas if they are the same,
the problem is said to be one of on-policy learning. The former is ‘o�’ in the sense that the data is from
a di�erent source than the target policy, whereas the latter is from data that is ‘on’ the policy. O�-policy
learning is more di�cult than on-policy learning and subsumes it as a special case.

There are various reasons for interest in o�-policy learning. One reasons is that it has been the core of many
of the great successes that have come out of the Deep Reinforcement Learning field in the past few years.
Probably one of the most notable examples is the DQN architecture, in which the Q-learning algorithm was
used to learn how to play Atari games (Mnih et al., 2015).

Another reason for interest in o�-policy learning is that it provides a clear way of intermixing exploration
and exploitation. The dilemma is that an agent should always exploit what it has learned so far—it should
take the best actions according to what it has learned—but it should also always explore to find actions that
might be superior. No agent can simultaneously behave in both ways. However, an o�-policy algorithm can,
in a sense, pursue both goals at the same time. The behavior policy can explore freely while the target policy
can converge to the fully exploitative, optimal policy independent of the behavior policy’s explorations.
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Another appealing aspect of o�-policy learning is that it enables learning about many policies in parallel.
Once the target policy is freed from behavior, there is no reason to have a single target policy. With o�-policy
learning, an agent could simultaneously learn how to optimally perform many di�erent tasks (as suggested by
Jaderberg et al. (2016) and Rafiee et al. 2019). Parallel o�-policy learning of value functions has even been
proposed as a way of learning general, policy-dependent, world knowledge (e.g., Sutton et al., 2011; White,
2015; Ring, in prep). Finally, note that numerous ideas in the machine learning rely on o�-policy learning,
including the learning of temporally-abstract world models (Sutton, Precup, & Singh, 1999), predictive
representations of state (Littman, Sutton, & Singh, 2002; Tanner & Sutton, 2005), auxiliary tasks (Jaderberg
et al., 2016), life-long learning (White, 2015), and learning from historical data (Thomas, 2015).

Many o�-policy learning algorithms have been explored in the history of reinforcement learning. Q-learning
(Watkins, 1989; Watkins & Dayan, 1992) is perhaps the oldest. In the 1990s it was realized that combining
o�-policy learning, function approximation, and temporal-di�erence (TD) learning risked instability (Baird,
1995). Precup, Sutton, and Singh (2000) introduced o�-policy algorithms with importance sampling and
eligibility traces, as well as tree backup algorithms, but did not provide a practical solution to the risk of
instability. Gradient-TD methods (see Maei, 2011; Sutton et al., 2009) assured stability by following the
gradient of an objective function, as suggested by Baird (1999). Emphatic-TD methods (Sutton, Mahmood,
& White, 2016) reweighted updates in such a way as to regain the convergence assurances of the original
on-policy TD algorithms. These methods had convergence guarantees, but provide no assurances for e�ciency
in practice. Other algorithms, including Retrace (Munos et al., 2016), Vtrace (Espeholt et al., 2018) and ABQ
(Mahmood, Yu, & Sutton, 2017) were developed recently to overcome di�culties encountered in practice.

As more o�-policy algorithms were developed, there was a need to compare them systematically. However,
comparing algorithms fairly within a DQN-like architecture was not possible. In a DQN-like architecture,
many elements work in concert to solve a task. Each element has one or more parameters that need tuning.
On one hand, not all these parameters can be tuned systematically due to the computational cost, and on
the other hand, tuning parameters carefully and studying performance over many parameters is necessary for
a fair comparative study. In the original DQN work, for example, the parameters were not systematically
tuned due to the computational burden; the DQN paper reads: “The values of all the hyperparameters and
optimizer parameters were selected by performing an informal search on the games Pong, Breakout, Seaquest,
Space Invaders and Beam Rider.” (Mnih et al., 2015). Due to the computational cost, to be able to conduct
a fair and detailed comparative study, separate parts of a DQN-like architecture need to be studied alone.

We reduce the amount of required computation in this study in three ways. First, we focus on comparing
o�-policy algorithms and remove other confounding factors from the comparison. This means that the
comparison will not include elements such as complex optimizers, target networks, or experience replay
bu�ers. Second, we focus on linearly learning the value function from given and fixed features. These learned
value functions can later be used for control. Focusing on linearly learning the value function through fixed
features is justified through the two time scale view of Neural Networks (NNs) as described by Chung et
al. (2018). In this view, it is assumed that the features are learned using the first n ≠ 1 layers of the neural
network at their own time scale, and then the features are used by the last layer to linearly learn the value
function. Third, we focus on fully incremental online algorithms. Many algorithms referred to as the OPE
family of algorithms assume access to data beyond what the agent experiences at each time step. Our paper,
focuses on the fully incremental setting, in which the agent makes one interaction with the environment,
receives a reward, learns from it, and then discards the sample and moves to the next step. This is in contrast
to the setting in which the agent has access to historical data. Not having access to historical data, the agent
is more limited in what it can learn.

In fact, there have been a few empirical studies that compare o�-policy prediction learning algorithms in small
environments. The earliest systematic study was that by Geist and Scherrer (2014). Their experiments were
on random MDPs and compared eight o�-policy algorithms. A few months later, Dann, Neumann, and Peters
(2014) published a more in-depth study with one additional algorithm and six test problems including random
MDPs. Both studies considered o�-policy problems in which the target and behavior policies were given
and stationary. Such prediction problems allow for relatively simple experiments and are still challenging
(e.g., they involve the same risk of instability). Both studies used linear function approximation with a given
feature representation. The algorithms studied by Geist and Scherrer (2014), and by Dann, Neumann, and
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Peters (2014) can be divided into those whose per-step complexity is linear in the number of parameters,
like TD(⁄), and methods whose complexity is quadratic in the number of parameters (proportional to the
square of the number of parameters), like Least Squares TD(⁄) (Bradtke & Barto, 1996; Boyan, 1999).
Quadratic-complexity methods avoid the risk of instability, but cannot be used in learning systems with
large numbers (e.g., millions) of weights. A third systematic study, by White and White (2016), excluded
quadratic-complexity algorithms, but added four additional linear-complexity algorithms.

The current paper is similar to previous studies in that it treats prediction with linear function approximation,
and similar to the study by White and White (2016) in restricting attention to linear complexity algorithms.
Our study di�ers from earlier studies in that it treats more algorithms and does a deeper empirical analysis on
a single problem, the Collision task. The additional algorithms are the prediction variants of Tree Backup(⁄)
(Precup, Sutton, & Singh, 2000), Retrace(⁄) (Munos et al., 2016), ABQ(’) (Mahmood, Yu, & Sutton, 2017),
and TDRC(⁄) (Ghiassian et al., 2020). Our empirical analysis is deeper primarily in that we examine and
report the dependency of all eleven algorithms’ performance on all of their parameters individually. This level
of detail is needed to expose our main result, an overall ordering of the performance of o�-policy algorithms
on the Collision task. Our results, though limited to this task, are a significant addition to what is known
about the comparative performance of o�-policy learning algorithms.

2 Formal Framework

In this section, we formally explain the framework of o�-policy prediction learning with linear function
approximation. An agent and environment interact at discrete time steps, t = 0, 1, 2, . . .. The environment is
a Markov Decision Process (MDP) with state St œ S at time step t. At each time step, the agent chooses an
action At œ A with probability b(a|s), where the function b : A ◊ S æ [0, 1] with

q
aœA b(a|s) = 1, ’s œ S, is

called the behavior policy because it determines the agent’s behavior. After taking action At in state St, the
agent receives from the environment a numerical reward Rt+1 œ R µ R and the next state St+1. In general
the reward and next state are stochastically jointly determined by the current state and action.

In prediction learning, we estimate for each state the expected discounted sum of future rewards, given that
actions are taken according to a di�erent policy fi, called the target policy (because learning its values is the
target of our learning). For simplicity, both target and behavior policies are assumed here to be known and
static, although of course in many applications of interest one or the other may be changing. The discounted
sum of future rewards at time t is called the return and denoted Gt:

Gt
def= Rt+1 + “Rt+2 + “2Rt+3 + · · ·

The expected return when starting from a state and following a specific policy thereafter is called the value
of the state under the policy. The value function vfi : S æ R for a policy fi takes a state as input and returns
the value of that state:

vfi(s) def= E[Gt | St =s, At:Œ ≥ fi] . (1)

Prediction learning algorithms seek to learn an estimate v̂ : S æ R that approximates the true value function
vfi. In many problems S is large and an exact approximation is not possible even in the limit of infinite time
and data. Many parametric forms are possible, including deep artificial neural networks, but of particular
interest, and our exclusive focus here, is the linear form:

v̂(s, w) def= w€x(s), (2)

where w œ Rd is a learned weight vector and x(s) œ Rd, ’s œ S is a set of given feature vectors, one per state,
where d π |S|.

3 Algorithms

In this section, we briefly introduce the eleven algorithms used in our empirical study. These eleven are
intended to include all the best candidate algorithms for o�-policy prediction learning with linear function
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approximation. The complete update rules of all algorithms and additional technical discussion can be found
in Appendix A and Appendix E respectively. Many algorithms studied in our paper can be combined with
each other; for example, the combination of Emphatic TD and Gradient TD results in Emphatic Gradient
TD. Similarly the combination of Gradient TD and Tree Backup results in GTB (Touati, 2018). We did not
include algorithm combinations to keep the scope focused.

O�-policy TD(⁄) (Precup, Sutton, & Dasgupta, 2001) is the o�-policy variant of the original TD(⁄) algorithm
(Sutton, 1988) that uses importance sampling to reweight the returns and account for the di�erences between
the behavior and target policies. This algorithm has just one set of weights and one step-size parameter.

Our study includes five algorithms from the Gradient-TD family. GTD(⁄) and GTD2(⁄) are based on
algorithmic ideas introduced by Sutton et al., (2009), then extended to eligibility traces by Maei (2011).
Proximal GTD2(⁄) (Mahadevan et al., 2014; Liu et al., 2015; Liu et al., 2016) is a “mirror descent” version of
GTD2 using a saddle-point objective function. These algorithms approximate stochastic gradient descent
(SGD) on an alternative objective function, the mean squared projected Bellman error. HTD(⁄) (Hackman,
2012; White & White, 2016) is a “hybrid” of GTD(⁄) and TD(⁄) which becomes equivalent to classic TD(⁄)
where the behavior policy coincides with the target policy. TDRC(⁄) is a recent variant of GTD(⁄) that
adds regularization. All these methods involve an additional set of learned weights (beyond that used in v̂)
and a second step-size parameter, which can complicate their use in practice. TDRC(⁄) o�ers a standard
way of setting the second step-size parameter, which makes this less of an issue. All of these methods are
guaranteed to converge with an appropriate setting of their two step-size parameters.

Our study includes two algorithms from the Emphatic-TD family. Emphatic-TD algorithms attain stability
by up- or down-weighting the updates made on each time step by O�-policy TD(⁄). If this variation in the
emphasis of updates is done in just the right way, stability can be guaranteed with a single set of weights and
a single step-size parameter. The original emphatic algorithm, Emphatic TD(⁄), was introduced by Sutton,
Mahmood, and White (2016). The variant Emphatic TD(⁄, —), introduced by Hallak et al., (2016), has an
additional parameter, — œ [0, 1], intended to reduce variance.

The final three algorithms in our study—ABTD(’), Vtrace(⁄), and the prediction variant of Tree Backup(⁄)—
can be viewed as attempts to address the problem of large variations in the product of importance sampling
ratios. If this product might become large, then the step-size parameter must be set small to ensure there is
no overshoot—and then learning may be slow. All these methods attempt to control the importance sampling
product by changing the bootstrapping parameter from step to step (Yu, Mahmood, & Sutton, 2018). Munos
et al., (2016) proposed simply putting a cap on the importance sampling ratio at each time step; they explored
the theory and practical consequences of this modification in a control context with their Retrace algorithm.
Vtrace(⁄) (Espeholt et al., 2018) is a modification of Retrace to make it suitable for prediction rather than
control. Mahmood, Yu, and Sutton (2017) developed a more flexible algorithm that achieves a similar e�ect.
Their algorithm was also developed for control; to apply the idea to prediction learning we had to develop a
nominally new algorithm, ABTD(’), that naturally extends ABQ(’) from control to prediction. ABTD(’)
will be developed in the next section. Finally, Tree Backup(⁄) (Precup, Sutton, & Singh, 2000) reduces the
e�ective ⁄ by the probability of the action taken at each time step. Each of these algorithms (or their control
predecessors) have been shown to be very e�ective on specific problems.

4 Derivations of Tree Backup, Vtrace, and ABTD

In this section, we derive the prediction variants of Tree Backup(⁄), Retrace(⁄), and ABQ(’). The prediction
variant of Tree Backup(⁄) and the prediction variant of ABQ(’), which we call ABTD(’), are new to this
paper. Vtrace(⁄) is not a new algorithm, and was previously discussed by Espeholt et al., (2018). In this
paper, we use the procedure suggested by Mahmood, Yu, and Sutton (2017) to arrive, in a new way, at the
same Vtrace algorithm derived by Espeholt et al., (2018). We will additionally show that all three algorithms
can be seen as O�-policy TD(⁄) with ⁄t generalized from a constant to a function of (St, At). Readers who
are only interested in the relative performance of algorithms and practical issues, can skip this section.

Deriving the prediction variant of control algorithms is typically straightforward. However, deriving the
prediction variant of the three mentioned algorithms is a little more involved. The three control algorithms—
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ABQ(’), Retrace(⁄), and the control variant of Tree Backup(⁄)—avoid all importance sampling ratios in their
update rules to stabilize learning. As we will shortly see, importance sampling ratios cannot be completely
avoided in the prediction setting as was done in the control setting. Trying to avoid all importance sampling
ratios in the prediction learning case might result in an incorrect version of these algorithms that we will
discuss in Section 4.1.

The prediction variant of all three algorithms can be derived in a similar way. To understand the prediction
variant of these algorithms, we derive ABTD(’). We then use ABTD(’) to derive extensions to Vtrace(⁄)
and Tree Backup(⁄) for prediction. The key idea is to set ⁄t = ⁄(St≠1, At≠1) adaptively in generic O�-policy
TD(⁄):

zt Ω flt≠1“t⁄tzt≠1 + xt with z≠1 = 0 (3)
wt+1 Ω wt + –flt”tzt, (4)

where ”t is the TD-error, zt is eligibility trace, flt
def= fi(At|St)/b(At|St) is the importance sampling ratio, and

– is the step-size parameter. The update rules provided here for O�-policy TD(⁄), are di�erent from the
following update rules often provided in the literature for O�-policy TD(⁄):

zt Ω flt(“t⁄tzt≠1 + xt) with z≠1 = 0 (5)
wt+1 Ω wt + –”tzt. (6)

In Appendix B we show that these two sets of update rules are the same numerically step by step. We use
the first set of update rules here as they are more appropriate for our purposes in this paper.

Consider the generalized ⁄-return, for a ⁄ based on the state and action—as in ABQ(’)—or the entire
transition (White, 2017). Let ⁄t+1 = ⁄(St, At, St+1) be defined based on the transition (St, At, St+1),
corresponding to how rewards and discounts are defined based on the transition, Rt+1 = r(St, At, St+1) and
“t+1 = “(St, At, St+1). Then, given a value function v̂, the ⁄-return G⁄

t for generalized “ and ⁄ is defined
recursively as

G⁄
t

def= flt

!
Rt+1 + “t+1

#
(1 ≠ ⁄t+1)v̂(St+1) + ⁄t+1G⁄

t+1
$"

.

Similar to ABQ(’) (Mahmood et al., 2017, Equation 7), this ⁄-return can be written using TD-errors

”t
def= Rt+1 + “t+1v̂(St+1) ≠ v̂(St),

as

G⁄
t = flt

!
Rt+1 + “t+1v̂(St+1) ≠ “t+1⁄t+1v̂(St+1) + “t+1⁄t+1G⁄

t+1
"

= flt

!
”t + v̂(St) + “t+1⁄t+1

#
G⁄

t+1 ≠ v̂(St+1)
$"

= flt”t + fltv̂(St) + flt“t+1⁄t+1
!
flt+1”t+1 + flt+1“t+2⁄t+2

#
G⁄

t+2 ≠ v̂(St+2)
$"

= flt

Œÿ

n=t

(flt+1⁄t+1“t+1)n”t + fltv̂(St),

where we define (flt+1⁄t+1“t+1)n def=
rn

i=t+1 fli⁄i“i.

This return di�ers from the return used by ABQ(’), because it corresponds to the return from a state, rather
than the return from a state and action. In ABQ(’), the goal is to estimate the action-value for a given state
and action. For ABTD(’), the goal is to estimate the value for a given state. For the return from a state
St, we need to correct the distribution over actions At with importance sampling ratio flt. For ABQ(’), the
correction with flt is not necessary because St and At are both given, and importance sampling corrections
only need to be computed for future states and actions, with flt+1 onward. For ABTD(’), therefore, unlike
ABQ(’), not all importance sampling ratios can be avoided. We can, however, still set ⁄ in a similar way to
ABQ(’) to mitigate the variance e�ects of importance sampling.

To ensure flt⁄t+1 is well-behaved, ABTD(’) sets ⁄ as follows:

⁄(St, At, St+1) = ‹(Â, St, At)b(St, At),
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with the following scalar parameters to define ‹t (Mahmood, Yu, & Sutton, 2017):

‹t
def= ‹(Â(’), St, At)

def= min
3

Â(’), 1
max(b(At|St), fi(At|St))

4
,

Â(’) def= 2’Â0 + max(0, 2’ ≠ 1)(Âmax ≠ 2Â0),

Â0
def= 1

maxs,a max(b(a|s), fi(a|s)) ,

Âmax
def= 1

mins,a max(b(a|s), fi(a|s)) .

In the ⁄-return, then

flt⁄t+1 = fi(St, At)
b(St, At)

‹(Â, St, At)b(St, At) = ‹(Â, St, At)fi(St, At).

This removes the importance sampling ratios from the eligibility trace. The resulting ABTD(’) algorithm
can be written as the standard O�-policy TD(⁄) algorithm, for a particular setting of ⁄. The O�-policy
TD(⁄) algorithm, with this ⁄, is called ABTD(’), with updates

”t
def= Rt+1 + “t+1w

€

t xt+1 ≠ w
€

t xt

zt Ω “t‹t≠1fit≠1zt≠1 + xt with z≠1 = 0
wt+1 Ω wt + –flt”tzt.

Finally, we can adapt Retrace(⁄) and Tree Backup(⁄) for policy evaluation. Mahmood, Yu, and Sutton
(2017) showed that Retrace(⁄) can be specified with a particular setting of ‹t (in their Equation 36). We can
similarly obtain Retrace(⁄) for prediction by setting

‹t≠1 = ’ min
3

1
fit≠1

,
1

bt≠1

4
,

or more generally:

‹t≠1 = ’ min
3

c̄

fit≠1
,

1
bt≠1

4
,

where c̄ is a constant, which we will discuss in more detail shortly. For Tree Backup(⁄), the setting for ‹t is
any constant value in [0, 1] (see Algorithm 2 of Precup, Sutton & Singh, 2000).

So far, we derived ABTD(’) for prediction by defining ⁄t in the eligibility trace update of O�-policy TD(⁄).
We then used two special settings of ‹ to recover Vtrace(⁄) and Tree Backup(⁄) algorithms. Now, we specify
Tree Backup(⁄), and Vtrace(⁄) updates again, but this time in terms of a special setting of ⁄t in the O�-policy
TD(⁄) update.

Prediction variant of Tree Backup(⁄) is O�-policy TD(⁄) with ⁄t = bt≠1⁄, for some tuneable constant
⁄ œ [0, 1]. Replacing ⁄t with bt≠1⁄ in the eligibility trace update in (3) simplifies as follows:

zt Ω “t
fit≠1
bt≠1

bt≠1⁄zt≠1 + xt,

= “tfit≠1⁄zt≠1 + xt. (7)

A simplified variant of the Vtrace(⁄) algorithm (Espeholt et al., 2018) can be derived with a similar
substitution:

⁄t = min
3

c̄

fit≠1
,

1
bt≠1

4
⁄bt≠1,
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where c̄ œ R+ and ⁄ œ [0, 1] are both tuneable constants. The update rule for the eligibility trace of Vtrace(⁄)
with this special setting of ⁄t at each time step becomes:

zt Ω “t min
3

c̄

fit≠1
,

1
bt≠1

4
⁄bt≠1

fit≠1
bt≠1

zt≠1 + xt

= “t min
3

c̄

fit≠1
,

1
bt≠1

4
⁄fit≠1zt≠1 + xt

= “t min
3

c̄fit≠1
fit≠1

,
fit≠1
bt≠1

4
⁄zt≠1 + xt

= “t min (c̄, flt≠1) ⁄zt≠1 + xt. (8)

The parameter c̄ is used to clip importance sampling ratios in the trace. Note that it is not possible to
recover the full Vtrace(⁄) algorithm in this way. The more general Vtrace(⁄) algorithm uses an additional
parameter, fl̄ œ R+ that clips the flt in the update to wt+1: min(fl̄, flt)”tzt. When fl̄ is set to the largest
possible importance sampling ratio, it does not a�ect flt in the update to wt and so we obtain the equivalence
above. For smaller fl̄, however, Vtrace(⁄) is no longer simply an instance of O�-policy TD(⁄). In our
experiments, we investigate this simplified variant of Vtrace(⁄) that does not clip flt and set c̄ = 1 as done in
the original Retrace algorithm.

Finally, as mentioned before, ABTD(’) for ’ œ [0, 1] uses ⁄t = ‹t≠1bt≠1 in the O�-policy TD(⁄) update which
results in the following eligibility trace update:

zt Ω “t
fit≠1
bt≠1

‹t≠1bt≠1zt≠1 + xt

= “t‹t≠1fit≠1zt≠1 + xt, (9)

The convergence properties of all three methods are similar to O�-policy TD(⁄). They are not guaranteed
to converge under o�-policy sampling with weighting µb and function approximation. With the addition of
gradient corrections similar to GTD(⁄), all three algorithms are convergent. For explicit theoretical results,
see Mahmood, Yu, and Sutton (2017) for ABQ(’) with gradient correction and Touati et al. (2018) for
convergent versions of Retrace(⁄) and Tree Backup(⁄).

4.1 An alternative but incorrect extension of ABQ(’) to ABTD(’)

The ABQ(’) algorithm specifies ⁄ to ensure that flt⁄t is well-behaved, whereas we specified ⁄ so that flt⁄t+1
is well-behaved. This di�erence arises from the fact that for action-values, the immediate reward and next
state are not re-weighted with flt. Consequently, the ⁄-return of a policy from a given state and action is:

Rt+1 + “t+1
#
(1 ≠ ⁄t+1)v̂(St+1) + flt+1⁄t+1G⁄

t+1
$

.

To mitigate variance in ABQ(’) when learning action-values, therefore, ⁄t+1 should be set to ensure that
flt+1⁄t+1 is well-behaved. For ABTD(’), however, ⁄t+1 should be set to mitigate variance from flt rather
than from flt+1.

To see why more explicitly, the central idea of these algorithms is to avoid importance sampling altogether:
this choice ensures that the eligibility trace does not include importance sampling ratios. The eligibility trace
za

t in TD when learning action-values is:

za
t = flt⁄t“tza

t≠1 + xa
t ,

for state-action features xa
t . For flt⁄t = ‹tfit, this trace reduces to za

t = ‹tfit“tza
t≠1 + xa

t (Equation 18,
Mahmood et al., 2017). For ABTD(’), one could in fact also choose to set ⁄t so that flt⁄t = ‹tfit instead of
flt⁄t+1 = ‹tfit. However, this would result in eligibility traces that still contain importance sampling ratios.
The eligibility trace in TD when learning state-values is:

zt = flt≠1⁄t“tzt≠1 + xt.

Setting flt⁄t = ‹tfit would result in the update zt = flt≠1‹t
fit
flt

“tzt≠1 + xt, which does not remove important
sampling ratios from the eligibility trace.
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5 Collision Task

The Collision task is an idealized o�-policy prediction-learning task. A vehicle moves along an eight-state
track towards an obstacle with which it will collide if it keeps moving forward. In this episodic task, each
episode begins with the vehicle in one of the first four states (selected at random with equal probability). In
these four states, forward is the only possible action whereas, in the last four states, two actions are possible:
forward and turnaway (see Figure 1). The forward action always moves the vehicle one state further along
the track; if it is taken in the last state, then a collision is said to occur, the reward is 1, and the episode ends.
The turnaway action causes the vehicle to “turn away” from the wall, which also ends the episode, except
with a reward of zero. The reward is also zero on all earlier, non-terminating transitions. In an episodic task
like this the return is accumulated only up to the end of the episode. After termination, the next state is the
first state of the next episode, selected randomly from the first four as specified above.

forward

turnaway

+1
1 2 3 4 65 7 8

S t a r t   S t a t e s

Figure 1: The Collision task. Episodes start in
one of the first four states and end when the
forward action is taken from the eighth state,
causing a crash and a reward of 1, or when the
turnaway action is taken in one of the last four
states.

The target policy on this task is to always take the forward
action, fi(forward|s) = 1, ’s œ S, whereas the behav-
ior policy is to take the two actions (where available)
with equal probability, b(forward|s) = b(turnaway|s) =
0.5, ’s œ {5, 6, 7, 8}. The problem is discounted with a
discount rate of “ = 0.9. As always, we are seeking to
learn the value function for the target policy, which in
this case is vfi(s) = “8≠s. This function is shown as a
dashed black line in Figure 2. The thin red lines show
approximate value functions v̂ ¥ vfi, using various feature
representations, as we discuss shortly below.

This idealized task is roughly analogous to and involves
some similar issues as real-world autonomous driving prob-
lems, such as exiting a parallel parking spot without hitting the car in front of you, or learning how close you
can get to other cars without risking collisions. In particular, if these problems can be treated as o�-policy
learning problems, then solutions can potentially be learned with fewer collisions. In this paper, we are
testing the e�ciency of various o�-policy prediction-learning algorithms at maximizing how much they learn
from the same number of collisions.

Similar problems have been studied using mobile robots. For example, White (2015) used o�-policy learning
algorithms running on an iRobot Create to predict collisions as signaled by activation of the robot’s front
bumper sensor. Rafiee et al. (2019) used a Kobuki robot to not only anticipate collisions, but to turn away
from anticipated collisions before they occurred. Modayil and Sutton (2014) trained a custom robot to predict
motor stalls and turn o� the motor when a stall was predicted.

Our task is a prediction, and not a control task. If the task was a control task, the car would learn to hit the
obstacle more often given our reward function. However, in our setting, the behavior and target policies are
fixed and given, and the goal is to only learn about collisions. These predictions about collisions can later be
used for di�erent purposes such as state construction, and control. Through o�-policy learning, the agent
will be able to experience collisions, and predict with great detail, how close the agent is to the end of the
corridor, without having to experience collisions many times. Without o�-policy learning, the agent would
have to experience collisions many more times in order to have accurate predictions about them.

We artificially introduce function approximation into the Collision task. Although a tabular approach is
entirely feasible on this small problem, it would not be on the large problems of interest. In real applications,
the agent would have sensor readings, which will go through an artificial neural network to create feature
representations. We simulate such representations in the Collision task by randomly assigning to each of the
eight states a binary feature vector x(s) œ {0, 1}d, ’s œ {1..8}. We chose d = 6, so that was not possible for
all eight of the feature vectors (one per state) to be linearly independent. In particular, we chose all eight
feature vectors to have exactly three 1s and three 0s, with the location of the 1s for each state being chosen
randomly.
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Because the feature vectors are linearly dependent, it is not possible in general for a linear
approximation, v̂(s, w) = w€x, to equal to vfi(s) at all eight states of the Collision task.

1 2 3 4 5 6 7 8
State

0
0.2
0.4
0.6
0.8
1.0

Value
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Figure 2: The ideal value function, vfi,
and the best approximate value func-
tions, v̂, for 50 di�erent feature repre-
sentations.

This, in fact, is the sole reason the red approximate value functions in
Figure 2 do not exactly match vfi. Given a feature representation x :
S æ Rd, a linear approximate value function is completely determined
by its weight vector w œ Rd. The quality of that approximation is
assessed by its squared error at each state, weighted by how often
each state occurs:

VE(w) =
ÿ

sœS

µb(s)
#
v̂(s, w) ≠ vfi(s)

$2
, (10)

where µb(s) is the state distribution, the fraction of time steps in
which St = s, under the behavior policy (here µb was approximated
from visitation counts from one million sample time steps). The value
functions shown by red lines in Figure 2 are for wú, the weight vector
that minimizes VE(w), with each line corresponding to a di�erent
randomly selected feature representation as described earlier. For these value functions, VE(wú) ¥ 0.05. All
the code for the Collision task and the experiments are provided. See Appendix D.3.

6 Experiment

The Collision task, in conjunction with its behavior policy, was used to generate 20,000 time
steps, comprising one run, and then this was repeated for a total of 50 independent runs.
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v̂(s,wt)

Figure 3: Left: An example of the approximate value function, v̂, being learned
over time. Right: Learning curves illustrating the range of things that can happen
during a run. The average error over the 20,000 steps is a good combined measure
of learning rate and asymptotic error.

Each run also used a dif-
ferent feature represen-
tation randomly gener-
ated as described in the
previous section. Focus-
ing on one-hot represen-
tations, we decided to
choose a di�erent ran-
dom representation for
each of the 50 runs, to
study the performance of
algorithms across various
one-hot representations.
The eleven learning algo-
rithms were then applied to the 50 runs, each with a range of parameter values; each combination of algorithm
and parameter settings is termed an algorithm instance. A list of all parameter settings used can be found in
Appendix C. They included 12 values of ⁄, 19 values of –, 15 values of ÷ (for the Gradient-TD family), six
values of — (for ETD(⁄, —)), and 19 values of ’ (for ABTD(’)), for approximately 20,000 algorithm instances
in total. In each run, the weight vector was initialized to w0 = 0 and then updated at each step by the
algorithm instance to produce a sequence of wt. At each step we also computed and recorded VE(wt). In
Deep Learning, it is important that the neural network is initialized using random weights because if not, the
derivatives in backpropagation will be the same for all weights, and all learned features will be the same. In
linear function approximation with given features this is not an issue, so we decided to initialize all weights
to zero.

With a successful learning procedure, we expect the value function to evolve over time as shown in the left
panel of Figure 3. The approximate value function starts at v̂(s, 0) = 0, as shown by the pink line, then
moves toward positive values, as shown by the blue and orange lines. Finally, the learned value function
slants and comes to closely approximate the true value function, though always with some residual error due
to the limited feature representation, as shown by the green line (and also by all the red lines in Figure 2).
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Figure 4: Performance of all algorithms on the Collision task as a function of their parameters – and ⁄.
Each point is the average error over 50 runs. The bars over each point show the standard error. The red
curves show the performance with ⁄ =0; the blue curves show the performance with ⁄ =1; and the gray
curves show the performance with intermediate values of ⁄. The top tier algorithms (top row) attained a low
error (¥0.1) at all ⁄ values. The middle tier of six algorithms attained a low error for ⁄ = 1, but not for
⁄ = 0. And the bottom-tier of three algorithms were unable to reach an error of ¥0.1 at any ⁄ value.

The right panel of Figure 3 shows learning curves illustrating the range of things that happened in the
experiment. Normally, we expect VE to decrease over the course of the experiment, starting at VE(0) ¥ 0.7
and falling to some minimum value, as in the red and black lines in Figure 3 (these and all other data are
averaged over the 50 runs). If the primary step-size parameter, –, is small, then learning may be slow and
incomplete by the end of the runs, as in the orange line. A larger step-size parameter may be faster, but, if it
is too large, then divergence can occur, as in the blue line. For one algorithm, Proximal GTD2(⁄), we found
that the error dipped low and then leveled o� at a higher level, as in the olive line.

7 Main Results: A Partial Order over Algorithms

As an overall measure of the performance of an algorithm instance, we take its learning curve over 50 runs, as
in Figure 3, and then average it across the 20,000 steps. In this way, we reduce all the data for an algorithm
instance to a single number that summarizes performance. These numbers appear as points in our main
results figure, Figure 4. Each panel of the figure is devoted to a single algorithm.

For example, performance numbers for instances of O�-policy TD(⁄) are shown as points in the left panel
of the second row of Figure 4. This algorithm has two parameters, the step-size parameter, –, and the
bootstrapping parameter, ⁄. The points are plotted as a function of –, and points with the same ⁄ value are
connected by lines. The blue line shows the performances of the instances of O�-policy TD(⁄) with ⁄ = 1,
the red line shows the performances with ⁄ = 0, and the gray lines show the performances with intermediate
⁄s. Note that all the lines are U-shaped functions of –, as is to be expected; at small – learning is too slow
to make much progress, and at large – there is overshoot and divergence, as in the blue line in Figure 3. For
each point, the standard error over the 50 runs is also given as an error bar, though these are too small to
be seen in all except the rightmost points of each line where the step size was highest and divergence was
common. Except for these rightmost points, almost all visible di�erences are statistically significant.
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First focus on the blue line (of the left panel on the second row of Figure 4), representing the performances
of O�-policy TD(⁄) with ⁄ = 1. There is a wide sweet spot, that is, there are many intermediate values of –
at which good performance (low average error) is achieved. Note that the step-size parameter – is varied
over a wide range, with logarithmic steps. The minimal error level of about 0.1 was achieved over four or five
powers of two for –. This is the primary measure of good performance that we look for in these data: low
error over a wide range of parameter values.

Now contrast the blue line with the red and gray lines (for O�-policy TD(⁄) in the left panel of the second
row of Figure 4). Recall that the blue line is for ⁄ = 1, the red line is for ⁄ = 0, and the gray lines are for
intermediate values of ⁄. First note that the red line shows generally worse performance; the error level
at ⁄ = 0 was higher, and its range of good – values was slightly smaller (on a logarithmic scale). The
intermediate values of ⁄ all had performances that were between the two extremes. Second, the sweet spot
(the best – value) consistently shifted right, toward higher –, as ⁄ was decreased from 1 toward 0.

Now, armed with a thorough understanding of the O�-policy TD(⁄) panel, consider the other panels of
Figure 4. Overall, there are a lot of similarities between the algorithms and how their performances varied
with – and ⁄. For all algorithms, error was lower for ⁄ = 1 (the blue line) than for ⁄ = 0 (the red line).
Bootstrapping apparently confers no advantage in the Collision task for any algorithm.

The most obvious di�erence between algorithms is that the performance of the two Emphatic-TD algorithms
varied relatively little as a function of ⁄; their blue and red lines are almost on top of one another, whereas
those of all the other algorithms are qualitatively di�erent. The emphatic algorithms generally performed as
well as or better than the other algorithms. At ⁄ = 1, the emphatic algorithms reached the minimal error
level of all algorithms (¥0.1), and their ranges of good – values was as wide as that of the other algorithms.
While at ⁄ = 0, the best errors of the emphatic algorithms were qualitatively better than those of the other
algorithms. The minimal ⁄ = 0 error level of the emphatic algorithms was about 0.15, as compared to
approximately 0.32 (shown as a second thin gray line) for all the other algorithms (except Proximal GTD2,
a special case that we consider later). Moreover, for the emphatic algorithms the sweet spot for – shifted
little as ⁄ varied. The shift was markedly less than for the six algorithms in the middle two rows of Figure 4.
The lack of an interaction between the two parameter values is another potential advantage of the emphatic
algorithms.

The lowest error level for eight of the algorithms was ¥0.1 (shown as a thin gray line), and for the other three
algorithms the best error was higher, ¥0.16. The di�erences between the eight and the three were highly
statistically significant, whereas the di�erences within the two groups were negligible. The three algorithms
that performed worse than the others were Tree Backup(⁄), Vtrace(⁄), and ABTD(’)—shown in the bottom
row of Figure 4. The di�erence was only for large ⁄s; at ⁄ = 0 these three algorithms reached the same error
level (¥0.32) as the other non-emphatic algorithms. The three worse algorithms’ range of good – values was
also slightly smaller than for the other algorithms (with the partial exception, again, of Proximal GTD2(⁄)).
A mild strength of the three is that the best – value shifted less as a function of ⁄ than for the other six
non-emphatic algorithms. Generally, the performances of these three algorithms in Figure 4 look very similar
as a function of parameters. An interesting di�erence is that for ABTD(’), we only see three gray curves,
whereas for the other two algorithms we see seven. For ABTD(’) there is no ⁄ parameter, but the parameter
’ plays the same role. In our experiment, ABTD(’) performed identically for all ’ values greater than 0.5;
four gray lines with di�erent ’ values are hidden behind ABTD’s blue curve.

In summary, our main result is that on the Collision task the performances of the eleven algorithms fell
into three groups, or tiers. In the top tier are the two Emphatic-TD algorithms, which performed well and
almost identically at all values of ⁄ and significantly better than the other algorithms at low ⁄. Although
this di�erence did not a�ect best performance here (where ⁄ = 1 is best), the ability to perform well with
bootstrapping is expected to be important on other tasks. In the middle tier are O�-policy TD(⁄) and all
the Gradient-TD algorithms including HTD(⁄), all of which performed well at ⁄ = 1 but less well at ⁄ = 0.
Finally, in the bottom tier are Tree Backup(⁄), Vtrace(⁄), and ABTD(⁄), which performed very similarly
and not as well as the other algorithms at their best parameter values. All of these di�erences are statistically
significant, albeit specific to this one task. In Figure 4 the three tiers are the top row, the two middle rows,
and the bottom row.
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The reason why Emphatic TD algorithms reached a lower error level than some others might be the objective
function they minimize. Emphatic TD algorithms minimize the Emphatic weighted Mean Squared Projected
Bellman Error (MSPBE). This is in contrast to all other algorithms studied in this paper, that minimize the
behavior policy weighted MSPBE. In our results, the error measure is the Mean Squared Value Error (VE):
the di�erence between the true value function and the value function found by an algorithm. Our results
suggest that distance between the minimums of Emphatic weighted MSPBE and VE is smaller than the
distance between the minimums of behavior weighted MSPBE and VE.

The reason why ABTD, Tree Backup, and Vtrace did not perform as well as others is most probably that
they cut o� the importance sampling ratio. By cutting o� the importance sampling ratio, these algorithms
introduce bias into the solution that the algorithm finds, which in turn will cause the algorithm to converge
to a higher error level. On the other hand, one can expect that these algorithms perform better than others
on problems where importance sampling ratios are really large.

In the next two sections we take a closer look at two of the tiers to find di�erences within them.

8 Emphatic TD(⁄) vs. Emphatic TD(⁄, —)

Emphatic TD(0)

Emphatic TD(0,    )
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Figure 5: Detail on the performance of Em-
phatic TD(⁄, —) at ⁄ = 0. Note that Emphatic
TD(⁄) is equivalent to Emphatic TD(⁄, “),
and here “ = 0.9. The flexibility provided by
— does not help on the Collision task.

In this section, the e�ect of the — parameter of Emphatic
TD(⁄, —) on the algorithm’s performance in the full bootstrap-
ping case is analyzed. We focus on the full bootstrapping case
(⁄ = 0) because the largest di�erences were observed with
this value of ⁄ in the previous section. The curves shown in
Figure 4 in the previous section, are for the best values of —;
meaning that, for each ⁄, we found the combination of – and
— that resulted in the minimum average error, fixed —, and
plotted the sensitivity for that fixed — over –. Here, we show
how varying — a�ects performance.

The error of Emphatic TD(0), and Emphatic TD(0,—) for
various values of – and — are shown in Figure 5. We see that
both algorithms performed similarly well on the Collision
task, meaning that they both had a wide sensitivity curve
and reached the same (¥0.1) error level. Notice that, as —
increased, the sensitivity curve for Emphatic TD(0,—) shifted
to left and the error overall decreased. With — = 0, Emphatic
TD(⁄, —), reduces to TD(⁄). With — = 0.8, and — = 1, Emphatic TD(⁄, —) reached the same error level as
Emphatic TD(⁄). With — = “, Emphatic TD(⁄, —) reduces to Emphatic TD(⁄). This explains why the red
curve is between the — = 0.8 and — = 1 curves.

The results make it clear that the superior performance of emphatic methods are almost entirely due to the
basic idea of emphasis; the additional flexibility provided by — of the Emphatic TD(⁄, —) was not important
on the Collision problem.

9 Assessment of Gradient-TD Algorithms

We study how the ÷ parameter of Gradient-TD algorithms a�ects performance in the case of full bootstrapping
(the second step size, –v, is equal to ÷ ◊ –). Previously, in Figure 4 we looked at the results with the best
values of ÷ for each ⁄; meaning that for each ⁄, first the combination of – and ÷ that resulted in the lowest
average VE was found and then sensitivity to step size was plotted for that specific value of ÷. Sensitivity
to step size for various values of ÷ with ⁄ = 0 are shown in Figure 6. Each panel shows the result of two
Gradient-TD algorithms for various ÷s: One main algorithm, shown with solid lines, and another additional
algorithm shown with dashed lines for comparison. First focus on the upper left panel. The upper left panel
shows the parameter sensitivity for GTD2(0), for four values of ÷, and additionally it shows GTD(0) results
as dashed lines for comparison (for results with more values of ÷ see Appendix D). The color for each value of
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÷ is consistent within and across the four panels, meaning that for example, ÷ = 256 is shown in green in
all panels, either as dashed or solid lines. For all parameter combinations, GTD errors were lower than (or
similar to) GTD2 errors. With two smaller values of ÷ (1 and 0.0625) GTD had a wider and lower sensitivity
curve than GTD2, which means GTD was easier to use than GTD2.

Let us now move on to the upper right panel of Figure 6. Proximal GTD2 had the most distinctive behavior
among all Gradient-TD algorithms. As previously observed in Figure 3, it is the only algorithm that in some
cases had a “bounce”; its error dipped down at first and then moved back up. With ⁄ = 0, in some cases it
converged to a lower error than all other Gradient-TD algorithms. Proximal GTD2 was more sensitive to the
choice of – than other Gradient-TD algorithms except GTD2. Proximal GTD2 had a lower error and a wider
sensitivity curve than GTD2. To see this, compare the dotted and solid lines in the upper right panel of Figure 6.
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Figure 6: Detail on the performance of Gradient-TD algorithms at ⁄ = 0.
Each algorithm has a second step-size parameter, scaled by ÷. A second
algorithm’s performance is also shown in each panel, with dashed lines, for
comparison.

Moving on to the lower left panel,
we see that GTD and HTD
performed similarly. Sensitivity
curves were similarly wide but
HTD reached a lower error in
some cases. We see this by com-
paring the dotted and solid pink
curves in the lower left panel.

The fourth panel shows sensitiv-
ity to the step-size parameter for
HTD and TDRC. Notice that
TDRC has one sensitivity curve,
shown in dashed blue. This is
because ÷ is set to one (also its
regularization parameter was set
to one) as proposed in the orig-
inal paper. HTD’s widest curve
was with ÷ = 0.0625 which was
as wide as TDRC’s curve. For a
more in-depth study of TDRC’s extra parameters see Appendix D.1.

On one hand, among the Gradient-TD algorithms, TDRC was the easiest to use. On the other hand, in the
case of full bootstrapping, Proximal GTD2 reached the lowest error level. The fact that proximal GTD2
converged to a lower error level might be due to a few di�erent reasons. One possible reason is that it might
not have converged to the minimum of the mean squared projected Bellman error like other Gradient-TD
algorithms. Another reason might be that it converged to a minimum of the projected Bellman error that was
di�erent from the minimum the other algorithms converged to. Further analyses is required to investigate
this. It remains to be seen how these algorithms compare on other problems.

10 Limitations and Future Work

The present study is based on a single task, and this limits the conclusions that can be fairly drawn from it.
For example, we have found that Emphatic-TD methods perform well over a wider range of parameters than
Gradient-TD methods on the Collision task, but it is entirely possible that the reverse would be true on a
di�erent task. Many more tasks must be explored before it is possible for a consistent pattern to emerge that
favors one class of algorithm over another.

On the other hand, a pattern over empirical results must begin somewhere. We stress the need for extensive
empirical results even for a single task. Ours is the first systematic study of o�-policy learning to describe
the e�ects of all algorithm parameters individually (rather than, for example, taking the best performing
parameters or fixing one parameter and studying another). Such a thorough examination is necessary to
obtain the understanding that is critical to using o�-policy algorithms successfully and with confidence. There
is a need for thorough empirical studies, but they take time, and a proper presentation of them takes space.
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While our study is not the last word, it does contribute to the growing database of reliable results comparing
modern o�-policy learning algorithms.

Conducting additional experiments with other o�-policy learning problems is a valuable direction for future
work. In looking for the next problem, one might seek a task with greater challenges due to variance of the
importance sampling ratios. In the Collision task, the product of ratios can grow nearly as large as 24 = 16.
This could be made more extreme simply by increasing the number of states, or by changing the behavior
policy. Also valuable would be exploring unrelated tasks with a di�erent rationale for relevance to the real
world. One possibility is to use a task related to parallel learning about multiple alternative ways of behaving,
such as learning how to exit each room in a four-rooms gridworld (Sutton, Precup & Singh, 1999).
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