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ABSTRACT

In recent years, there has been a significant growth in research focusing on min-
imum ℓ2 norm (ridgeless) interpolation least squares estimators. However, the
majority of these analyses have been limited to an unrealistic regression error
structure, assuming independent and identically distributed errors with zero mean
and common variance. In this paper, we explore prediction risk as well as es-
timation risk under more general regression error assumptions, highlighting the
benefits of overparameterization in a more realistic setting that allows for clus-
tered or serial dependence. Notably, we establish that the estimation difficulties
associated with the variance components of both risks can be summarized through
the trace of the variance-covariance matrix of the regression errors. Our findings
suggest that the benefits of overparameterization can be extended to time series,
panel and grouped data.

1 INTRODUCTION

Recent years have witnessed a fast growing body of work that analyzes minimum ℓ2 norm (ridgeless)
interpolation least squares estimators (see, e.g., Bartlett et al., 2020; Hastie et al., 2022; Tsigler &
Bartlett, 2023, and references therein). Researchers in this field were inspired by the ability of deep
neural networks to accurately predict noisy training data with perfect fits, a phenomenon known as
“double descent” or “benign overfitting” (e.g., Belkin et al., 2018; 2019; 2020; Zou et al., 2021;
Mei & Montanari, 2022, among many others). They discovered that to achieve this phenomenon,
overparameterization is critical.

In the setting of linear regression, we have the training data {(xi, yi) ∈ Rp × R : i = 1, · · · , n},
where the outcome variable yi is generated from

yi = x⊤
i β + εi, i = 1, . . . , n,

xi is a vector of features (or regressors), β is a vector of unknown parameters, and εi is a regression
error. Here, n is the sample size of the training data and p is the dimension of the parameter vector
β.

In the literature, the main object for the theoretical analyses has been mainly on the out-of-sample
prediction risk. That is, for the ridge or interpolation estimator β̂, the literature has focused on

E
[
(x⊤

0 β̂ − x⊤
0 β)

2 | x1, . . . , xn

]
,

where x0 is a test observation that is identically distributed as xi but independent of the training
data. For example, Dobriban & Wager (2018); Wu & Xu (2020); Richards et al. (2021); Hastie
et al. (2022) analyzed the predictive risk of ridge(less) regression and obtained exact asymptotic
expressions under the assumption that p/n converges to some constant as both p and n go to infinity.
Overall, they found the double descent behavior of the ridgeless least squares estimator in terms of
the prediction risk. Bartlett et al. (2020); Kobak et al. (2020); Tsigler & Bartlett (2023) characterized
the phenomenon of benign overfitting in a different setting.

To the best of our knowledge, a vast majority of the theoretical analyses have been confined to a
simple data generating process, namely, the observations are independent and identically distributed
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(i.i.d.), and the regression errors have mean zero, have the common variance, and are independent
of the feature vectors. That is,

(yi, x
⊤
i )

⊤ ∼ i.i.d. with E[εi] = 0, E[ε2i ] = σ2 < ∞ and εi is independent of xi. (1)
This assumption, although convenient, is likely to be unrealistic in various real-world examples. For
instance, Liao et al. (2023) adopted high-dimensional linear models to examine the double descent
phenomenon in economic forecasts. In their applications, the outcome variables include S&P firms’
earnings, U.S. equity premium, U.S. unemployment rate, and countries’ GDP growth rate. As in
their applications, economic forecasts are associated with time series or panel data. As a result, it is
improbable that (1) holds in these applications. As another example, Spiess et al. (2023) examined
the performance of high-dimensional synthetic control estimators with many control units. The
outcome variable in their application is the state-level smoking rates in the Abadie et al. (2010)
dataset. Considering the geographical aspects of the U.S. states, it is unlikely that the regression
errors underlying the synthetic control estimators adhere to (1). In short, it is desirable to go beyond
the simple but unrealistic regression error assumption given in (1).
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Figure 1: Comparison of in-sample and out-of-sample mean squared error (MSE) across various
degrees of clustered noise. The vertical line indicates p = n (= 1, 415).

To further motivate, we start with our own real-data example from American Community Survey
(ACS) 2018, extracted from IPUMS USA (Ruggles et al., 2024). The ACS is an ongoing annual
survey by the US Census Bureau that provides key information about the US population. To have a
relatively homogeneous population, the sample extract is restricted to white males residing in Cali-
fornia with at least a bachelor’s degree. We consider a demographic group defined by their age, the
type of degree, and the field of degree. Then, we compute the average of log hourly wages for each
age-degree-field group, treat each group average as the outcome variable, and predict group wages
by various group-level regression models where the regressors are constructed using the indicator
variables of age, degree, and field as well as their interactions. We consider 7 specifications ranging
from 209 to 2,182 regressors. To understand the role of non-i.i.d. regressor errors, we add the artifi-
cial noise to the training sample. See Appendix A for details regarding how to generate the artificial
noise. In the experiment, the constant c varies such that c = 0 corresponds to no clustered depen-
dence across observations but as a positive c gets larger, the noise has a larger share of clustered
errors but the variance of the overall regression errors remains the same regardless of the value of c.
Figure 1 shows the in-sample (train) vs. out-of-sample (test) mean squared error (MSE) for various
values of c ∈ {0, 0.25, 0.5, 0.75}. It can be seen that the experimental results are almost identical
across different values of c especially when p > n, suggesting that the double descent phenomenon
might be universal for various degrees of clustered dependence, provided that the overall variance
of the regression errors remains the same. It is our main goal to provide a firm foundation for this
empirical phenomenon. To do so, we articulate the following research questions:

• How to analyze the out-of-sample prediction risk of the ridgeless least squares estimator
under general assumptions on the regression errors?

• Why does not the prediction risk seem to be affected by the degrees of dependence across
observations?
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To delve into the prediction risk, suppose that Σ := E[x0x
⊤
0 ] is finite and positive definite. Then,

E
[
(x⊤

0 β̂ − x⊤
0 β)

2 | x1, . . . , xn

]
= E

[
(β̂ − β)⊤Σ(β̂ − β) | x1, . . . , xn

]
.

If Σ = I (i.e., the case of isotropic features), where I is the identity matrix, the mean squared
error of the estimator defined by E[∥β̂ − β∥2], where ∥ · ∥ is the usual Euclidean norm, is the
same as the expectation of the prediction risk defined above. However, if Σ ̸= I , the link between
the two quantities is less intimate. One may regard the prediction risk as the Σ-weighted mean
squared error of the estimator; whereas E[∥β̂ − β∥2] can be viewed as an “unweighted” version,
even if Σ ̸= I . In other words, regardless of the variance-covariance structure of the feature vector,
E[∥β̂ − β∥2] treats each component of β “equally.” The mean squared error of the estimator is
arguably one of the most standard criteria to evaluate the quality of the estimator in statistics. For
instance, in the celebrated work by James & Stein (1961), the mean squared error criterion is used
to show that the sample mean vector is not necessarily optimal even for standard normal vectors
(so-called “Stein’s paradox”). Many follow-up papers used the same criterion; e.g., Hansen (2016)
compared the mean-squared error of ordinary least squares, James–Stein, and Lasso estimators in
an underparameterized regime. Both Σ-weighted and unweighted versions of the mean squared
error are interesting objects to study. For example, Dobriban & Wager (2018) called the former
“predictive risk” and the latter “estimation risk” in high-dimensional linear models; Berthier et al.
(2020) called the former “generalization error” and the latter “reconstruction error” in the context
of stochastic gradient descent for the least squares problem using the noiseless linear model. In this
paper, we analyze both weighted and unweighted mean squared errors of the ridgeless estimator
under general assumptions on the data-generating processes, not to mention anisotropic features.
Furthermore, our focus is on the finite-sample analysis, that is, both p and n are fixed but p > n.

Although most of the existing papers consider the simple setting as in (1), our work is not the first
paper to consider more general regression errors in the overparameterized regime. Chinot et al.
(2022); Chinot & Lerasle (2023) analyzed minimum norm interpolation estimators as well as regu-
larized empirical risk minimizers in linear models without any conditions on the regression errors.
Specifically, Chinot & Lerasle (2023) showed that, with high probability, without assumption on the
regression errors, for the minimum norm interpolation estimator, (β̂ − β)⊤Σ(β̂ − β) is bounded
from above by

(
∥β∥2

∑
i≥c·n λi(Σ) ∨

∑n
i=1 ε

2
i

)
/n, where c is an absolute constant and λi(Σ) is

the eigenvalues of Σ in descending order. Chinot & Lerasle (2023) also obtained the bounds on the
estimation error (β̂ − β)⊤(β̂ − β). Our work is distinct and complements these papers in the sense
that we allow for a general variance-covariance matrix of the regression errors. The main motivation
of not making any assumptions on εi in Chinot et al. (2022) and Chinot & Lerasle (2023) is to allow
for potentially adversarial errors. We aim to allow for a general variance-covariance matrix of the
regression errors to accommodate time series and clustered data, which are common in applications.
See, e.g., Hansen (2022) for a textbook treatment (see Chapter 14 for time series and Section 4.21
for clustered data).

The main contribution of this paper is that we provide exact finite-sample characterization of
the variance component of the prediction and estimation risks under the assumption that X =
[x1, x2, · · · , xn]

⊤ is left-spherical (e.g., xi’s can be i.i.d. normal with mean zero but more gen-
eral); εi’s can be correlated and have non-identical variances; and εi’s are independent of xi’s.
Specifically, the variance term can be factorized into a product between two terms: one term de-
pends only on the trace of the variance-covariance matrix, say Ω, of εi’s; the other term is solely
determined by the distribution of xi’s. Interestingly, we find that although Ω may contain non-zero
off-diagonal elements, only the trace of Ω matters, as hinted by Figure 1, and further demonstrate
our finding via numerical experiments. In addition, we obtain exact finite-sample expression for
the bias terms when the regression coefficients follow the random-effects hypothesis (Dobriban &
Wager, 2018). Our finite-sample findings offer a distinct viewpoint on the prediction and estimation
risks, contrasting with the asymptotic inverse relationship (for optimally chosen ridge estimators)
between the predictive and estimation risks uncovered by Dobriban & Wager (2018). Finally, we
connect our findings to the existing results on the prediction risk (e.g., Hastie et al., 2022) by consid-
ering the asymptotic behavior of estimation risk. Remarkably, our findings stand in sharp contrast
to the well-established results in econometrics. In the latter, unlike in our framework, one of the key
objectives is to estimate the variance-covariance matrix, denoted by VLS, of the asymptotic distribu-
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tion of the least squares estimators. In this context, the off-diagonal elements of Ω do affect VLS,
implying that any consistent estimator of VLS must account for these off-diagonal components.

One of the limitations of our theoretical analysis is that the design matrix X is assumed to be left-
spherical, although it is more general than i.i.d. normal with mean zero. We not only view this as a
convenient assumption but also expect that our findings will hold at least approximately even if X
does not follow the left-spherical distribution. It is a topic for future research to formally investigate
this conjecture.

2 THE FRAMEWORK UNDER GENERAL ASSUMPTIONS ON REGRESSION
ERRORS

We first describe the minimum ℓ2 norm (ridgeless) interpolation least squares estimator in the over-
parameterized case (p > n). Our goal is to understand the generalization ability of overparam-
eterized models trained with gradient-based optimization (e.g., gradient descent) Gunasekar et al.
(2017). Define

y := [y1, y2, · · · , yn]⊤ ∈ Rn,

ε := [ε1, ε2, · · · , εn]⊤ ∈ Rn,

X⊤ := [x1, x2, · · · , xn] ∈ Rp×n,

so that y = Xβ + ε. The estimator we consider is

β̂ := argmin
b∈Rp

{∥b∥ : Xb = y} = (X⊤X)†X⊤y = X†y,

where A† denotes the Moore–Penrose inverse of a matrix A.

The main object of interest in this paper is the prediction and estimation risks of β̂ under the data
scenario such that the regression error εi may not be i.i.d. Formally, we make the following assump-
tions.
Assumption 2.1. (i) y = Xβ + ε, where ε is independent of X , and E[ε] = 0. (ii) Ω := E[εε⊤] is
finite and positive definite (but not necessarily spherical).

We emphasize that Assumption 2.1 is more general than the standard assumption in the literature
on benign overfitting that typically assumes that Ω ≡ σ2I . Assumption 2.1 allows for non-identical
variances across the elements of ε because the diagonal elements of Ω can be different among each
other. Furthermore, it allows for non-zero off-diagonal elements in Ω. It is difficult to assume that
the regression errors are independent among each other with time series or clustered data; thus, in
these settings, it is important to allow for general Ω ̸= σ2I . Below we present a couple of such
examples.
Example 2.1 (Time Series - AR(1) Errors). Suppose that the regressor error follows an autoregres-
sive process:

εi = ρεi−1 + ηi, (2)
where ρ ∈ (−1, 1) is an autoregressive parameter, ηi is independent and identically distributed with
mean zero and variance σ2(0 < σ2 < ∞) and is independent of X . Then, the (i, j) element of Ω is

Ωij =
σ2

1− ρ2
ρ|i−j|.

Note that Ωij ̸= 0 as long as ρ ̸= 0.
Example 2.2 (Panel and Grouped Data - Clustered Errors). Suppose that regression errors are mu-
tually independent across clusters but they can be arbitrarily correlated within the same cluster. For
instance, students in the same school may affect each other and also have the same teachers; thus it
would be difficult to assume independence across student test scores within the same school. How-
ever, it might be reasonable that student test scores are independent across different schools. For
example, assume that (i) if the regression error εi belongs to cluster g, where g = 1, . . . , G and G
is the number of clusters, E[ε2i ] = σ2

g for some constant σ2
g > 0 that can vary over g; (ii) if the

regression errors εi and εj (i ̸= j) belong to the same cluster g, E[εiεj ] = ρg for some constant
ρg ̸= 0 that can be different across g; and (iii) if the regression errors εi and εj (i ̸= j) do not belong
to the same cluster, E[εiεj ] = 0. Then, Ω is block diagonal with possibly non-identical blocks.
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For vector a and square matrix A, let ∥a∥2A := a⊤Aa. Conditional on X and given A, we define

BiasA(β̂ | X) := ∥E[β̂ | X]− β∥A and VarA(β̂ | X) := Tr(Cov(β̂ | X)A),

and we write Var = VarI and Bias = BiasI for the sake of brevity in notation.

The mean squared prediction error for an unseen test observation x0 with the positive definite co-
variance matrix Σ := E[x0x

⊤
0 ] (assuming that x0 is independent of the training data X) and the

mean squared estimation error of β̂ conditional on X can be written as:

RP (β̂ | X) := E
[
(x⊤

0 β̂ − x⊤
0 β)

2 | X
]
= [BiasΣ(β̂ | X)]2 +VarΣ(β̂ | X),

RE(β̂ | X) := E
[
∥β̂ − β∥2 | X

]
= [Bias(β̂ | X)]2 +Var(β̂ | X).

In what follows, we obtain exact finite-sample expressions for prediction and estimation risks:

RP (β̂) := EX [RP (β̂ | X)] and RE(β̂) := EX [RE(β̂ | X)].

We first analyze the variance terms for both risks and then study the bias terms.

3 THE VARIANCE COMPONENTS OF PREDICTION AND ESTIMATION RISKS

3.1 THE VARIANCE COMPONENT OF PREDICTION RISK

We rewrite the variance component of prediction risk as follows:

VarΣ(β̂ | X) = Tr(Cov(β̂ | X)Σ) = Tr(X†ΩX†⊤Σ) = ∥SX†T∥2F , (3)

where positive definite symmetric matrices S := Σ1/2 and T := Ω1/2 are the square root matrices
of the positive definite matrices Σ and Ω, respectively. To compute the above Frobenius norm of the
matrix SX†T , we need to compute the alignment of the right-singular vectors of B := SX† ∈ Rp×n

with the left-eigenvectors of T ∈ Rn×n. Here, B is a random matrix while T is fixed. Therefore,
we need the distribution of the right-singular vectors of the random matrix B.

Perhaps surprisingly, to compute the expected variance EX [VarΣ(β̂ | X)], it turns out that we do
not need the distribution of the singular vectors if we make a minimal assumption (the left-spherical
symmetry of X) which is weaker than the assumption that {xi}ni=1 is i.i.d. normal with E[x1] = 0.
Definition 3.1 (Left-Spherical Symmetry (Dawid, 1977; 1978; 1981; Gupta & Nagar, 1999)). A ran-
dom matrix Z or its distribution is called to be left-spherical if OZ and Z have the same distribution
(OZ

d
= Z) for any fixed orthogonal matrix O ∈ O(n) := {A ∈ Rn×n : AA⊤ = A⊤A = I}.

Assumption 3.2. The design matrix X is left-spherical.

For the isotropic error case (Ω = I), we have EX [VarΣ(β̂ | X)] = EX [Tr((X⊤X)†Σ)] directly
from (3) since X†X†⊤ = (X⊤X)†. Moreover, for the arbitrary error, the left-spherical symmetry
of X plays a critical role to factor out the same EX [Tr((X⊤X)†Σ)] and the trace of the variance-
covariance matrix of the regression errors, Tr(Ω), from the variance after the expectation over X .
Lemma 3.3. For a subset S ⊂ Rm×m satisfying C−1 ∈ S for all C ∈ S , if matrix-valued random
variables Z and AZ have the same distribution measure µZ for any A ∈ S, then we have

EZ [f(Z)] = EZ [f(AZ)] = EZ [EA′∼ν [f(A
′Z)]]

for any function f ∈ L1(µZ) and any probability density function ν on S.

Theorem 3.4. Let Assumptions 2.1, and 3.2 hold. Then, we have

EX [VarΣ(β̂ | X)] =
1

n
Tr(Ω)EX [Tr((X⊤X)†Σ)].

Sketch of Proof. With B = Σ1/2X† and T = Ω1/2, we can rewrite the variance as follows:

VarΣ(β̂ | X) = ∥BT∥2F = ∥UDV ⊤UTDTV
⊤
T ∥2F= ∥DV ⊤UTDT ∥2F

5
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Figure 2: Our theory (dashed lines) matches the expected variances (solid lines) of the prediction
(left) and estimation risks (right) in Example 2.1 (AR(1) Errors). Each point (σ2, ρ2) represents a
different noise covariance matrix Ω, but with the same Tr(Ω) along each line {(σ2, ρ2) : σ2/κ2 +
ρ2 = 1} for some κ2 > 0, they have the same expected variance. We set n = 500, p = 1000, and
evaluate on 100 samples of X and 100 samples of ε (for each realization of X) to approximate the
expectations.

from the singular value decompositions B = UDV ⊤ and T = UTDTV
⊤
T with orthogonal matrices

U, V, UT , VT , and diagonal matrices D,DT . Then, we need to compute the alignment V ⊤UT of the
right-singular vectors of B with the left-eigenvectors of T because

∥DV ⊤UTDT ∥2F = λ
(
(X⊤X)†Σ

)⊤
Γ(X)λ(Ω) = a(X)⊤Γ(X)b,

where a(X) := λ
(
(X⊤X)†Σ

)
, b := λ(Ω), v(i) := V:i, u(j) := (UT ):j , γij := ⟨v(i), u(j)⟩2 ≥ 0,

Γ(X) := (γij)i,j ∈ Rn×n and λ(A) ∈ Rn is a vector where its elements are the eigenvalues of A.

Now, we want to compute the expected variance. To do so, from Lemma 3.3 with S = O(n) and
the left-spherical symmetry of X , we can obtain

EX [a(X)⊤Γ(X)b] = EX

[
EO∼ν [a(OX)⊤Γ(OX)b]

]
= EX

[
a(X)⊤EO∼ν [Γ(OX)]b

]
,

where ν is the unique uniform distribution (the Haar measure) over the orthogonal matrices O(n).

Here, we can show that EO∼ν [Γ(OX)] = 1
nJ , where J is the all-ones matrix with Jij = 1(i, j =

1, 2, · · · , n). Therefore, we have the expected variance as follows:

EX [VarΣ(β̂ | X)] = EX

[
a(X)⊤

1

n
Jb

]
=

1

n

n∑
i,j=1

EX [ai(X)]bj =
1

n
EX [Tr((X⊤X)†Σ)]Tr(Ω).

This recovers the previous results (e.g., Hastie et al. (2022)) when Ω = σ2I , i.e., εi’s are i.i.d. with
Var[εi] = σ2. The proofs of Lemma 3.3 and Theorem 3.4 are in the supplementary appendix.

3.2 THE VARIANCE COMPONENT OF ESTIMATION RISK

For the expected variance EX [Var(β̂ | X)] of the estimation risk, a similar argument still holds if
plugging-in B = X† instead of B = Σ1/2X†.

Theorem 3.5. Let Assumptions 2.1, and 3.2 hold. Then, we have

EX [Var(β̂ | X)] =
1

np
Tr(Ω)EX [Tr(Λ†)],

where XX⊤/p = UΛU⊤ for some orthogonal matrix U ∈ O(n).

6
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Figure 3: Our theory (dashed lines) matches the expected variances (solid lines) of the prediction
(left) and estimation risks (right) in Example 2.2 (Clustered Errors). Each point (σ2

1 , σ
2
2) represents

a different noise covariance matrix Ω, but with the same Tr(Ω) along each line {(σ2
1 , σ

2
2) :

n1

n σ2
1 +

n2

n σ2
2 = κ2} for some κ2 > 0, they have the same expected variance. We set G = 2, (n1 = 50, n2 =

150), n = 200, p = 400, ρ1 = ρ2 = 0.05, and evaluate on 100 samples of X and 100 samples of ε
(for each realization of X) to approximate the expectations.

3.3 NUMERICAL EXPERIMENTS

In this section, we validate our theory with some numerical experiments of Examples 2.1 and 2.2,
especially how the expected variance is related to the general covariance Ω of the regressor error
ε. In the both examples, we sample {xi}ni=1 from N (0,Σ) with a general feature covariance Σ =
UΣDΣU

⊤
Σ for an orthogonal matrix UΣ ∈ O(p) and a diagonal matrix DΣ ≻ 0. In this setting, we

have rank(XX⊤) = n and Λ† = Λ−1 almost everywhere.

See Fig 6 in Appendix C for the experiments with large n and p (e.g., n = 10k, p = 150k).

AR(1) Errors As shown in Example 2.1, when the regressor error follows an autoregressive pro-
cess in equation 2, we have Ωij = σ2ρ|i−j|/(1 − ρ2) and Tr(Ω)/n = σ2/(1 − ρ2). Therefore, for
pairs of (σ2, ρ2) with the same Tr(Ω)/n, they are expected to yield the same variances of the pre-
diction and estimation risk from Theorem 3.4 and 3.5 even though they have different off-diagonal
elements in Ω. To be specific, the pairs (σ2, ρ2) on a line {(σ2, ρ2) : σ2/κ2 + ρ2 = 1} have the
same Tr(Ω)/n and the same expected variance which gets larger for the line with respect to a larger
κ2.

Figure 2 (left) shows the contour plots of EX [VarΣ(β̂ | X)] and 1
n Tr(Ω)EX [Tr((X⊤X)†Σ)] for

different pairs of (σ2, ρ2) in Example 2.1. They have different slopes −κ−2 according to the value
of κ2 = Tr(Ω)/n. The right panel shows equivalent contour plots for estimation risk.

Clustered Errors Now consider the block diagonal covariance matrix Ω =
diag(Ω1,Ω2, · · · ,ΩG) in Example 2.2, where Ωg is an ng × ng matrix with (Ωg)ii = σ2

g

and (Ωg)ij = ρg (i ̸= j) for each i, j = 1, 2, · · · , ng and g = 1, 2, · · · , G. Let n =
∑G

g=1 ng . We

then have Tr(Ω)/n =
∑G

g=1 Tr(Ωg)/n =
∑G

g=1(ng/n)σ
2
g . Therefore, given a partition {ng}Gg=1

of the n observations, the covariance matrices Ω with different {σ2
g}Gg=1 have the same Tr(Ω)/n if

(σ2
1 , σ

2
2 , · · · , σ2

G) ∈ RG are on the same hyperplane n1

n σ2
1 + n2

n σ2
2 + · · · + nG

n σ2
G = κ2 for some

κ2 > 0.

Figure 3 (left) shows the contour plots of EX [VarΣ(β̂ | X)] and 1
n Tr(Ω)EX [Tr((X⊤X)†Σ)]

for different pairs of (σ2
1 , σ

2
2) for a simple two-clusters example (G = 2) of Example 2.2 with

(n1, n2) = (5, 15). Here, we use a fixed value of ρ1 = ρ2 = 0.05, but the results are the same
regardless of their values, as shown in the Appendix. Unlike Example 2.1, the hyperplanes are or-
thogonal to v = [n1, n2]

⊤ regardless of the value of κ2 = Tr(Ω)/n. Again, the right panel shows
equivalent contour plots for estimation risk.
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4 THE BIAS COMPONENTS OF PREDICTION AND ESTIMATION RISKS

Our main contribution is to allow for general assumptions on the regression errors, and thus the bias
parts remain the same as they do not change with respect to the regression errors. For completeness,
in this section, we briefly summarize the results on the bias components. First, we make the fol-
lowing assumption for a constant rank deficiency of X⊤X which holds, for example, each xi has a
positive definite covariance matrix and is independent of each other.
Assumption 4.1. rank(X) = n almost everywhere.

4.1 THE BIAS COMPONENT OF PREDICTION RISK

The bias term of prediction risk can be expressed as follows:

[BiasΣ(β̂ | X)]2 = (Sβ)⊤ lim
λ↘0

λ2(S−1Σ̂S + λI)−2Sβ, (4)

where Σ̂ := X⊤X/n. Now, in order to obtain an exact closed form solution, we make the following
assumption:
Assumption 4.2. Eβ [Sβ(Sβ)

⊤] = r2ΣI/p, where r2Σ := Eβ [∥β∥2Σ] < ∞ and β is independent of
X .

A similar assumption (see Assumption 4.4) has been shown to be useful to obtain closed-form
expressions in the literature (e.g., Dobriban & Wager, 2018; Richards et al., 2021; Li et al., 2021;
Chen et al., 2023).

Under this assumption, since [BiasΣ(β̂ | X)]2 = Tr[Sβ(Sβ)⊤ limλ↘0 λ
2(S−1Σ̂S + λI)−2] from

(4), we have the expected bias (conditional on X) as follows:

Eβ [BiasΣ(β̂ | X)2 | X] =
r2Σ
p

lim
λ↘0

p∑
i=1

λ2

(s̃i + λ)2
=

r2Σ
p

|{i ∈ [p] : s̃i = 0}| = r2Σ
p− n

p
,

where s̃i are the eigenvalues of S−1Σ̂S ∈ Rp×p and rank(S−1Σ̂S) = rank(X) = n almost
everywhere under Assumption 4.1. This bias is independent of the distribution of X or the spectral
density of S−1Σ̂S, but only depending on the rank deficiency of the realization of X .

Finally, the prediction risk RP (β̂) can be summarized as follows:
Corollary 4.3. Let Assumptions 2.1, 3.2, 4.1, and 4.2 hold. Then, we have

RP (β̂) = r2Σ

(
1− n

p

)
+

Tr(Ω)

n
EX

[
Tr((X⊤X)†Σ)

]
.

4.2 THE BIAS COMPONENT OF ESTIMATION RISK

For the bias component of estimation risk, we can obtain a similar result with 4.1 as follows:

[Bias(β̂ | X)]2 = β⊤(I − Σ̂†Σ̂)β = lim
λ↘0

β⊤λ(Σ̂ + λI)−1β.

Assumption 4.4. Eβ [ββ
⊤] = r2I/p, where r2 := Eβ [∥β∥2] < ∞ and β is independent of X .

Under Assumption 4.4, we have the expected bias (conditional on X) as follows:

Eβ [Bias(β̂ | X)2 | X] =
r2

p
lim
λ↘0

p∑
i=1

λ

si + λ
=

r2

p
|{i ∈ [p] : si = 0}| = r2

p− n

p
, (5)

where si are the eigenvalues of Σ̂ ∈ Rp×p and rank(Σ̂) = rank(X) = n under Assumption 4.1.

Thanks to Theorem 3.5 and (5), we obtain the following corollary for estimation risk.
Corollary 4.5. Let Assumptions 2.1, 3.2, 4.1, and 4.4 hold. Then, we have

RE(β̂) = r2
(
1− n

p

)
+

Tr(Ω)

n
EX

[∫
1

s
dFXX⊤/n(s)

]
,

where FA(s) := 1
n

∑n
i=1 1{λi(A) ≤ s} is the empirical spectral distribution of a matrix A and

λ1(A), λ2(A), · · · , λn(A) are the eigenvalues of A.
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The proof of Corollary 4.5 is in the Appendix.

4.2.1 ASYMPTOTIC ANALYSIS OF ESTIMATION RISK

To study the asymptotic behavior of estimation risk, we follow the previous approaches (Dobriban
& Wager, 2018; Hastie et al., 2022). First, we define the Stieltjes transform as follows:

Definition 4.6. The Stieltjes transform sF (z) of a df F is defined as:

sF (z) :=

∫
1

x− z
dF (x), for z ∈ C \ supp(F ).

100 101 102

= p/n

10 2

10 1

100

101

102 Prediction Risk
variance
variance (theory)
variance (theory, iso.)
bias
bias (theory)

100 101 102

= p/n

10 2

10 1

100

101

102 Estimation Risk
variance
variance (theory)
variance (theory, iso.)
bias
bias (theory)

Figure 4: The “descent curve” in the overparameterization regime for prediction risk (left) and
estimation risk (right). We test Ω’s with Tr(Ω)/n = 1, 2, 4 in black, blue, red, respectively. For
the anisotropic feature, the expected variance (×) and its theoretical expression (•) are Θ

(
Tr(Ω)/n

γ−1

)
and larger than that in the high-dimensional asymptotics for the isotropic Σ = I . For the isotropic
Σ = I , the variance terms (dotted) and the bias terms (dashed) in the high-dimensional asymptotics
are 1

γ−1 limn→∞
Tr(Ω)

n and r2
(
1− 1

γ

)
, respectively.

We are now ready to investigate the asymptotic behavior of the mean squared estimation error with
the following theorem:

Theorem 4.7. (Silverstein & Bai, 1995, Theorem 1.1) Suppose that the rows {xi}ni=1 in X are i.i.d.
centered random vectors with E[x1x

⊤
1 ] = Σ and that the empirical spectral distribution FΣ(s) =

1
p

∑p
i=1 1{τi ≤ s} of Σ converges almost surely to a probability distribution function H as p → ∞.

When p/n → γ > 0 as n, p → ∞, then a.s., FXX⊤/n converges vaguely to a df F and the limit
s∗ := limz↘0 sF (z) of its Stieltjes transform sF is the unique solution to the equation:

1− 1

γ
=

∫
1

1 + τs∗
dH(τ). (6)

This theorem is a direct consequence of Theorem 1.1 in Silverstein & Bai (1995). Then, from
Corollary 4.5, we can write the limit of estimation risk as follows:

Corollary 4.8. Let Assumptions 2.1, 3.2, 4.1, and 4.4 hold. Then, under the same assumption as
Theorem 4.7, as n, p → ∞ and p/n → γ, where 1 < γ < ∞ is a constant, we have

RE(β̂) = E
[
∥β̂ − β∥2

]
→ r2

(
1− 1

γ

)
+ s∗ lim

n→∞

Tr(Ω)

n
.

Here, the limit s∗ of the Stieltjes transform sF is highly connected with the shape of the spectral
distribution of Σ. For example, in the case of isotropic features (Σ = I), i.e., dH(τ) = δ(τ − 1)dτ ,
we have s∗iso = (γ − 1)−1 from 1− 1

γ = 1
1+s∗iso

. In addition, if Ω = σ2I , then the limit of the mean
squared error is exactly the same as the expression for γ > 1 in equation (10) of Hastie et al. (2022,
Theorem 1). This is because prediction risk is the same as estimation risk when Σ = I .
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Remark 4.9. Generally, if the support of H is bounded within [cH , CH ] ⊂ R for some positive
constants 0 < cH ≤ CH < ∞, then we can observe the double descent phenomenon in the over-
parameterization regime with limγ↘1 s

∗ = ∞ and limγ→∞ s∗ = 0 with s∗ = Θ
(

1
γ−1

)
from the

following inequalities:

C−1
H

1

γ − 1
≤ s∗ ≤ c−1

H

1

γ − 1
. (7)

In fact, a tighter lower bound is available:

s∗ ≥ µ−1
H (γ − 1)−1, (8)

where µH := Eτ∼H [τ ], i.e., the mean of distribution H . The proofs of (7) and (8) are given in the
supplementary appendix.

We conclude this paper by plotting the “descent curve” in the overparameterization regime in Figure
4. On one hand, the expected variance (×) perfectly matches its theoretical counterpart (•) and goes
to zero as γ gets large. On the other hand, the bias term is bounded even if γ → ∞. The Appendix
contains the experimental details for all the figures.

5 CONCLUSION

We present an analysis of the prediction and estimation risks of the minimum ℓ2 norm (ridgeless)
interpolation least squares estimator under more general regression error assumptions, highlighting
the benefits of overparameterization in a more realistic setting. This allows for clustered or serial
dependence, which enables us to extend our results to time series, panel and grouped data. Notably,
we provide an important understanding that the estimation difficulties associated with the variance
components of both risks can be factorized into a product between two terms: one term depends
only on the trace of the variance-covariance matrix of εi’s; the other term is solely determined by
the distribution of xi’s. Although Ω may contain non-zero off-diagonal elements, the off-diagonal
correlation E[εiεj ] do not play any role but only the trace of Ω matters. It would be a promising
orthogonal research direction to explore the risks under a general feature setting such as kernel
regression or random feature models, along with general error assumptions.

ETHICS STATEMENT

This paper presents work whose goal is to advance the field of Machine Learning. There are many
potential societal consequences of our work, none which we feel must be specifically highlighted
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REPRODUCIBILITY STATEMENT
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APPENDIX

A DETAILS FOR DRAWING FIGURE 1

To draw Figure 1, we use a sample extract from American Community Survey (ACS) 2018. To
have a relatively homogeneous population, the sample extract is restricted to white males residing in
California with at least a bachelor’s degree. We consider a demographic group defined by their age
in years (between 25 and 70), the type of degree (bachelor’s, master’s, professional, and doctoral),
and the field of degree (172 unique values). Then, we compute the average of log hourly wages
for each age-degree-field group (all together 7,073 unique groups in the sample). We treat each
group average as the outcome variable (say, ya,d,f ) and predict group wages by various group-level
regression models where the regressors are constructed using the indicator variables of age, degree,
and field as well as their interactions: that is,

ya,d,f = x⊤
a,d,f β + εa,d,f .

For the regressors xa,d,f , we consider 7 specifications ranging from 209 to 2,183 regressors:

• Spec. 1 (p = 209): dummy variables for age (say, xa) + dummy variables for the type of
degree (say, xd) + dummy variables for the field of degree (say, xf ),

• Spec. 2 (p = 391): Spec. 1 + all interactions between xd and xa,
• Spec. 3 (p = 598): Spec. 1 + all interactions between xd and xf ,
• Spec. 4 (p = 778): Spec. 1 + all interactions between xd and xa + all interactions between
xd and xf ,

• Spec. 5 (p = 1640): Spec. 1 + all interactions between xd and xa + all interactions
between xa and xf ,

• Spec. 6 (p = 1754): Spec. 1 + all interactions between xd and xf + all interactions
between xa and xf ,

• Spec. 7 (p = 2182): Spec. 1 + all three-way interactions among xa, xd and xf .

Here, the dummy variable are constructed using one-hot encoding. We randomly split the sample
into the train and test samples with a ratio of 1 : 4. The resulting sample sizes are 1,415 and 5,658,
respectively. To understand the role of non-i.i.d. regressor errors, we add the artificial noise to the
training sample: that is, we compute the ridgeless least squares estimator using the training sample
of (ỹa,d,f , x⊤

a,d,f )
⊤, where ỹa,d,f = ya,d,f + ua,d,f . Here, the artificial noise ua,d,f has the form

ua,d,f ≡ (1− c)ea,d,f + c · ef√
(1− c)2 + c2

,

where ea,d,f ∼ N(0, σ2), independently across age (a), degree (d) and field (f ); ef is the average of
another independent N(0, σ2) variable within f (hence, ef is identical for each value of f ) and thus
the source of clustered errors; and c ∈ {0, 0.25, 0.5, 0.75} is a constant that will be varied across the
experiment. As c gets larger, the noise has a larger share of clustered errors but the variance of the
overall regression errors (ua,d,f ) remains the same: in other words, var(ua,d,f ) = σ2 for each value
of c. Figure 1 was generated with σ = 0.5 by generating the artificial noise only once.
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B DETAILS FOR DRAWING FIGURES 2, 3, AND 4

To draw Figures 2, 3, and 4, we sample {xi}ni=1 from N (0,Σ) with Σ = UΣDΣU
⊤
Σ where UΣ is an

orthogonal matrix random variable, drawn from the uniform (Haar) distribution on O(p), and DΣ is
a diagonal matrix with its elements di = |zi|/

∑p
i=1 |zi| being sampled with zi ∼ N (0, 1) for each

i = 1, 2, · · · , p. With this general anisotropic Σ, the term EX [Tr(Λ−1)]/p is somewhat larger than
µ−1
H s∗iso = (γ− 1)−1 which is 1 in Figures 2 and 3 since µH = 1 and γ = 2. For example, in Figure

2, when σ2 = 1, ρ2 = 0, we have Tr(Ω)/n = 1 but Tr(Ω)EX [Tr(Λ−1)]/(np) > 1.

In Figure 4, we fix n = 50 and use p = nγ for γ ∈ [1, 100].

To compute the expectations of EX [Var(β̂|X)] and EX [Tr(Λ−1)] over X , we sample NX sam-
ples of X’s, X1, X2, · · · , XNX

. Moreover, to compute the expectation over ε in Var(β̂|Xi) ≡
Tr

(
Eε[β̂β̂

⊤]− Eε[β̂]Eε[β̂]
⊤
)

, we sample Nε samples of ε’s, ε1, ε2, · · · , εNε
for each realization

Xi. To be specific,

EX [Var(β̂|X)] ≈ 1

NX

NX∑
i=1

Var(β̂|Xi) ≈
1

NX

NX∑
i=1

Tr

 1

Nε

Nε∑
j=1

β̂i,j β̂
⊤
i,j −

1

Nε

Nε∑
j=1

β̂i,j
1

Nε

Nε∑
j=1

β̂⊤
i,j


1

p
EX [Tr(Λ−1)] ≈ 1

NX

NX∑
i=1

Tr((XiX
⊤
i )−1) =

1

NX

NX∑
i=1

n∑
k=1

1

λk(XiX⊤
i )

,

where β̂i,j = argminβ{∥b∥ : Xib − yi,j = 0}, yi,j = Xiβ + εj , and λk(XiX
⊤
i ) is the k-th

eigenvalue of XiX
⊤
i . We can do similarly for the variance part of the prediction risk.

Figure 5 shows an additional experimental result.
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Figure 5: We use a similar setting as Figure 3, except uniformly sample each ρi from [0, 0.05]
for each experiment with the pairs (σ2

1 , σ
2
1). As expected, the off-diagonal elements ρi of Ω do not

affect the expected variances.
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C EXPERIMENTS WITH LARGE n AND p

We conduct the extra experiments with larger n and p (e.g., n = 10k and p = 150k).
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Figure 6: [Top Three Rows] Estimation Risk in Example 2.1 (AR(1) Errors) with a wide range
of (n, p) pairs. See caption of Fig 2 (Right) for more details. Panels in each row have the same
γ = 2, 4, 10 (Top, Middle, Bottom). With the same γ, it shows almost identical results for each row.
[Last Row] Large scale validation with p = 50000 = 50k (Left), p = 100k (Middle), and p = 150k
(Rigth). cf. xi ∈ Rp (CIFAR-10 p ≈ 3.1k and ImageNet p ≈ 150k).
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D PROOFS OMITTED IN THE MAIN TEXT

Proof of Lemma 3.3. For a given A ∈ S, since A−1 ∈ S, we have Z
d
= A−1Z := Z̃ and

EZ [f(Z)] = EA−1Z [f(Z)] = EZ̃ [f(AZ̃)] = EZ [f(AZ)].

This naturally leads to

EZ [EA′∼ν [f(A
′Z)]] = EA′∼ν [EZ [f(A

′Z)]] = EA′∼ν [EZ [f(Z)]] = EZ [f(Z)]

where the first equality comes from Fubini’s theorem and the integrability of f .

Proof of Theorem 3.4. Since β̂ = X†y, we have Cov(β̂ | X) = X†Cov(y | X)X†⊤ = X†ΩX†⊤,
which leads to the following expression for the variance component of prediction risk:

VarΣ(β̂ | X) = Tr(Cov(β̂ | X)Σ) = Tr(X†ΩX†⊤Σ) = ∥SX†T∥2F = ∥BT∥2F ,

where S = Σ1/2, T = Ω1/2, and B = SX†. Using the singular value decomposition (SVD) of B
and T , respectively, we can rewrite this as follows:

∥BT∥2F = ∥UDV ⊤UTDTV
⊤
T ∥2F= ∥DV ⊤UTDT ∥2F ,

where B = UDV ⊤ and T = UTDTV
⊤
T with orthogonal matrices U, V, UT , VT , and diagonal

matrices D,DT . Now we need to compute the alignment V ⊤UT of the right-singular vectors of B
with the left-eigenvectors of T .

∥DV ⊤UTDT ∥2F =

n∑
i,j=1

(
Dii

∑n

k=1
V ⊤
ik (UT )kj(DT )jj

)2

=
∑n

i,j=1
λi(B)2λj(T )

2γij

=
∑n

i,j=1
λi

(
(X⊤X)†Σ

)
λj(Ω)γij

= λ
(
(X⊤X)†Σ

)⊤
1×n

Γ(X)

n×n

λ(Ω)

n×1

,

where γij := ⟨V:i, (UT ):j⟩2 ≥ 0, Γ(X) := (γij)i,j ∈ Rn×n and λ(A) ∈ Rn is a vector with its
element λi(A) as the i-th largest eigenvalue of A.

Therefore, we can rewrite the variance as VarΣ(β̂ | X) = a(X)⊤Γ(X)b with

a(X) := λ
(
(X⊤X)†Σ

)
∈ Rn,

b := λ(Ω) ∈ Rn,

Γ(X)ij = γij = ⟨v(i), u(j)⟩2,

where v(i) := V:i and u(j) := (UT ):j . Note that the alignment matrix Γ(X) is a doubly stochastic
matrix since

∑
j γij =

∑
i γij = 1 and 0 ≤ γij ≤ 1.

Now, we want to compute the expected variance. To do so, from Lemma 3.3 with S = O(n), we
can obtain

EX [a(X)⊤Γ(X)b] = EX

[
EO∼ν [a(OX)⊤Γ(OX)b]

]
= EX

[
a(X)⊤EO∼ν [Γ(OX)]b

]
,

where ν is the unique uniform distribution (the Haar measure) over the orthogonal matrices O(n).
For an orthogonal matrix O ∈ O(n), we have

Γ(OX)ij = ⟨Ov(i), u(j)⟩2 = (v(i)⊤O⊤u(j))2,

since S(OX)† = SX†O⊤ = BO⊤ = UD(OV )⊤. Here, (OX)† = X†O⊤ follows from the
orthogonality of O ∈ O(n). Since the Haar measure is invariant under the matrix multiplication in
O(n), if we take the expectation over the Haar measure, then we have

Γ̄(X)ij := EO∼ν [Γ(OX)ij ] = EO∼ν [(v
(i)⊤O⊤u(j))2] = EO∼ν [(v

(i)⊤O⊤O(j)⊤u(j))2].
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Here, for a given j, we can choose a matrix O(j) ∈ O(n) such that its first column is u(j) and
O(j)⊤u(j) = e1, then Γ̄(X)ij is independent of j (say Γ̄(X)ij = αi). Since Γ(X) is doubly
stochastic, so is Γ̄(X) and we have

∑n
j=1 Γ̄(X)ij = nαi = 1 which yields Γ̄(X)ij = αi = 1/n,

regardless of the distribution of V ; thus, Γ̄(X) = 1
nJ , where Jij = 1(i, j = 1, 2, · · · , n).

Therefore, we have the expected variance as follows:

EX [VarΣ(β̂ | X)] = EX [a(X)⊤
1

n
Jb] =

1

n

n∑
i,j=1

EX [ai(X)]bj =
1

n
EX [Tr((X⊤X)†Σ)]Tr(Ω).

Proof of Corollary 4.5. Note that

EX [Var(β̂|X)] =
Tr(Ω)

p
EX

[
1

n

∑
i

1

λi

]

=
Tr(Ω)

p
EX

[∫
1

s
dFXX⊤/p(s)

]
=

Tr(Ω)

n
EX

[∫
1

s
dFXX⊤/n(s)

]
.

Then, the desired result follows directly from (5).

Proof of (4). The bias term of the prediction risk can be expressed as follows:

[BiasΣ(β̂ | X)]2 = ∥E[β̂ | X]− β∥2Σ
= ∥(Σ̂†Σ̂− I)β∥2Σ
= β⊤(I − Σ̂†Σ̂)Σ(I − Σ̂†Σ̂)β

= β⊤ lim
λ↘0

λ(Σ̂ + λI)−1Σ lim
λ↘0

λ(Σ̂ + λI)−1β

= (Sβ)⊤ lim
λ↘0

λ2(S−1Σ̂S + λI)−2Sβ,

where Σ̂ = X⊤X/n. Here, the fourth equality comes from the equation

I − Σ̂†Σ̂ = lim
λ↘0

I − (Σ̂ + λI)−1Σ̂

= lim
λ↘0

I − (Σ̂ + λI)−1(Σ̂ + λI − λI)

= lim
λ↘0

λ(Σ̂ + λI)−1.

Proof of (7). The RHS of (6) is bounded above by
∫

1
1+cHs∗ dH(τ) = 1

1+cHs∗ , and thus 1 − 1
γ ≤

1
1+cHs∗ , which yields s∗ ≤ c−1

H
1

γ−1 . We can similarly prove the other inequality in (7) with a lower
bound 1

1+CHs∗ on the RHS of (6).

Proof of (8). To further explore the inequalities (7), we rewrite (6) from Theorem 4.7 as follows:

1− 1

γ
= Eτ∼H [g(τ ; s∗)] , where g(t; s) :=

1

1 + ts
for t, s > 0.

Here, since g(t; s) is convex with respect to t > 0 for a given s > 0, by Jensen’s inequality, we then
have

Eτ∼H [g(τ ;µ−1
H s∗iso)] ≥ g

(
µH ;µ−1

H s∗iso

)
= g(1; s∗iso) = 1− γ−1

where µH = Eτ∼H [τ ]. Therefore, the limit Stieltjes transform s∗ in the anisotropic case should
be larger than µ−1

H s∗iso of the isotropic case to satisfy Eτ∼H [g(τ ; s∗)] = 1 − γ−1 since g(t; s) is
a decreasing function with respect to s ≥ 0 when t > 0. This leads to a tighter lower bound
s∗ ≥ µ−1

H s∗iso = µ−1
H (γ − 1)−1 than (7) because µH ≤ CH .
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E RIDGE REGRESSION

We can easily extend Theorem 3.4 to the ridge regression case with the ridge estimator β̂λ :=

argminb∈Rp{∥Xb− y∥2 + λ∥b∥2}, i.e., β̂λ = (X⊤X + λI)−1X⊤y.
Theorem E.1. Let Assumptions 2.1, and 3.2 hold. Then, we have

EX [VarΣ(β̂λ | X)] =
1

n
Tr(Ω)EX [Tr((X⊤X + λI)−1X⊤X(X⊤X + λI)−1Σ)].

Sketch of Proof. The ridge estimator is β̂λ = Pλy, where Pλ = (X⊤X + λI)−1X⊤. With Bλ =
Σ1/2Pλ and T = Ω1/2, we can rewrite the variance as follows:

VarΣ(β̂λ | X) = ∥BλT∥2F = ∥UDλV
⊤UTDTV

⊤
T ∥2F= ∥DλV

⊤UTDT ∥2F

from the singular value decompositions Bλ = UDλV
⊤ and T = UTDTV

⊤
T with orthogonal ma-

trices U, V, UT , VT , and diagonal matrices Dλ, DT . Note that U, V do not depend on λ. Then, we
need to compute the alignment V ⊤UT of the right-singular vectors of Bλ with the left-eigenvectors
of T because

∥DλV
⊤UTDT ∥2F = λ

(
PλP

⊤
λ Σ

)⊤
Γ(X)λ(Ω) = a(X;λ)⊤Γ(X)b,

where a(X;λ) := λ
(
PλP

⊤
λ Σ

)
∈ Rn, b := λ(Ω) ∈ Rn, v(i) := V:i, u(j) := (UT ):j , γij :=

⟨v(i), u(j)⟩2 ≥ 0, Γ(X) := (γij)i,j ∈ Rn×n and λ(A) ∈ Rn is a vector where its elements are the
eigenvalues of A.

Now, we want to compute the expected variance. To do so, from Lemma 3.3 with S = O(n) and
the left-spherical symmetry of X , we can obtain

EX [a(X;λ)⊤Γ(X)b] = EX

[
EO∼ν [a(OX;λ)⊤Γ(OX)b]

]
= EX

[
a(X;λ)⊤EO∼ν [Γ(OX)]b

]
,

where ν is the unique uniform distribution (the Haar measure) over the orthogonal matrices O(n).

Here, we can show that EO∼ν [Γ(OX)] = 1
nJ , where J is the all-ones matrix with Jij = 1(i, j =

1, 2, · · · , n). Therefore, we have the expected variance as follows:

EX [VarΣ(β̂λ | X)] = EX

[
a(X;λ)⊤

1

n
Jb

]
=

1

n

n∑
i,j=1

EX [ai(X;λ)]bj

=
1

n
EX [Tr((X⊤X + λI)−1X⊤X(X⊤X + λI)−1Σ)]Tr(Ω).

Similarly, Theorem 3.5 can be extended as follows:
Theorem E.2. Let Assumptions 2.1, and 3.2 hold. Then, we have

EX [Var(β̂λ | X)] =
1

np
Tr(Ω)EX [Tr((Λ + λI)−2Λ)],

where XX⊤/p = UΛU⊤ for some orthogonal matrix U ∈ O(n).
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