
Generative Intrinsic Optimization: Intrinsic Control
with Model Learning

Jianfei Ma
School of Mathematics and Statistics

Northwestern Polytechnical University
matrixfeeney@gmail.com

Abstract

Future sequence represents the outcome after executing the action into the envi-
ronment (i.e. the trajectory onwards). When driven by the information-theoretic
concept of mutual information, it seeks maximally informative consequences.
Explicit outcomes may vary across state, return, or trajectory serving different
purposes such as credit assignment or imitation learning. However, the inherent
nature of incorporating intrinsic motivation with reward maximization is often
neglected. In this work, we propose a policy iteration scheme that seamlessly
incorporates the mutual information, ensuring convergence to the optimal policy.
Concurrently, a variational approach is introduced, which jointly learns the nec-
essary quantity for estimating the mutual information and the dynamics model,
providing a general framework for incorporating different forms of outcomes of
interest. While we mainly focus on theoretical analysis, our approach opens the
possibilities of leveraging intrinsic control with model learning to enhance sample
efficiency and incorporate uncertainty of the environment into decision-making.

1 Introduction

Deep reinforcement learning (RL) aims to improve an agent’s policy with a task-specific reward,
showing promise in solving complex tasks such as video games [24] and robot locomotion [14].
However, in many cases, obtaining a task-specific reward can be challenging, hindering the learning
process. Intrinsic motivation, on the other hand, offers an alternative approach where the agent is
driven by internal rewards to achieve goals or complete tasks. Its effectiveness has been shown in
RL, including skill discovery [11], curiosity-driven exploration [16], and representation learning
[3]. However, existing methods often treat intrinsic reward as an additional component to the
task-specific reward, optimizing them using standard RL algorithms, without fully considering its
unique nature in the agent’s decision-making process. Furthermore, these methods often rely on
specific variational approaches tailored to particular applications, lacking a unified perspective. In
this work, we propose a novel approach that transforms the standard RL objective into a mutual
information maximization framework, which employs a variational approach, enabling simultaneous
approximation of the posterior and the transition model. This unified approach facilitates efficient
intrinsic control combined with model learning.

In this paper, we present a comprehensive intrinsic control framework called Generative Intrinsic
Optimization (GIO) that integrates a policy iteration scheme and a variational approach, enabling
effective policy optimization by incorporating intrinsic motivation as a fundamental component of
the agent’s decision-making process. Our method is applicable to various future sequence forms,
from one-step future sequences F = (s′, r) to multi-step transitions, as well as compressed future
sequences, offering potential synergies with existing approaches for further improvement. We provide
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Figure 1: Left: GIO combines both intrinsic and extrinsic rewards for policy learning and utilizes the
learned model for planning purposes; Right: The variational model comprises an inference model
and a generative model for posterior approximation and model learning.

a theoretical analysis of the convergence of our proposed scheme, ensuring monotonicity, and derive
variational lower bounds for both one-step and multi-step scenarios.

2 Preliminaries

2.1 Notation

Consider a regularized infinite-horizon discounted MDP, defined by a tuple (S,A, P, r, ρ0, γ,∆),
where S is the state space, A is the action space, P : S × A× S → R is the transition probability
distribution, r : S×A → R is the reward function, ρ0 : S → R is the distribution of the initial state s0,
γ ∈ [0, 1) is the discount factor, and the additional term ∆ represents other rewards such as intrinsic

reward. We aim to maximize the objective function Eτ
[ ∞∑
t=0

γt(rt + η∆t)

]
with a temperature

parameter η, where τ represents the trajectory generated by a stochastic policy π : S ×A → [0, 1].
We denote the entropy of a distribution as H(·).

Information Seeking RL In the context of information-seeking RL, we introduce ∆ = Iπ(F , a|s)
as the state-conditional mutual information between the current action and a future sequenceF beyond
the action execution. Our goal is to maximize the expected augmented reward by incorporating this
mutual information term.

η(π) = Eτ

[ ∞∑
t=0

γt(rt + ηIπ(Ft, at|st))
]

(1)

This formulation captures the uncertainty reduction between the current policy and the posterior,
providing a flexible framework for various RL formulations. For instance, adopting an optimistic
perspective, where the future sequence fully explains the executed action, the mutual information
reduces to the entropy ∆ = H(π), encouraging pure exploration [37]. In contrast, standard RL [33]
takes a pessimistic stance, assuming the future sequence reveals no information about the executed
action, that is, ∆ = 0.

In this paper, our focus will primarily be on the more general form of mutual information, allowing
the incorporation of different choices of future sequences within a unified framework.
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3 Mutual Information

Mutual information depicts mutual dependence between two random variables. Being an information-
theoretic measure, it can be used to quantify the amount of information contained in the future F that
explains the action a given the current state s

Iπ(F , a|s) = Eπ(a|s)p(F|s,a)

[
log

p(F , a|s)
p(F|s)π(a|s)

]
(2)

where F can be any successor outcomes ahead of (s, a), for instance one-step transition F = (s′, r),
or multi-steps subsequence F ⊆ (s′>, r>). This quantity is compelling as it encourages the agent to
seek maximally informative future outcomes and thereby reduce the uncertainty of the decisions.

Iπ(F , a|s) = H(π(a|s))− Epπ(F|s) [H(pπ(a|F , s))] (3)

where pπ(a|F , s) is the posterior distribution corresponds to the prior π after observing new outcomes.
The mutual information quantifies the reduction in uncertainty between the prior and posterior. In
what will follow, we present a policy iteration scheme that helps the agent pursue a policy that seeks
maximum information about the future.

4 Intrinsic Policy Iteration

We start by deriving an intrinsic Bellman operator and proposing a policy iteration scheme. We then
present a general convergence result for all valid future sequences F .

It is useful to define the following operator
T πQ(st, at) = r(st, at) + γEst+1 [V (st+1)], (4)

where
V (st) = Eat∼π,Ft

[Q(st, at) + η(log pπ(at|st,Ft)− log π(at|st))] (5)
where η is a hyperparameter that controls the relative strength of the augmentation against the reward.

It is not difficult to see that T π is a contraction by modifying the reward as r(s, a)+γEs′ [I(a′,F ′|s′)].
It indicates that if we repeatedly apply the intrinsic Bellman operator, we will get the intrinsic action-
value function Qπ .
Proposition 4.1. If I(F , a|s) is bounded for any s ∈ S , then limk→∞(T π)kQ = Qπ for any initial
function Q, and specifically Qπ is the unique solution of (4).

Although the intricate relationship between the posterior pπ and the policy π makes a direct improve-
ment over Qπ infeasible, it is possible to follow an alternating optimization procedure when both Qπ
and pπ are fixed. In such cases, under certain conditions, this approach can still ensure optimality.

We can solve for the one-step optimal policy when the intrinsic action-value function is attained as
follows

G(Qπ, pπ) =
exp 1

η (Q
π + ηEF [log pπ(a|s,F)])

Zπ(s)
(6)

where Zπ(s) is a partition function dependent only on state s.

Repeated application of the intrinsic Bellman operator and the softmax operator, we can produce a
sequence of Qπk , k = 0, 1, · · · by starting from arbitrary policy π0. Unsurprisingly, under some mild
condition, for any future sequence F of interest, it is guaranteed to converge to the optimal policy
π⋆ ≜ argmaxπ V

π (where V π can be obtained by inserting Qπ into Equation (5)) and the optimal
action-value function Qπ

⋆

.
Assumption 4.2. The entropy H(π⋆) is bounded.
Assumption 4.3. The initial policy π0 is non-zero everywhere.
Assumption 4.4. The limit of

n∑
k=0

Es′,(a′,F ′)∼(pπ⋆ (F ′,a′|s′)−pπk+1 (F ′,a′|s′))
[
η(log pπ

⋆

(a′|F ′, s′)− log π⋆(a′|s′)) +Qπk

]
(7)

exists1 for any (s, a) ∈ S ×A.
1We denote Ep−q = Ep − Eq for less verbatim repetition.
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Theorem 4.5. Under assumptions 4.2–4.4, for any future sequence F , it holds that

lim
k→∞

Qπk = Qπ
⋆

(8)

However, without knowing the transition model and the posterior, it may be difficult to utilize
this general convergence result. In the next section, we unify the model learning and posterior
approximation into a single model, considering one-step transitions.

5 Inference with Model Learning

5.1 Variational Inference

Due to the intractability of the marginal distribution, obtaining the posterior can be challenging.
Therefore, we employ variational inference [20] using an inference model qϕ(a|s, s′, r) to approxi-
mate the true posterior. The dynamic model is parameterized as pψ(s′, r|s, a). For a given policy π,
we can derive a variational lower bound on the conditional marginal distribution of F = (s′, r)

log pπ(s′, r|s) ≥ L(ϕ, ψ; s, s′, r)
= −DKL(qϕ(a|s, s′, r)||π(a|s)) + Eqϕ(a|s,s′,r)[log pψ(s

′, r|s, a)] (9)

where the action space is naturally treated as a latent inference target, for which the policy contains
the necessary prior knowledge. The recognition model encodes the sequential experiences to infer
the true posterior and the generative model constructs environment dynamics. This allows efficient
posterior approximation for any future sequence F , capturing complex dynamics.

In practice, we make a common assumption of factorization for the transition model pψ
pψ(s

′, r|s, a) = pψ(s
′|s, a)pψ(r|s, a) (10)

5.2 Policy Improvement

After observing new outcomes emitted from the environment, the agent will update its belief over the
current policy based on both extrinsic and intrinsic rewards. We project the policy onto the one-step
optimal policy G(Qπ, pπ) as shown in Equation (6) for each state s ∈ S

argmin
π′∈Π

DKL

(
π′(·|s)

∣∣∣∣∣∣G(Qπ, pπ)) (11)

Once we arrive at our new policy, by reevaluating the corresponding posterior, we can guarantee a
monotonic improvement.
Theorem 5.1. If π̃ minimizes the projection loss against π for any s ∈ S and the corresponding
posterior is attained. Then Qπ̃(st, at) ≥ Qπ(st, at) for all (st, at) ∈ S ×A.

5.3 Trajectory-Wise Lower Bound

Alternatively, we can consider a lower bound upon a trajectory τ with a finite horizon T , enabling the
capture of longer horizon information with a more accurate prediction of the transition and wider
coverage of the trajectory surprise. Denote x1:T = (st+1, rt|st)Tt=1 and z1:T = (at|st)Tt=1, then we
have

log pπ (x1:T ) ≥
T∑
τ=1

Ez1:τ [log pψ (s′τ , rτ |sτ , aτ )−DKL (qϕ (aτ |s1:τ+1, r1:τ , a1:τ−1) ∥π (aτ |sτ ))]

(12)
where we assume factorization of the recognition and generative model and also use the Markov
property of the policy distribution.

If we further assume conditional independence of the past information i.e. t < τ for qϕ, then it
reduces to a compact formulation being a summation of a series of one-step lower bounds (Equation
(9)). It can be useful for inferring multi-step posteriors simultaneously and fitting a transition model
with a longer temporal dependence. Although it is promising to combine with techniques such
as RNN [30] or transformer [35], it is beyond our scope and can be a further enhancement of our
method.
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6 Related Work

Intrinsic Motivation Intrinsic motivation is the drive to seek out and engage in activities that
promote learning, exploration, and curiosity-driven behavior [27]. Mutual information has proven
effective in diverse domains, including curiosity-driven exploration [16, 19], options discovery [11, 7],
and empowerment maximization [25, 17]. Our method differs from empowerment maximization as
we do not learn an open-loop distribution to maximize channel capability [21]. Additionally, there
exist other techniques for motivating agents from different perspectives, such as model uncertainty
[28, 31, 3, 9], count-based exploration [26, 4, 34], and surprise or novelty [2, 32, 5]. While entropy
is commonly used in model-free algorithms, we treat it as an intrinsic motivation solely encouraging
exploration, in contrast to our nature of uncertainty reduction from the environment. [22] unifies
reward and empowerment maximization, but requires extensive application of the Blahut-Arimoto
algorithm, whose complexity has posed a challenge to scale to the continuous domain [25]. Another
essential difference is that our method focuses on an efficient policy iteration approach analogous to
[13], whereas [22] manipulates the optimality operator similar to [12], but with far less flexibility on
F .

Incorporating the Future [18] incorporates information from future observations and actions
using a bidirectional recurrent network in an autoregressive manner. To address credit assignment,
[15] introduces the importance ratio between a state-conditional posterior and the policy, measuring
the relevance of past decisions to the trajectory return or future state. Compressing the sequence into a
compact representation reduces the challenges of long sequence modeling [36] [18]. The same ideas
can also be drawn from, particularly when F is too long to capture useful information, we can instead
employ an additional variational model to construct a compact representation Fz , which is then used
for posterior approximation and model learning. RL Upside Down [29] predicts actions using reward
signals and states, resembling our posterior formulation. However, it diverges by redefining the policy,
while our method solely informs it. Our approach provides a unified perspective, accommodating
different forms of F within a policy iteration scheme, ensuring convergence.

7 Conclusion

In this paper, we introduce a novel learning framework that integrates intrinsic control with model
learning. Our algorithm adapts to different types of future sequences, focusing on maximizing
the informativeness of future outcomes given executed actions. It guarantees convergence and
monotonicity. Our approach opens up possibilities for various algorithmic formulations, including
trajectory-wise methods, imitation learning, and direct probabilistic control, with the full utilization
of function approximations as future work.
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A Pseudocode of GIO

Algorithm 1 Generative Intrinsic Optimization
Input: η, τ
Initial Parameter: {qϕ, pψ}, Qw̄i , Qwi , πθ

for step t← 0, 1, . . . ,M − 1 do
Execute policy πθ in the environment
Store transition (st, at, rt, st+1) to the replay buffer D
Sample mini-batch of n transitions (s, a, r, s′) from D
Train VAE based on the variational lower bound upon (pϕ, pψ)
Evaluate ∆ = (log qϕ(a

′|s′, s′′, r′) − log πθ(a
′|s′)) with new sampled action a′ ∼ πθ and

experience (s′′, r′) ∼ pψ
Compute value target y = r(s, a) + γ(miniQw̄i

(s′, a′) + η∆)
Update critic with∇wJ (w) (Equation (13))
Update actor with∇θJ (θ) (Equation (14))
if it is time to plan then

Update actor with simulated policy gradient
end if
Update target net w̄i ← (1− τ)w̄i + τwi, i = 1, 2

end for

We provide a potential learning procedure that utilizes the clipped double-Q technique [10] and the reparameter-
ized policy gradient. The action-value function and the policy are parameterized as Qw and πθ respectively.

Denote ∆ = (log qϕ(a
′|s′, s′′, r′)− log πθ(a

′|s′)), the critic is updated by following fitted Q-iteration [6] [8]

J (w) = E(s,a,s′,r)∼D
[
(Qwi(s, a)− (r + γ(min

i
Qw̄i(s

′, a′) + η∆)))2
]
, i = 1, 2 (13)

where a new action a′ ∼ πθ(·|s′) and experience (s′′, r′) ∼ pψ are sampled for evaluating the log ratio. The
target value network Qw̄i is utilized to stablize the behavior of the neural networks, which is commonly used in
off-policy algorithms [23] [13] [10].

And the parameterized policy orients itself to the softmax policy w.r.t. the approximate action-value function
and posterior.

J (θ) = Es∼D

[
DKL

(
πθ(·|s)

∣∣∣∣∣∣G(Qw, qϕ))] (14)

which can also utilize the reparametrization trick [20], resulting in a potential lower variance gradient estimator.

B Proof of Proposition 4.1

Proof. By plugging Equation (5) into (4), we have
T πQ(st, at) = r(st, at)+γEst+1,at+1,Ft+1 [Q(st+1, at+1)+η(log p

π(at+1|st+1,Ft+1)−log π(at+1|st+1))]
(15)

If we merge the log ratio into reward such that r̃t = rt + γEst+1,at+1,Ft+1 [η(log p
π(at+1|st+1,Ft+1) −

log π(at+1|st+1))], we alternatively have
T πQ(st, at) = r̃(st, at) + γEst+1,at+1 [Q(st+1, at+1)] (16)

For any Q1, Q2 in the action-value space Q
∥T πQ1 − T πQ2∥∞ = sup

s,a

∣∣r̃(s, a) + γEs′,a′ [Q1(s
′, a′)]− r̃(s, a) + γEs′,a′ [Q2(s

′, a′)]
∣∣

= γ sup
s,a

∣∣Es′,a′ [Q1(s
′, a′)−Q2(s

′, a′)]
∣∣

≤ γ sup
s,a

∣∣Es′,a′ [sup
s′,a′

|Q1(s
′, a′)−Q2(s

′, a′)|]
∣∣

= γ sup
s,a

sup
s′,a′

|Q1(s
′, a′)−Q2(s

′, a′)|

= γ sup
s′,a′

|Q1(s
′, a′)−Q2(s

′, a′)|

= γ∥Q1 −Q2∥∞

(17)

This implies T π is a contraction mapping in the metric space Q. From the Banach fixed-point theorem, we
know that starting from any initial point Q, the sequence Qk+1 = T πQk converges to a unique fixed point Q⋆.
Since Qπ solves for T π by definition, it implies Qπ = Q⋆.
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C Proof of Equation (6)

Proof. Considering the one-step optimization problem2 with the posterior pπ and the value function V π being
fixed

V π̃,pπ (s) ≜ sup
π

Ea∼π,F
[
r(s, a) + η(log pπ(a|s,F)− log π(a|s)) + γEs′ [V π(s′)]

]
= sup

π
Ea∼π,F [η(log pπ(a|s,F)− log π(a|s)) +Qπ(s, a)]

(18)

Define the Lagrangian function L(s;λ) : S → R

L(s;λ) = Ea∼π,F
[
η(log pπ(a|s,F)− log π(a|s)) +Qπ(s, a)

]
− λ(

∑
a∈A

π(a|s)− 1) (19)

Solving for the first-order equation

0 =
∂L(s;λ)
∂π(a|s) = Qπ(s, a) + ηEF [log pπ(a|s,F)]− η log π(a|s)− η − λ (20)

Rearranging

π̃ = exp (−λ
η
− 1) exp

1

η
(Qπ + ηEF [log pπ(a|s,F)]) (21)

With the equality constraint ∑
a∈A

π̃(a|s) = 1 (22)

by applying log transformation on both sides, we can solve for the multiplier as

λ̃ = η log
∑
a∈A

exp
1

η

(
Qπ + ηEF [log pπ(a|s,F)])− η (23)

inserting which into Equation (21), we get

π̃(a|s) =
exp 1

η

(
Qπ + ηEF [log pπ(a|s,F)])∑

a∈A
exp 1

η

(
Qπ + ηEF [log pπ(a|s,F)])

(24)

For the optimal policy, there must exist a multiplier that jointly satisfy KKT condition. Since (π̃, λ̃) uniquely
satisfies the KKT condition as above, it implies π̃ is the optimal policy. Denote the denominator as Zπ(s), it
completes the proof.

D Proof of Theorem 4.5

Lemma D.1. Let p(x, y) be the joint distribution, and p(x) and p(y) be the marginal distribution correspond-
ingly, then for any distribution q(y), it holds that

DKL(p(x, y)∥p(y)p(x)) ≤ DKL(p(x, y)∥q(y)p(x)) (25)

Proof. Denote Γx,y as either
∫
x,y

for continuous case or
∑
x,y

for discrete case, by non-negativity of KL divergence,

it follows that
DKL(p(x, y)∥q(y)p(x))−DKL(p(x, y)∥p(y)p(x))

= Γx,yp(x, y) log
p(x, y)

p(x)p(y)
− Γx,yp(x, y) log

p(x, y)

p(x)q(y)

= Γx,yp(x, y) log
p(y)

q(y)

= Γyp(y) log
p(y)

q(y)

= DKL(p(y)∥q(y))
≥ 0

(26)

which completes the proof.

2For simplicity, our derivation is based on the discrete case, however, the same procedure also applies for the
continuous case likewise [1]. Thus, the claims will not degenerate.
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Corollary D.2. For any distribution q(x|y), it holds that

Ep(x,y)
[
log p(x|y)
p(x)

]
≥ Ep(x,y)

[
log q(x|y)
p(x)

]
(27)

Proof. The proof is similar to that of the previous lemma, by non-negativity of KL divergence, it follows that

Ep(x,y)
[
log p(x|y)
p(x)

]
− Ep(x,y)

[
log q(x|y)
p(x)

]
= Γx,yp(x, y) log

p(x|y)
q(x|y)

= Γx,yp(y)p(x|y) log
p(x|y)
q(x|y)

= Ep(y) [DKL(p(x|y)∥q(x|y))]
≥ 0

(28)

We will formally give a proof of the theorem.

Proof. We first investigate the optimal intrinsic Bellman operator T ⋆, and then relate it with any intermediate
operator T πk .

As defined previously, the optimal policy is π⋆ = argmaxπ V
π , whose corresponding optimal value function

thereby is V π
⋆

. It should satisfy the intrinsic Bellman equation, therefore Qπ
⋆

is defined as follows

Qπ
⋆

(s, a) = r(s, a) + γEs′,a′∼π⋆,F′

[
Qπ

⋆

(s′, a′) + η(log pπ
⋆

(a′|F ′, s′)− log π(a′|s′))
]

(29)

By Proposition 4.1, it turns out that T ⋆Qπ
⋆

= Qπ
⋆

.

Now we relate it to T πk , considering T ⋆Qπk , ∀k ≥ 0, which can be bounded as

T ⋆Qπk = r(s, a) + γEs′,a′∼π⋆,F′

[
Qπk (s′, a′) + η(log pπ

⋆

(a′|F ′, s′)− log π⋆(a′|s′))
]

= r(s, a) + γEs′,a′∼π⋆,F′

Qπk (s′, a′) + η(log
p(F ′|s′, a′)π⋆(a′|s′)∑
a′
p(F ′|s′, a′)π⋆(a′|s′) − log π⋆(a′|s′))


= r(s, a) + γEs′,a′∼π⋆,F′

Qπk (s′, a′) + η(log
p(F ′|s′, a′)∑

a′
p(F ′|s′, a′)π⋆(a′|s′) )


= r(s, a) + γEs′,a′∼π⋆,F′

[
Qπk (s′, a′) + η(log

p(F ′|s′, a′)
pπ⋆(F ′|s′) )

]
= r(s, a) + γEs′,a′∼π⋆,F′

[
Qπk (s′, a′) + η(log

p(F ′|s′, a′)π⋆(a′|s′)
pπ⋆(F ′|s′)π⋆(a′|s′) )

]

≤ r(s, a) + γEs′,a′∼π⋆,F′


Qπk (s′, a′) + η(log

p(F ′|s′, a′)π⋆(a′|s′)∑
a′

p(F ′|s′, a′)πk(a′|s′)︸ ︷︷ ︸
q(F′|s′)

π⋆(a′|s′)
)


▷ by Lemma D.1

= r(s, a) + γEs′,a′∼π⋆,F′

Qπk (s′, a′) + η(log
p(F ′|s′, a′)∑

a′
p(F ′|s′, a′)πk(a′|s′)

)


= r(s, a) + γEs′,a′∼π⋆,F′

Qπk (s′, a′) + η(log
p(F ′|s′, a′)πk(a′|s′)∑
a′
p(F ′|s′, a′)πk(a′|s′)

− log πk(a
′|s′))


= r(s, a) + γEs′,a′∼π⋆,F′

[
Qπk (s′, a′) + η(log pπk (a′|F ′, s′)− log πk(a

′|s′))
]

(30)
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where q(F ′|s′) is a well-defined probability since∑
F′

q(F ′|s′) =
∑
F′

∑
a′

p(F ′|s′, a′)πk(a′|s′)

=
∑
a′

∑
F′

p(F ′|s′, a′)πk(a′|s′)

=
∑
a′

1 · πk(a′|s′)

= 1

(31)

By plugging Equation (24) into Equation (18) in proof C, we can get

T πkQπk (s, a) = r(s, a) + γEs′ [V πk (s′)]

≤ r(s, a) + γEs′ [V πk+1,p
πk

(s′)]

= r(s, a) + γEs′
[
η log

∑
a′

exp
1

η

(
Qπk (s′, a′) + ηEF′

[
log pπk (a′|s′,F ′)

])]
= r(s, a) + γEs′

[
η logZπk (s′)

]
≜ T πk+1,p

πk
Qπk (s, a)

(32)

With a useful identity from taking logarithm of both sides of πk+1(a
′|s′) (Equation (24))

Qπk (s′, a′) + η log pπk (a′|F ′, s′) = η(log πk+1(a
′|s′) + logZπk (s′)) (33)

we have an upper bound between T ⋆Qπk and T πk+1,p
πk
Qπk for ∀k

T ⋆Qπk (s, a)− T πk+1,p
πk
Qπk (s, a)

≤ r(s, a) + γEs′,a′∼π⋆,F′
[
Qπk (s′, a′) + η(log pπk (a′|F ′, s′)− log πk(a

′|s′))
]
− (r(s, a) + γEs′

[
η logZπk (s′)

]
)

= γEs′,a′∼π⋆,F′
[
η(log πk+1(a

′|s′) + logZπk (s′))− η log πk(a
′|s′)

]
− γEs′

[
η logZπk (s′)

]
= γEs′,a′∼π⋆

[
η(log πk+1(a

′|s′)− log πk(a
′|s′))

]
(34)

Therefore, for an integer n ≥ 1

1

n

n−1∑
k=0

T ⋆Qπk (s, a)− T πk+1,p
πk
Qπk (s, a) ≤ ηγ

n

n−1∑
k=0

Es′,a′∼π⋆

[
log πk+1(a

′|s′)− log πk(a
′|s′)

]
=
ηγ

n
Es′,a′∼π⋆

[
log

πn(a
′|s′)

π0(a′|s′)

]
≤ ηγ

n
Es′,a′∼π⋆

[
log

π⋆(a′|s′)
π0(a′|s′)

] (35)

where the last inequality is from that cross entropy is always greater than the entropy i.e. H(π⋆, πn) ≥
H(π⋆), ∀n, due to non-negativity of KL divergence, and reverse the sign, it follows. By assumption of H(π⋆)
being bounded and π0 non-zero everywhere, the upper bound approaches to zero as n→ ∞.

In the next step, we will find a lower bound on the Equation (35). By Corollary D.2, we have

T πk+1,p
πk
Qπk (s, a) = r(s, a) + γEs′,a′∼πk+1,F′

[
Qπk (s′, a′) + η(log pπk (a′|F ′, s′)− log πk+1(a

′|s′))
]

≤ r(s, a) + γEs′,a′∼πk+1,F′
[
Qπk (s′, a′) + η(log pπk+1(a′|F ′, s′)− log πk+1(a

′|s′))
]

= T πk+1Qπk (s, a)
(36)

Re-implementing the same justifications of Equation (30), we further have

T πk+1,p
πk
Qπk (s, a) ≤ T πk+1Qπk (s, a)

≤ r(s, a) + γEs′,a′∼πk+1,F′

[
Qπk (s′, a′) + η(log pπ

⋆

(a′|F ′, s′)− log π⋆(a′|s′))
]

(37)
Therefore

T ⋆Qπk (s, a)− T πk+1,p
πk
Qπk (s, a)

≥ r(s, a) + γEs′,a′∼π⋆,F′

[
Qπk (s′, a′) + η(log pπ

⋆

(a′|F ′, s′) log π⋆(a′|s′))
]
−

(r(s, a) + γEs′,a′∼πk+1,F′

[
Qπk (s′, a′) + η(log pπ

⋆

(a′|F ′, s′)− log π⋆(a′|s′))
]
)

= γEs′,(a′,F′)∼((pπ
⋆
(F′,a′|s′)−pπk+1 (F′,a′|s′)))

[
η(log pπ

⋆

(a′|F ′, s′)− log π⋆(a′|s′)) +Qπk

]
3

(38)
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Summing together, we have

1

n

n−1∑
k=0

T ⋆Qπk (s, a)− T πk+1,p
πk
Qπk (s, a)

≥ γ
1

n

n−1∑
k=0

Es′,(a′,F′)∼(pπ
⋆
(F′,a′|s′)−pπk+1 (F′,a′|s′))

[
η(log pπ

⋆

(a′|F ′, s′)− log π⋆(a′|s′)) +Qπk

] (39)

Since limn→∞
n∑
k=0

Es′,(a′,F′)∼((pπ
⋆
(F′,a′|s′)−pπk+1 (F′,a′|s′)))

[
η(log pπ

⋆

(a′|F ′, s′)− log π⋆(a′|s′)) +Qπk

]
exists, the lower bound approaches to zero as n→ ∞.

Combining those two ends, we conclude that 1
n

n−1∑
k=0

T ⋆Qπk (s, a) − T πk+1,p
πk
Qπk (s, a) approaches

zero as n → ∞, which implies limn→∞
n−1∑
k=0

T ⋆Qπk (s, a) − T πk+1,p
πk
Qπk (s, a) exists. It im-

mediately follows that limn→∞

(
T ⋆Qπk (s, a)− T πk+1,p

πk
Qπk (s, a)

)
= 0. It is also held for

limn→∞ (T ⋆Qπk (s, a)− T πk+1Qπk (s, a)) = 0, since T πk+1 is bounded below by T πk+1,p
πk . We also

note
lim
n→∞

T πk+1Qπk (s, a) = T π∞Qπ∞(s, a) = Qπ∞(s, a) (40)

And it follows that ∥T ⋆(Qπk − Qπ∞)∥ ≤ ∥T ⋆∥∥Qπk − Qπ∞∥. Since T π⋆

is a bounded linear operator,
and Qπk → Qπ∞ , it implies that limn→∞ T ⋆Qπk (s, a) = T ⋆Qπ∞(s, a). Comparing those terms, we have
T ⋆Qπ∞(s, a) = Qπ∞(s, a). However, since T π⋆

has a unique fixed point, it implies that Qπ∞(s, a) =

Qπ
⋆

(s, a).

E Proof of Theorem 5.1

Proof. Since π̃ minimizes the projection loss, then it follows that

Eat∼π̃,Ft [η(log π̃(at|st)− log pπ(at|Ft, st))−Qπ(st, at) + η logZπ(st)]

≤ Eat∼π,Ft [η(log π(at|st)− log pπ(at|Ft, st))−Qπ(st, at) + η logZπ(st)]
(41)

Since the partition function is dependent only on state and not relies on π̃, thus it can be canceled out from both
sides. Rearranging, we have

V π(st) ≤ Eat∼π̃,Ft [Q
π(st, at) + η(log pπ(at|Ft, st)− log π̃(at|st))] (42)

Define Iπ̃,p
π

(a,F|s) as follows

Iπ̃,p
π

(a,F|s) = Eπ̃(a|s)p(F|s,a)

[
log

pπ(a|F , s)
π̃(a|s)

]
(43)

By repeatedly applying above inequality, we have

Qπ(st, at) = r(st, at) + γEst+1 [V
π(st+1)]

≤ r(st, at) + γEst+1 [Eat+1∼π̃,Ft+1 [Q
π(st+1, at+1) + η(log pπ(at+1|Ft+1, st+1)− log π̃(at+1|st+1))]

= r(st, at) + γηEst+1

[
Iπ̃,p

π

(at+1,Ft+1|st+1)
]
+ γEst+1

[
Eat+1∼π̃,,Ft+1

[
r(st+1, at+1) + γEst+2 [V

π(st+2)]
]]

...

≤ Est+1,at+1,...|π̃

[
∞∑
l=0

γl(r(st+l, at+l) + γαηEst+l+1

[
Iπ̃,p

π

(at+l+1,Ft+l+1|st+l+1)
]
)

]
≜ Qπ̃,p

π

(st, at)
(44)

By Corollary D.2, we have
Iπ̃,p

π

(a,F|s) ≤ Iπ̃(a,F|s) (45)
Therefore

Qπ(st, at) ≤ Qπ̃,p
π

(st, at) ≤ Qπ̃(st, at) (46)

3We merge (a′,F ′) together for the reason that p(F ′|s′, a′) may have a complex dependency on π as F
becomes longer.
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F Derivation of Lower Bounds

F.1 One-step Lower Bound

We will present a more general lower bound considering future sequence F by using importance sampling and
Jensen’s inequality

log pπ(F|s) = log

∫
a

pπ(F , a|s)da

= logEa∼qϕ(a|F,s)

[
pπ(F , a|s)
qϕ(a|F , s)

]
≥ Ea∼qϕ(a|F,s)

[
log

pπ(F , a|s)
qϕ(a|F , s)

]
= Eqϕ(a|F,s) [log pψ(F|s, a)]−DKL(qϕ(a|F , s)||π(a|s))

(47)

When F = (s′, r), we can get the one-step variational lower bound

log pπ(s′, r|s) ≥ L(ϕ, ψ; s, s′, r)
= −DKL(qϕ(a|s, s′, r)||π(a|s)) + Eqϕ(a|s,s′,r)[log pψ(s

′, r|s, a)]
(48)

F.2 Trajectory-Wise Lower Bound

Denote x1:T = (st+1, rt|st)Tt=1 and z1:T = (at|st)Tt=1, we assume the joint distribution pπ (x1:T , z1:T ) and
qϕ (z1:T |x1:T ) can be factorized as follows

pπ (x1:T , z1:T ) =

T∏
τ=1

pψ(s
′
τ , rτ |sτ , aτ )pπ(aτ |s1:τ , a1:τ−1)

=

T∏
τ=1

pψ(s
′
τ , rτ |sτ , aτ )π(aτ |sτ ) ▷ by Markov property

(49)

qϕ (z1:T |x1:T ) =

T∏
τ=1

qϕ(aτ |s1:τ+1, r1:τ , a1:τ−1) (50)

In a similar fashion

log pπ (x1:T ) =

∫
z1:T

p (x1:T , z1:T ) dz1:T

= logEz1:T∼qϕ(z1:T |x1:T )

[
p (x1:T , z1:T )

qϕ (z1:T |x1:T )

]
≥ Ez1:T

[
log

p (x1:T , z1:T )

qϕ (z1:T |x1:T )

]
= Ez1:T

[
log

∏T
τ=1 pψ(s

′
τ , rτ |sτ , aτ )π(aτ |sτ )∏T

τ=1 qϕ(aτ |s1:τ+1, r1:τ , a1:τ−1)

]

= Ez1:T

[
T∑
τ=1

log pψ(s
′
τ , rτ |sτ , aτ ) + log π(aτ |sτ )− log qϕ(aτ |s1:τ+1, r1:τ , a1:τ−1)

]

=

T∑
τ=1

Ez1:τ

[
log pψ

(
s′τ , rτ |sτ , aτ

)
−DKL (qϕ (aτ |s1:τ+1, r1:τ , a1:τ−1) ∥π (aτ |sτ ))

]

(51)

If we further assume conditional independence of the past information i.e. t < τ for qϕ, then we have
qϕ (aτ |s1:τ+1, r1:τ , a1:τ−1) = qϕ (aτ |sτ+1, rτ , sτ ). The above formulation then deduces to

T∑
τ=1

Ez1:τ

[
log pψ

(
s′τ , rτ |sτ , aτ

)
−DKL (qϕ (aτ |sτ+1, rτ , sτ ) ∥π (aτ |sτ ))

]
(52)

which is simply a summation of a series of one-step lower bounds as derived earlier. This is helpful since we can
employ the same model architecture while explore different training procedures, such as being more on-policy
to capture trajectory’s information.
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