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ABSTRACT

Advanced diffusion models like Stable Diffusion 3, Omost, and FLUX have made
notable strides in compositional text-to-image generation. However, these meth-
ods typically exhibit distinct strengths for compositional generation, with some
excelling in handling attribute binding and others in spatial relationships. This
disparity highlights the need for an approach that can leverage the complementary
strengths of various models to comprehensively improve the composition capa-
bility. To this end, we introduce IterComp, a novel framework that aggregates
composition-aware model preferences from multiple models and employs an iter-
ative feedback learning approach to enhance compositional generation. Specifi-
cally, we curate a gallery of six powerful open-source diffusion models and eval-
uate their three key compositional metrics: attribute binding, spatial relationships,
and non-spatial relationships. Based on these metrics, we develop a composition-
aware model preference dataset comprising numerous image-rank pairs to train
composition-aware reward models. Then, we propose an iterative feedback learn-
ing method to enhance compositionality in a closed-loop manner, enabling the
progressive self-refinement of both the base diffusion model and reward models
over multiple iterations. Detailed theoretical proof demonstrates the effective-
ness of this method. Extensive experiments demonstrate our significant superior-
ity over previous methods, particularly in multi-category object composition and
complex semantic alignment. IterComp opens new research avenues in reward
feedback learning for diffusion models and compositional generation.

1 INTRODUCTION

The rapid advancement of diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al.,
2020; Peebles & Xie, 2023) has recently brought unprecedented progress to the field of text-to-image
generation, with powerful models like DALL-E 3 (Betker et al., 2023), Stable Diffusion 3, (Esser
et al., 2024) and FLUX (BlackForest, 2024) demonstrating remarkable capabilities in generating
aesthetic and diverse images. However, these models often struggle to follow complex prompts
to achieve precise compositional generation (Omost-Team, 2024; Yang et al., 2024b; Zhang et al.,
2024b), which requires the model to possess robust, comprehensive capabilities in various aspects,
such as attribute binding, spatial relationships, and non-spatial relationships (Huang et al., 2023).

To enhance compositional generation, some works introduce additional conditions such as lay-
outs/boxes (Li et al., 2023; Zhou et al., 2024; Wang et al., 2024a; Zhang et al., 2024b). InstanceDif-
fusion (Wang et al., 2024a) controls the generation process using layouts, masks, or other conditions
through trainable instance masked attention layers. Although these layout-based methods demon-
strate strong spatial awareness, they struggle with image realism, especially in generating non-spatial
relationships and preserving aesthetic quality (Zhang et al., 2024b). Another potential solution lever-

∗Contributed equally. Contact: yangling0818@163.com
†Corresponding authors.

1

https://github.com/YangLing0818/IterComp


Published as a conference paper at ICLR 2025

A magical night scene of the Hogwarts Express, it races through
a moonlit landscape. The iconic red steam engine glows under
silvery moonlight, casting golden light from its windows as it
crosses a arched stone viaduct. An owl flies alongside. Hogwarts
Castle towers majestically, with a dark lake below.

A stream, alongside with trees and rocks, on the rocks, from
left to right, is a gray British Shorthair , a yellow American
robin, brown Maltipoo dog. The Maltipoo dog sit quietly, 
showing an adorable smile.
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Figure 1: Motivation of IterComp. We select three types of compositional generation methods.
The results show that different models exhibit distinct strengths across various aspects of composi-
tional generation. fig. 3 further demonstrated these distinct strengths quantitatively.

ages the impressive reasoning abilities of Large Language Models (LLMs) to decompose complex
generation tasks into simpler subtasks (Yang et al., 2024b; Omost-Team, 2024; Wang et al., 2024b).
RPG (Yang et al., 2024b) employs MLLMs as the global planner to transform the process of gener-
ating complex images into multiple simpler generation tasks within subregions. However, it requires
designing complex prompts for LLMs, and it is challenging to achieve precise generation results due
to their intricate outputs (Yang et al., 2024b).

We conducted extensive experiments to explore the unique strengths of different models in compo-
sitional generation. As shown in the left example in fig. 1, text-to-image model FLUX (BlackForest,
2024) demonstrates impressive performance in attribute binding and aesthetic quality due to its ad-
vanced training techniques and model architecture. In contrast, layout-to-image model InstanceDif-
fusion (Wang et al., 2024a) struggles to capture fine-grained visual details, such as ’night scene’ or
’golden light.’ In the right example of fig. 1, where the text prompt involves complex spatial relation-
ships between multiple objects, FLUX (BlackForest, 2024) exhibits limitations in spatial awareness.
In contrast, InstanceDiffusion (Wang et al., 2024a) excels in handling spatial relationships through
layout guidance. This demonstrates that different models exhibit distinct strengths across various
aspects of compositional generation. Moreover, fig. 3 further demonstrated these distinct strengths
quantitatively. Naturally, a pertinent question arises: Is there a method capable of excelling in all
aspects of compositional generation?

In order to enable the diffusion model to improve compositional generation comprehensively, we
present a new framework, IterComp, which collects composition-aware model preferences from var-
ious models, and then employs a novel yet simple iterative feedback learning framework to achieve
comprehensive improvements in compositional generation. Firstly, we select six open-sourced mod-
els excelling in different aspects of compositionality to form our model gallery. We focus on three
essential compositional metrics: attribute binding, spatial relationships, and non-spatial relationships
to curate a new composition-aware model preference dataset, which consists of a large number of
image-rank pairs. Next, to comprehensively capture diverse composition-aware model preferences,
we train reward models to provide fine-grained compositional guidance during the finetuning of the
base diffusion model. Finally, given that compositional generation is difficult to optimize, we pro-
pose iterative feedback learning. This approach enhances compositionality in a closed-loop manner,
allowing for the progressive self-refinement of both the base diffusion model and reward models in
multiple iterations. We theoretically and experimentally demonstrate the effectiveness of our method
and its significant improvement in compositional generation.

Our contributions are summarized as follows:

• We propose the first iterative composition-aware reward-controlled framework IterComp,
to comprehensively enhance the compositionality of the base diffusion model.

• We curate a model gallery and develop a high-quality composition-aware model preference
dataset comprising numerous image-rank pairs.
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• We utilize a new iterative feedback learning framework to progressively enhance both the
reward models and the base diffusion model.

• Extensive qualitative and quantitative comparisons with previous SOTA methods demon-
strate the superior compositional generation capabilities of our approach.

2 RELATED WORK

Compositional Text-to-Image Generation Compositional text-to-image generation is a complex
and challenging task that requires a model with comprehensive capabilities, including the under-
standing of complex prompts and spatial awareness (Yang et al., 2024b; Zhang et al., 2024b). Some
methods enhance prompt comprehension by using more powerful text encoders or architectures
(Esser et al., 2024; Betker et al., 2023; Hu et al., 2024; Dai et al., 2023). Stable Diffusion 3 (Esser
et al., 2024) utilizes three different-sized text encoders to enhance prompt comprehension. DALL-E
3 (Betker et al., 2023) enhances the understanding of rich textual details by expanding image cap-
tions through recaptioning. However, compositional capability such as spatial awareness remains a
limitation of these models (Li et al., 2023; Chen et al., 2024a). Other methods attempt to enhance
spatial awareness by the control of additional conditions (e.g., layouts) (Yang et al., 2023; Dahary
et al., 2024). BoxDiff (Xie et al., 2023) and LMD (Lian et al., 2023b) guide the generated objects
to strictly adhere to the layout by designing energy functions based on cross-attention maps. Con-
trolNet (Zhang et al., 2023) and T2I-Adapter (Mou et al., 2024) specify high-level image features
to control semantic structures. Although these methods enhance spatial awareness, they often com-
promise image realism (Zhang et al., 2024b). Additionally, some approaches leverage the powerful
reasoning capabilities of LLMs to assist in the generation process (Yang et al., 2024b; Omost-Team,
2024; Wang et al., 2024b). RPG (Yang et al., 2024b) employs MLLM to decompose complex
compositional generation tasks into simpler subtasks. However, these methods require designing
complex prompts as inputs to the LLM, and the diffusion model struggles to produce precise results
due to the LLM’s intricate outputs (Yang et al., 2024b). In contrast, our method extracts these prefer-
ences from different models in model gallery and trains composition-aware reward models to refine
the base diffusion model iteratively, achieving robust compositionality across multiple aspects.

Diffusion Model Alignment Building on the success of reinforcement learning from human feed-
back (RLHF) in Large Language Models (LLMs) (Ouyang et al., 2022; Bai et al., 2022), numerous
methods in diffusion models have attempted to use similar approaches for model alignment (Lee
et al., 2023; Fan et al., 2024; Sun et al., 2023). Some methods use a pretrained reward model or train
a new one to guide the generation process(Zhang et al., 2024a; Black et al., 2023; Deng et al., 2024;
Clark et al., 2023; Prabhudesai et al., 2023). For instance, ImageReward (Xu et al., 2024) manu-
ally annotated a large dataset of human-preferred images and trained a reward model to assess the
alignment between images and human preferences. Reward Feedback Learning (ReFL) is proposed
for tuning diffusion models with the ImageReward model. RAHF (Liang et al., 2024a) is trained
on RichHF-18K, a high-quality dataset rich in human feedback, and is capable of predicting the
unreasonable parts in generated images. Some methods bypass the training of a reward model and
directly finetune diffusion models on human preference datasets (Yang et al., 2024a; Liang et al.,
2024b; Yang et al., 2024c). Diffusion-DPO (Wallace et al., 2024) reformulates Direct Preference
Optimization (DPO) to account for a diffusion model’s notion of likelihood, utilizing the evidence
lower bound to derive a differentiable objective. The potential for alignment in diffusion models
goes beyond this. We iteratively align the base model with composition-aware model preferences
from the model gallery, effectively enhancing its performance on compositional generation.

3 METHOD

In this section, we present our method, IterComp, which collects composition-aware model prefer-
ences from the model gallery and utilizes iterative feedback learning to enhance the comprehensive
capability of the base diffusion model in compositional generation. An overview of IterComp is
illustrated in fig. 2. In section 3.1, we introduce the method for collecting the composition-aware
model preference dataset from the model gallery. In section 3.2, we describe the training process
for the composition-aware reward models and multi-reward feedback learning. In section 3.2, we
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Figure 2: Overview of IterComp. We collect composition-aware model preferences from multiple
models and employ an iterative feedback learning approach to enable the progressive self-refinement
of both the base diffusion model and reward models.

propose the iterative feedback learning framework to enable the self-refinement of both the base
diffusion model and reward models, progressively enhancing compositional generation.

3.1 COLLECTING HUMAN PREFERENCES OF COMPOSITIONALITY

Compositional Metric and Model Gallery We focus on three key aspects of compositionality:
attribute binding, spatial relationships, and non-spatial relationships (Huang et al., 2023), to collect
composition-aware model preferences. We initially select six open-sourced models excel in different
aspects of compositional generation as our model gallery: FLUX-dev (BlackForest, 2024), Stable
Diffusion 3 (Esser et al., 2024), SDXL (Podell et al., 2023), Stable Diffusion 1.5 (Rombach et al.,
2022), RPG (Yang et al., 2024b), and InstanceDiffusion (Wang et al., 2024a).

Human Ranking on Attribute Binding For attribute binding, we randomly select 500 prompts
from each of the following categories: color, shape, and texture in the T2I-CompBench (Huang
et al., 2023), resulting in a total of 1,500 prompts. Three professional experts ranked the images
generated by the six models for each prompt, and their rankings were weighted to determine the
final result. The primary criterion is whether the attributes mentioned in the prompt were accurately
reflected in the generated images, especially the correct representation and binding of attributes to
the corresponding objects.

Human Ranking on Complex Relationships For spatial and non-spatial relationships, we select
1,000 prompts for each category from the T2I-CompBench (Huang et al., 2023) and apply the same
manual annotation method to obtain the rankings. For spatial relationships, the primary ranking
criterion is whether the objects are correctly generated and whether their spatial positioning matches
the prompt. For non-spatial relationships, the focus is on whether the objects display natural and
realistic actions.

Analysis of Composition-aware Model Preference Dataset For each prompt, we obtain 6 im-
ages and

(
6
2

)
= 15 image-rank pairs. As shown in table 1, in total, we collected a dataset with

22,500 image-rank pairs for model preference in attribute binding, 15,000 for spatial relationships,
and 15,000 for non-spatial relationships. We visualize the proportion of generated images ranked
first for each model in fig. 3. The results demonstrate that different models exhibit distinct strengths
across various aspects of compositional generation, and this dataset effectively captures a diverse
range of composition-aware model preferences.

3.2 COMPOSITION-AWARE MULTI-REWARD FEEDBACK LEARNING

Composition-aware Reward Model Training To achieve comprehensive improvements in com-
positional generation, we utilize three types of composition-aware datasets described in section 3.1,
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Table 1: Statistics on the composition-aware
model preference dataset. The dataset con-
sists of 3,500 text prompts, 27,500 images,
and 52,500 image-rank pairs.

Counts

Category Texts Images Image-rank pairs

Attribute Binding 1,500 9,000 22,500
Spatial Relationship 1,000 6,000 15,000
Non-spatial Relationship 1,000 6,000 15,000

Total 3,500 21,000 52,500

0 20 40 60 80 100

Non-spatial
Relationship

Spatial
Relationship

Attribute
Binding

FLUX
SD 3

SDXL
SD 1.5

RPG
InstanceDiffusion

Figure 3: The proportion of each model ranked first.

decomposing compositionality into three subtasks and training a specific reward model for each.
Specifically, the reward model Rθi(c,x0) is trained using the input format xw

0 ≻ xl
0 | c, where

xw
0 and xl

0 denoting the ”winning” and ”losing” images, c denoting the text prompt. We select two
images corresponding to the same prompt from the composition-aware model preference datasets to
form an input image-rank pair, and trained the reward model using the following loss function:

L(θi) = −E(c,xw
0 ,xl

0)∼Di

[
log
(
σ
(
Rθi (c,x

w
0 )−Rθi

(
c,xl

0

)))]
(1)

where D denotes the composition-aware model preference dataset, σ(·) is the sigmoid function.

The three composition-aware reward models apply BLIP (Li et al., 2022; Xu et al., 2024) as feature
extractors. We combine the extracted image and text features with cross attention mechanism, and
use a learnable MLP to generate a score scalar for preference comparison.

Multi-Reward Feedback Learning Due to the multi-step denoising process in diffusion models,
yielding likelihoods for their generations is impossible, making the RLHF approach used in language
models unsuitable for diffusion models. Some existing methods (Xu et al., 2024; Zhang et al.,
2024a) finetune diffusion models directly by treating the scores of the reward model as the human
preference loss. To optimize the base diffusion model using multiple composition-aware reward
models, we design the loss function as follows:

L(θ) = λEcj∼C
∑
i

(ϕ (Ri (cj , pθ (cj)))) (2)

where C = {c1, c2, . . . , cn} denotes the prompt set, pθ(c) denotes the generate image of diffusion
model with parameter θ under the condition of prompt c. We calculate the loss for each reward
modelRi(·) and sum them to obtain the multi-reward feedback loss.

3.3 ITERATIVE OPTIMIZATION OF COMPOSITION-AWARE FEEDBACK LEARNING

Compositional generation is challenging to optimize due to its inherent complexity and multifaceted
nature, requiring both our reward models and base diffusion model to excel in aspects such as com-
plex text comprehension and the generation of complex relationships. To ensure more thorough
optimization, we propose an iterative feedback learning framework that progressively refines both
the reward models and the base diffusion model over multiple iterations.

At the (k+1)-th iteration of the optimization described in section 3.2, we denote the reward models
and the base diffusion model from the previous iteration as Rk(·) and pkθ(·), respectively. For each
prompt c in the datasets Dk, we sample an image x∗

0 = pkθ(c) and expand the composition-aware
model preference dataset Dk with the sampled image. The image rankings for each prompt are
updated using the trained reward model Rk

θ(·), while preserving the relative ranks of the initial six
images. Following this process, we update the composition-aware model preference dataset to a
more comprehensive version, denoted as Dk+1. Using this dataset, we finetune both the reward
models and the base diffusion model to get Rk+1(·) and pk+1

θ (·). The detailed process of iterative
feedback learning can be found in algorithm 1.

Effectiveness of Iterative Feedback Learning Through this iterative feedback learning frame-
work, the reward models become more effective at understanding complex compositional prompts,
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Algorithm 1 Iterative Composition-aware Feedback Learning

Dataset: Composition-aware model preference datasetD0={((c1,xw
0 ,x

l
0), . . . , (cn,x

w
0 ,x

l
0)}

Prompt set C = {c1, c2, . . . , cn}
Input: Base model with pretrained parameters pθ, reward model R, reward-to-loss map func-
tion ϕ, reward re-weight scale λ, iterative optimization iterations iter
Initialization: Number of noise scheduler time steps T , time step range for finetuning [T1,T2]

1: for k = 0, . . . , iter do
2: for (ci,x

w
0 ,x

l
0) ∈ Dk do

3: L ← log
(
σ
(
Rk

θi
(c,xw

0 )−Rk
θi

(
c,xl

0

)))
// Reward model loss

4: Rk
θi+1
← Rk

θi
(ci,x

w
0 ,x

l
0) // Update the reward models

5: end for // Get Rk+1 after training
6: for ci ∈ C do
7: t← rand(T1, T2) // Pick a random timestep t ∈ [T1, T2]
8: zT ∼ N (0, I)
9: for j = T, . . . , t+ 1 do

10: no grad: zj−1 ← pkθi(zj)
11: end for
12: with grad: zt−1 ← pkθi(zt)
13: x0 ← VaeDec(z0)← zt−1 // Predict image from original latent
14: L ← λϕ(

∑
θR

k+1
θ (ci,x0)) // Multi-reward feedback learning loss

15: pkθi+1
← pkθi // Update the base diffusion model

16: end for // Get pk+1 after training
17: for (ci,x

w
0 ,x

l
0) ∈ Dk do

18: x∗
0 ← pk+1(ci) // Sample images from optimized base model

19: end for
20: Dk+1 ← rank(Dk ∪ x∗

0) // Expand the dataset and update ranking
21: end for

providing more comprehensive guidance to the base diffusion model for compositional generation.
The optimization objective of the iterative feedback learning process is formalized in the following
lemma (proof provided in the appendix A.2):

Lemma 1. The unified optimization framework of iterative feedback learning can be formulated as:

max
θ

J(θ)=E[c∼C,(xw
0 ,xl

0)∼p∗
θ(·|c)]

[
log σ

(
β log

p∗θ (x
w
0:T | c)

pref (xw
0:T | c)

− β log
p∗θ
(
xl
0:T | c

)
pref

(
xl
0:T | c

))] (3)

where p∗(·) denotes the optimized base diffusion model. We simplify the bilevel problem of iterative
feedback learning into a single-level objective. Based on this, we present the following theorem
regarding the gradient of this objective:

Theorem 1. Assume that Fθ(c,x
w
0 ,x

l
0) = log σ

(
β log

p∗
θ(x

w
0:T |c)

pref(xw
0:T |c)

− β log
p∗
θ(x

l
0:T |c)

pref(xl
0:T |c)

)
, the gra-

dient of optimization object can be written as the sum of two terms: ∇θJ(θ) = T1 + T2, where:

T1 = E
[(
∇θ log pθ (x

w
0:T | c) +∇θ log pθ

(
xl
0:T | c

))
Fθ

(
c,xw

0 ,x
l
0

)]
(4)

T2 = E[c∼C,(xw
0 ,xl

0)∼p∗
θ(·|c)]

[∇θ[Fθ(c,x
w
0 ,x

l
0)]] (5)

It is evident that T2 represents the gradient form of direct preference optimization. In addition, we
have another term T1, which guides the gradient of optimization objective. As shown in eq. (4), the
gradient directs the generation of xw

0 and xw
0 to optimize the implicit reward function Fθ(c,x

w
0 ,x

l
0).

The gradient term T1 helps the model better distinguish between winning and losing samples, in-
creasing the probability of generating high-quality images while reducing the probability of gener-
ating low-quality images. This improves the model’s alignment with the reward model’s preferences
during generation, thereby enhancing the comprehensive capabilities of compositional generation.
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Superiority over Diffusion-DPO and ImageReward Here we clarify some superiorities of Iter-
Comp over Diffusion-DPO (Wallace et al., 2024) and ImageReward (Xu et al., 2024). Our IterComp
first focuses on composition-aware rewards to optimize T2I models for realistic complex generation
scenarios, and constructs a powerful model gallery to collect multiple composition-aware model
preferences. Then our novel iterative feedback learning framework can effectively achieve progres-
sive self-refinement of both base diffusion model and reward models over multiple iterations.

IterComp (Ours)FLUX-dev RPG

A colossal, ancient tree with leaves made of ice towers over a mystical castle. Green trees line both 
sides, while cascading waterfalls and an ethereal glow adorn the scene. The backdrop features towering 
mountains and a vibrant, colorful sky.

InstanceDiffusion

On the rooftop of a skyscraper in a bustling cyberpunk city, a figure in a trench coat and neon-lit visor 
stands amidst a garden of bio-luminescent plants, overlooking the maze of flying cars and towering 
holograms. Robotic birds flit among the foliage, digital billboards flash advertisements in the distance.

Text-controlled LLM-controlled Layout-controlled Reward-controlled

5.63 s/Img23.02 s/Img 15.57 s/Img 9.88 s/Img

In a magical seascape, a majestic ship sails through crystal blue waters surrounded by vibrant marine life 
and soaring birds. Towering cliffs frame the scene, while a stunning rainbow arches across the sky, 
blending with ethereal clouds. This enchanting journey captures the serene beauty of nature's wonders.

Under the luminous full moon, a serene Japanese garden with traditional pagodas and a tranquil pond 
creates a magical night scene. The soft glow from the lantern-lit buildings reflects on the water, blending 
nature and architecture in harmony. The moonlight bathes the landscape, enhancing the peaceful ambiance.

Figure 4: Qualitative comparison between our IterComp and three types of compositional genera-
tion methods: text-controlled, LLM-controlled, and layout-controlled approaches. IterComp is the
first reward-controlled method for compositional generation, utilizing an iterative feedback learning
framework to enhance the compositionality of generated images. Colored text denotes the advan-
tages of IterComp in generated images.

4 EXPERIMENTS

Datasets and Training Setting The reward models are trained on the composition-aware model
preference dataset, consisting of 3,500 prompts and 52,500 image-rank pairs. For training the three
reward models, we finetune BLIP and the learnable MLP with a learning rate of 1e− 5 and a batch
size of 64. During the iterative feedback learning process, we randomly select 10,000 prompts from
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Table 2: Evaluation results about compositionality on T2I-CompBench (Huang et al., 2023). Iter-
Comp consistently demonstrates the best performance regarding attribute binding, object relation-
ships, and complex compositions. We denote the best score in blue and the second-best score in
green . The baseline data is quoted from GenTron (Chen et al., 2024b).

Model Attribute Binding Object Relationship Complex↑
Color ↑ Shape↑ Texture↑ Spatial↑ Non-Spatial↑

Stable Diffusion 1.4 (Rombach et al., 2022) 0.3765 0.3576 0.4156 0.1246 0.3079 0.3080
Stable Diffusion 2 (Rombach et al., 2022) 0.5065 0.4221 0.4922 0.1342 0.3096 0.3386
Attn-Exct v2 (Chefer et al., 2023) 0.6400 0.4517 0.5963 0.1455 0.3109 0.3401
Stable Diffusion XL (Betker et al., 2023) 0.6369 0.5408 0.5637 0.2032 0.3110 0.4091
PixArt-α (Chen et al., 2023) 0.6886 0.5582 0.7044 0.2082 0.3179 0.4117
ECLIPSE (Patel et al., 2024) 0.6119 0.5429 0.6165 0.1903 0.3139 -
Dimba-G (Fei et al., 2024) 0.6921 0.5707 0.6821 0.2105 0.3298 0.4312
GenTron (Chen et al., 2024b) 0.7674 0.5700 0.7150 0.2098 0.3202 0.4167

GLIGEN (Li et al., 2023) 0.4288 0.3998 0.3904 0.2632 0.3036 0.3420
LMD+ (Lian et al., 2023a) 0.4814 0.4865 0.5699 0.2537 0.2828 0.3323
InstanceDiffusion (Wang et al., 2024a) 0.5433 0.4472 0.5293 0.2791 0.2947 0.3602

IterComp (Ours) 0.7982 0.6217 0.7683 0.3196 0.3371 0.4873

DiffusionDB (Wang et al., 2022) and use SDXL (Betker et al., 2023) as the base diffusion model,
finetuning it with a learning rate of 1e− 5 and a batch size of 4. We set T = 40, [T1, T2] = [1, 10],
ϕ = ReLU, and λ = 1e− 3. All experiments are conducted on 4 NVIDIA A100 GPUs.

Baseline Models We curate a model gallery of six open-source models, each excelling in different
aspects of compositional generation: FLUX (BlackForest, 2024), Stable Diffusion 3 (Esser et al.,
2024), SDXL (Betker et al., 2023), Stable Diffusion 1.5 (Rombach et al., 2022), RPG (Yang et al.,
2024b), and InstanceDiffusion (Wang et al., 2024a). To ensure the base diffusion model thoroughly
and comprehensively learns composition-aware model preferences, we progressively expand the
model gallery by incorporating new models (e.g., Omost (Omost-Team, 2024), Stable Cascade (Per-
nias et al., 2023), PixArt-α (Chen et al., 2023)) at each iteration. For performance comparison in
compositional generation, we select several state-of-the-art methods, including FLUX (BlackForest,
2024), SDXL (Betker et al., 2023), and RPG (Yang et al., 2024b) to compare with our approach.
We use GPT-4o (OpenAI, 2024) for the LLM-controlled methods. Additionally, GPT-4o is also
employed to infer the layout from the prompt for the layout-controlled methods.

4.1 MAIN RESULTS

Qualitative Comparison As shown in fig. 4, IterComp achieves superior compositional genera-
tion results compared to the three main types of compositional generation methods: text-controlled,
LLM-controlled, and layout-controlled approaches. In comparison to text-controlled methods
FLUX (BlackForest, 2024), IterComp excels in handling spatial relationships, significantly reduc-
ing errors such as object omissions and inaccuracies in numeracy and positioning. When compared
to LLM-controlled methods like RPG (Yang et al., 2024b), IterComp produces more reasonable
object placements, avoiding the unrealistic positioning caused by LLM hallucinations. Compared
to layout-controlled methods like InstanceDiffusion (Wang et al., 2024a), IterComp demonstrates
a clear advantage in both semantic aesthetics and compositionality, particularly when generating
under complex prompts.

Quantitative Comparison We compare IterComp with previous outstanding compositional
text/layout-to-image models on the T2I-CompBench (Huang et al., 2023) in six key compositional
scenarios. As shown in table 2, IterComp demonstrates a remarkable preference across all evalu-
ation tasks. Layout-controlled methods such as LMD+ (Lian et al., 2023a) and InstanceDiffusion
(Wang et al., 2024a) excel in generating accurate spatial relationships, while text-to-image mod-
els like SDXL (Betker et al., 2023) and GenTron (Chen et al., 2024b) exhibit particular strengths
in attribute binding and non-spatial relationships. In contrast, IterComp achieves comprehensive
improvement in compositional generation. It obtains the strengths of various models by collecting
composition-aware model preferences, and employs a novel iterative feedback learning to enable
self-refinement of both the base diffusion model and reward models in a closed-loop manner.

IterComp achieves a high level of compositionality while simultaneously enhancing the realism and
aesthetics of the generated images. As shown in table 3, we evaluate the improvement in image
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Table 3: Evaluation on image realism.
Model CLIP Score↑ Aesthetic Score↑ ImageReward↑
Stable Diffusion 1.4 (Rombach et al., 2022) 0.307 5.326 -0.065
Stable Diffusion 2.1 (Rombach et al., 2022) 0.321 5.458 0.216
Stable Diffusion XL (Betker et al., 2023) 0.322 5.531 0.780

GLIGEN (Li et al., 2023) 0.301 4.892 -0.077
LMD+ (Lian et al., 2023a) 0.298 4.964 -0.072
InstanceDiffusion (Wang et al., 2024a) 0.302 5.042 -0.035

IterComp (Ours) 0.337 5.936 1.437

Table 4: Evaluation on inference time.

Model Inference Time↓

FLUX-dev 23.02 s/Img
Stable Diffusion XL (Betker et al., 2023) 5.63 s/Img
Omost (Omost-Team, 2024) 21.08 s/Img
RPG (Yang et al., 2024b) 15.57 s/Img
InstanceDiffusion (Wang et al., 2024a) 9.88 s/Img

IterComp (Ours) 5.63 s/Img

Table 5: Comparison between IterComp and other diffusion alignment methods.

Model Average Result on T2I-CB↑ CLIP Score↑ Aesthetic Score↑
Stable Diffusion XL (Betker et al., 2023) 0.4441 0.322 5.531
Diffusion-DPO (Wallace et al., 2024) 0.4417 0.326 5.572
ImageReward (Xu et al., 2024) 0.4639 0.323 5.613

IterComp (Ours) 0.5554 0.337 5.936

realism by calculating the CLIP Score, Aesthetic Score, and ImageReward. IterComp significantly
outperforms previous models across all three scenarios, demonstrating remarkable fidelity and pre-
cision in alignment with the complex text prompt. These promising results highlight the versatility
of IterComp in both compositionality and fidelity. We provide more quantitative comparison results
between IterComp and other diffusion alignment methods in appendix A.7.

IterComp requires less time to generate high-quality images. In table 4, we compare the inference
time of IterComp with other outstanding models, such as FLUX (BlackForest, 2024), RPG (Yang
et al., 2024b) in generating a single image. Using the same text prompts and fixing the denois-
ing steps to 40, IterComp demonstrates faster generation, because it avoids the complex attention
computations in RPG and Omost. Our method can incorporate composition-aware knowledge from
different models without adding any computational overhead. This efficiency highlights its potential
for various applications and offers a new perspective on handling complex generation tasks.

We compare IterComp with state-of-the-art diffusion alignment methods, Diffusion-DPO (Wallace
et al., 2024) and ImageReward (Xu et al., 2024). As demonstrated in table 5, IterComp significantly
outperforms previous diffusion alignment methods across all three scenarios. Iterative feedback
learning allows models to achieve self-refinement over multiple iterations, resulting in comprehen-
sive improvements in compositionality and realism.

4.2 ABLATION STUDY
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Figure 5: Ablation study on the model gallery size.

Effect of Model Gallery Size In the ablation study on model gallery size, as shown in fig. 5,
we observe that increasing the size of the model gallery leads to improved performance for Iter-
Comp across various evaluation tasks. To leverage this finding and provide more fine-grained reward
guidance, we progressively expand the model gallery over multiple iterations by incorporating the
optimized base diffusion model and new models such as Omost (Omost-Team, 2024).

Effect of Composition-aware Feedback Learning We conducted an ablation study (see fig. 6)
to evaluate the impact of composition-aware iterative feedback learning. The results show that this
approach significantly improves both the accuracy of compositional generation and the aesthetic
quality of the generated images. As the number of iterations increases, the model’s preferences
gradually converge. Based on this observation, we set the number of iterations to 3 in IterComp.
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SDXL Iteration 1 Iteration 2 Iteration 3 SDXL Iteration 1 Iteration 2 Iteration 3

In the heart of a bustling city, a colossal treehouse complex rises, 
blending nature with urban life. Elevated wooden homes nestle among 
lush branches, creating a serene, green oasis amidst modern 
skyscrapers and busy streets below.

Majestic sailing ships navigate stormy seas above, while beneath the 
waves, a vibrant underwater world teems with marine life and ancient 
ruins. A sea turtle glides through the crystal-clear waters, bridging 
the realms of oceanic mystery and maritime history.

Figure 6: Ablation study on the iterations of feedback learning.

Vibrant birds soar over a natural rock arch, with a 
lush river valley and towering red canyons below. The 
scene is framed by green vegetation and cacti, under 
a blue sky with fluffy clouds.

Futuristic and prehistoric worlds collide: Dinosaurs roam near a medieval castle, flying cars and advanced skyscrapers dominate the 
skyline. A river winds through lush greenery, blending ancient and modern civilizations in a surreal landscape.

RPG RPG with IterComp

Omost Omost with IterComp

A picturesque stone cottage, adorned with climbing 
vines and sunflowers, sits peacefully along a 
cobblestone path. Warm embrace of the afternoon sun. 

Amidst a stormy, apocalyptic skyline, a masked warrior stands resolute, adorned 
in intricate armor and a flowing cape. Lightning illuminates the dark clouds 
behind him, highlighting his steely determination. With a futuristic city in ruins 
at his back and a red sword in hand, he embodies the fusion of ancient valor and 
advanced technology, ready to face the chaos ahead.

RPG with IterCompRPG

Omost Omost with IterComp

Figure 7: The generation performance of integrating IterComp into RPG and Omost.

Generalization Study IterComp can serve as a powerful backbone for various compositional gen-
eration tasks, leveraging its strengths in spatial awareness, complex prompt comprehension, and
faster inference. As shown in fig. 7, we integrate IterComp into Omost (Omost-Team, 2024) and
RPG (Yang et al., 2024b). The results demonstrate that equipped with the more powerful IterComp
backbone, both Omost and RPG achieve excellent compositional generation performance, highlight-
ing IterComp’s strong generalization ability and potential for broader applications.

5 CONCLUSION

In this paper, we propose a novel framework, IterComp, to address the challenges of complex
and compositional text-to-image generation. IterComp aggregates composition-aware model pref-
erences from a model gallery and employs an iterative feedback learning approach to progressively
refine both the reward models and the base diffusion models over multiple iterations. For future
work, we plan to further enhance this framework by incorporating more complex modalities as in-
put conditions and extending it to more practical applications.
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A APPENDIX

This supplementary material is structured into several sections that provide additional details and
analysis related to IterComp. Specifically, it will cover the following topics:

• In appendix A.1, we provide a preliminary about Stable Diffusion (SD) and Reward Feed-
back Learning (ReFL).

• In appendix A.2, we provide detailed theoretical proof of the effectiveness of iterative feed-
back learning.

• In appendix A.3, we conduct an experimental analysis to assess model stability.
• In appendix A.4, we provide the results of user study.
• In appendix A.5, we present the quantitative comparison between IterComp and RPG.
• In appendix A.6, we present the quantitative comparison between IterComp and two layout-

based models: InstanceDiffusion and MIGC.
• In appendix A.7, we provide more visualization results for IterComp.

A.1 PRELIMINARY

Stable Diffusion Stable Diffusion (SD) (Rombach et al., 2022) performs multi-step denoising on
random noise zT ∼ N (0, I) to generate a clear latent z0 in the latent space under the guidance of
text prompt c. During the training, an input image x0 is processed by a pretrained autoencoder to
obtain its latent representation z0. A random noise ϵ ∼ N (0, I) is injected into z0 in the forward
process as follow:

zt =
√
ᾱtz0 +

√
1− ᾱtϵ (6)

where αt is the noise schedule. The UNet ϵθ is trained to predict the added noise with the optimiza-
tion objective:

min
θ
L(θ) = E[z0∼E(x0),ϵ∼N (0,I),t]

[
∥ϵ− ϵθ(zt, t, τ(c))∥22

]
(7)

where E(·) denote the preteained encoder of VAE, τ(·) denotes the pretrained text encoder.

Reward Feedback Learning Reward Feedback Learning (ReFL) (Xu et al., 2024) is proposed to
align diffusion models with human preferences. The reward model serves as the preference guidance
during the finetuning of the diffusion model. ReFL begins with an input prompt c and a random
noise zT ∼ N (0, I). The noise zT is progressively denoised until it reaches a randomly selected
timestep t. The latent z0 is directly predicted from zt, and the decoder from a pretrained VAE is
used to generate the predicted image x0. The pretrained reward modelR(·) provides a reward score
as feedback, which is used to finetune the diffusion model as follows:

min
θ
L(θ) = −Ec∼C (R (c,x0)) (8)

where the prompt c is randomly selected from the prompt dataset C.

A.2 THEORETICAL PROOF OF THE EFFECTIVENESS OF ITERATIVE FEEDBACK LEARNING

A.2.1 PROOF OF LEMMA 1

Proof of Lemma 1. Considering the general form of RLHF, we change the optimization problem of
iterative feedback learning to a bilevel optimization (Wallace et al., 2024; Ding et al., 2024):

min
R

−E[c∼C,(xw
0 ,xl

0)∼p∗
R(·|c)]

[
log σ

(
R (c,xw

0 )−R
(
c,xl

0

))]
s.t. p∗R := argmax

p
Ec∼C

[
Ex0∼p(·|c)R(c,x0)

]
− βDKL[p (x0:T | c) ||pref (x0:T | c)]

(9)

where p∗R denotes the optimized base models under the guidance of reward model R. We have the
reparameterization of the reward model (also shown in previous works by (Wallace et al., 2024)):

R(c,x0) = βEpR(x1:T |x0,c)

[
log

p∗R (x0:T | c)
pref (x0:T | c)

]
+ β logZ(c) (10)
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Z(c) =
∑
x

pref (x0:T | c) exp (R(c,x0)/β) (11)

Substituting this reward reparameterization into eq. (9), we get the new optimization objective as:

min
p∗
R

−E[c∼C,(xw
0 ,xl

0)∼p∗
R(·|c)]

[
log σ

(
β log

p∗R (xw
0:T | c)

pref (xw
0:T | c)

− β log
p∗R
(
xl
0:T | c

)
pref

(
xl
0:T | c

))] (12)

This new optimization objective is denoted as J(p∗R), we get:

max
p∗
R

J(p∗R)=E[c∼C,(xw
0 ,xl

0)∼p∗
R(·|c)]

[
log σ

(
β log

p∗R (xw
0:T | c)

pref (xw
0:T | c)

−β log
p∗R
(
xl
0:T | c

)
pref

(
xl
0:T | c

))] (13)

We use pθ to parameterize the policy and formulate the final optimization objective as:

max
θ

J(θ)=E[c∼C,(xw
0 ,xl

0)∼p∗
θ(·|c)]

[
log σ

(
β log

p∗θ (x
w
0:T | c)

pref (xw
0:T | c)

− β log
p∗θ
(
xl
0:T | c

)
pref

(
xl
0:T | c

))] (14)

A.2.2 PROOF OF THEOREM 1

Proof of Theorem 1. The gradient of the optimization objective in eq. (14) can be written as:

∇θJ(θ)=∇θ

∑
c,xw

0 ,xl
0

pθ(x
w
0:T |c) pθ(xl

0:T |c)

[
log σ

(
β log

p∗θ (x
w
0:T |c)

pref (xw
0:T |c)

− β log
p∗θ
(
xl
0:T |c

)
pref

(
xl
0:T |c

))]
(15)

Assume that:

Fθ(c,x
w
0 ,x

l
0) = log σ

(
β log

p∗θ (x
w
0:T | c)

pref (xw
0:T | c)

− β log
p∗θ
(
xl
0:T | c

)
pref

(
xl
0:T | c

)) (16)

p̂θ
(
xw
0:T ,x

l
0:T | c

)
= pθ (x

w
0:T | c) pθ(xl

0:T | c) (17)

The gradient can be decomposed into two terms:

∇θJ(θ)=∇θ

∑
c,xw

0 ,xl
0

p̂θ
(
xw
0:T ,x

l
0:T | c

)
Fθ(c,x

w
0 ,x

l
0)

=
∑

c,xw
0 ,xl

0

∇θp̂θ
(
xw
0:T ,x

l
0:T |c

)
Fθ(c,x

w
0 ,x

l
0)︸ ︷︷ ︸

T1

+E[c∼C,(xw
0 ,xl

0)∼p∗
θ(·|c)]

[∇θ[Fθ(c,x
w
0 ,x

l
0)]]︸ ︷︷ ︸

T2

(18)
By expanding the distribution p̂θ in T1, a more specific form is obtained:

T1 =
∑

c,xw
0 ,xl

0

∇θp̂θ
(
xw
0:T ,x

l
0:T | c

)
Fθ(c,x

w
0 ,x

l
0)

= E
[(
∇θ log pθ (x

w
0:T | c) +∇θ log pθ

(
xl
0:T | c

))
Fθ

(
c,xw

0 ,x
l
0

)] (19)

A.3 ANALYSIS ON MODEL STABILITY

To evaluate the model stability, we selected five methods for comparison: SD1.5 (Rombach et al.,
2022), SDXL (Podell et al., 2023), InstanceDiffusion (Wang et al., 2024a), Diffusion-DPO (Wal-
lace et al., 2024), and FLUX (BlackForest, 2024), along with two evaluation metrics: Complex and
CLIP-score. Using the same 50 seeds, we calculated the mean and variance of the models’ per-
formance for these metrics. To facilitate visualization, we used the variance of each method as the
radius and scaled it uniformly by a common factor (104) for stability analysis.
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Figure 8: Analysis on model stability.

Regarding the stability of compositionality, as shown in fig. 8a, we found that IterComp not only
achieved the best overall performance but also demonstrated superior stability. This can be attributed
to the iterative feedback learning paradigm enable the model to analyze and refine its output at each
optimization step, effectively self-correcting and self-improving. The iterative training approach
enables the model to perform feedback training based on its own generated samples rather than
solely relying on external data, this enables the model to steadily improve over multiple iterations
based on its own foundation. This enables the model to steadily improve over multiple iterations,
building on its existing foundation, which significantly enhances its stability.

For the stability of realism or generation quality, as shown in fig. 8b, our method also exhibited the
highest stability. Therefore, the iterative training approach not only improves the model’s perfor-
mance but also substantially enhances its stability across different dimensions.

A.4 USER STUDY
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Figure 9: Results of user study.

We conducted a comprehensive user study to evaluate the effectiveness of IterComp in composi-
tional generation. The study involved 41 randomly selected participants from diverse backgrounds.
We compared IterComp with five other methods across four aspects: attribute binding, spatial rela-
tionships, non-spatial relationships and overall performance. Each comparison involved 25 prompts,
culminating in a final survey of 125 prompts and generating 20,500 votes. From the win rate distribu-
tion of IterComp shown in the fig. 9, it is evident that IterComp demonstrates significant advantages
across all three aspects of compositional generation.

Specifically, compared to the layout-based model InstanceDiffusion (Wang et al., 2024a), IterComp
shows an absolute advantage in attribute binding. For text-based models SDXL (Podell et al., 2023)
and FLUX (BlackForest, 2024), IterComp leads significantly in spatial relationships. This high-
lights that the model gallery design effectively collects composition-aware model preferences and
enhances performance across different compositional aspects through iterative feedback learning.
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Table 6: Comparison between IterComp and RPG on DPG-Bench

Model Global Entity Attribute Relation Other Average
IterComp 89.91 88.64 86.73 84.77 89.74 81.17
RPG 91.01 87.39 84.53 87.92 89.84 81.28
RPG+IterComp 92.74 91.33 89.10 92.38 90.13 84.72

Table 7: Comparison between IterComp and RPG on Genval.

Model Single Obj. Two Obj. Counting Colors Position Color Attri. Overall
IterComp 0.97 0.85 0.63 0.86 0.33 0.41 0.675
RPG 0.97 0.86 0.66 0.79 0.30 0.38 0.660
RPG+IterComp 0.99 0.90 0.72 0.90 0.35 0.48 0.723

A.5 COMPARISON BETWEEN ITERCOMP AND RPG

We employed two up-to-date benchmarks: DPG-Bench (Hu et al., 2024) and GenEval (Ghosh et al.,
2024) for testing to evaluate the capabilities of IterComp and RPG (Yang et al., 2024b) in compo-
sitional generation. As demonstrated in table 6 and table 7, IterComp outperforms RPG in metrics
like attributes and colors. This is due to our training of a specific reward model for attribute bind-
ing, which iteratively enhances IterComp over multiple iterations. Leveraging the strong planning
and reasoning capabilities of LLMs, RPG excels in areas such as relations, counting, and position-
ing. When IterComp is used as the backbone for RPG, the model exhibits remarkable performance
across all aspects. This highlights IterComp’s superiority in compositional generation. It’s important
to note that IterComp is a simple SDXL-like model that doesn’t require complex computations dur-
ing inference. As a result, under the same conditions such as prompts and inference steps, IterComp
is nearly three times faster than RPG.

A.6 COMPARISON BETWEEN ITERCOMP AND LAYOUT-BASED METHODS

A classic violin resting on an elegant velvet chair, accompanied by a 
table on the right holding a vase of roses.

A charming red bicycle with a basket of vibrant red flowers leans 
against a cobblestone wall near a doorway, adorned with a house 
number plate, capturing the essence of a quaint European village.

An elegant fountain pen rests on handwritten parchment, 
accompanied by three ink bottles of varied designs. 

On a lakeside table, blue roses rest on an open book beside a steaming 
cup of tea. The majestic mountains and pine trees in the background 
enhance the serene atmosphere, reflection and relaxation.

MIGC IterComp
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Figure 10: Qualitative comparison between IterComp and two layout-to-image methods: InstanceD-
iffusion and MIGC.

We provide additional experiments between IterComp, InstanceDiffusion (Wang et al., 2024a), and
MIGC (Zhou et al., 2024). As shown in fig. 10, these examples clearly show that while MIGC and
InstanceDiffusion can accurately generate objects in the specified positions of the layout, there is a
notable gap in generation quality compared to IterComp, such as aesthetics and details. Moreover,
the images generated by these two methods often appear visually unrealistic, with significant flaws
such as incomplete violins or mismatches between bicycle and its basket. This highlights the clear
superiority of our IterComp on compositional generaton.
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A.7 MORE VISUALIZATION RESULTS

IterComp (Ours)FLUX-dev RPG

In a cozy library nook, A young woman with expressive, natural eyes and a gentle smile, soft oil brushwork 
adding warmth and depth to her skin, two curious cats sit beside open books, capturing a moment of quiet 
companionship. Shelves filled with colorful volumes surround them, and warm sunlight streams through the 
window, textured chalk pastel for subtle highlights

InstanceDiffusion

A tiny hedgehog wrapped snugly in a miniature blanket, holding a red cup with both paws, with a fireplace 
behind, a lit candle on the right, and some scattered pebbles nearby.

Text-controlled LLM-controlled Layout-controlled Reward-controlled

5.63 s/Img23.02 s/Img 15.57 s/Img 9.88 s/Img

An artist captures the serene beauty of a tranquil lake surrounded by majestic mountains. Four swans glide 
gracefully across the water, mirroring the peaceful scene on his canvas. The vibrant colors of nature and 
the artist's focused dedication create a harmonious blend of art and reality in this picturesque setting.

A family gathers by the fireplace, basking in its warm glow. Three children play on the rug while an elderly 
grandparent watches lovingly. Red scarves and cozy sweaters add to the warmth of the room, 
complementing the flickering flames of the fire.

Figure 11: Qualitative comparison between IterComp and three types of compositional generation
methods: text-controlled, LLM-controlled, and layout-controlled approaches. We use GPT-4o to
infer the layout from the prompt for InstanceDiffusion. Colored text denotes the advantages of
IterComp in generated images.
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IterComp (Ours)FLUX-dev RPG

A glass sphere sculpture, concealed inside the sphere is a large Pirate Ship in a Lightning storm, large 
waves, in the dark, moonlight filters through a nearby window, casting a serene glow.

InstanceDiffusion

The little prince standing on small earth in starry sky, With a bright red scarf and golden hair, he gazes 
at the stars, capturing the essence of adventure. by saint exupery, crocheted style.

Text-controlled LLM-controlled Layout-controlled Reward-controlled

5.63 s/Img23.02 s/Img 15.57 s/Img 9.88 s/Img

A wise and intelligent little girl, her face illuminated by the lights of the night, embodies the universe's 
mysteries. Created from constellations and galaxy nebulae, she holds the endless power of a quasar. Her 
expression is insightful, as if she understands the depths of a black hole.

In the heart of an enchanted forest, a majestic tree stands illuminated by glowing mushrooms and tiny 
lights. Its thick roots form a staircase leading to a cozy door, suggesting a hidden world within. The scene 
is vibrant and magical, inviting wonder and exploration in this mystical woodland realm.

Figure 12: Qualitative comparison between IterComp and three types of compositional generation
methods: text-controlled, LLM-controlled, and layout-controlled approaches. We use GPT-4o to
infer the layout from the prompt for InstanceDiffusion. Colored text denotes the advantages of
IterComp in generated images.
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SDXL IterComp (Ours) SDXL IterComp (Ours)

Figure 13: More visualization results for IterComp and its base diffusion model, SDXL.
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