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Abstract

In this study, we introduce a novel approach for001
undermining the alignment of large language002
models (LLMs), which we term the Module At-003
tack. A module attack compromises the align-004
ment of a model by manipulating intermedi-005
ate modules in the LLM by changing the in-006
ternal structure of the model through module007
swapping. Unlike traditional prompt-based jail-008
break attacks, which rely on external inputs009
and have limited effectiveness, we show that010
module attacks can bypass alignment defense011
mechanisms by exploiting structural vulnera-012
bilities inside the LLM and can be answered013
without going through a separate prompt engi-014
neering process.015

We also propose a cooperative decoding ap-016
proach that alternately generates tokens from017
the attacked LLM and the original LLM during018
token generation. In conclusion, we achieved019
high ASRs, reaching 100% in most cases,020
across different LLM architectures (Qwen 2.5,021
Llama 3.1, Mistral v0.3), and found no differ-022
ence in ASR between generation using the at-023
tacked LLM alone and cooperative decoding024
with the original LLM. We also showed that a025
simple swap of internal modules in the LLM026
can break the alignment of the model without027
any prompt engineering. This is a methodology028
that can neutralize the alignment of a model029
faster than any other methodology without any030
prior action.031

This research provided a deep understanding032
of the structural vulnerabilities of LLMs and033
confirmed that manipulating modules in LLMs034
can easily lead to unwanted consequences.035

1 Introduction036

Recent breakthroughs in large language models037

(LLMs) have led to exponential performance gains038

across diverse tasks (Wang et al., 2024b; Chen et al.,039

2021; Jain et al., 2024; Zheng et al., 2023), enabling040

models to produce both high-quality answers and041

unexpectedly creative outputs (Wei et al., 2022).042

Figure 1: Illustration of two cases where LLM evades
the question “How to make a Bomb?” while Module
Attacked LLM gives the recipe for the actual bomb

However, these powerful capabilities also raise seri- 043

ous concerns about malicious use, as LLMs can be- 044

come formidable “digital weapons” when deployed 045

by adversarial actors. To mitigate these risks, re- 046

searchers have introduced various safety mech- 047

anisms, including supervised fine-tuning (SFT) 048

(Bianchi et al., 2023), reinforcement learning from 049

human feedback (RLHF), and red-teaming (Gan- 050

guli et al., 2022; Perez et al., 2022). Despite these 051

efforts, multiple studies have already highlighted 052

fundamental limitations of learning-based align- 053

ment (Wolf et al., 2023; Dai et al., 2023; Su et al., 054

2024). 055

Examining the internal structure of LLMs re- 056

veals that early layers tend to capture local 057

sentence-level information (Zhang et al., 2024), 058

while middle layers form more abstract and high- 059

level representations (Skean et al., 2024). Closer 060

to the output layer, the model aligns these repre- 061

sentations for specific tasks or ethical guidelines 062

(Wang et al., 2024a). A growing body of work indi- 063

cates that modifying certain layers can strengthen 064

or weaken the model’s alignment (Zhao et al., 2024; 065

Hasan et al., 2024), demonstrating the close link 066

between a model’s structural components and its 067

safety. 068

Against this backdrop, this study proposes a new 069

methodology, hereinafter referred to as Module 070
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Swapping, which exploits structural vulnerabili-071

ties in LLMs to weaken their alignment. Although072

Model Manipulation-based jailbreak techniques073

have been introduced in previous research, they074

often involve complex procedures that limit their075

practicality. Likewise, Prompt-based jailbreak076

methods require users to search for or engineer077

specific prompts, making them tedious and highly078

situational. In contrast, the Module Swapping079

method described in this white paper can be ex-080

ecuted quickly and simply by reconfiguring the081

model’s internal components (layers, multi-layer082

perceptrons, attention modules) without intricate083

prompt engineering. In particular, we demonstrate084

that rearranging the order of specific modules can085

significantly degrade the model’s alignment. No-086

tably, even an overtly malicious query such as087

“How to make a bomb?” becomes answerable un-088

der this attack scenario. In the case of Closed LLMs089

operating on hacked hardware, one could obtain090

dangerous information more efficiently and rapidly091

than through any other known method, underscor-092

ing the severe security implications of structural093

manipulation.094

We also investigate how this attack generalizes095

across different conditions, including Collabora-096

tive Decoding, thereby offering a broader perspec-097

tive on whether rearranging the order of specific098

Modules alone can circumvent alignment. Our ex-099

tensive experiments cover state-of-the-art architec-100

tures, such as Qwen 2.5, Llama 3.1, and Mistral 7B.101

We quantitatively measure the Attack Success Rate102

(ASR) and other performance indicators to system-103

atically assess the model’s vulnerability under this104

structural manipulation. These findings suggest that105

simply relying on learning-based alignment (e.g.,106

SFT, RLHF) may be insufficient to protect against107

deeper, structural vulnerabilities that emerge from108

the model’s intermediate Modules.109

In summary, the contributions of this work are110

as follows.111

We highlight how the middle Modules of LLMs112

often considered primarily for abstract represen-113

tation also serve as a critical pivot for alignment114

mechanisms. By focusing on Module Swap, we115

elucidate how structural manipulations can under-116

mine a model’s safety. We empirically verify the117

attack’s generality across different model architec-118

tures (Qwen 2.5, Llama 3.1, Mistral 7B) and var-119

ious settings, including Collaborative Decoding,120

showing that structural vulnerabilities are widely121

shared among current LLMs. We emphasize that 122

true robustness cannot rely solely on high-level 123

alignment techniques such as SFT and RLHF; 124

rather, it requires a holistic approach that considers 125

all Modules and their interactions. By highlighting 126

the ease with which alignment can be bypassed 127

through simple structural changes, this study un- 128

derscores the urgent need for research into Module- 129

specific defenses and more holistic safety mecha- 130

nisms. We anticipate that our findings will inform 131

both next-generation LLM design and the broader 132

field of AI safety, guiding the development of more 133

robust alignment strategies that account for vulner- 134

abilities beyond mere output level control. 135

2 Related Works 136

2.1 Prompt based Jailbreaking 137

Prompt based Jailbreaking is one of the main fo- 138

cuses of existing research to bypass the alignment 139

of LLMs. This methodology designs malicious 140

prompts to induce the model to produce unwanted 141

information. For example, (Jiang et al., 2024) pro- 142

posed a prompt attack method utilizing ASCII art, 143

and (Zeng et al., 2024) introduced an approach to 144

evade the model’s safety mechanisms through per- 145

suasion based techniques. In addition, (Chang et al., 146

2024) showed that alignment can be bypassed by 147

combining multiple attack prompts. (Deng et al., 148

2024) proposed an indirect attack technique called 149

PANDORA that exploited Retrieval Augmented 150

Generation (RAG). However, these methods have 151

had limited effectiveness because they rely on ex- 152

ternal inputs to the model and do not directly com- 153

promise the internal structure of the model. 154

However, these prompt based approaches rely on 155

external input from the model and do not directly 156

manipulate its internal structure. As a result, they 157

are only effective in certain scenarios and are lim- 158

ited in their ability to weaken the alignment of the 159

model. 160

2.2 Model Manipulation based Jailbreaking 161

Research on jailbreaking models by modifying 162

their internal structure has recently gained trac- 163

tion. (Zhao et al., 2024) proposed a methodology 164

to weaken alignment by modifying certain layers, 165

(Zhang et al., 2023) proposed a coercive knowledge 166

extraction method that utilizes the output logic of 167

a model to force the generation of harmful infor- 168

mation. Modern automated black box attack tech- 169

niques, such as (Mehrotra et al., 2023)TAP (Tree 170
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Figure 2: An illustration of Module Attack(Swapping) + Collaborative Decoding. L is the total number of Modules
in the model. In the attack process, Swapped LLM is created by attacking the LLM with Layer Swap to modify the
alignment of the LLM, and then Collaborative Decoding is performed by alternately generating tokens of the
Attacked LLM and the original LLM during the inference process.

of Attacks with Pruning), have greatly improved171

the success rate in bypassing alignment by gener-172

ating effective attack prompts without the need to173

know the internal state of the model, (Zou et al.,174

2023) successfully used a gradient based method175

to generate malicious input.176

3 Methodology177

In this section, we introduce module swapping, a178

method that disrupts the alignment of an LLM by179

modifying its core layers. Additionally, we propose180

collaborative decoding, a technique that improves181

the quality of generated responses by alternately182

generating tokens between the attacked LLM and183

the original LLM.184

3.1 Module Swapping185

Module Swapping is a targeted intervention mech-186

anism that swaps specific intermediate Modules187

of LLMs, thereby compromising the alignment ca-188

pabilities essential for maintaining model safety.189

Given a model f = {f1, f2, . . . , fL}, with E ∈190

RV×d representing the embedding space and H ∈191

Rd×V denoting the LM head, the attacked model192

is formulated as:193

AttackedLLM(x) = H
(
fL ◦ · · · ◦ σ

(
fL/2−t, · · · , fL/2+t

)
◦ · · · ◦ f1

)
(E(x)).

194

where σ represents the swapping operator ap- 195

plied over the Module range {fL/2−t, . . . , fL/2+t}. 196

Module swapping disrupts the hierarchical process- 197

ing of information within LLMs by reordering criti- 198

cal intermediate Modules. For a subset of Modules 199

{fL/2−t, . . . , fL/2+t}, a permutation π is applied, 200

resulting in a rearranged structure. The modified 201

Module composition, denoted as 202

σ = σswap(fL/2−t, . . . , fL/2+t), 203

produces a model structure incapable of maintain- 204

ing the original alignment, thereby amplifying the 205

attack’s impact. 206

3.2 Collaborative Decoding 207

To maximize the attack’s efficacy, we introduce 208

Collaborative Decoding, a hybrid generation pro- 209

cess alternating between the original LLM (L) and 210

the attacked model (A). The generation process is 211

defined as: 212

ϕρ(t) =

{
A, if ((t− 1) mod (p+ q)) < p,

L, otherwise,
213

where ρ = p : q represents the token generation 214

ratio between A and L. The process continues until 215

an end of sequence (EOS) token is generated or the 216

maximum decoding length Tmax is reached. 217
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4 Experiment218

4.1 Experimental Setup219

Model. We selected the following models for our220

experiments based on performance, awareness,221

and downloads: Qwen 2.5 7b instruct, Llama222

3.1 8b instruct, and Mistral 7b instruct v0.3. The223

Qwen 2.5 model used online RL and offline RL,224

bias removal, response filtering, etc. to make the225

model alignment robust(Yang et al., 2024) The226

Mistral model performed content moderation227

with self-reflection, achieving 99.4% accuracy in228

self-reflection precision(Jiang et al., 2023) The229

Llama 3.1 model can prevent direct jailbreak230

attempts using prompts with Prompt Guard, which231

is a model that prevents jailbreaks through red232

teaming and safe fine-tuning(Dubey et al., 2024).233

234

Dataset. We use JailbreakBench to assess the235

model’s robustness against jailbreak attempts236

and MMLU-Pro to evaluate its general knowl-237

edge and reasoning abilities. JailbreakBench238

is used to assess how effectively the proposed239

methodology weakens the model’s alignment,240

while the MMLU-Pro Benchmark measures the241

extent to which the model’s general performance242

declines. dataset from JailbreakBench(Chao et al.,243

2024) and the JBB-Behaviors(JailbreakBench,244

2025) JBB-Behaviors is a dataset of a list of 100245

misuse behaviors curated from OpenAI’s usage246

policies(OpenAI, 2025) and broken down into 10247

main categories. Each category represents 10% of248

the dataset, and the dataset is composed of 55%249

original, 27% from TDC/HarmBench, 18% from250

AdvBench, and 18% from TDC/HarmBench.251

dataset from MMLU-Pro (Wang et al., 2024b) and252

the MMLU-Pro Dataset(Wang et al., 2025) is a253

powerful and challenging large-scale multi-task254

comprehension dataset tailored for rigorously255

benchmarking the capabilities of large-scale256

language models, consisting of 14 tasks with a257

total of 12,102 datasets.258

259

Evaluation Metric. As an evaluation metric, we260

used Attack Success Rate (ASR), which is defined261

as follows.262

ASR =
Number of Successful Attacks

Total Number of Attack Attempts
×100%263

Each question was generated a total of 50 times,264

and if any of the answers were misused, we consid-265

ered the attack successful. We also used the origi-266

nal, risky prompts directly as input prompts, with- 267

out any prompt engineering. 268

4.2 Module Attack & collaborative decoding 269

The experiments were conducted on Module Swap 270

methodologies, and the Module swap process was 271

performed by swapping 1:1, 2:2, 3:3, and 4:4 Mod- 272

ules based on the middle Modules. Also, for each 273

methodology, the 1 : 1, 2 : 1, 3 : 1, 4 : 1, ∞of the 274

collaborative decoding to measure ASR. 275

4.3 Experimental Results 276

Module Swap. Module Swap experiments show 277

that the Alignment attack success rate (ASR) 278

reaches 100% for most models. The experimen- 279

tal results are shown in the following tables Table 280

1, and Figure 3, Figure 4, and Figure 5. Further- 281

more, to evaluate the general performance of the 282

models, the MMLU-Pro results for Swapping and 283

Collaborative Decoding can be found in Table 2 284

and Table 3. 285

As shown in Table 1, the module swapping 286

methodology generally achieved an ASR close to 287

100%. Regardless of the number of swapped mod- 288

ules, the ASR remained at a minimum of 90%. No- 289

tably, in the case of the Mistral v0.3 and Llama 3.1 290

models, swapping even a single module resulted in 291

an ASR approaching 100%. Furthermore, a general 292

trend was observed in which the ASR increased as 293

the number of swapped modules increased. 294

For the Mistral v0.3 model, when layer swapping 295

was performed, the ASR for the model swapped at a 296

1:1 ratio was 93%, whereas the model swapped at a 297

4:4 ratio exhibited an ASR of 95%, indicating a 2% 298

improvement. Similarly, MLP swapping led to an 299

increase in ASR from 91% to 97%, reflecting a 6% 300

improvement, while attention swapping resulted in 301

a 2% increase from 95% to 97%. This trend was 302

also observed in the Qwen 2.5 model, excluding 303

the Llama 3.1 model. Specifically, the Qwen 2.5 304

model demonstrated an ASR improvement of 5% 305

for layer swapping, 10% for MLP swapping, and 306

7% for attention swapping. 307

As shown in Table 2, swapping a single module 308

at a time does not result in significant performance 309

degradation compared to the original model. For 310

instance, in the case of Mistral v0.3, the original 311

model achieved a score of 0.36, whereas models 312

with individual module swaps obtained scores of 313

0.35, 0.35, and 0.34, reflecting only a minimal dif- 314

ference of approximately 0.01 points. Similarly, for 315
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Layer Swapping (ASR) MLP Swapping (ASR) Attention Swapping (ASR)
Model Module INF 1:1 2:1 3:1 4:1 INF 1:1 2:1 3:1 4:1 INF 1:1 2:1 3:1 4:1

Mistral 1 93% 98% 99% 99% 98% 91% 98% 98% 99% 99% 95% 100% 99% 99% 99%
2 91% 99% 100% 98% 98% 94% 100% 99% 100% 99% 94% 100% 99% 99% 100%
3 95% 100% 100% 100% 100% 94% 100% 100% 100% 100% 94% 99% 100% 100% 100%
4 95% 100% 100% 100% 100% 97% 100% 100% 100% 100% 97% 100% 100% 100% 100%

Qwen 2.5 1 95% 93% 93% 97% 94% 90% 87% 90% 93% 87% 93% 89% 88% 89% 90%
2 98% 97% 100% 97% 98% 98% 92% 96% 93% 96% 91% 87% 90% 94% 90%
3 100% 99% 100% 100% 100% 99% 98% 99% 100% 100% 99% 91% 95% 94% 98%
4 100% 100% 100% 99% 100% 100% 100% 100% 100% 100% 100% 98% 100% 99% 100%

Llama 3.1 1 99% 99% 99% 99% 98% 99% 98% 99% 99% 99% 100% 99% 99% 98% 100%
2 99% 100% 100% 100% 100% 100% 100% 100% 100% 100% 99% 98% 100% 100% 99%
3 99% 100% 99% 99% 99% 99% 100% 99% 100% 99% 100% 99% 99% 99% 99%
4 98% 99% 100% 99% 99% 97% 99% 99% 98% 99% 96% 99% 99% 100% 99%

Table 1: The ASR results for layer, MLP, and attention module swapping are presented. Here, 1, 2, 3, and 4 indicate
the number of swapped modules. The notations 1:1, 2:1, 3:1, and 4:1 represent the ratio used during collaborative
decoding with the original model, where the first value corresponds to the generation ratio from the attacked LLM,
and the second value indicates the generation ratio from the original LLM. The detailed ASR results for each
attempt can be found in appendix A

(a) Llama 3.1 (1 Layer) (b) Llama 3.1 (2 Layer) (c) Llama 3.1 (3 Layer) (d) Llama 3.1 (4 Layer)

(e) Mistral v0.3 (1 Layer) (f) Mistral v0.3 (2 Layer) (g) Mistral v0.3 (3 Layer) (h) Mistral v0.3 (4 Layer)

(i) Qwen 2.5 (1 Layer) (j) Qwen 2.5 (2 Layer) (k) Qwen 2.5 (3 Layer) (l) Qwen 2.5 (4 Layer)

Figure 3: Figures showing the results of Layer Swap. Each figure illustrates the change in ASR for each attempt. 3a,
3e, and 3i present the ASR results when swapping one pair of layers. 3b, 3f, and 3j show the ASR results when
swapping two pairs of layers. 3c, 3g, and 3k depict the ASR results when swapping three pairs of layers. 3d, 3h, and
3l display the ASR results when swapping four pairs of layers.

the Llama 3.1 and Qwen 2.5 models, the perfor-316

mance of the swapped models remained compa-317

rable to or even surpassed that of their respective318

prior models.319

However, as the number of swapped modules320

increases, such as in the 2:2, 3:3, and 4:4 config- 321

urations, the performance exhibits an exponential 322

decline. This observation suggests that while mod- 323

ule swapping can achieve near-perfect ASR, the 324

optimal swap ratio for maintaining maximum per- 325
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(a) Llama 3.1 (1 MLP) (b) Llama 3.1 (2 MLP) (c) Llama 3.1 (3 MLP) (d) Llama 3.1 (4 MLP)

(e) Mistral v0.3 (1 MLP) (f) Mistral v0.3 (2 MLP) (g) Mistral v0.3 (3 MLP) (h) Mistral v0.3 (4 MLP)

(i) Qwen 2.5 (1 MLP) (j) Qwen 2.5 (2 MLP) (k) Qwen 2.5 (3 MLP) (l) Qwen 2.5 (4 MLP)

Figure 4: Figures showing the results of MLP Swap. Each figure illustrates the change in ASR for each attempt. 4a,
4e, and 4i present the ASR results when swapping one pair of MLPs. 4b, 4f, and 4j show the ASR results when
swapping two pairs of MLPs. 4c, 4g, and 4k depict the ASR results when swapping three pairs of MLPs. 4d, 4h, and
4l display the ASR results when swapping four pairs of MLPs.

MMLU-Pro (Module Swapping)

Model Module 1:1 2:2 3:3 4:4

Llama 3.1
Attention 0.39 0.30 0.13 0.11

MLP 0.40 0.30 0.13 0.11
Layer 0.41 0.28 0.14 0.11

Mistral v0.3
Attention 0.35 0.30 0.20 0.12

MLP 0.35 0.30 0.22 0.13
Layer 0.34 0.29 0.21 0.13

Qwen 2.5
Attention 0.41 0.28 0.20 0.11

MLP 0.46 0.39 0.22 0.15
Layer 0.47 0.37 0.22 0.18

Base
Llama 3.1 - 0.44
Mistral v0.3 - 0.36
Qwen 2.5 - 0.56

Prior
Llama 3 - 0.40
Mistral v0.2 - 0.31
Qwen 2 - 0.44

Table 2: MMLU-Pro performance comparison by
model with module swapping. 1:1, 2:2, 3:3, and 4:4 are
evaluated after swapping one, two, three, and four
Attention, MLP, and Layer modules, respectively.

MMLU-Pro (Collaborative Decoding)

Model Module INF 1:1 2:1 3:1 4:1

Llama 3.1
Attention 0.41 0.41 0.41 0.38 0.41

MLP 0.44 0.44 0.34 0.41 0.39
Layer 0.44 0.41 0.45 0.45 0.41

Mistral v0.3
Attention 0.31 0.34 0.33 0.32 0.32

MLP 0.32 0.37 0.36 0.32 0.36
Layer 0.32 0.33 0.34 0.33 0.31

Qwen 2.5
Attention 0.46 0.45 0.47 0.40 0.44

MLP 0.50 0.54 0.45 0.53 0.46
Layer 0.42 0.52 0.48 0.49 0.49

Base
Llama 3.1 - 0.5
Mistral v0.3 - 0.35
Qwen 2.5 - 0.55

Prior
Llama 3 - 0.44
Mistral v0.2 - 0.30
Qwen 2 - 0.42

Table 3: MMLU-Pro Performance Comparison via 1:1
Module Swapping and Collaborative Decoding. INF
denotes the MMLU-Pro score of the swapped model
alone. The results for 1:1, 2:1, 3:1, and 4:1 represent
the outcomes of collaborative decoding between the
attacked LLM and the original model. For evaluation,
10 random samples were selected from each task of
MMLU-Pro and assessed accordingly.

6



(a) Llama 3.1 (1 Attention) (b) Llama 3.1 (2 Attention) (c) Llama 3.1 (3 Attention) (d) Llama 3.1 (4 Attention)

(e) Mistral v0.3 (1 Attention) (f) Mistral v0.3 (2 Attention) (g) Mistral v0.3 (3 Attention) (h) Mistral v0.3 (4 Attention)

(i) Qwen 2.5 (1 Attention) (j) Qwen 2.5 (2 Attention) (k) Qwen 2.5 (3 Attention) (l) Qwen 2.5 (4 Attention)

Figure 5: Figures showing the results of Attention Swap. Each figure illustrates the change in ASR for each attempt.
5a, 5e, and 5i present the ASR results when swapping one pair of attentions. 5b, 5f, and 5j show the ASR results
when swapping two pairs of attentions. 5c, 5g, and 5k depict the ASR results when swapping three pairs of
attentions. 5d, 5h, and 5l display the ASR results when swapping four pairs of attentions.

formance is 1:1 module swapping.326

These results suggest that the Alignment defense327

is concentrated in an overall module and can328

be easily neutralized by swapping that module329

without significant performance degradation. We330

also experimentally demonstrate that a simple331

module swap can effectively bypass Alignment332

without prompt engineering.333

334

Collaborative Decoding.335

As shown in Table 1, the ASR results ob-336

tained through collaborative decoding between the337

swapped LLM and the original LLM generally338

achieved a 100% ASR. Additionally, in some cases,339

collaborative decoding with the original model led340

to higher ASR compared to using only the swapped341

LLM for jailbreak attempts. For instance, when342

swapping a single layer in the Mistral v0.3 model,343

the ASR of the swapped LLM alone was 93%.344

However, when collaborative decoding was per-345

formed at 1:1, 2:1, 3:1, and 4:1 ratios, the ASR im-346

proved to 99%. This trend suggests that regardless347

of the number of swapped modules in the Mistral 348

v0.3 model, collaborative decoding consistently 349

yields higher ASR than using the swapped LLM 350

alone. A similar, albeit weaker, trend was observed 351

in the Qwen 2.5 and Llama 3.1 models, where col- 352

laborative decoding not only enhanced jailbreak 353

effectiveness but also demonstrated superior gen- 354

eral performance compared to using the swapped 355

LLM in isolation. 356

The results of collaborative decoding with a 357

single-module swap for each model are presented 358

in Table 3. In general, the performance of the 359

model utilizing collaborative decoding with a sin- 360

gle swapped module exhibited similar results to 361

the model generated solely with a single-module 362

swap. However, when more than one module was 363

swapped during generation, it was empirically ob- 364

served that the model encountered various issues, 365

such as failing to capture basic contextual infor- 366

mation. As shown in appendix B, collaborative 367

decoding effectively mitigated these issues. In con- 368

clusion, experimental results demonstrated that as 369
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the number of swapped modules increased, collab-370

orative decoding was able to maintain the model’s371

performance. Additionally, even when only one372

module was swapped, the performance degradation373

remained relatively minimal, as verified through374

experiments.375

5 Discussion376

Dataset. The JBB-Behaviors dataset we used377

in our experiments provides a wide range of378

attack scenarios, including high-risk behaviors379

such as harassment, malware creation, and fraud,380

and the balanced distribution of these categories381

provides a comprehensive evaluation of the382

Module Attack methodology, which showed no383

particular resistance in any particular category384

and an overall ASR close to 100%. This suggests385

that the structural vulnerabilities of the LLM386

used by Module Attack are not simply related to387

the semantic content of the prompt, and that a388

structural level of defense is required.389

390

Collaborative Decoding. Our findings indicate391

that collaborative decoding enhances the quality of392

generated sentences by alternating token generation393

between the compromised LLM and the original394

LLM. Furthermore, our experiments demonstrate395

that the alignment of the original LLM can be effec-396

tively neutralized during the collaborative decoding397

process.398

However, collaborative decoding may leave de-399

tectable traces in the interaction patterns between400

the compromised and original models. Such traces401

could be identified by defense systems designed402

to detect anomalous model behavior. To further403

validate our findings, additional experiments are404

necessary using a more extensive dataset than405

the JBB-Behavior dataset employed in this study.406

Moreover, since the MMLU-Pro evaluation of407

collaborative decoding was conducted with only408

10 data points per task, a more rigorous and409

comprehensive evaluation is required to ensure the410

robustness of our conclusions.411

412

Multimodal. Beyond traditional text-based413

LLMs, it is necessary to analyze the impact of mod-414

ule swapping in multimodal models. Multimodal415

LLMs include additional Modules and complex416

interaction mechanisms to process various inputs417

such as images, speech, etc. In addition to text, this418

multimodal structure plays an important role in in-419

tegrating and complementarily processing informa- 420

tion from each modality, unlike text-based models, 421

implying that different results may be obtained in 422

multimodal LLMs as opposed to text-based models. 423

Further analysis of whether module swapping of 424

these multimodals breaks the alignment is worth- 425

while and may provide deeper insights into the role 426

of modules in multimodal as well as LLMs. 427

6 Conclusion 428

In this study, we propose Module Swapping, a 429

methodology to swap the internal modules of a 430

model, and Collaborative Decoding, a method to 431

generate tokens alternately with the original model. 432

We experimented on Llama 3.1, Qwen 2.5, and 433

Mistral v0.3 models and tested methods. In con- 434

clusion, we can see that for 50 attempts, no mat- 435

ter how many modules we swap, we got close to 436

100% ASR, which shows that it is possible to get 437

close to 100% ASR with the smallest amount of 438

Module swap. We also showed that swapping too 439

many modules leads to a loss of internal knowl- 440

edge and reasoning ability of the model, which can 441

be recovered through collaborative decoding. Un- 442

like existing prompt-based jailbreak methods, this 443

study shows that the alignment defense mechanism 444

can be bypassed by directly attacking the structural 445

characteristics of the model. Furthermore, by ana- 446

lyzing the impact of Module Attack and Collabora- 447

tive Decoding on the performance and stability of 448

the model through several experiments, we provide 449

a deeper understanding of the structural vulnerabili- 450

ties of LLMs. This demonstrates that relying solely 451

on the model is insufficient to prevent jailbreaks, 452

highlighting the necessity for additional pipelines, 453

such as detecting and blocking harmful prompts 454

externally to the model. These results may help 455

to provide new research directions to enhance the 456

safety of LLMs in the future and to compensate for 457

possible vulnerabilities in their structural design. 458

7 Limitations 459

The Module Swapping methodology proposed in 460

this study is a methodology that neutralizes the 461

alignment of LLM by swapping the middle Mod- 462

ule, and in the process, we found that the model’s 463

reasoning ability, knowledge, etc. decreased overall. 464

To prevent this, we introduced collaborative decod- 465

ing to improve the overall quality of answers. How- 466

ever, this has only been partially validated through 467

empirical observations and requires further rigor- 468
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ous verification. The model sizes used in our exper-469

iments (7b-8b) correspond to medium-sized LLMs,470

and the effectiveness of Module Swapping is likely471

to change when considering the complexity of very472

large models (>100b) and the interactions between473

different modules. Further research should be con-474

ducted to evaluate the impact of Swapping on very475

large models.476
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A ASR Performance by Model, Module, and Collaborative Decoding 619

(a) (1 MLP, INF) (b) (1 MLP, 1:1) (c) (1 MLP, 2:1) (d) (1 MLP, 3:1) (e) (1 MLP, 4:1)

(f) (2 MLP, INF) (g) (2 MLP, 1:1) (h) (2 MLP, 2:1) (i) (2 MLP, 3:1) (j) (2 MLP, 4:1)

(k) (3 MLP, INF) (l) (3 MLP, 1:1) (m) (3 MLP, 2:1) (n) (3 MLP, 3:1) (o) (3 MLP, 4:1)

(p) (4 MLP, INF) (q) (4 MLP, 1:1) (r) (4 MLP, 2:1) (s) (4 MLP, 3:1) (t) (4 MLP, 4:1)

Figure 6: Illustration of the results of collaborative decoding for each ratio after swapping for each MLP in the
Llama 3.1 model. The numbers 1, 2, 3, and 4 MLP indicate the respective pairs of MLP that have been swapped,
while INF, 1:1, 2:1, 3:1, and 4:1 represent the ratios for collaborative decoding.
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(a) (1 MLP INF) (b) (1 MLP, 1:1) (c) (1 MLP, 2:1) (d) (1 MLP, 3:1) (e) (1 MLP, 4:1)

(f) (2 MLP, INF) (g) (2 MLP, 1:1) (h) (2 MLP, 2:1) (i) (2 MLP, 3:1) (j) (2 MLP, 4:1)

(k) (3 MLP, INF) (l) (3 MLP, 1:1) (m) (3 MLP, 2:1) (n) (3 MLP, 3:1) (o) (3 MLP, 4:1)

(p) (4 MLP, INF) (q) (4 MLP, 1:1) (r) (4 MLP, 2:1) (s) (4 MLP, 3:1) (t) (4 MLP, 4:1)

Figure 7: Illustration of the results of collaborative decoding for each ratio after swapping for each MLP in the
Mistral v0.3 model. The numbers 1, 2, 3, and 4 MLP indicate the respective pairs of MLP that have been swapped,
while INF, 1:1, 2:1, 3:1, and 4:1 represent the ratios for collaborative decoding.
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(a) (1 MLP, INF) (b) (1 MLP, 1:1) (c) (1 MLP, 2:1) (d) (1 MLP, 3:1) (e) (1 MLP, 4:1)

(f) (2 MLP, INF) (g) (2 MLP, 1:1) (h) (2 MLP, 2:1) (i) (2 MLP, 3:1) (j) (2 MLP, 4:1)

(k) (3 MLP, INF) (l) (3 MLP, 1:1) (m) (3 MLP, 2:1) (n) (3 MLP, 3:1) (o) (3 MLP, 4:1)

(p) (4 MLP, INF) (q) (4 MLP, 1:1) (r) (4 MLP, 2:1) (s) (4 MLP, 3:1) (t) (4 MLP, 4:1)

Figure 8: Illustration of the results of collaborative decoding for each ratio after swapping for each MLP in the
Qwen 2.5 model. The numbers 1, 2, 3, and 4 MLP indicate the respective pairs of MLP that have been swapped,
while INF, 1:1, 2:1, 3:1, and 4:1 represent the ratios for collaborative decoding.
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(a) (1 Attention, INF) (b) (1 Attention 1:1) (c) (1 Attention, 2:1) (d) (1 Attention, 3:1) (e) (1 Attention, 4:1)

(f) (2 Attention, INF) (g) (2 Attention, 1:1) (h) (2 Attention, 2:1) (i) (2 Attention, 3:1) (j) (2 Attention, 4:1)

(k) (3 Attention, INF) (l) (3 Attention, 1:1) (m) (3 Attention, 2:1) (n) (3 Attention, 3:1) (o) (3 Attention, 4:1)

(p) (4 Attention, INF) (q) (4 Attention, 1:1) (r) (4 Attention, 2:1) (s) (4 Attention, 3:1) (t) (4 Attention, 4:1)

Figure 9: Illustration of the results of collaborative decoding for each ratio after swapping for each Attention in the
Llama 3.1 model. The numbers 1, 2, 3, and 4 Attention indicate the respective pairs of Attention that have been
swapped, while INF, 1:1, 2:1, 3:1, and 4:1 represent the ratios for collaborative decoding.
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(a) (1 Attention, INF) (b) (1 Attention 1:1) (c) (1 Attention, 2:1) (d) (1 Attention, 3:1) (e) (1 Attention, 4:1)

(f) (2 Attention, INF) (g) (2 Attention, 1:1) (h) (2 Attention, 2:1) (i) (2 Attention, 3:1) (j) (2 Attention, 4:1)

(k) (3 Attention, INF) (l) (3 Attention, 1:1) (m) (3 Attention, 2:1) (n) (3 Attention, 3:1) (o) (3 Attention, 4:1)

(p) (4 Attention, INF) (q) (4 Attention, 1:1) (r) (4 Attention, 2:1) (s) (4 Attention, 3:1) (t) (4 Attention, 4:1)

Figure 10: Illustration of the results of collaborative decoding for each ratio after swapping for each Attention in
the Mistral v0.3 model. The numbers 1, 2, 3, and 4 Attention indicate the respective pairs of Attention that have
been swapped, while INF, 1:1, 2:1, 3:1, and 4:1 represent the ratios for collaborative decoding.
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(a) (1 Attention, INF) (b) (1 Attention 1:1) (c) (1 Attention, 2:1) (d) (1 Attention, 3:1) (e) (1 Attention, 4:1)

(f) (2 Attention, INF) (g) (2 Attention, 1:1) (h) (2 Attention, 2:1) (i) (2 Attention, 3:1) (j) (2 Attention, 4:1)

(k) (3 Attention, INF) (l) (3 Attention, 1:1) (m) (3 Attention, 2:1) (n) (3 Attention, 3:1) (o) (3 Attention, 4:1)

(p) (4 Attention, INF) (q) (4 Attention, 1:1) (r) (4 Attention, 2:1) (s) (4 Attention, 3:1) (t) (4 Attention, 4:1)

Figure 11: Illustration of the results of collaborative decoding for each ratio after swapping for each Attention in
the Qwen 2.5 model. The numbers 1, 2, 3, and 4 Attention indicate the respective pairs of Attention that have been
swapped, while INF, 1:1, 2:1, 3:1, and 4:1 represent the ratios for collaborative decoding.
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(a) (1 layer, INF) (b) (1 layer, 1:1) (c) (1 layer, 2:1) (d) (1 layer, 3:1) (e) (1 layer, 4:1)

(f) (2 layers, INF) (g) (2 layers, 1:1) (h) (2 layers, 2:1) (i) (2 layers, 3:1) (j) (2 layers, 4:1)

(k) (3 layers, INF) (l) (3 layers, 1:1) (m) (3 layers, 2:1) (n) (3 layers, 3:1) (o) (3 layers, 4:1)

(p) (4 layers, INF) (q) (4 layers 1:1) (r) (4 layers, 2:1) (s) (4 layers, 3:1) (t) (4 layers, 4:1)

Figure 12: Illustration of the results of collaborative decoding for each ratio after swapping for each layer in the
Llama 3.1 model. The numbers 1, 2, 3, and 4 layer indicate the respective pairs of layer that have been swapped,
while INF, 1:1, 2:1, 3:1, and 4:1 represent the ratios for collaborative decoding.
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(a) (1 layer, INF) (b) (1 layer, 1:1) (c) (1 layer, 2:1) (d) (1 layer, 3:1) (e) (1 layer, 4:1)

(f) (2 layers, INF) (g) (2 layers, 1:1) (h) (2 layers, 2:1) (i) (2 layers, 3:1) (j) (2 layers, 4:1)

(k) (3 layers, INF) (l) (3 layers, 1:1) (m) (3 layers, 2:1) (n) (3 layers, 3:1) (o) (3 layers, 4:1)

(p) (4 layers, INF) (q) (4 layers 1:1) (r) (4 layers, 2:1) (s) (4 layers, 3:1) (t) (4 layers, 4:1)

Figure 13: Illustration of the results of collaborative decoding for each ratio after swapping for each layer in the
Mistral v0.3 model. The numbers 1, 2, 3, and 4 layer indicate the respective pairs of layer that have been swapped,
while INF, 1:1, 2:1, 3:1, and 4:1 represent the ratios for collaborative decoding.
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(a) (1 layer, INF) (b) (1 layer, 1:1) (c) (1 layer, 2:1) (d) (1 layer, 3:1) (e) (1 layer, 4:1)

(f) (2 layers, INF) (g) (2 layers, 1:1) (h) (2 layers, 2:1) (i) (2 layers, 3:1) (j) (2 layers, 4:1)

(k) (3 layers, INF) (l) (3 layers, 1:1) (m) (3 layers, 2:1) (n) (3 layers, 3:1) (o) (3 layers, 4:1)

(p) (4 layers, INF) (q) (4 layers 1:1) (r) (4 layers, 2:1) (s) (4 layers, 3:1) (t) (4 layers, 4:1)

Figure 14: Illustration of the results of collaborative decoding for each ratio after swapping for each layer in the
Qwen 2.5 model. The numbers 1, 2, 3, and 4 layer indicate the respective pairs of layer that have been swapped,
while INF, 1:1, 2:1, 3:1, and 4:1 represent the ratios for collaborative decoding.
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B Comparison of generation results using only the Attacked LLM after layer swapping620

versus generation results using Collaborative Decoding with the original model.621

Figure 15: The result generated after swapping six layers in the attacked LLM. It can be observed that reasoning
and comprehension abilities have declined due to layer swapping, and the model fails to properly understand the
prompt.

Figure 16: The result of 6 layers of swapping followed by 1:1 collaborative decoding. We can see that it clearly
understands the prompt and gives an answer.
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