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Abstract

The capability of Deep Neural Networks (DNNs) to recognize objects in orientations out-1

side the training data distribution is not well understood. We investigate the limitations2

of DNNs’ generalization capacities by systematically inspecting DNNs’ patterns of success3

and failure across out-of-distribution (OoD) orientations. We present evidence that DNNs4

(across architecture types, including convolutional neural networks and transformers) are5

capable of generalizing to objects in novel orientations, and we describe their generalization6

behaviors. Specifically, generalization strengthens when training the DNN with an increas-7

ing number of familiar objects, but only in orientations that involve 2D rotations of familiar8

orientations. We also hypothesize how this generalization behavior emerges from internal9

neural mechanisms — that neurons tuned to common features between familiar and unfamil-10

iar objects enable out of distribution generalization — and present supporting data for this11

theory. The reproducibility of our findings across model architectures, as well as analogous12

prior studies on the brain, suggests that these orientation generalization behaviors, as well13

as the neural mechanisms that drive them, may be a feature of neural networks in general.14

1 Introduction15

Recognizing objects in novel orientations lies at the heart of biological and artificial intelligence, as it is16

a fundamental capacity necessary to understand the visual world (Sinha & Poggio, 1996; Ullman, 1996).17

However, the computational mechanisms underlying this capacity in both brains and machines are not yet18

well understood (Gazzaniga et al., 2006; Pinto et al., 2008; Li et al., 2021).19

In the realm of artificial systems, Deep Neural Networks (DNNs) have recently made large strides in object20

recognition (He et al., 2017; Carion et al., 2020). However recent studies have shown that DNNs perform21

poorly when objects are presented in novel orientations, even when learning from large datasets with millions22

of examples (Barbu et al., 2019; Alcorn et al., 2019; Madan et al., 2022; Abbas & Deny, 2023; Ollikka23

et al., 2025). More broadly, novel orientations are a special case of out-of-distribution (OoD) data. DNNs’24

generalization is often limited to the images from the training distribution, known as in-distribution data,25

while it remains difficult to give a principled account of their performance in OoD settings.26

One promising approach to understand the capabilities of DNNs is to leverage the knowledge gained from27

studying biological intelligence (Hassabis et al., 2017; Ullman, 2019). In natural settings, biological intel-28

ligent agents observe instances of object categories from diverse orientations. When encountering a new29

object instance, these agents often demonstrate the capacity to accurately identify the object in different30

orientations by drawing upon past experiences with similar instances (Booth & Rolls, 1998; Freiwald &31

Tsao, 2010; Ratan Murty & Arun, 2015). Extensive investigations into human and mammalian perception32

and object recognition in unfamiliar orientations have revealed that recognition accuracy varies across novel33

orientations, with some orientations exhibiting superior generalization compared to others (Logothetis &34

Pauls, 1995). Additionally, studies into the neural mechanisms underlying these cognitive abilities have mar-35

shaled compelling evidence suggesting that neurons respond to their own specific set of object features when36

present in the visual field (Desimone et al., 1984; Kobatake & Tanaka, 1994; Gauthier et al., 2002; Fang &37

He, 2005). This neural tuning has been reported to be invariant to a certain degree from the object’s orien-38
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Figure 1: Learning paradigm and network’s per-orientation accuracy. (a) The network is trained
with images of certain airplanes at all orientations, constituting a ‘full experience,’ and for other airplanes,
a small subset of orientations, constituting a ‘partial experience.’ The out-of-distribution, or OoD, gener-
alization capacities of the network are evaluated by measuring the classification accuracy for partially-seen
airplanes at unseen orientations. Our results suggest that OoD generalization is facilitated by the dis-
semination of orientation invariance developed for all orientations for the fully-seen airplanes to the OoD
orientations of the partially-seen airplanes. (b) Left: The learning paradigm employed in this work. Each
column is a sample object instance (here from the airplane dataset) and each row is a sample orientation.
The training set includes all orientations for fully-seen instances, and a partial set of orientations (outlined in
red) for partially-seen instances (in this example, with the airplanes’ nose pointing down). The orientations
included in the training set are referred to as in-distribution orientations (pink shading). Orientations of
the partially-seen instances that are not included in the training set are referred to as OoD (yellow shad-
ing). Right: A visualization of per-orientation-analysis. The set of all orientations are arranged to capture
proximity relationships between orientations. (Further details are provided in Fig.3a.)

tation (Logothetis & Sheinberg, 1996). Theoretical frameworks have proposed that such neural invariance to39

object orientation forms the basis for the ability to recognize objects in novel orientations within biological40

systems (Poggio & Anselmi, 2016).41

In this paper we employ these same analytical tools utilized in the study of biological brains in order to42

understand DNNs’ generalization abilities in OoD orientations. Specifically, we study DNNs under conditions43

akin to the operating regime of biological brains, in which some instances of an object category (e.g., a ‘Boeing44

777 airliner’ is an instance of the ‘airplane’ category) are seen from all orientations during training (fully-seen45

instances), while other instances are only seen in a subset of all orientations (partially-seen instances). During46

test time, we evaluate the generalization performance of the networks by measuring instance classification47

performance on OoD orientations (i.e., those orientations not included in the training set) of partially-48

seen instances. This simple paradigm, inspired by (Jang et al., 2023), facilitates analyzing the impact of49

several key factors that may influence OoD generalization, such as the number of fully-seen instances and50

the in-distribution orientations of the partially-seen instances. This paradigm allows us to more precisely51
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characterize performance challenges of DNNs for OoD orientations. Figure 1 summarizes the paradigm that52

we follow in this work.53

A large number of previous works have begun to understand the generalization capacities in DNNs to54

OoD orientations. For example, (Lenc & Vedaldi, 2015; Gruver et al., 2023) investigated the emergence of55

invariance, and specifically rotational invariance to affine rotations. However, it remains unclear whether56

and how DNNs generalize to OoD orientations, such as in the task we outlined above. Our novel analytical57

approaches yield three important findings: 1) DNNs readily generalize to certain surprising OoD orientations.58

2) These generalizable orientations are parameterized by the in-distribution set, and can be quantifiably59

predicted. 3) Neural representations at the individual-unit level, across orientations and object instances,60

support a theory on brain-like mechanisms that drive the emergence of orientation invariance (Logothetis &61

Sheinberg, 1996; Poggio & Anselmi, 2016).62

2 Methods63

In this section we detail the experimental setup and analytical tools we employ in this work, which were64

first introduced in Section 1 and depicted in Figure 1. In the following, we outline the dataset and DNN65

architecture details in the next two subsections. We then present the analytical tools employed in Sec-66

tion 3. Specifically, we introduce a visualization of per-orientation accuracy, a predictive model of DNN67

generalization, and finally a neural metric related to generalization.68

2.1 Datasets69

The datasets consist of images of object instances, some of which are seen from all orientations during70

training (fully-seen) and other instances which are only seen from a subset of orientations during training71

(partially-seen). Each dataset also contains a validation set of fully-seen images and partially-seen instances72

at orientations seen during training. The distributions of the validation and train overlap, but no specific73

images overlap. The test set consists of images of the partially-seen instances at OoD orientations, which are74

not included during training. For each experiment, we construct a dataset with an object category, a set of75

seen orientations for the partially-seen instances, and a proportion of fully-seen to partially-seen instances.76

We describe these elements below.77

Object Categories. We used three categories of objects: Airplanes, Cars and Shepard&Metzler ob-78

jects. For the airplanes and cars we curated 50 high quality object instances of each category from the79

ShapeNet(Chang et al., 2015) database. Both airplanes and cars have clear axes of symmetry, which allow80

for intuition of how networks generalize to OoD orientations. We therefore also experimented with highly81

asymmetric objects similar to those tested for 3D mental rotations in (Shepard & Metzler, 1971) (which82

we denote as Shepard&Metzler objects; Fig. 2). We procedurally generated the Shepard&Metzler objects.83

Images were rendered from the 3D models under fixed lighting conditions, and the models were centered and84

fully contained within the image frame.85

We experimented with datasets where both fully-seen and partially-seen instances are from the same category,86

and also where they come from different categories. For example, where the fully-seen instances were87

airplanes, and the partially-seen instances were Shepard&Metzler objects. In this case, high classification88

accuracy on the test set (i.e., the partially-seen instances in OoD orientations) requires that orientation89

generalization disseminates to new object categories.90

In-Distribution Orientations for Partially-Seen Instances. We chose several ranges of orientation91

to be in-distribution for the partially-seen instances, which we refer to as seed orientations. We use the term92

seed because any generalization to OoD orientations must stem from these orientations. In choosing the seed93

orientations, we chose small ranges of rotation along two of the three axes, and the full range of rotation94

along the final axis. This allowed for some variation in the instance appearance along the "full" axis, while95

still preserving many OoD orientations along the "bounded" axes. We employed several seeds to ablate any96

idiosyncrasies within any particular choice.97
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a b c

Figure 2: Object Datasets. In our experiments we used three object categories: (a) Airplanes, (b) Cars,
and (c) Shepard&Metzler objects. The first two were curated from ShapeNet (Chang et al., 2015) and we
procedurally generated the last one.

α Range β Range γ Range Seed Name
(−π, π) (−0.1, 0.1) (−0.25, 0.25) α̂

(−0.25, 0.25) (− π
2 , π

2 ) (−0.25, 0.25) β̂
(−0.25, 0.25) (−0.1, 0.1) (−π, π) γ̂

(−π, π) (−0.1, 0.1) (−1.8, −1.3) α̂′

Table 1: In-distribution orientations, in radians, for partially-seen instances, termed seed orientations. The
seed name is chosen for the full axis, i.e., α̂ is for the seed where α ranges from −π to π.

To express an orientation we use θ := (α, β, γ), the Euler angles with respect to the orthogonal axes of98

a reference coordinate system R3 (Goldstein et al., 2002), with the convention that α and γ are bounded99

within 2π radians and β is bounded within π radians. Following this convention, the seeds we employed are100

enumerated in Table 1. Note that we experiment with four seeds, which are denoted as α̂, β̂, γ̂ and α̂′ as101

they refer to the axis that is fully observed.102

Proportion of fully-seen instances. In each experiment, there were always 50 instances that were seen.103

However we vary the number of fully-seen instances N between 10 (20% of the total number of instances)104

and 40 (80%). The remaining instances are partially-seen. For a fair evaluation of the effect of data diversity,105

the amount of training examples is kept constant as we vary the data diversity.106

Dataset Size. Each dataset is 200k images, 4k image for each of the 50 object instances. A training107

epoch iterates through every image in the dataset once. Since the generalization abilities of the network108

may change with the amount of data, we evaluate OoD accuracy under the most favorable scenario for the109

DNN, in which adding more data does not lead to a higher OoD accuracy. We repeat the experiments with110

half the data, see Figures S5, S6, S8, and results are consistent with our findings for the default dataset size,111

which provide some reassurance that adding more data won’t change the conclusions of this paper.112

4



Under review as submission to TMLR

Architecture Learning Rate Batch Size
1. ResNet18 10−3 230
2. DenseNet121 10−3 64
3. CORnet-S 10−4 128
4. ViT-Base 10−4 256

Table 2: Training Hyperparamters

2.2 Experimental Setup113

For each experiment, we train a DNN from scratch on a supervised instance classification task (i.e., N-way114

classification where each dimension of the output layer corresponds to one object instance), using the datasets115

described above in Sec. 2.1. In this subsection we outline the DNNs experimented with, along with other116

training parameters.117

DNN Architectures. We tested ResNet18 (He et al., 2016) on all permutations of dataset structure118

(combination of seed, object category, and proportion of fully-seen) as well as for all experimental ablations119

(pretrained on ImageNet, image augmentations, and using half the training data: see Figs. S4„S5S6,S8). To120

ensure that our results were not specific to ResNet18, we ran the same experiments with DenseNet121 (Huang121

et al., 2017), ViT-Base (Vaswani et al., 2017; Dosovitskiy et al., 2020) and CORnet-S (Kubilius et al., 2018).122

The first two were chosen as they are representative feed-forward DNNs. The architecture of CORnet123

is brain-inspired and includes recurrence at higher layers in addition to convolutions in lower layers. We124

observed the same behavior for all analyses for all the architectures when analyzing the results of airplane125

datasets (across number of fully-seen, seed orientation etc.) Since we observe results are consistent for all126

architectures, we only report the full battery with ResNet. For DenseNet and CORnet, we report results127

with the airplane dataset with all seeds. For ViT-Base, we report results with the airplane dataset on the α̂128

seed.129

Figures in the main text are shown only for ResNet, except for Figs. 5b,c, which are scatter plots and130

therefore don’t require averaging over architectures. The analysis was repeated for all architectures and131

these results can be found in the supplement. This includes accuracy heatmap visualizations (Fig. S3),132

average OoD accuracy (Fig. S8), and predictive modeling (Fig. S5). The same conclusions drawn in the133

main paper may be drawn from the results with other architectures as well.134

Hyperparameters for training. We trained the four deep convolutional neural network architectures135

using the Adam Optimizer (Kingma & Ba, 2017) with the learning rates and batch sizes listed in Table 2.136

Batch sizes were chosen to be as large as possible while still fitting the model, the batch of images and137

forward-pass computations in memory. Learning rates were chosen from 10x, x ∈ {−1, −2, −3, −4, −5} to138

be as large as possible while ensuring that validation accuracy, which included fully-seen instances from all139

orientations and partially-seen instances from in-distribution orientations, remained stable. Each network140

was trained for a minimum of 100 epochs, after which training was stopped if validation performance was141

lower than some epoch for seven epoch in a row. After this point in-distribution performance was stabilized142

at 100% and OoD performance reached an asymptote.143

Hardware details. Experiments were run with one CPU, 25GB of memory and on several generations of144

Nvidia GPUs with a minimum of 11GB of memory.145

Repetition of the experiment. We re-run each experiment (tuple of dataset and model architecture)146

five times, each time randomly sampling the specific instances which comprise the fully-seen and partially-147

seen sets. For all figures, data come from all available repetitions, except where otherwise noted. Error bars148

denote one standard deviation from the mean.149
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2.3 Per-Orientation Accuracy Visualization150

Previous works have typically reported average performance over all orientations. In contrast, we evaluate the151

network’s performance for each orientation across the entire range of orientations. To express an orientation152

of an object instance we use θ := (α, β, γ), the Euler angles with respect to the orthogonal axes of a153

reference coordinate system R3 (Goldstein et al., 2002), with the convention that α and γ are bounded154

within 2π radians, and β is bounded within π radians. We define Ψ(θ) ∈ [0, 1] to be the network’s average155

classification accuracy at an orientation θ = (α, β, γ) over either the fully-seen or partially-seen instances.156

To facilitate intuition of Ψ we introduce a visual representation of this function. Since orientations are157

continuous values and are related spatially we map the range of bounded values of orientations (α, β, γ)158

onto a Cartesian coordinate system, resulting in a cube—the basis of our visualization. We discretize the159

continuous space of orientations into cubelets, which are sub-cubes with a width of 1
#Cubelets of the full160

range of each respective angle. This approach preserves local behavior in aggregate analysis. In addition,161

we outline the range of orientations which are in-distribution for the partially-seen instances — the rest are162

OoD orientations. To illustrate the object orientation at a given cubelet, we sample one representative image163

and overlay it onto the heatmap at the location of the cubelet.164

See Fig. 3a, which shows this visual representation scheme, and Figs. 3b and 3c for examples.165

2.4 Model of DNN Per-Orientation Generalization166

We hypothesize a set of rules which govern the partitioning of the orientation space into generalizable and167

non-generalizable orientations. To quantitatively evaluate this hypothesis we formulate a model of the168

partitioning rules, which can be used to predict the OoD generalization patterns of the network, given a169

seed of in-distribution orientations. Briefly, the model, denoted by fw(θ), has three components: A(θ),170

which captures small angle rotations around θ; E(θ), which captures in-plane (2D) rotations; S(θ), which171

captures object "silhouette" projections at the orientation θ. We define fw(θ) as the predictive model for172

generalization per each orientation. To measure the goodness of our prediction, we employ the Pearson173

correlation coefficient to measure how closely our model correlates with DNN recognition accuracy, Ψ(θ).174

We choose this metric because it normalizes data with respect to amplitude and variance, and therefore175

measures patterns of behavior across θ and relative to other θ, rather than the exact performance for every176

θ.177

The model’s three components (A(θ), E(θ) and S(θ)) easily lend themselves to formalization with Euler’s178

rotation theorem (Goldstein et al., 2002). The theorem states that any rotation can be uniquely described by179

a single axis, represented by a unit vector ê ∈ R3, and an angle of rotation, denoted as ϕ ∈ [0, π] around the180

axis ê. We employ this representation to describe the rotation between an arbitrary orientation of interest,181

θ, and an orientation in the set of in-distribution, denoted θs ∈ Ωs. We use êθ,θs
and ϕθ,θs

to denote the182

unit vector (axis) and the angle of this rotation, respectively.183

Component 1: Small Angle Rotation, A(θ). The first component of the model captures orientations184

that are small angle rotations from the orientations in the training distribution. Visually similar orientations185

are those that are arrived at by small rotations from in-distribution orientations, or small ϕθ,θs
. We therefore186

define the first component A(θ) as187

A(θ) := max
θs∈Ωs

∣∣∣∣1 − ϕθ,θs

π

∣∣∣∣ ∈ [0, 1]. (1)188

The maxθs∈Ωs operator chooses the in-distribution orientation that is closest to θ of interest.189

Component 2: In-plane Rotation, E(θ). The second component of the model captures orientations190

which appear as in-plane rotations of in-distribution images. Let c ∈ R3 be the unit vector representing the191

camera axis. In-plane rotations are those for which the axis of rotation is parallel to the camera axis. Thus,192

an orientation appear as an in-plane rotations of an in-distribution images when c ∈ R3 and êθ,θs ∈ R3
193
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(i.e., the vector of object instance rotation) are parallel. Taking their standard inner product yields the194

proximity to being parallel, which is therefore the degree to which the rotation is in-plane.195

Thus, we define the second component E(θ) as follows:196

E(θ) := max
θs∈Ωs

∣∣c⊤êθ,θs

∣∣ ∈ [0, 1], (2)197

where c⊤ denotes the transpose of c.198

Component 3: Silhouette, SA(θ), SE(θ). We refer to the object’s silhouette as a featureless solid199

shape with its edges matching the outline of the object seen as a shadow from the camera view. The third200

component of the model captures orientations in which the object’s silhouette is similar to the silhouette201

of the object at the in-distribution views — for example, the similarity in the appearance of an airplane’s202

silhouette when viewed from above and from below. These orientations are defined as a π radians rotation203

around the γ axis, which results in a silhouette orientation. We transform all the in-distribution orientations,204

Ωs, in this way, and we call these silhouette in-distribution orientations Ωŝ. We then compute SA(θ) and205

SE(θ), substituting Ωŝ for Ωs in A(θ) and E(θ) respectively.206

Nonlinearities. The components described above capture a general trend, but do not match the range of207

values given by a 0-100% accuracy metric. We therefore fit the components with a logistic function. The208

‘S’-like shape of the logistic function allows for the highest and lowest values of E(θ), A(θ), SA(θ) and SE(θ)209

to be close to the highest and lowest values of Ψ(θ). In addition, it allows for a smooth transition between210

these highest and lowest values. Most importantly, the simplicity of the logistic function allows for fitting211

while preserving the interpretability of the model components, ensuring that the models remains related to212

small angle, in-plane and silhouette rotations. We employ the following logistic function:213

σ(x; (a, b, c)) = 1
1 + eb(−xc+a) , (3)214

where x ∈ {E(θ), A(θ), SA(θ), SE(θ)}. a and b translate and scale the values of the predictive components215

and c spreads out saturated values of the component.216

Fitting the Model with Gradient Descent. The model combines four components A(θ), E(θ), SA(θ)217

and SE(θ) by taking the sum of their respective values after applying the logistic function σ:218

fw(θ)
:= σ(A(θ); wA) + σ(E(θ); wE)+

σ(SA(θ); wSA) + σ(SE(θ); wSE),
(4)219

where w represents the parameters of the logistic functions i.e., w = (wA, wE , wSA, wSE). The logistic220

fitting function is differentiable, and fw(θ), the linear combination of these logistic functions, is also differ-221

entiable. Further, the Pearson correlation coefficient is also differentiable. Therefore we employ gradient222

descent to fit w with the Pearson correlation coefficient as the cost function.223

2.5 Neural Analysis224

In search of how OoD generalization and dissemination of orientation invariance emerge in DNN’s, we225

turn to analyze the neurons’ activation in the trained networks. We focus on neurons in the penultimate226

layer of the network, which are attuned to the highest level features in the input stimuli, but reflect a227

consolidated representation of the entire network for inferring the downstream task (instance classification228

in our simulations).229

In this section, we outline the process by which we quantify several different network invariance metrics. We230

first formalize the notation for neural activations for single orientations and for sets of orientations. We then231
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define the invariance score (Eq. 6). Finally, we average together many invariance calculations to arrive at232

the network invariance metric.233

We begin by formalizing our approach to neural activations. In Section 2.3 we introduced Ψ(θ), the net-234

work’s average accuracy at a specific orientation. We can similarly define the neural activation at a specific235

orientation, though we do so with more granularity. Namely, we introduce Φn
i (θ), which is the average236

activation of a neuron n from the set of all penultimate-layer neurons N (i.e., n ∈ N) across all images of an237

object instance i from the set of all object instances I (i.e., i ∈ I) for a given orientation θ. We normalize238

the activity of each neuron by dividing the activity level of each image by the maximum activity generated239

by any image. We exclude any neurons with a maximum activation of 0 from further analysis.240

Having defined Φ we note that it is useful to perform analysis not on single orientations only, but sets of241

orientations. We demonstrated that under our experimental conditions, orientations can be partitioned into242

coherent subsets — in-distribution and OoD orientations. Further, the OoD orientations can be partitioned243

into generalizable orientations, i.e., those OoD orientations that the network can generalize to, and non-244

generalizable orientations. We refer to the in-distribution, generalizable and non-generalizable orientation sets245

as InD, G and ¬G respectively. The determination of membership of the generalizable and non-generalizable246

orientation sets is as follows: We compute 10% of the maximum value of fw(θ), the predictive model, in the247

experiment with 40 fully-seen instances. All orientations for which f is greater than the 10% threshold are248

considered generalizable otherwise they are considered non-generalizable. This threshold for generalizable249

accuracy is intentionally low, as our goal was to capture challenging out-of-distribution cases where the250

network performs just above chance. This allows us to include orientations that are borderline in terms of251

generalization. See Fig. S8 for OoD accuracy partitioned between generalizable and non-generalizable — this252

partition captures model behavior well. We can now compute the average activation of a set or orientations.253

For example, the average activation for a given neuron n and object instance i of the generalizable orientations254

is defined in the following way:255

Φ̄n
i (G) = 1

|G|
∑
θ∈G

Φn
i (θ). (5)256

The same may be computed for in-distribution and non-generalizable orientations.257

To determine how dissemination occurs in the network, we calculate the degree of similarity in a neuron’s258

response to a given instance across different orientations. Specifically, given a neuron n and instance i, we259

calculate the similarity between the neuron’s response at an orientation pair Φn
i (θ1), and Φn

i (θ2), or pair of260

sets of orientations Φ̄n
i (InD), Φ̄n

i (G) for example. We use δ, invariance score, as the similarity metric, which261

is defined (based on previous work (Madan et al., 2022)) in the following way:262

δ(Φ̄n
i (InD), Φ̄n

i (G)) = 1 −
∣∣∣∣ Φ̄n

i (G) − Φ̄n
i (InD)

Φ̄n
i (G) + Φ̄n

i (InD)

∣∣∣∣ . (6)263

We note that under some conditions, δ reports a high, yet trivial, invariance. Namely, if the response of264

a neuron is low or zero for both elements of the pair, the denominator approaches zero and the invariance265

becomes large. However in this case the neuron is not responding to anything — any activity is most likely266

noise. We therefore calculate a threshold of activity for neural response invariances to be considered to267

contribute to the generalization capability of the network. Otherwise, these invariances are not integrated268

into the overall network invariance metric. This threshold ensures that we focus on neurons that are clearly269

active, reinforcing our interpretation of them as meaningful feature detectors, and it avoids relying on270

marginal or noisy activations that may not be functionally relevant. The threshold, τ , is the 95th percentile271

of activity for all neurons across all images. We employ τ with an indicator function as follows:272

1(Φ̄n
i (InD), Φ̄n

i (G))

:=
{

1 if Φ̄n
i (InD) ≥ τ ∧ Φ̄n

i (G) ≥ τ

0 otherwise
.

273

Finally, we can compute the overall network generalizable and non-generalizable invariance scores. To do274

so, we compute a triple average: an average activation over the set of orientations (Eq. 5) and averaged275
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over the invariance of all neurons and object instances. We say that the generalizable invariance score is the276

invariance between the in-distribution orientations and the generalizable orientations determined as follows:277

1
L

∑
n∈N

∑
i∈I

1(Φ̄n
i (InD), Φ̄n

i (G)) · δ(Φ̄n
i (InD), Φ̄n

i (G)), (7)278

where L is the quantity of activity pairs above the threshold τ , i.e.,279

L =
∑
n∈N

∑
i∈I

1(Φ̄n
i (InD), Φ̄n

i (G)). (8)280

The definition of the network’s non-generalizable invariance score is the same, though ¬G replaces G.281

3 Results282

Overview. In exploration of the generalization capabilities of DNNs to novel orientations, our com-283

putational experiments show that the OoD orientation space is divided between generalizable and non-284

generalizable orientations, in terms of the networks behavior. We find this division to be governed by a set of285

rules which determine a partitioning of the orientation space, given a seed of orientations for test instances286

seen by the DNNs at during training. Among several partitioning rules, we identify a rather intuitive one:287

small 3D perturbations around seen orientations will be included in the highly-generalizable partition. We288

find other rules to be more surprising, including that the highly-generalizable partition also consists of shape289

and silhouette preserving rotations, such as in-plane (i.e., 2D) rotations and flips along axes of symmetry290

of the seen seed orientations. In order to quantitatively assess this hypothesis, we evaluate the degree of291

correlation between predicted network behavior induced by these partitioning rules and measured behavior.292

We find them to be highly correlated under a variety of training regimes. We also explore the DNNs’ internal293

representations and identify neuronal mechanisms that allow for the dissemination of orientation-invariance294

from familiar objects to novel objects and orientations.295

3.1 Per-Orientation Accuracy Heatmaps296

A detailed inspection of the network’s generalization capability for OoD orientations is enabled by introducing297

per-orientation accuracy heatmaps. Recall from Sec. 2.3 that the continuous space of object orientations,298

represented by Euler angles, is discretized into cubelets (Fig. 3a) – local areas of the rotation space. For each299

cubelet the network’s performance is evaluated in terms of the classification accuracy Ψ(θ), where θ is an300

orientation of interest. Accuracy heatmaps are 2D projections across a specified dimension of the full accuracy301

orientation cube (Fig. 3b,c; Section 2.3). These heatmaps reveal a structured pattern of generalization in302

the form of increased classification accuracy for OoD (i.e., novel) orientations.303

For example, Figure 3b shows that for seed orientations at the center of the heatmap (red box), the network304

(in this experiment - ResNet18 (He et al., 2016); see Section 2.2) yields the highest accuracy (brightest305

cubelets) for adjacent orientations around the seed, depicting small 3D perturbations of the seed orientations.306

Further inspection of the heatmap reveals other orientations, in this example, brighter cubelets forming the307

figure ‘8’ (stretching seed sideways and along the heatmap’s boundaries, enclosing two darker ‘holes’), for308

which the network performs better than for the rest of the OoD orientations. These orientation mainly309

depict in-plane rotations of the seed orientations.310

Figure 3b also shows qualitatively that an increase in number of fully-seen instances leads to stronger311

OoD generalization in the aforementioned orientations (see also Fig. S2). This phenomenon can be reliable312

quantified. Figure 4a reports the OoD accuracy considering the average classification accuracy across all313

OoD orientations. It shows an increase in OoD accuracy as data diversity (i.e., the number of fully-seen314

instances) increases, under various conditions, including different seed orientations, different image datasets315

and across datasets. The accuracy heatmaps provide a more detailed means of assessment to the overall316

average accuracy measure, depicting the generalization patterns and indicating which orientations account317

for the network increased performance (i.e., Fig. 3b).318
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Figure 3: Observed generalization patterns in per-orientation accuracy heatmaps. When trained
with a combination of fully-seen instances and partially-seen instances, DNNs demonstrate the ability to
generalize outside of their training distribution. Generalization behaviors are demonstrated measuring per-
orientation accuracy. (a) All orientations can be described by three Euler axes (α, β, γ,) and rotations are
periodic around these axes. These properties allow for the visualization of all possible orientations with an
orientation cube, shown here. The orientations contained within the colored rectangular prisms are the seed
orientations — those orientations of the partially-seen instances included in training (i.e., are in-distribution).
The seed orientations differ depending on the experiment. All other orientations are OoD. (b) Increased
network generalization for OoD orientations, with increased instance diversity (i.e., number of fully-seen.)
Each cell in the heatmap is the average classification accuracy of the network for a given value of β and γ,
across all values of α. Chance level is 0.02 (2%), single repetition, seed is α̂. (c) Different in-distribution
parameters (in this case, γ̂ seed) affect generalization behaviors. Single repetition.

The patterns of increased accuracy depict a partitioning of the orientation space, which reappears for various319

seed orientations (Figs. 3c, S1) various sizes of the training set and different object categories (e.g., Airplane,320

Car, Shepard & Metzler (SM) objects, see Fig. S2), other architectures (see Fig. S3), and training controls321

(see Fig. S4). Next, we model the patterns of generalization observed in these qualitative results in order to322

gain more insight.323

3.2 Modeling Generalization Patterns324

We formulate a model of partitioning rules, which can be used to predict the OoD generalization patterns325

of the network, given a seed of in-distribution orientations. Recall from Sec. 2.4, that the model, denoted326

by fw(θ), has three components: A(θ), which captures small angle rotations around θ; E(θ), which cap-327
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Figure 4: Modeling generalization patterns for OoD orientations. The bar plots show several trends
related to DNN OoD classification patterns. The trends are measured under the various controls, including
in-distribution orientations conditions (α̂, γ̂, β̂, α̂′) and object category, which is either a single object as in
Airplane, SM, Car, or transfer across two categories, when the fully-seen instances are of a different category
than the partially-seen instances as in Airplane → SM and vice versa. These transfer cases are visually
separated from the other cases. (a) Network generalization for OoD orientations increases with increasing
number of fully seen (blue shading.) This trend holds across in-distribution orientations (seed) and object
category conditions — including when fully-seen and partially-seen are the same category, and when they
differ (i.e., Airplane → SM). (b) Top: We introduce a predictive model for OoD orientation generalization
(black — “All Components") which is highly predictive of experimental results, with greater than 0.8 Pearson
Correlation Coefficient for all experimental controls. (Results are shown for experiments with 40 fully-seen
instances.) Null hypothesis predictive models, including “Random Uniform" and “In-Distribution," have
very low correlation coefficients. We also ablate our predictive model, including only some sub-components,
like only-“Small Angle", only-“In-Plane" or only-“Small Angle + In-Plane." These ablated models have
lower correlation coefficients than “All Components," and vary in relation to one another depending on the
experimental condition. Bottom: We isolate the predictive power of the only-“In-Plane" component for
all experiments with a range of number of fully-seen. The increasing predictive power of the “In-Plane"
component correlates with increasing OoD accuracy as the number of fully-seen instances increases. This
suggests that generalization to “In-Plane" orientations drives OoD accuracy.

tures in-plane (2D) rotations; S(θ), which captures object silhouette projections at the orientation θ (see328

details in section 2.4). We evaluate the model’s performance by measuring the Pearson correlation coef-329

ficient ρ between the accuracy of the networks as measured in our experiments and as predicted by the330

model, i.e., ρ(Ψ(θ), fw(θ)).331

Figure 4b-top shows the predictive power of the model and its components in experiment with different332

seed orientations and several object categories. We conducted a large series of experiments under various333

settings, including different seed orientation distributions, various amounts of training examples, object334

categories with different levels of symmetry (Fig. S5). In all experiments our model highly predicts the335

network’s behavior, indicating that indeed the networks generalization patterns for OoD orientations follow336
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the model’s partitioning rules. This is true even across categories, when the seed is taken from one category337

(e.g., SM ) and the fully-seen instances are taken from another (e.g., Airplane).338

We now analyze the contribution of each component of the model to predicting per-orientation OoD accuracy.339

The model’s component A(θ) (‘small-angle’ rotations), is the best predictor for the network’s OoD behaviour,340

for highly articulated objects such as the SM objects. The model’s component E(θ) (‘in-plane’ rotations),341

is a better predictor for non-articulated objects with inherent symmetries. Finally, the model’s component342

S(θ) is predictive of network behavior under special circumstances, when the silhouette of an object appears343

similar both in-distribution and OoD, but this component does not have much of an effect on overall model344

performance. Further analysis of ‘in-plane‘ component in Fig. 4b-bottom illustrates how generalization to345

‘in-plane’ rotations emerges with the increase in data diversity. Thus, the increase in OoD generalization346

is primarily to ‘in-plane’ rotations. On the other hand, the ‘small-angle‘ and ‘all-components’ models are347

negatively correlated and uncorrelated with the number of fully-seen, respectively. See Fig. S7 for further348

details, and also Fig. S5 for the same analysis with various training controls and other architectures.349

3.3 Individual Unit Neuronal Analysis350

Figure 5a illustrates activation of individual neurons for stimuli of fully-seen and partially-seen instances.351

Each group of images depict input stimuli of a particular instance for which a particular neuron has the352

highest activation, along with the neuron’s per-orientation activation heatmap for the instance. The pat-353

terns seen in the neurons’ activation heatmaps resemble the partitioning patterns of the accuracy heatmaps354

shown in Figure 3b. Some neurons exhibit similar activation patterns for both fully-seen and partially-seen355

instances, while others do not.356

A quantifiable measure of these neuronal responses can help with understanding how generalization occurs in357

the network – particularly generalization to OoD orientations of partially-seen instances, where generalization358

must stem only from seed orientations seen during training. Previous neural analysis approaches, like t-SNE,359

fail to capture the shared representations between fully-seen and partially-seen instances, and therefore360

cannot be used to advance hypotheses related to dissemination (see Fig. S9).361

Recall from Section 2.5, we define an activation invariance score in the range [0, 1] (Eq. 6) between sets362

of orientations, in particular between the seed orientations and OoD generalizable orientations or non-363

generalizable orientations. The invariance score yields higher values when a neuron fires for both sets of364

orientations, and lower values when it fires only for one set. See Sec 2.5 for details on how to operationalize365

partitioning the OoD orientations into generalizable and non-generalizable orientations, and see Fig. S8 for366

results that demonstrate that OoD accuracy is well captured by this partitioning.367

We now evaluate whether OoD generalization is predicted by invariance. If that is the case, this would provide368

evidence that invariance underlies OoD generalization. Thus, we analyze whether the network accuracy is369

explained by the emergence of invariant representations. Figure 5b depicts a scatter plot of the invariance370

score against the classification accuracy. Each dot represents an experiment (a tuple of number fully-seen,371

object and architecture type) and the coloring indicates the respective instance set (fully-seen or partially-372

seen) and orientation set (generalizable or non-generalizable). There is a clear correlation between increasing373

levels of classification accuracy and increasing invariance score for the partially-seen instances. Furthermore,374

the plot shows a clear partition between generalizable and non-generalizable orientations with respect to the375

invariance score, where significantly higher invariance scores are measured for the generalizable orientations.376

Note that for fully-seen instances (Fig. 5b gray dots), all orientations are in-distribution, including the377

seed, generalizable and non-generalizable (data comes from the validation set). Since all orientations are378

in-distribution, the network achieves accuracy at ceiling levels regardless of the neuronal invariance score.379

i.e., these orientations fall within the training distribution and the network has learned to associate them380

with their corresponding object instances. Nevertheless, the fully-seen instances exhibit the same invariance381

partitioning between generalizable and non-generalizable orientations as the partially-seen instances.382

These results provide evidence that OoD generalization is driven by emergent invariant representation. How-383

ever, the emergence of partially-seen invariance in generalizable orientations is intriguing, as this invariance384

can not be directly learned since partially-seen instances are only seen in seed orientations during train-385
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Figure 5: Neuronal analysis, Invariance and Dissemination. (a) An intuitive visualization of neural
activity. Each square is the response of a single neuron to the airplane instance that most highly activates,
it portrayed in two ways: 1) the top-8 images that most highly activate the neuron (in no particular order),
2) the heatmap of the per-orientation normalized neural activity for the airplane instance. Neurons tend
to exhibit patterns of activation related to the patterns of generalization behavior (Figs. 3b for example,)
and are invariant to a range of orientations that respect the partitioning of OoD orientations. Comparing
the neural responses in each column demonstrates that the patterns of activation are similar between the
fully-seen instance that most highly activates the neuron and the partially-seen instance that most highly
activates it due to shared visual, part and semantic features between these instances. Several randomly
sampled penultimate layer neurons, arranged into columns, demonstrate that these findings apply to many
neurons. (b) Each experiment is portrayed by four dots, one for each of the invariance scores (Eq. 6),
depicted with different colors. Each experiment is a DNN trained on a specific combination seed, object
category and proportion of fully-seen, see Sec. 2. Averaging the activations in the partitioned regions
(seed, generalizable, non-generalizable) and computing the invariances (defined here: Eq.6) between seed
and OoD regions captures overall generalization in the network. Plotting the generalization metrics against
accuracy for those regions demonstrates a clear correlation between increasing invariance and increasing OoD
classification accuracy (i.e., partially-seen instances in OoD orientations.) Visual Transformer results are
placed separately to highlight that they follow the same trend, though their invariance is scaled higher. (c)
Plotting fully-seen invariance against partially-seen invariance for the same experiment also yields a tight
correlation, suggesting that dissemination of invariance from fully-seen to partially-seen instances enables
increasing generalization in OoD orientations of partially-seen instances.

ing. We hypothesize that this invariance is disseminated from the invariance that develops for fully-seen386

instances. To investigate if this may be the case, we analyze the relationship between partially-seen and387

fully-seen invariance. Figure 5c depicts a direct comparison between the invariance score of the fully-seen388
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and partially-seen sets for both the generalizable and non-generalizable orientations. The partition between389

generalizable and non-generalizable orientations is exhibited again — the non-generalizable invariances are390

in the bottom left corner, while the generalizable invariances are in the top right corner. Each point in this391

plot represents the joint invariance of fully-seen and partially-seen instances at a given orientation. The392

plot shows a tight correlation between the invariance scores of the fully-seen and partially-seen instances, as393

most of the points lie within a band roughly 0.1 units away from the line of parity, x = y. This correlation394

suggests that partially-seen invariance emerges due to development of fully-seen invariance. See also Fig. S6395

for the same analysis with other training controls.396

Taken all together, the correlations between fully-seen invariance and partially-seen invariance, and between397

partially-seen invariance and generalization behavior, provide substantial evidence that OoD generalization398

is driven by dissemination of internal network invariances from fully-seen to partially-seen instances through399

shared features.400

4 Conclusions401

In this work we analyze the generalization behaviors of DNN’s on rendered images from all orientations and402

observe dissemination of orientation-invariance for orientations that appear like 2D rotations (in-plane) of403

in-distribution orientations. For non-generalizable orientations, the network has not developed orientation-404

invariance with respect to the seed orientations (demonstrated by the lower invariance score in our results).405

Our results support the hypothesis that the network disseminates orientation-invariance of fully-seen in-406

stances to partially-seen instances using brain-like mechanism similar to those reported by (Logothetis &407

Sheinberg, 1996; Poggio & Anselmi, 2016). Neurons are feature detectors, and during training neurons are408

tuned to detect the features of fully-seen objects at multiple orientations — i.e., the neurons become selec-409

tive to the feature, but invariant to the orientation. Some features that neurons are tuned to are shared410

between fully-seen and partially-seen instances (Fig.5a). Therefore the invariance that develops for features411

of fully-seen instances are gained “for free" for partially-seen instances in the same orientations. Our results412

provide a quantitative assessment of this hypothesis and elucidate the intricate neural processes involved in413

object recognition, underscoring the critical role of individual neuron, feature-based representations for OoD414

object recognition.415

Limitations and future work. This study reveals discernible patterns in the successes and failures of416

DNNs across diverse orientations which can be effectively characterized and explained through the analysis417

of neural activity. This underscores the potential for more comprehensive analyses of DNNs that transcend418

the conventional approach of solely focusing on average accuracy. This study was limited to a supervised419

classification setting, and to fairly small DNNs. Nonetheless a promising research avenue is to apply the420

analytical methods introduced in this paper to other newer models.421

A key question arising from our results is to explain why DNNs disseminate orientation-invariance only422

to in-plane orientations. All object instances are distinguishable at all orientations, as evidenced by the423

high in-distribution accuracy achieved by the DNNs. Therefore the lack of orientation-invariance for such424

non-generalizable orientations is an outcome of the DNN’s learning process. We speculate that this may be425

because orientations that are not in-plane are affected by self-occlusion, which poses a particular challenge426

for DNNs (Michalkiewicz et al., 2024).427

Furthermore, various efforts have been made to enhance DNNs’ generalization capabilities to OoD orienta-428

tions including leveraging preconceived components for DNNs, such as 3D models of objects (Angtian et al.,429

2021), sophisticated sensing approaches like omnidirectional imaging (Cohen et al., 2018) or novel archi-430

tectures like Light Field Networks (O’Connell et al., 2025). Other works, including by Cohen and Welling431

(Group Equivariant CNN’s (Cohen & Welling, 2016) and Steerable CNN’s (Cohen & Welling, 2017)) induce432

invariance by construction with modifications to the CNN architecture. These works generalize the transla-433

tion inductive bias inherent in CNN’s to broader mathematical groups, including rotations. However, these434

approaches focus on architectural improvements that augment the underlying capabilities of these networks,435

but don’t investigate whether the vanilla architectures exhibit emergent orientation generalization. Instead,436

novel approaches that extend the emergent orientation-invariance inherent within networks might allow for437
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further gains of OoD generalization. Biological agents may overcome the difficulties associated with recog-438

nizing OoD orientations by leveraging the temporal dimension to associate orientations and learn invariant439

representations (Ruff, 1982; Johnson & Aslin, 1996; Ratan Murty & Arun, 2015). The mechanisms that440

utilize temporal association may hold fundamental significance, given that they have access to a plentiful441

source of training data that does not rely on external guidance and task specific labels. This data is readily442

available prior to any visual task and has the potential to contribute to the emergence of orientation-invariant443

representations beyond in-plane orientations.444

Previous studies have extensively compared the behavioural and electrophysiological aspects of brains and445

DNNs (Yamins et al., 2014; Yamins & DiCarlo, 2016). However, a direct comparison between these systems446

alone has limitations in providing insights into the underlying mechanisms of object recognition in DNNs.447

This is due to the possibility that while certain fundamental mechanisms may be shared across these systems,448

the manifestation of these fundamental mechanisms can differ at the behavioral and electrophysiological449

levels. Our study has provided compelling evidence of brain-like neural mechanisms in DNNs that facilitate450

object recognition in novel orientations, even though these mechanisms are manifested differently than in451

biological systems. For instance, while humans and primates can recognize objects in orientations that are452

not simply 2D rotations, this capability is not fully replicated in DNNs. Thus, we can conclude that the453

neural mechanisms that have been observed to govern recognition in biological systems largely apply to454

DNNs, albeit with distinct manifestations across these systems. It will be interesting to follow this line455

of investigation across biological and artificial systems to envision a general theory to explain emergent456

mechanisms in both brains and machines.457
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a

b

Figure S1: Accuracy heatmaps: alternative seed orientations. (a) β̂ seed. (b) α̂′ seed.
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a

20 Fully Seen 30 Fully Seen 40 Fully Seen
b

20 Fully Seen 30 Fully Seen 40 Fully Seen

Figure S2: Accuracy heatmaps: effect of data diversity - alternative object categories. Increasing
number of fully-seen instances, with different object classes. (a) Shepard-Metzler Objects. (b) Cars.
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a

b

Figure S3: Accuracy heatmaps: alternative backbone architectures. (In place of ResNet-18): (a)
DenseNet121. (b) CORnet-S.
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a

b

Figure S4: Accuracy heatmaps: alterative training conditions - pretraining and augmentation.
(a) ResNet-18 pretrained on ImageNet Russakovsky et al. (2015), finetuned on our learning paradigm with
airplanes. Network behavior isn’t meaingfully altered. (b) All data (both from fully-seen and partially-seen
instances) were augmented with random 2D image rotations. This effectively expands the in-distribution set
to include all generalizable orientations. This results in generalizable orientations with high accuracy.
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Ablation Studies In order to better understand how certain experimental design choices may effect our584

results, we conducted several ablations with ResNet-18. These ablations include:585

• Pretrained: On ImageNet Russakovsky et al. (2015), finetuned on our learning paradigm with586

airplanes.587

• Augmented: All data (both from fully-seen and partially-seen instances) were augmented with ran-588

dom 2D image rotations. This effectively expands the in-distribution set to include all generalizable589

orientations.590

• Half-Data: 50% of the samples from the full experiment for each subset (i.e., each instance in the591

appropriate orientations.)592
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Figure S5: Alternative architectures and ablation studies: modeling generalization patterns.
The same analysis as Fig. 4b is applied to the other architectures and the ablation controls enumerated
above.
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Figure S6: Ablation studies: invariance and dissemination. The same analysis as Figs. 5b,c is applied
to the ablations controls enumerated above.
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Figure S7: Other predictive model components, by number of fully-seen In Fig. 4b we report the
correlation coefficient for the In-Plane Component for the number of fully-seen instances. We chose this
component specifically, as it is well correlated with the number of fully-seen instances, i.e., most of the OoD
generalization is to In-Plane orientations. In this figure we show the same plots but for the Small-Angle
component and the All-Components models. The former is negatively correlated with number of fully-seen,
i.e., it predicts OoD generalization with few fully-seen, but not with increasing fully-seen. The latter has no
change in correlation, as it a linear combination of the Small-Angle and In-Plane components, and changes
the weigting between the two to maximize correlation at each number of fully-seen.
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OoD Accuracy, ResNet, Base Experiments
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Figure S8: OoD accuracy, split between generalizable and non-generalizable orientations. In Fig.
4a we report the average accuracy across all OoD orientations. As we note, however, accuracy behavior is
differentiated between generalizable and non-generalizable orientations. Here we report the average accuracy
for these two orientation groups. Gray horizontal lines indicate chance performance of 2% and 10% (the latter
relevant in the case where fully-seen and partially-seen instances are of two different classes.) Generalizable
accuracy is always greater than non-generalizable accuracy. The former is always well above chance, while
the latter is below or at chance level. (a) The generalizable and non-generalizable average accuracy for the
same set of experiments presented in Fig. 4a. (b) The average accuracies for several other conditions. These
other conditions are alternative architectures and training controls (explained above Figs. S5 S6).
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Figure S9: tSNE analysis on the penultimate layer of a representative experiment. The 512
dimension activation vectors in the penultimate layer for each instance and orientation are recorded. We
employ tSNE to reduce these 512 dimensions down to two dimensions. (a) Object instances are colored
(semi-) uniquely. (20 colors are distributed to 50 instances due to the limits of choosing many perceptually
different colors.) For the most part, instances cluster together without much overlap between clusters of
different instances. This indicates that representations of instances are separable, and that the task is solved
by DNN. (b) Each point is colored based on whether the instance it represents is fully-seen or partially-
seen. Partially-seen clusters are independent of other clusters, both fully-seen and partially-seen. It is
therefore difficult to determine the range of behaviors for partially-seen instances — namely, why certain OoD
orientations are generalizable, while others are not. (c) Points are colored with the degree of generalizabilty,
as predicted by the predictive model of DNN generalization behavior. Note that points within each cluster are
ordered — they are arranged such that generalizable orientations are far from non-generalizable orientations
with a smooth transition between them. (d) Points are colored with the classification accuracy of the
network (for the given instance and orientation.) While fully-seen instances have near 100% accuracy across
all orientations, partially-seen show differentiation in accuracy between generalizable and non-generalizable
orientations.
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