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Abstract

The capability of Deep Neural Networks (DNNs) to recognize objects in orientations out-
side the training data distribution is not well understood. We investigate the limitations
of DNNs’ generalization capacities by systematically inspecting DNNs’ patterns of success
and failure across out-of-distribution (OoD) orientations. We present evidence that DNNs
(across architecture types, including convolutional neural networks and transformers) are
capable of generalizing to objects in novel orientations, and we describe their generalization
behaviors. Specifically, generalization strengthens when training the DNN with an increas-
ing number of familiar objects, but only in orientations that involve 2D rotations of familiar
orientations. We also hypothesize how this generalization behavior emerges from internal
neural mechanisms — that neurons tuned to common features between familiar and unfamil-
iar objects enable out of distribution generalization — and present supporting data for this
theory. The reproducibility of our findings across model architectures, as well as analogous
prior studies on the brain, suggests that these orientation generalization behaviors, as well
as the neural mechanisms that drive them, may be a feature of neural networks in general.

1 Introduction

Recognizing objects in novel orientations lies at the heart of biological and artificial intelligence, as it is
a fundamental capacity necessary to understand the visual world (Sinha & Poggio, 1996; Ullman, 1996).
However, the computational mechanisms underlying this capacity in both brains and machines are not yet
well understood (Gazzaniga et al., 2006; Pinto et al., 2008; Li et al., 2021).

In the realm of artificial systems, Deep Neural Networks (DNNs) have recently made large strides in object
recognition (He et al., 2017; Carion et al., 2020). However recent studies have shown that DNNs perform
poorly when objects are presented in novel orientations, even when learning from large datasets with millions
of examples (Barbu et al., 2019; Alcorn et al., 2019; Madan et al., 2022). More broadly, novel orientations
are a special case of out-of-distribution (OoD) data. DNNs’ generalization is often limited to the images
from the training distribution, known as in-distribution data, while it remains difficult to give a principled
account of their performance in OoD settings.

One promising approach to understand the capabilities of DNNs is to leverage the knowledge gained from
studying biological intelligence (Hassabis et al., 2017; Ullman, 2019). In natural settings, biological intel-
ligent agents observe instances of object categories from diverse orientations. When encountering a new
object instance, these agents often demonstrate the capacity to accurately identify the object in different
orientations by drawing upon past experiences with similar instances (Booth & Rolls, 1998; Freiwald &
Tsao, 2010; Ratan Murty & Arun, 2015). Extensive investigations into human and mammalian perception
and object recognition in unfamiliar orientations have revealed that recognition accuracy varies across novel
orientations, with some orientations exhibiting superior generalization compared to others (Logothetis &
Pauls, 1995). Additionally, studies into the neural mechanisms underlying these cognitive abilities have mar-
shaled compelling evidence suggesting that neurons respond to their own specific set of object features when
present in the visual field (Desimone et al., 1984; Kobatake & Tanaka, 1994; Gauthier et al., 2002; Fang &
He, 2005). This neural tuning has been reported to be invariant to a certain degree from the object’s orien-
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tation (Logothetis & Sheinberg, 1996). Theoretical frameworks have proposed that such neural invariance to
object orientation forms the basis for the ability to recognize objects in novel orientations within biological
systems (Poggio & Anselmi, 2016).

In this paper we employ these same analytical tools utilized in the study of biological brains in order to
understand DNNs’ generalization abilities in OoD orientations. Specifically, we study DNNs under conditions
akin to the operating regime of biological brains, in which some instances of an object category (e.g., a ‘Boeing
777 airliner’ is an instance of the ‘airplane’ category) are seen from all orientations during training (fully-seen
instances), while other instances are only seen in a subset of all orientations (partially-seen instances). During
test time, we evaluate the generalization performance of the networks by measuring instance classification
performance on OoD orientations (i.e., those orientations not included in the training set) of partially-
seen instances. This simple paradigm, inspired by (Jang et al., 2023), facilitates analyzing the impact of
several key factors that may influence OoD generalization, such as the number of fully-seen instances and
the in-distribution orientations of the partially-seen instances. This paradigm allows us to more precisely
characterize performance challenges of DNNs for OoD orientations. Figure 1 summarizes the paradigm that
we follow in this work.

It remains unclear whether DNNs are at all capable on the OoD task we outlined above. We therefore quantify
DNNs’ classification accuracy in OoD orientations. Our novel analytical approach to these measurements
yields two important findings: 1) DNNs readily generalize to certain surprising OoD orientations, 2) these
generalizable orientations are parameterized by the in-distribution set, and are quantifiably evaluated. We
also measure invariance of the neural representations at the individual-unit level, across orientations and
object instances, supporting a theory on brain-like mechanisms that drive the emergence of orientation
invariance (Logothetis & Sheinberg, 1996; Poggio & Anselmi, 2016).

These findings may have broad impact on artificial general intelligence as DNNs are commonly used as both
visual encoders and end-to-end models for visual tasks. We have replicated our results with several architec-
tural variations on CNNs (He et al., 2016; Huang et al., 2017; Kubilius et al., 2018) and Visual Transformers
(ViT) (Vaswani et al., 2017; Dosovitskiy et al., 2020). The CNN and ViT architectures comprise almost
all current implementations of artificial intelligence vision solutions. These solutions include scaling classic
CNNs to match transformer parameter counts and data volumes (Liu et al., 2022) and integrating CNN and
Transformer architectures (Liu et al., 2021; Radford et al., 2021). Modern state of the art vision-language
models follow the same trend, with Qwen2-VL (Wang et al., 2024) and Llama 3-V (Dubey et al., 2024)
both using ViT in the visual encoder. The continued success of these architectures suggests that the DNN
generalization behaviors and mechanisms we discuss will have staying power.

2 Results

Overview. In exploration of the generalization capabilities of DNNs to novel orientations, our com-
putational experiments show that the OoD orientation space is divided between generalizable and non-
generalizable orientations, in terms of the networks behavior. We find this division to be governed by a set of
rules which determine a partitioning of the orientation space, given a ‘seed’ of orientations for test instances
seen by the DNNs at during training. Among several partitioning rules, we identify a rather intuitive one:
small 3D perturbations around seen orientations will be included in the highly-generalizable partition. We
find other rules to be more surprising, including that the highly-generalizable partition also consists of shape
and silhouette preserving rotations, such as in-plane (i.e., 2D) rotations and flips along axes of symmetry
of the seen seed orientations. In order to quantitatively assess this hypothesis, we evaluate the degree of
correlation between predicted network behavior induced by these partitioning rules and measured behavior.
We find them to be highly correlated under a variety of training regimes. We also explore the DNNs’ internal
representations and identify neuronal mechanisms that allow for the dissemination of orientation-invariance
from familiar objects to novel objects and orientations.

Per-orientation accuracy heatmaps. A detailed inspection of the network’s generalization capability
for OoD orientations is enabled by introducing per-orientation accuracy heatmaps. In brief, the continuous
space of object orientations, represented by Euler angles, is discretized into cubelets (Fig. 2a) – local areas
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Figure 1: Learning paradigm and network’s per-orientation accuracy. (a) The network is trained
with images of certain airplanes at all orientations, constituting a ‘full experience,’ and for other airplanes,
a small subset of orientations, constituting a ‘partial experience.’ The out-of-distribution, or OoD, gener-
alization capacities of the network are evaluated by measuring the classification accuracy for partially-seen
airplanes at unseen orientations. Our results suggest that OoD generalization is facilitated by the dis-
semination of orientation invariance developed for all orientations for the fully-seen airplanes to the OoD
orientations of the partially-seen airplanes. (b) Left: The learning paradigm employed in this work. Each
column is a sample object instance (here from the airplane dataset) and each row is a sample orientation.
The training set includes all orientations for fully-seen instances, and a partial set of orientations (outlined in
red) for partially-seen instances (in this example, with the airplanes’ nose pointing down). The orientations
included in the training set are referred to as in-distribution orientations (pink shading). Orientations of
the partially-seen instances that are not included in the training set are referred to as OoD (yellow shad-
ing). Right: A visualization of per-orientation-analysis. The set of all orientations are arranged to capture
proximity relationships between orientations. (Further details are provided in Fig.2a.)

of the rotation space. For each cubelet the network’s performance is evaluated in terms of the classification
accuracy Ψ(θ), where θ is an orientation of interest. Accuracy heatmaps are 2D projections across a specified
dimension of the full accuracy orientation cube (Fig. 2b,c; Methods). These heatmaps reveal a reproducible
pattern of generalization in the form of increased classification accuracy for OoD (i.e., novel) orientations. For
example, Figure 2b shows that for ‘seed’ orientations at the center of the heatmap (red box), the network (in
this experiment - ResNet18 (He et al., 2016); see Methods) yields the highest accuracy (brightest cubelets) for
adjacent orientations around the ‘seed’, depicting small 3D perturbations of the ‘seed’ orientations. Further
inspection of the heatmap reveals other orientations, in this example, brighter cubelets forming the figure ‘8’
(stretching ‘seed’ sideways and along the heatmap’s boundaries, enclosing two darker ‘holes’), for which the
network performs better than for the rest of the OoD orientations. These orientation mainly depict in-plane
rotations of the ‘seed’ orientations.

When considering the average classification accuracy across all OoD orientations, our experiments reproduce
previous results. In particular, we can reliably quantify the effect of data diversity on the OoD generalization,
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Figure 2: Observed generalization patterns in per-orientation accuracy heatmaps. When trained
with a combination of fully-seen instances and partially-seen instances, DNNs demonstrate the ability to
generalize outside of their training distribution. Generalization behaviors are demonstrated measuring per-
orientation accuracy. (a) All orientations can be described by three Euler axes (α, β, γ,) and rotations
are periodic around these axes. These properties allow for the visualization of all possible orientations
with an orientation cube, shown here. The orientations contained within the colored rectangular prism are
those orientations of the partially-seen instances included in training (i.e., are in-distribution). The in-
distribution orientations differ depending on the experiment. All other orientations are OoD. (b) Increased
network generalization for OoD orientations, with increased instance diversity (i.e., number of fully-seen.)
Each cell in the heatmap is the average classification accuracy of the network for a given value of β and
γ, across all values of α. Chance level is 0.02 (2%). (c) Different in-distribution parameters affect the
generalization behaviors. The generalization patterns for a different span of in-distribution orientations
(−0.25 ≤ α ≤ 0.1, −0.1 ≤ β ≤ 0.25, −π ≤ γ < π) as outlined by the purple box. In this case, each cell is of
a given value for α, β, γ.

as the amount of training examples is kept constant with our learning paradigm. Figure 3a clearly shows
an increase in OoD accuracy as data diversity (i.e., the number of fully-seen instances) increases, under
various conditions, including different ‘seed’ orientations, different image datasets and across datasets. The
accuracy heatmaps provide a complementary means of assessment to the overall average accuracy measure,
depicting the generalization patterns and indicating which orientations account for the network increased
performance (e.g., Fig. 2b). The patterns of increased accuracy depict a partitioning of the orientation space,
which reappears for various ‘seed’ orientations (Fig. 2c), various sizes of the training set and different object
categories (e.g., Airplane, Car, Shepard & Metzler (SM) objects (Shepard & Metzler, 1971)), as shown in
several experiments ( Methods).
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Figure 3: Modeling generalization patterns for OoD orientations. The bar plots show several trends
related to DNN OoD classification patterns. The trends are measured under the various controls, including
in-distribution orientations conditions (α, γ, β, α′) and object category, which is either a single object as
in Airplane, SM, Car, or transfer across two categories, when the fully-seen instances are of a different
category than the partially-seen instances as in Airplane → SM and vice versa. These transfer cases are
visually separated from the other cases. (a) Network generalization for OoD orientations increases with
increasing number of fully seen (blue shading.) This trend holds across object category and in-distribution
orientations conditions. (b) Top: We introduce a predictive model for OoD orientation generalization (black
— “All Components") which is highly predictive of experimental results, with greater than 0.8 Pearson
Correlation Coefficient for all experimental controls. (Results are shown for experiments with 40 fully-seen
instances.) Null hypothesis predictive models, including “Random Uniform" and “In-Distribution," have
very low correlation coefficients. We also ablate our predictive model, including only some sub-components,
like only-“Small Angle", only-“In-Plane" or only-“Small Angle + In-Plane." These ablated models have
lower correlation coefficients than “All Components," and vary in relation to one another depending on the
experimental condition. Bottom: We isolate the predictive power of the only-“In-Plane" component for
all experiments with a range of number of fully-seen. The increasing predictive power of the “In-Plane"
component correlates with increasing OoD accuracy as the number of fully-seen instances increases. This
suggests that generalization to “In-Plane" orientations drives OoD accuracy.

Modeling generalization patterns. We hypothesize a set of rules which govern the partitioning of the
orientation space into generalizable and non-generalizable orientations. To quantitatively evaluate this hy-
pothesis we formulate a model of the partitioning rules, which can be used to predict the OoD generalization
patterns of the network, given a ‘seed’ of in-distribution orientations. Briefly, the model, denoted by fw(θ)
has three components: A(θ), which captures small angle rotations around θ; E(θ), which captures in-plane
(2D) rotations; S(θ), which captures object silhouette projections at the orientation θ (see details in Meth-
ods). We evaluate the model’s performance by measuring the Pearson correlation coefficient ρ between the
accuracy of the networks as measured in our experiments and as predicted by the model, i.e., ρ(Ψ(θ), fw(θ)).
Figure 3b shows the predictive power of the model and its components in experiment with different ‘seed’
orientations and several object categories. The model’s component A(θ) (‘small angle’ rotations), is the best
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predictor for the network’s OoD behaviour, for highly articulated objects such as the SM objects. On the
other hand, the model’s component E(θ) (‘in-plane’ rotations), is a better predictor for non-articulated ob-
jects with inherent symmetries. Further analysis of this component illustrates how generalization to ‘in-plane’
rotations emerges with the increase in data diversity.

We conducted a large series of experiments under various settings, including different ‘seed’ orientation
distributions, various amounts of training examples, different object scales, object categories with different
levels of symmetry, image datasets (Fig. 5) and DNN architectures (see Methods). In all experiments our
model highly predicts the network’s behavior, indicating that indeed the networks generalization patterns for
OoD orientations follow the model’s partitioning rules. This is true even across categories, when the ‘seed’
is taken from one category (e.g., SM ) and the ‘fully-seen’ instances are taken from another (e.g., Airplane).

Individual unit neuronal analysis. In search of how generalization and dissemination emerge in DNN’s
we turn to analyze the neurons’ activation in the trained networks. We focus on neurons in the penultimate
layer of the network, which are attuned to the highest level features in the input stimuli, but reflect a
consolidated representation of the entire network for inferring the downstream task (classification in our
simulations).

Figure 4a illustrates activation of individual neurons for stimuli of fully-seen and partially-seen instances.
Each group of images depict input stimuli of a particular instance for which a particular neuron has the
highest activation, along with the neuron’s per-orientation activation heatmap for the instance. The pat-
terns seen in the neurons’ activation heatmaps resemble the partitioning patterns of the accuracy heatmaps
shown in Figure 2b. Some neurons exhibit similar activation patterns for both fully-seen and partially-seen
instances, while others do not.

A quantifiable measure of these neuronal responses can help with understanding how generalization occurs in
the network – particularly generalization to OoD orientations of partially-seen instances, where generalization
must stem only from ‘seed’ orientations seen during training. We define an activation invariance score in
the range [0, 1] (Eq. 6) between sets of orientations, in particular between the ‘seed’ orientations and OoD
generalizable orientations or non-generalizable orientations. The invariance score yields higher values when
a neuron fires for both sets of orientations, and lower values when it fires only for one set (see details
in Methods). We expect that generalization, reflected by the accuracy level, will correlate with the invariance
score.

Figure 4b depicts a scatter plot of the invariance score against the classification accuracy. Each dot represents
an experiment (a tuple of number fully-seen, object and architecture type) and the coloring indicates the
respective instance set (fully-seen or partially-seen) and orientation set (generalizable or non-generalizable).
As expected, there is a clear correlation between increasing levels of classification accuracy and increasing
invariance score for the partially-seen instances. Furthermore, the plot shows a clear partition between
generalizable and non-generalizable orientations with respect to the invariance score, where significantly
higher invariance scores are measured for the generalizable orientations.

For fully-seen instances (Fig. 4b gray dots), all orientations are in-distribution, including the ‘seed’, gener-
alizable and non-generalizable. Therefore, the network easily achieves accuracy at ceiling levels regardless of
the neuronal invariance score. Nevertheless, the fully-seen instances exhibit the same invariance partitioning
between generalizable and non-generalizable orientations as the partially-seen instances.

Figure 4c depicts a direct comparison between the invariance score of the fully-seen and partially-seen sets
for both the generalizable and non-generalizable orientations. The partition between generalizable and non-
generalizable orientations is exhibited again — the non-generalizable invariances are in the bottom left corner,
while the generalizable invariances are in the top right corner. Each point in this plot represents the joint
invariance of fully-seen and partially-seen instances at a given orientation. The plot shows a tight correlation
between the invariance scores of the fully-seen and partially-seen instances, as most of the points lie within
a band roughly 0.1 units away from the line of parity, x = y. This correlation suggests that an increase in
the invariance score of the network at a set of orientations for the fully-seen instances will be disseminated
to the partially-seen instances.
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Figure 4: Neuronal analysis, Invariance and Dissemination. (a) An intuitive visualization of neural
activity. Each square is the response of a single neuron to the airplane instance that most highly activates,
it portrayed in two ways: 1) the top-8 images that most highly activate the neuron (in no particular order),
2) the heatmap of the per-orientation normalized neural activity for the airplane instance. Neurons tend to
exhibit patterns of activation related to the patterns of generalization behavior (Figs. 2b for example,) and are
invariant to a range of orientations that respect the partitioning of OoD orientations. Comparing the neural
responses in each column demonstrates that the patterns of activation are similar between the fully-seen
instance that most highly activates the neuron and the partially-seen instance that most highly activates
it due to shared visual, part and semantic features between these instances. Several randomly sampled
penultimate layer neurons, arranged into columns, demonstrate that these findings apply to many neurons.
(b) Each dot represents the results of an experiment, across different number of fully-seen instances, object
type and DNN architecture. Averaging the activations in the partitioned regions (‘seed’, generalizable, non-
generalizable) and computing the invariances (defined here: Eq.6) between ‘seed’ and OoD regions captures
overall generalization in the network. Plotting the generalization metrics against accuracy for those regions
demonstrates a clear correlation between increasing invariance and increasing OoD classification accuracy
(i.e., partially-seen instances in OoD orientations.) Visual Transformer results are placed separately to
highlight that they follow the same trend, though their invariance is scaled higher. (c) Plotting fully-seen
invariance against partially-seen invariance for the same experiment also yields a tight correlation, suggesting
that dissemination of invariance from fully-seen to partially-seen instances enables increasing generalization
in OoD orientations of partially-seen instances.
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3 Methods

3.1 Per-Orientation Accuracy Visualization

Previous works have typically reported average performance over all orientations. In contrast, we evaluate the
network’s performance for each orientation across the entire range of orientations. To express an orientation
of an object instance we use θ := (α, β, γ), the Euler angles with respect to the orthogonal axes of a
reference coordinate system R3 (Goldstein et al., 2002), with the convention that α and γ are bounded
within 2π radians, and β is bounded within π radians. We define Ψ(θ) ∈ [0, 1] to be the network’s average
classification accuracy at an orientation θ = (α, β, γ) over either the fully-seen or partially-seen instances.

To facilitate intuition of Ψ we introduce a visual representation of this function. Since orientations are
continuous values and are related spatially we map the range of bounded values of orientations (α, β, γ)
onto a Cartesian coordinate system, resulting in a cube—the basis of our visualization. We discretize the
continuous space of orientations into cubelets, which are sub-cubes with a width of 1

#Cubelets of the full
range of each respective angle. This approach preserves local behavior in aggregate analysis. In addition,
we outline the range of orientations which are in-distribution for the partially-seen instances — the rest are
OoD orientations. To illustrate the object orientation at a given cubelet, we sample one representative image
and overlay it onto the heatmap at the location of the cubelet.

See Fig. 2a, which shows this visual representation scheme, and Figs. 2b and 2c for examples.

3.2 Model of DNN Per-Orientation Generalization

In the Results section, we briefly introduce the hypothesis that DNNs are capable of generalizing to orienta-
tions which are small angle rotations of the in-distribution orientations images and to orientations that are
in-plane relative to the in-distribution images. In this section we formalize this model.

Recall that we defined fw(θ) as the predictive model for generalization per each orientation. To measure
the goodness of our prediction, we employ the Pearson correlation coefficient to measure how closely our
model correlates with DNN recognition accuracy, Ψ(θ). We choose this metric because it normalizes data
with respect to amplitude and variance, and therefore measures patterns of behavior across θ and relative
to other θ, rather than the exact performance for every θ.

Our model fw(θ) is composed by three components (A(θ), E(θ) and S(θ)), which we introduce next. These
three components easily lend themselves to formalization with Euler’s rotation theorem (Goldstein et al.,
2002). The theorem states that any rotation can be uniquely described by a single axis, represented by
a unit vector ê ∈ R3, and an angle of rotation, denoted as ϕ ∈ [0, π] around the axis ê. We employ this
representation to describe the rotation between an arbitrary orientation of interest, θ, and an orientation in
the set of in-distribution, denoted θs ∈ Ωs. We use êθ,θs

and ϕθ,θs
to denote the unit vector (axis) and the

angle of this rotation, respectively.

Component 1: Small Angle Rotation, A(θ). The first component of the model captures orientations
that are small angle rotations from the orientations in the training distribution. Visually similar orientations
are those that are arrived at by small rotations from in-distribution orientations, or small ϕθ,θs

. We therefore
define the first component A(θ) as

A(θ) := max
θs∈Ωs

∣∣∣∣1 − ϕθ,θs

π

∣∣∣∣ ∈ [0, 1]. (1)

The maxθs∈Ωs
operator chooses the in-distribution orientation that is closest to θ of interest.

Component 2: In-plane Rotation, E(θ). The second component of the model captures orientations
which appear as in-plane rotations of in-distribution images. Let c ∈ R3 be the unit vector representing the
camera axis. In-plane rotations are those for which the axis of rotation is parallel to the camera axis. Thus,
an orientation appear as an in-plane rotations of an in-distribution images when c ∈ R3 and êθ,θs ∈ R3
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(i.e., the vector of object instance rotation) are parallel. Taking their standard inner product yields the
proximity to being parallel, which is therefore the degree to which the rotation is in-plane.

Thus, we define the second component E(θ) as follows:

E(θ) := max
θs∈Ωs

∣∣c⊤êθ,θs

∣∣ ∈ [0, 1], (2)

where c⊤ denotes the transpose of c.

Component 3: Silhouette, SA(θ), SE(θ). The third component of the model captures orientations
which project object silhouettes onto the camera that are similar to the silhouettes of the object when in-
distribution — for example, the airplane when viewed from above, and the silhouette being the airplane
viewed from below. These orientations are defined as a π radians rotation around the γ axis, which results
in a silhouette orientation. We transform all the in-distribution orientations, Ωs, in this way, and we call
these silhouette in-distribution orientations Ωŝ. We then compute SA(θ) and SE(θ), substituting Ωŝ for Ωs

in A(θ) and E(θ) respectively.

Nonlinearities. The components described above capture a general trend, but do not match the range of
values given by a 0-100% accuracy metric. We therefore fit the components with a logistic function. The
‘S’-like shape of the logistic function allows for the highest and lowest values of E(θ), A(θ), SA(θ) and SE(θ)
to be close to the highest and lowest values of Ψ(θ). In addition, it allows for a smooth transition between
these highest and lowest values. Most importantly, the simplicity of the logistic function allows for fitting
while preserving the interpretability of the model components, ensuring that the models remains related to
small angle, in-plane and silhouette rotations. We employ the following logistic function:

σ(x; (a, b, c)) = 1
1 + eb(−xc+a) , (3)

where x ∈ {E(θ), A(θ), SA(θ), SE(θ)}. a and b translate and scale the values of the predictive components
and c spreads out saturated values of the component.

Fitting the Model with Gradient Descent. The model combines four components A(θ), E(θ), SA(θ)
and SE(θ) by taking the sum of their respective values after applying the logistic function σ:

fw(θ)
:= σ(A(θ); wA) + σ(E(θ); wE)+

σ(SA(θ); wSA) + σ(SE(θ); wSE),
(4)

where w represents the parameters of the logistic functions i.e., w = (wA, wE , wSA, wSE). The logistic
fitting function is differentiable, and fw(θ), the linear combination of these logistic functions, is also differ-
entiable. Further, the Pearson correlation coefficient is also differentiable. Therefore we employ gradient
descent to fit w with the Pearson correlation coefficient as the cost function.

3.3 Neural Analysis

In the Results section, we discussed our findings that OoD generalization in the network is allowed for by
dissemination of orientation invariance from fully-seen instances to partially-seen instances. In this section,
we outline the process by which we quantify several different network invariance metrics. We first formalize
the notation for neural activations for single orientations and for sets of orientations. We then define the
invariance score (Eq. 6). Finally, we average together many invariance calculations to arrive at the network
invariance metric.

We begin by formalizing our approach to neural activations. In Sec.3.1 we introduced Ψ(θ), the network’s
average accuracy at a specific orientation. We can similarly define the neural activation at a specific orien-
tation, though we do so with more granularity. Namely, we introduce Φn

i (θ), which is the average activation
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of a neuron n from the set of all penultimate-layer neurons N (i.e., n ∈ N) across all images of an object
instance i from the set of all object instances I (i.e., i ∈ I) for a given orientation θ. We normalize the
activity of each neuron by dividing the activity level of each image by the maximum activity generated by
any image. We exclude any neurons with a maximum activation of 0 from further analysis.

Having defined Φ we note that it is useful to perform analysis not on single orientations only, but sets of
orientations. We demonstrated that under our experimental conditions, orientations can be partitioned into
coherent subsets — in-distribution and OoD orientations. Further, the OoD orientations can be partitioned
into generalizable orientations, i.e., those OoD orientations that the network can generalize to, and non-
generalizable orientations. We refer to the in-distribution, generalizable and non-generalizable orientation sets
as InD, G and ¬G respectively. The determination of membership of the generalizable and non-generalizable
orientation sets is as follows: We compute 10% of the maximum value of fw(θ), the predictive model, in the
experiment with 40 fully-seen instances. All orientations for which f is greater than the 10% threshold are
considered generalizable, otherwise they are considered non-generalizable. We can now compute the average
activation of a set or orientations. For example, the average activation for a given neuron n and object
instance i of the generalizable orientations is defined in the following way:

Φ̄n
i (G) = 1

|G|
∑
θ∈G

Φn
i (θ). (5)

The same may be computed for in-distribution and non-generalizable orientations.

To determine how dissemination occurs in the network, we calculate the degree of similarity in a neuron’s
response to a given instance across different orientations. Specifically, given a neuron n and instance i, we
calculate the similarity between the neuron’s response at an orientation pair Φn

i (θ1), and Φn
i (θ2), or pair of

sets of orientations Φ̄n
i (InD), Φ̄n

i (G) for example. We use δ, invariance score, as the similarity metric, which
is defined (based on previous work (Madan et al., 2022)) in the following way:

δ(Φ̄n
i (InD), Φ̄n

i (G)) = 1 −
∣∣∣∣ Φ̄n

i (G) − Φ̄n
i (InD)

Φ̄n
i (G) + Φ̄n

i (InD)

∣∣∣∣ . (6)

We note that under some conditions, δ reports a high, yet trivial, invariance. Namely, if the response of
a neuron is low or zero for both elements of the pair, the denominator approaches zero and the invariance
becomes large. However in this case the neuron is not responding to anything — any activity is most likely
noise. We therefore calculate a threshold of activity for neural response invariances to be considered to
contribute to the generalization capability of the network. Otherwise, these invariances are not integrated
into the overall network invariance metric. The threshold, τ , is the 95th percentile of activity for all neurons
across all images. We employ τ with an indicator function as follows:

1(Φ̄n
i (InD), Φ̄n

i (G))

:=
{

1 if Φ̄n
i (InD) ≥ τ ∧ Φ̄n

i (G) ≥ τ

0 otherwise
.

Finally, we can compute the overall network generalizable and non-generalizable invariance scores. To do
so, we compute a triple average: an average activation over the set of orientations (Eq. 5) and averaged
over the invariance of all neurons and object instances. We say that the generalizable invariance score is the
invariance between the in-distribution orientations and the generalizable orientations determined as follows:

1
L

∑
n∈N

∑
i∈I

1(Φ̄n
i (InD), Φ̄n

i (G)) · δ(Φ̄n
i (InD), Φ̄n

i (G)), (7)

where L is the quantity of activity pairs above the threshold τ , i.e.,

L =
∑
n∈N

∑
i∈I

1(Φ̄n
i (InD), Φ̄n

i (G)). (8)

The definition of the network’s non-generalizable invariance score is the same, though ¬G replaces G.

10



Under review as submission to TMLR

a b c

Figure 5: Object Datasets. In our experiments we used three object categories: (a) Airplanes, (b) Cars,
and (c) Shepard&Metzler objects. The first two were curated from ShapeNet (Chang et al., 2015) and we
procedurally generated the last one. There are 50 instances per object category (e.g., ‘Concorde’ or ‘Spitfire’
for the Airplanes). Images were rendered from the 3D models under fixed lighting conditions, and the models
were centered and fully contained within the image frame. For fully-seen instances (see Fig. 1), orientations
were uniformly sampled at random using Euler angles in the range of −π ≤ α < π, − π

2 ≤ β < π
2 , −π ≤ γ < π.

For partially-seen instances, orientations were uniformly sampled from a subset of these ranges.

3.4 Experimental Controls

Proportion of fully-seen instances. We vary diversity in terms of the number of fully-seen instances N
between 10 (20% of the total number of instances) and 40 (80%). The remaining instances are partially-seen.
For a fair evaluation of the effect of data diversity, the amount of training examples is kept constant as we
vary the data diversity.

Object Categories. We used three categories of objects: Airplanes, Cars and Shepard&Metzler ob-
jects. For the airplanes and cars we curated 50 high quality object instances of each category from the
ShapeNet(Chang et al., 2015) database. Both airplanes and cars have clear axes of symmetry, which allow
for intuition of how networks generalize to OoD orientations. We therefore also experimented with highly
asymmetric objects similar to those tested for 3D mental rotations in (Shepard & Metzler, 1971) (which we
denote as Shepard&Metzler objects; Fig. 5).

DNN Architectures. We used ResNet18 (He et al., 2016), DenseNet (Huang et al., 2017), CORnet (Ku-
bilius et al., 2018) and Visual Transformers (ViT) (Vaswani et al., 2017; Dosovitskiy et al., 2020) in our
experiments. The first two were chosen as they are representative feed-forward DNNs. The architecture of
CORnet is brain-inspired and includes recurrence at higher layers in addition to convolutions in lower layers.

Repetition. We re-run each experiment five times, each time randomly sampling the specific instances
which comprise the fully-seen and partially seen sets.

Hyperparameters for training. We trained the three deep convolutional neural networks using the
Adam Optimizer (Kingma & Ba, 2017) with following learning rates and batch seizes, respectively:
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Architecture Learning Rate Batch Size
1. ResNet18 10−3 230
2. DenseNet 10−3 64
3. CORnet 10−4 128
4. ViT 10−4 256

Table 1: Training Hyperparamters

Batch sizes were chosen to be as large as possible while still fitting the model, the batch of images and
forward-pass computations in memory. Learning rates were chosen from 10x, x ∈ {−1, −2, −3, −4, −5} to
be as large as possible while ensuring that OoD generalization remained stable. Each network was trained
for 10 epochs. After this point in-distribution performance was stabilized at 100% and OoD performance
reached an asymptote.

Dataset Size. Each dataset is 200k images, 4k image for each of the 50 object instances. A training epoch
iterates through every image in the dataset once.

Hardware details. Experiments were run with one CPU, 25GB of memory and on several generations of
Nvidia GPUs with a minimum of 11GB of memory.

ViT Experiments Experiments involving visual transformers proved to be far more expensive to run, due
to their increased size, required training time, and more expensive hardware. For this reason we ran only a
subset of controls for ViT: only airplanes, freely rotating on α, and only two repetitions. These experiments
yielded almost identical results to the other experiments (see Fig. 4b,c) and therefore running the full range
of controls was unnecessary.

4 Discussion

A large number of previous works have explored the generalization capacities in DNNs. For example (Lenc
& Vedaldi, 2015; Gruver et al., 2023) investigated the emergence of invariance, and specifically rotational
invariance, in an array of architectures. Other works, including by Cohen and Welling (Group Equivariant
CNN’s (Cohen & Welling, 2016) and Steerable CNN’s (Cohen & Welling, 2017)) induce invariance by con-
struction with modifications to the CNN architecture. These works generalize the translation inductive bias
inherent in CNN’s to broader mathematical groups, including rotations. However, they only focus on affine
rotations and don’t address non-affine, or even more challenging OoD cases. This limits the relevance of
these findings to more realistic scenarios.

In this work we analyze the generalization behaviors of DNN’s on rendered images and observe dissemi-
nation of orientation-invariance for orientations that appear like 2D rotations (in-plane) of in-distribution
orientations. In some cases, when the network relies on the object instance’s silhouette for recognition, the
in-distribution orientations also include orientations that have the same silhouette as the seen orientations.
For non-generalizable orientations, the network has not developed orientation-invariance with respect to the
seed orientations (demonstrated by the lower invariance score in our results). It is worth noting that despite
the absence of orientation-invariance, the network is still able to recognize fully-seen instances in such non-
generalizable orientations. This is due to the fact that these orientations fall within the training distribution
and the network has learned to associate them with their corresponding object instances. However, in the
case of non-generalizable orientations, the dissemination of orientation-invariance is not feasible. This is
even the case when neurons are tuned to features shared with partially-seen instances, as they do not exhibit
orientation-invariance for these non-generalizable orientations and the training process does not provide any
information to establish associations with the corresponding object instances.

Further, our results support the hypothesis that the network disseminates orientation-invariance of fully-seen
instances to partially-seen instances using brain-like mechanism similar to those reported by (Logothetis &
Sheinberg, 1996; Poggio & Anselmi, 2016). Neurons are feature detectors, and during training neurons
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are tuned to detect the features of fully-seen objects at multiple orientations — i.e., the neurons become
selective to the feature, but invariant to the orientation. Some features that neurons are tuned to are shared
between fully-seen and partially-seen instances (Fig.4a). Therefore the invariance that develops for features
of fully-seen instances are gained “for free" for partially-seen instances in the same orientations. Our results
provide a quantitative assessment of this hypothesis and elucidate the intricate neural processes involved in
object recognition, underscoring the critical role of individual neuron, feature-based representations for OoD
object recognition.

This study reveals discernible patterns in the successes and failures of DNNs across diverse orientations which
can be effectively characterized and explained through the analysis of neural activity. This underscores the
potential for more comprehensive analyses of DNNs that transcend the conventional approach of solely
focusing on average accuracy.

A key question arising from our results is to explain why DNNs disseminate orientation-invariance only
to in-plane orientations. All object instances are distinguishable at all orientations, as evidenced by the
high in-distribution accuracy achieved by the DNNs. Therefore the lack of orientation-invariance for such
non-generalizable orientations is an outcome of the DNN’s learning process. We speculate that this may be
because orientations that are not in-plane are affected by self-occlusion, which poses a particular challenge
for DNNs. Various efforts have been made to enhance DNNs’ generalization capabilities to OoD orienta-
tions including leveraging preconceived components for DNNs, such as 3D models of objects (Angtian et al.,
2021) or sophisticated sensing approaches like omnidirectional imaging (Cohen et al., 2018). However, these
approaches rely on ad-hoc approaches tailored to specific objects and do not address the fundamental lim-
itations of the DNN learning process in recognizing objects in OoD orientations. Instead, novel network
architectures that extend the emergent orientation-invariance inherent within networks might allow for fur-
ther gains of OoD generalization. Biological agents may overcome the difficulties associated with recognizing
OoD orientations by leveraging the temporal dimension to associate orientations and learn invariant repre-
sentations (Ruff, 1982; Johnson & Aslin, 1996; Ratan Murty & Arun, 2015). The mechanisms that utilize
temporal association may hold fundamental significance, given that they have access to a plentiful source
of training data that does not rely on external guidance and task specific labels. This data is readily avail-
able prior to any visual task and has the potential to contribute to the emergence of orientation-invariant
representations beyond in-plane orientations.

Previous studies have extensively compared the behavioural and electrophysiological aspects of brains and
DNNs (Yamins et al., 2014; Yamins & DiCarlo, 2016). However, a direct comparison between these systems
alone has limitations in providing insights into the underlying mechanisms of object recognition in DNNs.
This is due to the possibility that while certain fundamental mechanisms may be shared across these systems,
the manifestation of these fundamental mechanisms can differ at the behavioral and electrophysiological
levels. Our study has provided compelling evidence of brain-like neural mechanisms in DNNs that facilitate
object recognition in novel orientations, even though these mechanisms are manifested differently than in
biological systems. For instance, while humans and primates can recognize objects in orientations that are
not simply 2D rotations, this capability is not fully replicated in DNNs. Thus, we can conclude that the
neural mechanisms that have been observed to govern recognition in biological systems largely apply to
DNNs, albeit with distinct manifestations across these systems. It will be interesting to follow this line
of investigation across biological and artificial systems to envision a general theory to explain emergent
mechanisms in both brains and machines.
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a

b

Figure S1: Accuracy heatmaps: alternative ‘seed’ orientations. (a) ‘Seed’ (in-distribution) orien-
tations include −0.25 ≤ α ≤ 0.25, −0.25 ≤ γ ≤ 0.25, −1/2π ≤ β < 1/2π. (b) ‘Seed’ orientations include
−0.1 ≤ β ≤ 0.1, −0.25 ≤ γ ≤ 0.25, −1.8π ≤ α < −1.3/π.
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a

20 Fully Seen 30 Fully Seen 40 Fully Seen
b

20 Fully Seen 30 Fully Seen 40 Fully Seen

Figure S2: Accuracy heatmaps: effect of data diversity - alternative object categories. Increasing
number of fully-seen instances, with different object classes. (a) Shepard-Metzler Objects. (b) Cars.
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a

b

Figure S3: Accuracy heatmaps: alterative training conditions - pretraining and augmentation.
(a) ResNet-18 pretrained on ImageNet Russakovsky et al. (2015), finetuned on our learning paradigm with
airplanes. Network behavior isn’t meaingfully altered. (b) All data (both from fully-seen and partially-seen
instances) were augmented with random 2D image rotations. This effectively expands the in-distribution set
to include all generalizable orientations. This results in generalizable orientations with high accuracy.
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a

b

Figure S4: Accuracy heatmaps: alternative backbone architectures. Network’s backbone used (in
place of ResNet-18): (a) DenseNet. (b) CORnet.

20



Under review as submission to TMLR

re
sn

et
18

de
ns

en
et

12
1

co
rn

et ViT
Pre

tra
ine

d
Au

gm
en

te
d

Ha
lf-D

at
a

-.2
0.0
0.2
0.4
0.6
0.8
1.0

re
sn

et
18

de
ns

en
et

12
1

co
rn

et ViT
Pre

tra
ine

d
Au

gm
en

te
d

Ha
lf-D

at
a

re
sn

et
18

de
ns

en
et

12
1

co
rn

et ViT
Pre

tra
ine

d
Au

gm
en

te
d

Ha
lf-D

at
a

re
sn

et
18

de
ns

en
et

12
1

co
rn

et ViT
Pre

tra
ine

d
Au

gm
en

te
d

Ha
lf-D

at
a

' Model Component
Random
Uniform
In-Distribution
Small-Angle
In-Plane
Small-Angle
+ In-Plane
All
Components

re
sn

et
18

de
ns

en
et

12
1

co
rn

et ViT
Pre

tra
ine

d
Au

gm
en

te
d

Ha
lf-D

at
a

0.0

0.2

0.4

0.6

0.8

1.0

re
sn

et
18

de
ns

en
et

12
1

co
rn

et ViT
Pre

tra
ine

d
Au

gm
en

te
d

Ha
lf-D

at
a

re
sn

et
18

de
ns

en
et

12
1

co
rn

et ViT
Pre

tra
ine

d
Au

gm
en

te
d

Ha
lf-D

at
a

re
sn

et
18

de
ns

en
et

12
1

co
rn

et ViT
Pre

tra
ine

d
Au

gm
en

te
d

Ha
lf-D

at
a

In-Plane
Component
# Fully Seen

10
20

30
40

Pe
as

on
 C

or
re

la
tio

n 
Co

ef
fic

ie
nt

Figure S5: Modeling generalization patterns for OoD orientations, continued. The same analysis
as Figs. 3b is applied to the controls introduced in Figs. S3, S4.
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Figure S6: OoD accuracy, split between generalizable and non-generalizable orientations. In Fig.
3a we report the average accuracy across all OoD orientations. As we note, however, accuracy behavior is
differentiated between generalizable and non-generalizable orientations. Here we report the average accuracy
for these two orientation groups. Gray horizontal lines indicate chance performance of 2% and 10% (the latter
relevant in the case where fully-seen and partially-seen instances are of two different classes.) Generalizable
accuracy is always greater than non-generalizable accuracy. The former is always well above chance, while
the latter is below or at chance level. (a) The generalizable and non-generalizable average accuracy for the
same set of experiments presented in Fig. 3a. (b) The average accuracies for several other conditions. These
other conditions are explained in Figs. S3, S4.
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Figure S7: Invariance and Dissemination: controls. The same analysis as Figs. 4b, c is applied to the
controls introduced in Figs. S3, S4.
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Figure S8: tSNE analysis on the penultimate layer of a representative experiment. The 512
dimension activation vectors in the penultimate layer for each instance and orientation are recorded. We
employ tSNE to reduce these 512 dimensions down to two dimensions. (a) Object instances are colored
(semi-) uniquely. (20 colors are distributed to 50 instances due to the limits of choosing many perceptually
different colors.) For the most part, instances cluster together without much overlap between clusters of
different instances. This indicates that representations of instances are separable, and that the task is solved
by DNN. (b) Each point is colored based on whether the instance it represents is fully-seen or partially-
seen. Partially-seen clusters are independent of other clusters, both fully-seen and partially-seen. It is
therefore difficult to determine the range of behaviors for partially-seen instances — namely, why certain OoD
orientations are generalizable, while others are not. (c) Points are colored with the degree of generalizabilty,
as predicted by the predictive model of DNN generalization behavior. Note that points within each cluster are
ordered — they are arranged such that generalizable orientations are far from non-generalizable orientations
with a smooth transition between them. (d) Points are colored with the classification accuracy of the
network (for the given instance and orientation.) While fully-seen instances have near 100% accuracy across
all orientations, partially-seen show differentiation in accuracy between generalizable and non-generalizable
orientations.
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