
OPT2024: 16th Annual Workshop on Optimization for Machine Learning

Understanding Adam Requires Better Rotation Dependent Assumptions

Tianyue H. Zhang1,2,† TIANYUE.ZHANG@MILA.QUEBEC

Lucas Maes1,2,† LUCAS.MAES@MILA.QUEBEC

Alexia Jolicoeur-Martineau3

Ioannis Mitliagkas1,2,5
Damien Scieur2,3
Simon Lacoste-Julien1,2,3,4

Charles Guille-Escuret1,2
1Mila, Quebec AI Institute 2Université de Montréal 3Samsung SAIL Montreal
4Canada CIFAR AI Chair 5Archimedes Unit, Athena Research Center
†Equal contributions

Abstract
Despite its widespread adoption, Adam’s advantage over Stochastic Gradient Descent (SGD) lacks a
comprehensive theoretical explanation. This paper investigates Adam’s sensitivity to rotations of
the parameter space. We demonstrate that Adam’s performance in training transformers degrades
under random rotations of the parameter space, indicating a crucial sensitivity to the choice of basis.
This reveals that conventional rotation-invariant assumptions are insufficient to capture Adam’s
advantages theoretically. To better understand the rotation-dependent properties that benefit Adam,
we also identify structured rotations that preserve its empirical performance. We then examine the
rotation-dependent assumptions in the literature, evaluating their adequacy in explaining Adam’s
behaviour across various rotation types. This work highlights the need for new, rotation-dependent
theoretical frameworks to understand Adam’s empirical success in modern machine learning fully.

1. INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities as their scale grows [3,
20]. However, this unprecedented growth in model scale has led to a proportional increase in the
economic [10, 41, 43] and environmental [30, 31] costs associated with their training.

Despite this clear motivation, Adaptive Moment Estimation (Adam) [22] has persisted as the
go-to optimizer for language models, with only minor modifications such as AdamW [29] becoming
widely adopted since Adam’s inception. This success has prompted extensive research to provide
theoretical justification for Adam’s performance. While the original convergence proof for Adam
was later found to be flawed [40], recent studies have proposed rigorous convergence proofs under
plausible assumptions [4, 8, 26].

However, these proofs do not elucidate Adam’s advantages over SGD when training transformer
models [44]. Numerous works attempted to explain Adam’s superiority, employing diverse assump-
tions and analytical frameworks [24, 36, 50, 52]. The heterogeneity of these approaches leads to a
lack of consensus on theoretical explanations most accurately capture the fundamental mechanisms
underlying Adam’s improved performance. For instance, Zhang et al. [48] suggests it stems from
enhanced robustness to heavy-tailed noise, while Kunstner et al. [23] argues it plays no role.

© T.H. Zhang1,2,† et al.

UNDERSTANDING ADAM REQUIRES BETTER ROTATION DEPENDENT ASSUMPTIONS

1 20 40 60 80 100

Iteration (k)

2.8700

2.9425

3.0150

3.0875

3.1600
Tr

ai
ni

ng
 L

os
s

86

Global Rotation
Layer-Wise
Input-Wise
Output-Wise
No Rotation

Figure 1: GPT2 (124M)

1 20 40 60 80 100

Epoch

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

Tr
ai

ni
ng

 L
os

s

51

Global Rotation
Layer-Wise
Input-Wise
Output-Wise
No Rotation

Figure 2: ViT/S (22M)

Figure 3: Adam’s performance degrades under certain random rotations of the parameter space,
demonstrating its dependence on the standard basis. (a) For GPT2, global rotations lead to a 16%
slowdown in training. (b) ViT experiences a more dramatic 96% slowdown under global rotations.
Performance is preserved under output-wise rotations but progressively worsens with input-wise,
layer-wise, and global rotations, revealing Adam’s increasing sensitivity to broader scopes.

This study focuses on a fundamental distinction between Adam and SGD: Adam’s dependency
on the coordinate system. SGD is rotation-equivariant, i.e., if the loss landscape is rotated, the
resulting optimization trajectories from SGD will be the same up to that rotation. In contrast, Adam
produces substantially different trajectories. Our experimental investigation reveals that Adam’s
performance when training transformers empirically degrades when the objective function undergoes
random rotations (Figure 3). This result challenges the adequacy of existing theoretical frameworks
used to analyze Adam’s performance. Indeed, Appendix F shows that most assumptions employed in
the literature are rotation-invariant, hence they cannot fully capture Adam’s empirical advantages.

To deepen our understanding of the relationship between basis orientation and Adam’s perfor-
mance, we address two fundamental questions:

Q1. How do various types of rotations influence Adam’s performance?

We investigate Q1 by conducting experiments in Section 3, examining Adam’s convergence
when rotating specific regions of the parameter space. We also identify some rotations that preserve
or enhance Adam’s performance. These findings provide a more nuanced picture of Adam’s adaptive
behaviour and which properties of the basis are most consequential. Finally, a few rotation-dependent
assumptions do exist in the literature. This naturally raises the question:

Q2. Do existing rotation-dependent assumptions adequately capture Adam’s behaviour under
rotations?

Section 4 examines three assumptions in this context: L∞ bounded gradients, Hessian block-
diagonality, and L∞-smoothness [47]. Our analysis reveals that while none of these conditions
fully capture Adam’s behaviour under rotations, L∞-smoothness demonstrates some promising

2

UNDERSTANDING ADAM REQUIRES BETTER ROTATION DEPENDENT ASSUMPTIONS

characteristics. This highlights the need for more refined theoretical frameworks to model Adam’s
performance. These findings pave the way for future research to develop more nuanced, rotation-
aware assumptions that better align with Adam’s empirical behaviour.

We summarize related work in Appendix A.

2. PRELIMINARIES

2.1. Notations and Settings

Let f : Rd → R be the loss of a neural network with d trainable parameters. Stochastic optimization
algorithms approximate argminw∈Rd f(w) by only accessing independent stochastic functions
fB that depend on a stochastic minibatch B following some data distribution D such that ∀w ∈
Rd,EB∼D[fB(w)] = f(w). Our study examines the optimization process under rotations of the
parameter space. More formally, let SO(d) be the set of rotation matrices,

SO(d)=
{
R∈Rd×d: R⊤R = RR⊤= I,det(R)=1

}
. (1)

Instead of directly optimizing f , we consider its rotated counterpart f (R) : w → f(R⊤w), R ∈
SO(d). This transformation rotates the coordinate system while preserving the geometry of the
optimization landscape. Unless specified otherwise, we use the popular AdamW variant of Adam
(see Appendix E).

2.2. Rotational Equivariance of SGD

We say that an optimizer is rotation equivariant if its trajectories are equally rotated after a rotation
of the parameter space.

Definition 2.1 (Rotational equivariance) Consider an optimization algorithm A applied to the
function f , generating iterates wt+1 = A({wi}i=0...t, f, t). we say that the optimization algorithm
is rotation equivariant if it satisfies, ∀R ∈ SO(d),

Rwt+1 = A({Rwi}i=0...t, f
(R), t).

Proposition 2.2 Stochastic Gradient Descent with momentum is rotation-equivariant. Proof: See
Appendix B.

4 3 2 1 0 1 2

3

2

1

0

1

2

3
Original Quadratic Function

1.9
7.4

16.7

29.8

29.8

46.5

46.5

66.9

66.9

91.1

91.1 91.1

119.0
150.6

186.0
225.0

SGD-M

Adam

3 2 1 0 1 2 3
5

4

3

2

1

0

1

Rotated Quadratic Function

1.
9

7.4

16
.7

29
.8

46
.5

46
.5

66
.9

66
.9

91.1

91
.1

11
9.0

11
9.0

15
0.6

15
0.6

18
6.0

18
6.0

SGD-M

Adam

Figure 4: (Left) Trajectories of SGD-momentum
and Adam on a quadratic function with eigenvec-
tors aligned with coordinates. (Right) Trajecto-
ries on the same function after rotation. Unlike
Adam, SGD-momentum exhibits rotation equiv-
ariance, maintaining its trajectory relative to the
objective function in both scenarios.

In contrast, as illustrated in Figure 4, Adam is not a rotation equivariant. This dependence stems
from its element-wise division, see Algorithm 1, step 8 in Appendix E.

3

UNDERSTANDING ADAM REQUIRES BETTER ROTATION DEPENDENT ASSUMPTIONS

2.3. Training Neural Networks in Rotated Parameter Spaces

A crucial aspect of our study is the empirical evaluation of Adam’s performance under rotations of
the parameter space. Our approach, described in Figure 5, maintains the weights wt in the standard
basis while performing Adam’s optimization in the rotated space. This method allows us to leverage
existing neural network frameworks while examining Adam’s behaviour under rotation.

(iii)

Adam

Weights
Rotated

Gradients

R

R
⏉

Gradients

Rotated

Step
Step

(i)

Backpropagation

(v)

Update

(ii)

(iv)

Figure 5: Methodology to train neural networks un-
der rotations of the parameter space. (i) Forward
and backward passes in the standard space. (ii) The
gradients are rotated with R. (iii) Adam receives
the rotated gradients and produces an update ∆w(R)

in the rotated space. (iv) ∆w(R) is rotated back to
the original space using R⊤. (v) The parameters are
updated with R⊤∆w(R).

Global

Rotation

Input-wise

Rotation

Layer-wise

Rotation

Output-wise

Rotation

Figure 6: Illustration of different rota-
tion scopes for a model with weights
W ∆

= {W1,W2,W3}. Global rotation
rotates the entire parameter space at once,
layer-wise only performs rotations within
each layer subspace, and input-wise (resp.
output-wise) rotates within the weights
originating from the same input neuron
(resp. leading to the same output neuron).

It is computationally intractable to operate with full d× d rotation matrices due to the size of
modern neural networks. We employ a composite approach that combines block-diagonal rotations
with strategic permutations to circumvent this limitation while preserving the essential characteristics
of uniformly sampled rotations. This method effectively emulates the statistical properties of full-
scale rotations. Details of our sampling process and ablation studies are provided in Appendix C.

3. ROTATIONS’ INFLUENCE ON ADAM’S EFFICIENCY

We investigate how random rotations of varying granularity in neural network parameter space,
namely Global, Layer-wise, Output-wise and Input-wise as shown in Figure 6, affect Adam’s
performance and explore the relationship between basis orientation and Adam’s behavior.

Experimental setting. We conduct experiments across three diverse and representative ap-
plications in modern deep learning: GPT2-OpenWebText, ViT-Imagenet, and ResNet50-ImageNet,
covering both language and vision tasks as well as Transformer and ResNet architectures. Technical
details such as hyperparameters are provided in Appendix D.

Results. We make several key observations. (i) Adam’s performance degrades under global
rotations across all settings, confirming that the standard basis possesses advantageous properties.
(ii) The performance further degrades with broader rotation scopes. Layer-wise rotations, which
preserve some basis structure, consistently outperform global rotations, highlighting the importance
of local coordinate alignment. (iii) ResNet exhibits minimal performance degradation under rotations.
This reduced sensitivity suggests Adam obtains limited benefit from the standard basis structure in

4

UNDERSTANDING ADAM REQUIRES BETTER ROTATION DEPENDENT ASSUMPTIONS

ResNets, explaining its historically inferior performance in training these networks. (iv) Output-wise
rotations show no significant degradation across all settings, with GPT2 even slightly improving.
This suggests that Adam’s adaptivity within output neurons is minimal, supporting recent approaches
to reduce redundancy in Adam’s second moments [51].

4. ADEQUACY OF EXISTING ASSUMPTIONS

While rotation-invariant assumptions dominate optimization literature, some frameworks incorporate
rotation-dependent properties. This section examines whether these existing assumptions adequately
capture Adam’s rotation dependency: (i) it must be realistic in practical settings, and (ii) it should align
with Adam’s performance. Specifically, the assumption should hold (or have favourable constants)
under rotations with better performance and break down (or have unfavourable constants) under
rotations with worse performance. Results presented in this section are from GPT2-OpenWebText.

4.1. L∞ bounded gradients

Kingma and Ba [22], Reddi et al. [39] assume a bound on the L∞ norm of stochastic gradients,

∀w ∈ Rd, ∥∇fB(w)∥∞ ≤ C almost surely. (2)

No Rotation Global
C̃ 0.883 0.009

Table 1: Empirical L∞ gra-
dient bound C̃ over 1000
stochastic gradients at the end
checkpoint.

The constant C depends on the basis as the L∞ norm is not
preserved under rotations. To evaluate this assumption’s relevance
to Adam’s performance, we compute the empirical bound on the
rotated gradients: C̃(R) := maxBi ∥∇f

(R)
Bi

(wR)∥∞, where wR

denotes the last checkpoint obtained by running Adam under rotation
R. The maximum is over 1000 stochastic minibatches Bi. Table 1
reveals that C̃ significantly decreases under random global rotations,
predicting better performance for Adam. Hence, L∞ gradient bound
fails to capture the beneficial properties of the basis for Adam.

4.2. Block-diagonality of the Hessian

0.0 0.2 0.4 0.6 0.8 1.0

Quantile

10 17

10 15

10 13

10 11

10 9

10 7

10 5

Ab
so

lu
e

Va
lu

e
(L

og
)

Non-Layer

Layer

Neuron

0.0 0.2 0.4 0.6 0.8 1.0

Quantile

10 14

10 12

10 10

10 8

10 6

10 4

Ab
so

lu
e

Va
lu

e
(L

og
)

Non-Layer

Layer

Neuron

Figure 7: Hessian row estimate of 2nd attention layer. Left: No rotation.
Right: Global rotation.

A common hypothesis in
understanding the behaviour
of Adam is that the Hes-
sian can be well approxi-
mated by a block-diagonal
matrix [50]. This property
can indeed be related to the
performance of Adam and
would be tied to the stan-
dard base, as random rota-
tions are likely to break the
block-diagonality. More-
over, it would explain why rotating only within appropriate parameter blocks does not degrade
performance, as this property would consequently be preserved. We investigate this hypothesis by
sampling rows of the Hessian following the procedure described in Appendix D.5.2.

5

UNDERSTANDING ADAM REQUIRES BETTER ROTATION DEPENDENT ASSUMPTIONS

δw direction Random Update direction
Neuron 2.86e-05 -4.60e-10
Layer -8.71e-06 1.30e-08
Non-layer 1.48e-04 2.02e-07

Table 2: Gradient contribution of layer 2 attention
block in random directions (left column) or the update
direction (right column).

Although Figure 7 does indicate that the
absolute values of the Hessian are of orders
of magnitude larger within diagonal blocks,
a significant caveat is that the size of these
blocks is, in turn, several orders of magni-
tude smaller than the entire parameter space.
Consequently, a natural question is whether
the values outside the block can be neglected.
In Table 2, we show that while the diagonal

blocks contain larger values, their limited size compared to the full parameter space means that
off-diagonal elements collectively play a crucial role in shaping the loss landscape’s geometry,
challenging the strict block-diagonal Hessian assumption in theoretical analyses.

4.3. L∞-smoothness and (1, 1)-norm

No Rotation Global Output
(1, 1) norm 19.87 25.00 139.60

Table 3: Estimated (1,1)-norm of the Hessian and
final accuracy for no rotation, Global and output-
wise rotations.

L∞-smoothness was recently shown to guaran-
tee the convergence of Adam and presented as
a potential key property of the basis in [47]. We
first remind its definition: A function f is C-
smooth wrt. ∥ · ∥∞ if ∥∇f(x) − ∇f(y)∥1 ≤
C∥x− y∥∞ ∀ x, y ∈ Rd. Given the challenges
in directly estimating the L∞-smoothness con-
stant, [47] proposed using the (1,1)-norm of the
Hessian as a surrogate measure. This norm is defined as ∥H∥(1,1) :=

∑M
m=1

∑N
n=1 |Hmn|, where

Hmn represents the element at the m-th row and n-th column of the Hessian matrix. Notably, they
observed a degradation in their estimate of ∥H∥(1,1) under global random rotations. However, it
remains unclear whether this degradation is a universal phenomenon for all rotations of the parameter
space or if it specifically correlates with Adam’s performance. We investigate this with the same
methodology. Table 3 illustrates the variations in ∥H∥(1,1) under no rotation, global, and output-wise
rotations. Under global rotations, we confirm the findings of [47] that the (1, 1)-norm also degrades.
Unfortunately, we also observe a degradation in the (1, 1)-norm for output-wise rotation where the
performance is preserved in practice. We conclude although (1, 1)-norm possesses some potential, it
may not fully encapsulate all factors influencing Adam’s behaviour in its current form.

5. CONCLUSION AND LIMITATIONS

We investigate Adam’s sensitivity to rotations, uncovering critical insights into its optimization
dynamics by demonstrating how certain rotations possess advantageous properties. Our study reveals
that Adam’s performance is intricately tied to basis choice—a relationship current rotation-invariant
theoretical frameworks inadequately capture. By highlighting the limitations of existing assumptions,
we underscore the need for basis-dependent theoretical tools. While we do not propose a definitive
property fully explaining Adam’s performance, we provide a detailed blueprint for the missing
theoretical framework, outlining key characteristics and offering novel insights into the relationship
between Adam and the standard base. These findings are expected to spark new research directions,
potentially leading to more robust optimization algorithms and a deeper understanding of fundamental
principles in deep learning optimization.

6

UNDERSTANDING ADAM REQUIRES BETTER ROTATION DEPENDENT ASSUMPTIONS

ACKNOWLEDGEMENTS

This research was partially supported by the Canada CIFAR AI Chair program (Mila) and Samsung
Electronics Co., Ltd. Simon Lacoste-Julien is a CIFAR Associate Fellow in the Learning in Machines
& Brains program. We also acknowledge that this research was enabled in part by computing
resources, software, and technical assistance provided by Mila and the Digital Research Alliance of
Canada. Ioannis Mitliagkas acknowledges support by an NSERC Discovery grant (RGPIN-2019-
06512). We would like to thank Adam Ibrahim for his helpful comments and insights, and Ayoub
Echchahed, Pedram Khorsandi, Alan Milligan, Ryan d’Orazio and Vitória Barin Pacela for their
valuable feedback.

References

[1] Yossi Arjevani, Yair Carmon, John C. Duchi, Dylan J. Foster, Nathan Srebro, and Blake E.
Woodworth. Lower bounds for non-convex stochastic optimization. Mathematical Program-
ming, 199:165–214, 2019.

[2] Lucas Beyer, Xiaohua Zhai, and Alexander Kolesnikov. Better plain vit baselines for imagenet-
1k. arXiv:2205.01580, 2022.

[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. In Neurips, 2020.

[4] Xiangyi Chen, Sijia Liu, Ruoyu Sun, and Mingyi Hong. On the convergence of a class of
adam-type algorithms for non-convex optimization. In ICLR, 2019.

[5] Michael Crawshaw, Mingrui Liu, Francesco Orabona, Wei Zhang, and Zhenxun Zhuang.
Robustness to unbounded smoothness of generalized signsgd. In Neurips, 2022.

[6] Mathieu Dagréou, Pierre Ablin, Samuel Vaiter, and Thomas Moreau. How to compute hessian-
vector products?, 2024. URL https://iclr-blogposts.github.io/2024/blog/
bench-hvp/.

[7] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
memory-efficient exact attention with io-awareness. In Neurips, 2022.

[8] Alexandre Défossez, Leon Bottou, Francis Bach, and Nicolas Usunier. A simple convergence
proof of adam and adagrad. Transactions on Machine Learning Research, 2022.

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In CVPR, 2009.

[10] Haiwei Dong and Shuang Xie. Large language models (llms): Deployment, tokenomics and
sustainability. arXiv preprint arXiv:2405.17147, 2024.

7

https://iclr-blogposts.github.io/2024/blog/bench-hvp/
https://iclr-blogposts.github.io/2024/blog/bench-hvp/

UNDERSTANDING ADAM REQUIRES BETTER ROTATION DEPENDENT ASSUMPTIONS

[11] Aaron Gokaslan and Vanya Cohen. Openwebtext corpus. http://Skylion007.github.
io/OpenWebTextCorpus, 2019.

[12] Alicia Golden, Samuel Hsia, Fei Sun, Bilge Acun, Basil Hosmer, Yejin Lee, Zachary DeVito,
Jeff Johnson, Gu-Yeon Wei, David Brooks, and Carole-Jean Wu. Is flash attention stable?
arXiv:2405.02803, 2024.

[13] Baptiste Goujaud, Adrien Taylor, and Aymeric Dieuleveut. Optimal first-order methods for
convex functions with a quadratic upper bound. arXiv:2205.15033, 2022.

[14] Charles Guille-Escuret, Baptiste Goujaud, Manuela Girotti, and Ioannis Mitliagkas. A study of
condition numbers for first-order optimization. In AISTATS, 2020.

[15] Charles Guille-Escuret, Adam Ibrahim, Baptiste Goujaud, and Ioannis Mitliagkas. Gradient
descent is optimal under lower restricted secant inequality and upper error bound. In Neurips,
2022.

[16] Charles Guille-Escuret, Hiroki Naganuma, Kilian Fatras, and Ioannis Mitliagkas. No wrong
turns: The simple geometry of neural networks optimization paths. In ICML, 2024.

[17] Zhishuai Guo, Yi Xu, Wotao Yin, Rong Jin, and Tianbao Yang. A novel convergence analysis
for algorithms of the adam family and beyond, 2022.

[18] Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2015.

[19] Florian Hübler, Junchi YANG, Xiang Li, and Niao He. Parameter-agnostic optimization under
relaxed smoothness. In OPT 2023: Optimization for Machine Learning (Neurips Workshop),
2023.

[20] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

[21] Andrej Karpathy. NanoGPT, 2022. URL https://github.com/karpathy/nanoGPT.

[22] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR,
2015.

[23] Frederik Kunstner, Jacques Chen, Jonathan Wilder Lavington, and Mark Schmidt. Noise is not
the main factor behind the gap between sgd and adam on transformers, but sign descent might
be. In ICLR, 2023.

[24] Frederik Kunstner, Robin Yadav, Alan Milligan, Mark Schmidt, and Alberto Bietti. Heavy-tailed
class imbalance and why adam outperforms gradient descent on language models, 2024.

[25] Haochuan Li, Jian Qian, Yi Tian, Alexander Rakhlin, and Ali Jadbabaie. Convex and non-
convex optimization under generalized smoothness. In Neurips, 2023.

[26] Haochuan Li, Alexander Rakhlin, and Ali Jadbabaie. Convergence of adam under relaxed
assumptions. In Neurips, 2023.

8

http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://github.com/karpathy/nanoGPT

UNDERSTANDING ADAM REQUIRES BETTER ROTATION DEPENDENT ASSUMPTIONS

[27] Huan Li and Zhouchen Lin. On the o(
√
d

T 1/4) convergence rate of rmsprop and its momentum
extension measured by ℓ1 norm, 2024.

[28] Zhaoqi Li, Yu Ma, Catalina Vajiac, and Yunkai Zhang. Exploration of numerical precision in
deep neural networks, 2018.

[29] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR 2019,,
2019.

[30] Alexandra Sasha Luccioni, Sylvain Viguier, and Anne-Laure Ligozat. Estimating the carbon
footprint of bloom, a 176b parameter language model. Journal of Machine Learning Research,
24(253):1–15, 2023.

[31] Sasha Luccioni, Victor Schmidt, Alexandre Lacoste, and Thomas Dandres. Quantifying the
carbon emissions of machine learning. In NeurIPS 2019 Workshop on Tackling Climate Change
with Machine Learning, 2019.

[32] Zhi-Quan Luo and Paul Tseng. Error bounds and convergence analysis of feasible descent
methods: a general approach. Annals of Operations Research, 46(1):157–178, 1993.

[33] Francesco Mezzadri. How to generate random matrices from the classical compact groups.
Notices of the American Mathematical Society, 54:592 – 604, 2007.

[34] Yurii Nesterov. A method for solving the convex programming problem with convergence rate
o(1/k2). Proceedings of the USSR Academy of Sciences, 269:543–547, 1983.

[35] Maris Ozols. How to generate a random unitary matrix. In technical report, 2009.

[36] Yan Pan and Yuanzhi Li. Toward understanding why adam converges faster than SGD for
transformers. In OPT 2022: Optimization for Machine Learning (NeurIPS Workshop), 2022.

[37] Boris T. Polyak. Gradient methods for the minimisation of functionals. USSR Computational
Mathematics and Mathematical Physics, 3(4):864 – 878, 1963.

[38] B.T. Polyak. Some methods of speeding up the convergence of iteration methods. USSR
Computational Mathematics and Mathematical Physics, 4(5):1–17, 1964.

[39] Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In
ICLR, 2018.

[40] David Martınez Rubio. Convergence analysis of an adaptive method of gradient descent.
University of Oxford, Oxford, M. Sc. thesis, 2017.

[41] Or Sharir, Barak Peleg, and Yoav Shoham. The cost of training nlp models: A concise overview.
arXiv preprint arXiv:2004.08900, 2020.

[42] Yuxin Sun, Dong Lao, Ganesh Sundaramoorthi, and Anthony Yezzi. Surprising instabilities in
training deep networks and a theoretical analysis. In Neurips, 2022.

[43] Gaël Varoquaux, Alexandra Sasha Luccioni, and Meredith Whittaker. Hype, sustainability, and
the price of the bigger-is-better paradigm in ai. arXiv:2409.14160, 2024.

9

UNDERSTANDING ADAM REQUIRES BETTER ROTATION DEPENDENT ASSUMPTIONS

[44] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Neurips, 2017.

[45] Bohan Wang, Jingwen Fu, Huishuai Zhang, Nanning Zheng, and Wei Chen. Closing the gap
between the upper bound and lower bound of adam’s iteration complexity. In Neurips, 2023.

[46] Naigang Wang, Jungwook Choi, Daniel Brand, Chia-Yu Chen, and Kailash Gopalakrishnan.
Training deep neural networks with 8-bit floating point numbers. In Neurips, 2018.

[47] Shuo Xie, Mohamad Amin Mohamadi, and Zhiyuan Li. Adam exploits ℓ_∞-geometry
of loss landscape via coordinate-wise adaptivity. In High-dimensional Learning Dynamics:
The Emergence of Structure and Reasoning (ICML Workshop), 2024.

[48] Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank Reddi,
Sanjiv Kumar, and Suvrit Sra. Why are adaptive methods good for attention models? In
Neurips, 2020.

[49] Yushun Zhang, Congliang Chen, Naichen Shi, Ruoyu Sun, and Zhi-Quan Luo. Adam can
converge without any modification on update rules. In Neurips, 2022.

[50] Yushun Zhang, Congliang Chen, Tian Ding, Ziniu Li, Ruoyu Sun, and Zhi-Quan Luo. Why
transformers need adam: A hessian perspective, 2024.

[51] Yushun Zhang, Congliang Chen, Ziniu Li, Tian Ding, Chenwei Wu, Yinyu Ye, Zhi-Quan Luo,
and Ruoyu Sun. Adam-mini: Use fewer learning rates to gain more, 2024.

[52] Dongruo Zhou, Jinghui Chen, Yuan Cao, Ziyan Yang, and Quanquan Gu. On the convergence
of adaptive gradient methods for nonconvex optimization. Transactions on Machine Learning
Research, 2024. Featured Certification.

[53] Fangyu Zou, Li Shen, Zequn Jie, Weizhong Zhang, and Wei Liu. A sufficient condition for
convergences of adam and rmsprop. In CVPR, June 2019.

10

UNDERSTANDING ADAM REQUIRES BETTER ROTATION DEPENDENT ASSUMPTIONS

Appendix A. RELATED WORK

Adam under rotations. We consider the concurrent work [47] to be the closest related study,
showing that Adam converges more slowly with a randomly rotated loss landscape. They provide
convergence analysis based on L∞ geometry, demonstrating that this yields a better empirical
smoothness constant for GPT-2 models. While their work offers valuable theoretical insights, our
study takes a more experimental stance. We aim to paint a comprehensive picture of Adam’s behavior
under a spectrum of rotations, from random to structured transformations, and evaluate how existing
rotation invariant assumptions correlate with Adam performance.

Understanding Adam. Our work casts light on the critical interactions between Adam and the
coordinate system, contributing to a growing body of research on Adam’s behavior and convergence.
Recent works have attributed Adam’s success to the heterogeneous block-diagonal structure of its
Hessian [50], though we find this assumption to be unrealistic. Others have improved convergence
guarantees: [8] and [17] offered simplified and novel derivations, [49] argued that vanilla Adam
converges without modification, [52] provided a general convergence analysis for adaptive methods
in non-convex settings, and [26] proposed a convergence proof for Adam without relying on globally
bounded gradients. [25] developed a convergence analysis based on generalized smoothness con-
ditions, and [19] proposed parameter-agnostic convergence results under these relaxed conditions.
Finally, lower bounds for non-convex optimization were established by [1], with [45] addressing the
gap between upper and lower bounds for Adam’s iteration complexity.

Adam’s advantages over SGD. Prior works have also attempted to justify Adam’s advantages
over SGD. [48, 52] suggest SGD suffers more from heavy-tailed noise, with Adam converging faster
when gradients are sparse. However, [23] found noise reduction through larger batch sizes benefits
Adam but not SGD. Additionally, [24] ties Adam’s advantage over SGD in language models to
heavy-tailed class imbalance, and [36] to the concept of directional sharpness.

Appendix B. PROOFS

Proof Let ASGD denote SGD1 with momentum, defined by the following update rule:

ASGD({wi}i=0,...,t, f, t, Bt, η) = wt − η∇fBt(wt)

Where wt ∈ Rd denotes the iterate at step t, f is the objective function, Bt the minibatch sampled at
step t, and η > 0 the learning rate.

Let (wt)t≥0 be a sequence of iterates obtained by applying ASGD−M recursively, starting in
some w0 ∈ Rd with some fixed η, , (Bt)t≥0, and f .

From the chain rule, we have∇f (R)
Bt

(wt) = R∇fBt(R
⊤wt), hence

A({Rwi}i=0,...,t, f
(R), t, Bt, η) = Rwt − η∇f (R)

Bt
(Rwt)

= Rwt − ηR∇fBt(R
⊤Rwt)

= Rwt − ηR∇fBt(wt)

= RA({wi}i=0,...,t, f, t, Bt, η) = Rwt+1.

1. For the sake of simplicity we are not considering momentum here, but the results similarly hold for heavy ball [38]
and Nesterov Accelerated Gradient [34].

11

UNDERSTANDING ADAM REQUIRES BETTER ROTATION DEPENDENT ASSUMPTIONS

Appendix C. SAMPLING RANDOM ROTATIONS IN HIGH DIMENSION

This section explains our method of sampling random rotations for high-dimensional spaces and the
implementation details.

C.1. High-Dimensional Rotations

Even small modern machine learning models typically have millions of parameters. Consequently,
storing a d × d rotation matrix is often intractable, let alone performing the dot product required
to rotate the gradient vector. To address this issue, we sample a n × n rotation matrix Rn with
n≪ d uniformly (in the sense of the Haar measure) from the special orthogonal group SO(n), and
a random permutation π of 0, . . . , d− 1. For now, we assume d

n ∈ N, see appendix C.3 for a general
case. To rotate a gradient g, we compute:

g(Rn,π) := π−1 ◦

 d/n⊕
i=1

Rn

 (π ◦ g)

 , (3)

= π−1 ◦


Rn

Rn 0
Rn

0
. . .

Rn

 (π ◦ g) , (4)

where
⊕

denotes the direct sum operation, producing a block-diagonal matrix with d/n blocks
Rn. This procedure effectively computes a rotation by blocks of size n picked from a random
partition of indices, constituting a valid rotation.

Intuitively, if n is sufficiently large, we expect this procedure to approximate well the effect of
random rotations sampled uniformly from SO(d), due to the law of large numbers homogenizing
geometric properties across coordinates. To confirm this intuition, we perform an ablation study in
Figure 8, finding that the impact on Adam’s performance saturates well below our operational values.

Our approximation reduces the memory cost from O(d2) to O(n2 + d), and the computational
cost from O(d2) to O(nd). Since batch matrix multiplications required for the rotation can be
performed efficiently on modern GPUs, the final overhead of applying rotations is extremely small.

C.2. Reflections and Sampling From The Haar Measure

To sample Rn uniformly from SO(n) with respect to the Haar measure, we employ the QR decom-
position trick [33, 35], which samples from the Haar measure µ of the orthogonal group O(n). Let
us consider the projection π : O(n)→ SO(n), such that π(R) is R when R ∈ SO(n), and π(R)
simply multiplies the first column of R by −1 when R ∈ O(n) \ SO(n). The push forward of µ by
π is the Haar measure on SO(n). Since Adam is reflection equivariant, rotating with π(R) and with
R will lead to identical performance for any R ∈ O(n). Thus we can omit to apply π, and simply
sample from µ using the QR decomposition method.

12

UNDERSTANDING ADAM REQUIRES BETTER ROTATION DEPENDENT ASSUMPTIONS

1.0 6.8 12.6 18.4 24.2 30.0

Iteration (k)

3.100

3.175

3.250

3.325

3.400

Tr
ai

ni
ng

 L
os

s

Rotation dimension
256
512
768
1024
no rotation

Figure 8: Training loss of GPT-2 when training with different rotation dimension n. The loss of
performance is consistent across n at our range.

Similarly, Adam is permutation equivariant, thus we omit to apply the inverse permutation before
providing the rotated gradients to Adam, and to apply the permutation before rotating the update, as
removing these two steps do not affect performances.

C.3. Rotation Residual

Based on the type of rotation and the chosen dimension n, the number of blocks may not divide
evenly, i.e., d

n /∈ N. To address this issue, we introduce an additional rotation matrix, which we refer
to as the residual matrix, to complete the missing dimensions. More formally, let d represent the
dimensionality of the parameter space, and let n denote the block dimensions of the rotation. We
define b

∆
= ⌊ dn⌋ as the number of complete blocks. The residual matrix R is then sampled from

SO(p), where p
∆
= d− nb. Therefore, eq. (3) becomes

g(Rn,R,π) := π−1 ◦ ([B ⊕R] (π ◦ g)) , (5)

(6)

= π−1 ◦
[
B
R

]
(π ◦ g) , (7)

= π−1 ◦


Rn

Rn 0
. . .

0 Rn

R

 (π ◦ g) . (8)

where B =
⊕b

i=1Rn.

13

UNDERSTANDING ADAM REQUIRES BETTER ROTATION DEPENDENT ASSUMPTIONS

C.4. Overall Validation and Impact of Flash Attention

Given the sensitivity of neural network training to numerical precision [28, 42, 46], it is crucial to
ensure that rounding errors from applying rotations to the gradient do not significantly confound the
impact of the change of basis. In particular:

• We apply rotations in single precision.

• We refrain from using FlashAttention [7], which was found to increase numeric deviations [12].

In Figure 9, we present the training loss when training GPT-2 with SGD without rotations,
with global random rotations using flash attention, and with global random rotations without flash
attention. In particular, we confirm two important observations:

• Without flash attention (the setting we use for our experiments) the performances of SGD
under global random rotation and under no rotations are identical. This validates that our
experimental setting is behaving as expected.

• When we use flash attention with rotations, we observe a slight difference in performance.
This is due to flash attention amplifying numerical errors from the application of the rotation.
Interestingly, likely due to a slight regularization effect, it slows down performance at first but
actually provides a small improvement to the loss at the end of training.

20 36 52 68 84 100

Iteration (k)

3.3

3.4

3.5

3.6

3.7

Tr
ai

ni
ng

 L
os

s

SGD
no rotation
global rotation, no flash attention
global rotation, flash attention

Figure 9: SGD performance when applying global random rotations, with and without flash attention.

Appendix D. EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

D.1. Rotation implementation details

• Global Rotation: We apply a single rotation matrix R to the entire parameter space, enabling
us to assess Adam’s sensitivity to global changes in the coordinate system. This involves

14

UNDERSTANDING ADAM REQUIRES BETTER ROTATION DEPENDENT ASSUMPTIONS

applying R to the concatenated vector of all weights, represented as vec(W1 |W2 |W3), as
shown in Figure 5.

• Layer-wise Rotation: We partition the parameter space by layers, applying the same rotation
matrix R independently to each layer. This preserves the layer structure of the basis by
preventing the shuffling of coordinates corresponding to different layers. Specifically, we
rotate each layer’s weights represented as vec(Wi) for 1 ≤ i ≤ 3.

• Neuron-wise Rotation: This method is similar to layer-wise rotation but focuses on partition-
ing weights at the neuron level. We explore two variants:

1. Output-wise: In this case, we rotate weights Wij that lead to the same output neuron.
The rotation matrix R is applied to the output vectors W⊤

ij .

2. Input-wise: This approach rotates weights Wij that originate from the same input
neuron, applying R to the input vectors Wij .

Rotation in Transformers. By default, many implementations store the query, key, and value
parameters within a single linear layer. Thus, we split them to treat them as separate layers,
reflecting the fundamental differences in how their parameters are involved in forward computations.
Additionally, PyTorch stores parameters as tensors in the shape (output_dim, input_dim),
but embeddings are stored as lookup tables in the shape (input_dim, output_dim). For
output neuron and input neuron rotations to behave intuitively, we thus transpose embedding layers
before and after rotations.

D.2. GPT2-OpenWebText

Language Modeling: We trained a GPT-2 model with 124M parameters on the OpenWebText
dataset [11] using a configuration designed for efficient pretraining. The model architecture includes
12 layers, 12 attention heads, and a 768-dimensional embedding space, with no bias in LayerNorm
or Linear layers. We employed the AdamW optimizer with a peak learning rate of 6e-4, β1 = 0.9,
β2 = 0.95, and a weight decay of 1e-1, applying gradient clipping of 1.0. Training ran for 100,000
iterations (or 30,000 for some smaller ablations), with learning cosine rate decay starting after a
2,000-iteration warm-up, decaying to a minimum of 6e-5. We used batch size of 12 with gradient
accumulation steps simulating an effective batch size of 40. All experiments were performed on
four A100 80GB GPUs, leveraging mixed precision. Unless otherwise specified, all optimizer
hyperparameters were shared across experiments and set to the default values specified in [21].

D.3. ViT/S - ImageNet

Image Classification (Transformer): We trained a Vision Transformer (ViT) model on the ImageNet-
1K dataset [9] using the SimpleViT architecture [2]. The model consists of 12 layers, 6 attention
heads, a hidden dimension of 384, and an MLP dimension of 1536, with a patch size of 16 and input
image size of 224. The AdamW optimizer was employed with a learning rate of 0.001, β1 = 0.9,
β2 = 0.999, ϵ = 1e− 8, and a weight decay of 0.1. We used a cosine learning rate schedule with
5 warm-up epochs. The training was conducted for 100 epochs with a batch size of 1024. All
experiments were performed with mixed precision.

15

UNDERSTANDING ADAM REQUIRES BETTER ROTATION DEPENDENT ASSUMPTIONS

1 20 40 60 80 100

Iteration (k)

2.8700

2.9425

3.0150

3.0875

3.1600
Tr

ai
ni

ng
 L

os
s

86

Global Rotation
Layer-Wise
Input-Wise
Output-Wise
No Rotation

1 20 40 60 80 100

Iteration (k)

2.88

2.95

3.02

3.09

3.16

Va
lid

at
io

n
Lo

ss

Global Rotation
Layer-Wise
Input-Wise
Output-Wise
No Rotation

Figure 10: GPT2 (124M) - OpenWebText training loss and validation loss

1 20 40 60 80 100

Epoch

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

Tr
ai

ni
ng

 L
os

s

51

Global Rotation
Layer-Wise
Input-Wise
Output-Wise
No Rotation

1 6 12 18 24 30

Epoch

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

Va
lid

at
io

n
Lo

ss
Global Rotation
Layer-Wise
Input-Wise
Output-Wise
No Rotation

1 20 40 60 80 100

Epoch

0

10

20

30

40

50

60

70

80

Va
lid

at
io

n
Ac

cu
ra

cy

Global Rotation
Layer-Wise
Input-Wise
Output-Wise
No Rotation

Figure 11: SimpleViT - Imagenet training loss, validation loss and top-1 validation accuracy

16

UNDERSTANDING ADAM REQUIRES BETTER ROTATION DEPENDENT ASSUMPTIONS

D.4. Resnet50 - ImageNet

Image Classification (ResNet): We trained a ResNet-50 model [18] on the ImageNet-1K dataset [9]
using the AdamW optimizer. The optimizer was configured with a learning rate of 0.001, β1 = 0.9,
β2 = 0.999, ϵ = 1e− 8, and a weight decay of 0.0001. We employed a cosine learning rate schedule
with 5 warm-up epochs. The training ran for 100 epochs with a batch size of 256.

1 20 40 60 80 100

Epoch

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Tr
ai

ni
ng

 L
os

s

Global Rotation
Layer-Wise
Input-Wise
Output-Wise
No Rotation

1 20 40 60 80 100

Epoch

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

Va
lid

at
io

n
Lo

ss

Global Rotation
Layer-Wise
Input-Wise
Output-Wise
No Rotation

1 20 40 60 80 100

Epoch

10

20

30

40

50

60

70

80

Va
lid

at
io

n
Ac

cu
ra

cy

Global Rotation
Layer-Wise
Input-Wise
Output-Wise
No Rotation

Figure 12: ResNet50 - Imagenet training loss, validation loss and top-1 validation accuracy

D.5. Empirically Testing Existing Assumptions

D.5.1. l∞-BOUNDED GRADIENT

Using the most recent saved checkpoint, we estimate the gradient bound C for GPT-2 (124M). To
do this, we track the maximum absolute value encountered in the gradient over a fixed number of
iterations (in our case, 1000).

D.5.2. HESSIAN ROW SAMPLING

Consider a neural network f with parameters w ∈ Rd and Hessian matrix H ∈ Rd×d at w. For
large-scale models like GPT2 (125M parameters), computing the full Hessian is computationally

17

UNDERSTANDING ADAM REQUIRES BETTER ROTATION DEPENDENT ASSUMPTIONS

Algorithm 2: Gradient Bound Estimation
Input: T : total number of iterations (1000), Saved checkpoint: θ

1 Initialize C ← 0;
2 for t← 1 to T do
3 Compute gradient gt ← ∇θft(θ);
4 Compute C ′ ← ∥gt∥∞;
5 Update C ← max(C,C ′);
6 end
7 return C ; // Return the estimated gradient bound

intractable. We estimate it by sampling rows using the Hessian Vector Product (HVP) method with a
one-hot vector v with vi = 1 for row i, implementing the approach from [6]:

∇2f(θ)v = lim
ϵ→0

1

ϵ
[∇f(θ + ϵv)−∇f(θ)] = ∇[⟨∇f(·), v⟩](θ)

We sampled 8 rows per training checkpoint, uniformly distributed across the network to maximize
diversity. The sampled rows for each run were as follows:

Layer Computation Step Row ID
Transformer Layer 2 (Attention Block) Attention Computation 53,970,691
Transformer Layer 2 (Attention Block) Attention Projection 55,680,281
Transformer Layer 2 (MLP Block) Feedforward Computation 57,847,212
Transformer Layer 2 (MLP Block) Feedforward Projection 58,790,300
Transformer Layer 8 (Attention Block) Attention Computation 96,585,666
Transformer Layer 8 (Attention Block) Attention Projection 97,929,821
Transformer Layer 8 (MLP Block) Feedforward Computation 99,845,651
Transformer Layer 8 (MLP Block) Feedforward Projection 102,950,588

Table 4: Hessian sampled from GPT-2: Transformer Layers, Computation Step, and corresponding
Row ID.

Our objective in analyzing gradient contributions is to identify which components of the Hessian
matrix contribute most significantly to the gradient. Let H denote the Hessian matrix of GPT-2, and
let Hi represent the i-th row of this matrix. We categorize the parameters associated with Hi into
three distinct groups:

Neuron parameters: The parameters that directly influence the i-th neuron of GPT-2, denoted
as θneuron.

Layer parameters: The parameters of the layer containing the i-th parameters, excluding those
of the neuron, denoted as θlayer.

Non-Layer parameters:: The parameters that do not belong to the aforementioned categories,
denoted as θnon-layer.

18

UNDERSTANDING ADAM REQUIRES BETTER ROTATION DEPENDENT ASSUMPTIONS

To compute the gradient contribution from each of these parameter groups, we first define the
training direction in the parameter space as d = wt+1 −wt. We then decompose d into contributions
from the three groups mentioned above, as well as apply the same decomposition to the Hessian row
Hi:

d = [dneuron, dlayer, dnon-layer]

Hi = [Hi,neuron, Hi,layer, Hi,non-layer]

Next, we compute the inner product of d with the Hessian row Hi for each group respectively:

Cneuron = ⟨dneuron, Hi,neuron⟩

Clayer = ⟨dlayer, Hi,layer⟩

Cnon-layer = ⟨dnon-layer, Hi,non-layer⟩

For a comprehensive evaluation, we also compute the total contribution of the i-th row to the
gradient by considering the inner product between the entire Hessian row and the direction d:

Ctotal = ⟨d,Hi⟩

This allows for a fair comparison of the contributions from each parameter group to the overall
gradient.

D.5.3. HESSIAN BLOCK-DIAGONALITY

Row ID
No Rotation Global Rotation

Neuron Layer Non-layer Total Neuron Layer Non-layer Total
53970691 -4.60e-10 1.30e-08 2.02e-07 2.15e-07 -1.92e-10 4.78e-07 2.36e-05 2.40e-05
55680281 -9.42e-08 -6.45e-08 2.80e-06 2.64e-06 1.11e-09 -1.07e-07 -7.18e-06 -7.28e-06
57847212 2.64e-09 1.28e-07 6.53e-06 6.66e-06 1.42e-10 -1.07e-06 -4.11e-06 -5.19e-06
58790300 -8.08e-07 -2.24e-06 -2.33e-06 -5.38e-06 1.76e-08 -2.43e-06 2.82e-06 4.14e-07
96585666 7.46e-11 -5.03e-08 -2.16e-07 2.67e-07 1.01e-11 -2.66e-08 -5.89e-06 -5.91e-06
97929821 5.72e-09 1.84e-08 4.47e-06 4.49e-06 1.15e-09 -1.96e-08 -2.58e-06 -2.60e-06
99845651 -5.03e-08 -5.65e-07 -2.15e-06 -2.77e-06 2.77e-10 -1.49e-07 -2.31e-05 -2.33e-05

102950588 -7.17e-08 -4.42e-07 -5.09e-06 -5.61e-06 1.64e-09 -2.38e-08 1.24e-05 1.24e-05

Table 5: Expected gradient contribution for sampled weights for no rotation and global rotation.
Observe that the non-layer gradients consistently contribute magnitudes larger than gradients in layer
and neuron, and is often similar to the total contribution, showing the limitation of attributing most
of the contribution to elements within the block-diagonal structure of the Hessian.

19

UNDERSTANDING ADAM REQUIRES BETTER ROTATION DEPENDENT ASSUMPTIONS

0.0 0.2 0.4 0.6 0.8 1.0

Quantile

10 17

10 15

10 13

10 11

10 9

10 7

10 5

Ab
so

lu
e

Va
lu

e
(L

og
)

Non-Layer

Layer

Neuron

0.0 0.2 0.4 0.6 0.8 1.0

Quantile

10 15

10 13

10 11

10 9

10 7

10 5

10 3

Ab
so

lu
e

Va
lu

e
(L

og
)

Non-Layer

Layer

Neuron

Figure 13: Hessian row estimate of layer 2 Attention block attention computation (Row 53,970,691).
Left: No rotation. Right: Global rotation.

0.0 0.2 0.4 0.6 0.8 1.0

Quantile

10 15

10 13

10 11

10 9

10 7

10 5

10 3

Ab
so

lu
e

Va
lu

e
(L

og
)

Non-Layer

Layer

Neuron

0.0 0.2 0.4 0.6 0.8 1.0

Quantile

10 14

10 12

10 10

10 8

10 6

10 4

Ab
so

lu
e

Va
lu

e
(L

og
)

Non-Layer

Layer

Neuron

Figure 14: Hessian row estimate of layer 2 Attention block attention projection (Row 55,680,281).
Left: No rotation. Right: Global rotation.

0.0 0.2 0.4 0.6 0.8 1.0

Quantile

10 17

10 15

10 13

10 11

10 9

10 7

10 5

Ab
so

lu
e

Va
lu

e
(L

og
)

Non-Layer

Layer

Neuron

0.0 0.2 0.4 0.6 0.8 1.0

Quantile

10 15

10 13

10 11

10 9

10 7

10 5

10 3

Ab
so

lu
e

Va
lu

e
(L

og
)

Non-Layer

Layer

Neuron

Figure 15: Hessian row estimate of layer 2 MLP block feedforward computation (Row 57,847,212).
Left: No rotation. Right: Global rotation.

20

UNDERSTANDING ADAM REQUIRES BETTER ROTATION DEPENDENT ASSUMPTIONS

0.0 0.2 0.4 0.6 0.8 1.0

Quantile

10 16

10 14

10 12

10 10

10 8

10 6

10 4

Ab
so

lu
e

Va
lu

e
(L

og
)

Non-Layer

Layer

Neuron

0.0 0.2 0.4 0.6 0.8 1.0

Quantile

10 15

10 13

10 11

10 9

10 7

10 5

10 3

Ab
so

lu
e

Va
lu

e
(L

og
)

Non-Layer

Layer

Neuron

Figure 16: Hessian row estimate of layer 2 MLP block feedforward projection (Row 58,790,300).
Left: No rotation. Right: Global rotation.

0.0 0.2 0.4 0.6 0.8 1.0

Quantile

10 16

10 14

10 12

10 10

10 8

10 6

10 4

Ab
so

lu
e

Va
lu

e
(L

og
)

Non-Layer

Layer

Neuron

0.0 0.2 0.4 0.6 0.8 1.0

Quantile

10 14

10 12

10 10

10 8

10 6

10 4

Ab
so

lu
e

Va
lu

e
(L

og
)

Non-Layer

Layer

Neuron

Figure 17: Hessian row estimate of layer 8 Attention block attention computation (Row 96,585,666).
Left: No rotation. Right: Global rotation.

0.0 0.2 0.4 0.6 0.8 1.0

Quantile

10 17

10 15

10 13

10 11

10 9

10 7

10 5

10 3

Ab
so

lu
e

Va
lu

e
(L

og
)

Non-Layer

Layer

Neuron

0.0 0.2 0.4 0.6 0.8 1.0

Quantile

10 14

10 12

10 10

10 8

10 6

10 4

Ab
so

lu
e

Va
lu

e
(L

og
)

Non-Layer

Layer

Neuron

Figure 18: Hessian row estimate of layer 8 Attention block attention projection (Row 97,929,821).
Left: No rotation. Right: Global rotation.

21

UNDERSTANDING ADAM REQUIRES BETTER ROTATION DEPENDENT ASSUMPTIONS

0.0 0.2 0.4 0.6 0.8 1.0

Quantile

10 16

10 14

10 12

10 10

10 8

10 6

10 4

Ab
so

lu
e

Va
lu

e
(L

og
)

Non-Layer

Layer

Neuron

0.0 0.2 0.4 0.6 0.8 1.0

Quantile

10 15

10 13

10 11

10 9

10 7

10 5

10 3

Ab
so

lu
e

Va
lu

e
(L

og
)

Non-Layer

Layer

Neuron

Figure 19: Hessian row estimate of layer 8 MLP block feedforward computation (Row 99,845,651).
Left: No rotation. Right: Global rotation.

0.0 0.2 0.4 0.6 0.8 1.0

Quantile

10 17

10 15

10 13

10 11

10 9

10 7

10 5

Ab
so

lu
e

Va
lu

e
(L

og
)

Non-Layer

Layer

Neuron

0.0 0.2 0.4 0.6 0.8 1.0

Quantile

10 15

10 13

10 11

10 9

10 7

10 5

10 3

Ab
so

lu
e

Va
lu

e
(L

og
)

Non-Layer

Layer

Neuron

Figure 20: Hessian row estimate of layer 8 MLP block feedforward projection (Row 102,950,588).
Left: No rotation. Right: Global rotation.

From Figures 13 to 20, we consistently observe a distinct structure in non-rotated Hessian rows.
Specifically, for a given weight corresponding to a particular row index, the largest values tend to
appear in the neighbouring parameters associated with the neurons containing that weight. When
these neurons are removed, the highest values in the Hessian row shift to the layer containing the
weight. This suggests a potential block-diagonal structure in the Hessian of Transformer architectures.
However, this does not fully explain Adam’s advantage, as gradients outside the layer contribute
substantially to the change direction and cannot be overlooked.

Appendix E. ADAMW ALGORITHM

We remind here the AdamW algorithm (pseudocode) in Algorithm 1, and provide a rotated version
in Algorithm 2.

22

UNDERSTANDING ADAM REQUIRES BETTER ROTATION DEPENDENT ASSUMPTIONS

Algorithm 1 AdamW Optimization Algorithm

Require: α: stepsize
Require: β1, β2 ∈ [0, 1): exponential decay rates for moment estimates
Require: λ: weight decay coefficient
Require: ϵ: small constant for numerical stability
Require: f(θ): stochastic objective function with parameters θ

1: Initialize θ0, m0 ← 0, v0 ← 0, t← 0 while θt not converged do
2:

end
t← t+ 1

3: gt ← ∇θft(θt−1) ▷ Get gradients w.r.t. stochastic objective at timestep t
4: mt ← β1 ·mt−1 + (1− β1) · gt ▷ Update biased first moment estimate
5: vt ← β2 · vt−1 + (1− β2) · g2t ▷ Update biased second raw moment estimate
6: m̂t ← mt/(1− βt

1) ▷ Compute bias-corrected first moment estimate
7: v̂t ← vt/(1− βt

2) ▷ Compute bias-corrected second raw moment estimate
8: θt ← θt−1 − α · m̂t/(

√
v̂t + ϵ)− α · λ · θt−1 ▷ Update parameters

9: return θt ▷ Return the final parameters

Algorithm 2 AdamW Optimization Algorithm with Rotation

Require: α: stepsize
Require: β1, β2 ∈ [0, 1): exponential decay rates for moment estimates
Require: λ: weight decay coefficient
Require: ϵ: small constant for numerical stability
Require: f(θ): stochastic objective function with parameters θ

1: Initialize θ0, m0 ← 0, v0 ← 0, t← 0 while θt not converged do
2:

end
t← t+ 1

3: gt ← ∇θft(θt−1) ▷ Get gradients w.r.t. stochastic objective at timestep t
4: g̃t = R · gt ▷ Apply rotation to gradients
5: mt ← β1 ·mt−1 + (1− β1) · g̃t ▷ Update biased first moment estimate
6: vt ← β2 · vt−1 + (1− β2) · g̃t2t ▷ Update biased second raw moment estimate
7: m̂t ← mt/(1− βt

1) ▷ Compute bias-corrected first moment estimate
8: v̂t ← vt/(1− βt

2) ▷ Compute bias-corrected second raw moment estimate
9: θt ← θt−1 − α ·R−1 · (m̂t/(

√
v̂t + ϵ))− α · λ · θt−1 ▷ Update parameters

10: return θt ▷ Return the final parameters

Appendix F. COMMON ASSUMPTIONS IN FIRST-ORDER OPTIMIZATION
THEORY

We present a non-exhaustive summary of common assumptions used in theoretical works for first-
order optimization, see Table 6. For each assumption, we indicate whether it is rotation invariant.

23

UNDERSTANDING ADAM REQUIRES BETTER ROTATION DEPENDENT ASSUMPTIONS

Assumption Rotation-Invariant

(Strong-) Convexity ✓
Polyak-Lojasiewicz [37] ✓
Star-(Strong)-Convexity [14] ✓
Quadratic Growth [13] ✓
L-Smoothness (L2 norm) [8, 52] ✓
Gradient Growth Condition [49] ✓
Bounded Expected Gradient Squared Norm [53] ✓
(L0, L1)-Smoothness [26] ✓
Restricted Secant Inequality [15] ✓
Error Bound [16, 32] ✓
L-smoothness (L∞ norm)[17] ✗

Coordinate-wise (L0, L1)-Smoothness [5] ✗

Coordinate-wise “Affine” Variance Noise [27] ✗

Bounded Gradient (L∞) [39] ✗

Table 6: Common assumptions involved in first-order optimization algorithm, indicating whether
they are rotation-invariant. Rotation-dependent assumptions are comparatively rare in the literature.

24

	INTRODUCTION
	PRELIMINARIES
	Notations and Settings
	Rotational Equivariance of SGD
	Training Neural Networks in Rotated Parameter Spaces

	ROTATIONS' INFLUENCE ON ADAM'S EFFICIENCY
	ADEQUACY OF EXISTING ASSUMPTIONS
	L-infinity bounded gradients
	Block-diagonality of the Hessian
	L-infinity-smoothness and -norm

	CONCLUSION AND LIMITATIONS
	RELATED WORK
	PROOFS
	SAMPLING RANDOM ROTATIONS IN HIGH DIMENSION
	High-Dimensional Rotations
	Reflections and Sampling From The Haar Measure
	Rotation Residual
	Overall Validation and Impact of Flash Attention

	EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS
	Rotation implementation details
	GPT2-OpenWebText
	ViT/S - ImageNet
	Resnet50 - ImageNet
	Empirically Testing Existing Assumptions
	l-bounded gradient
	Hessian row sampling
	Hessian Block-diagonality

	ADAMW ALGORITHM
	COMMON ASSUMPTIONS IN FIRST-ORDER OPTIMIZATION THEORY

