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Abstract

Scalarization is a general technique that can be
deployed in any multiobjective setting to reduce
multiple objectives into one, such as recently in
RLHF for training reward models that align hu-
man preferences. Yet some have dismissed this
classical approach because linear scalarizations
are known to miss concave regions of the Pareto
frontier. To that end, we aim to find simple non-
linear scalarizations that can explore a diverse set
of k objectives on the Pareto frontier, as measured
by the dominated hypervolume. We show that
hypervolume scalarizations with uniformly ran-
dom weights are surprisingly optimal for provably
minimizing the hypervolume regret, achieving
an optimal sublinear regret bound of O(T−1/k),
with matching lower bounds that preclude any
algorithm from doing better asymptotically. As
a theoretical case study, we consider the multi-
objective stochastic linear bandits problem and
demonstrate that by exploiting the sublinear re-
gret bounds of the hypervolume scalarizations,
we can derive a novel non-Euclidean analysis that
produces improved hypervolume regret bounds
of Õ(dT−1/2 + T−1/k). We support our theory
with strong empirical performance of using sim-
ple hypervolume scalarizations that consistently
outperforms both the linear and Chebyshev scalar-
izations, as well as standard multiobjective algo-
rithms in bayesian optimization, such as EHVI.

1. Introduction
Optimization objectives in modern AI systems are becoming
more complex with many different components that must be
combined to perform precise tradeoffs in machine learning
models. Starting from standard ℓp regularization objectives
in regression problems (Kutner et al., 2005) to increasingly
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multi-component losses used in reinforcement learning (Sut-
ton et al., 1998) and deep learning (LeCun et al., 2015),
many of these single-objective problems are phrased as a
scalarized form of an inherently multiobjective problem.

Practitioners often vary the weights of the scalarization
method, with the main goal of exploring the entire Pareto
frontier, which is the set of optimal objectives that cannot be
simultaneously improved. First, one chooses some weights
λ ∈ Rk and scalarization functions sλ(y) : Rk → R that
convert k multiple objectives F (a) := (f1(a), ..., fk(a))
over some parameter space a ∈ A ⊆ Rd into a single-
objective scalar. Optimization is then applied to this family
of single-objective functions sλ(F (x)) for various λ and
since we often choose sλ to be monotonically increasing
in all coordinates, xλ = argmaxa∈A sλ(F (a)) is on the
Pareto frontier and the various choices of λ recovers an
approximation to the Pareto frontier (Paria et al., 2018).

Due to its simplicity of use, many have turned to a heuristic-
based scalarization strategy to pick the family of scalarizer
and weights, which efficiently splits the multi-objective op-
timization into numerous single "scalarized" optimizations
(Roijers et al., 2013). Linear scalarizations with varying
weights are often used in multi-objective optimization prob-
lems, such as in multi-objective reinforcement learning to
combine task reward with the negative action norm (Ab-
dolmaleki et al., 2021) or in RLHF to align responses with
human preferences (Ouyang et al., 2022). Furthermore,
some works have proposed piecewise linear scalarizations
inspired by economics (Busa-Fekete et al., 2017), while for
multi-armed bandits, scalarized knowledge gradient meth-
ods empirically perform better with non-linear scalarizations
(Yahyaa et al., 2014). Other works have come up with novel
scalarizations that perform better empirically in some set-
tings (Aliano Filho et al., 2019; Schmidt et al., 2019). In
general, previous works have tried to do comparisons be-
tween different scalarizations but with varying conclusions
(Kasimbeyli et al., 2019).

However, the appeal of using scalarizations in multiobjec-
tive optimization largely declined as linear scalarizations
are shown to be provably incapable of exploring the full
Pareto frontier (Boyd and Vandenberghe, 2004; Emmerich
and Deutz, 2018). This has led to a flurry of recent de-
velopments in specific multi-objective algorithms tailored



to specific settings such as ParEgo (Knowles, 2006) and
MOEAD (Zhang and Li, 2007) for black-box optimization
or multivariate iteration for reinforcement learning (Yang
et al., 2019). Furthermore, many adaptive reweighting strate-
gies have been proposed in order to target or explore the full
Pareto frontier, which have connections to gradient-based
multi-objective optimization; however these strategies are
much more complicated to implement and produce higher
runtimes due to the addition logic (Lin et al., 2019; Abdol-
maleki et al., 2021). This begs the question of

Are simple scalarization methods at all competitive and if
so, how would one optimally choose them?

To judge the effectiveness of an multiobjective optimizer, a
natural and widely used metric to measure progress is the hy-
pervolume indicator, which is the volume of the dominated
portion of the Pareto set (Zitzler and Thiele, 1999; Shah and
Ghahramani, 2016). The hypervolume metric has become a
gold standard because it has strict Pareto compliance mean-
ing that if set A is a subset of B and B has at least one
Pareto point not in A, then the hypervolume of B is greater
than that of A. Therefore, it is of no surprise that multiob-
jective optimization methods often use hypervolume related
metrics for progress tracking or acquisition optimization,
such as the Expected Hypervolume Improvement (EHVI) or
its differentiable counterpart (Daulton et al., 2020; Hupkens
et al., 2015; Emmerich and Deutz, 2018).

In previous works, we note that the notion of optimality
becomes varied. Previous work by (Lu et al., 2019) proved
Pareto regret bounds of O(d

√
T ), but that only guarantees

recovery of a single point close to the Pareto frontier. Some
works minimize a notion of distance to the Pareto frontier,
such as the ℓ∞ norm (Auer et al., 2016), although such ap-
proaches work in the finite multi-arm bandit setting which
mandates at least a pull of each arm. Some recent works
provide sub-linear hypervolume regret bounds which guar-
antees convergence to the full Pareto frontoer; however,
they are exponential in k and its analysis only applies to
a specially tailored algorithm that requires an unrealistic
classification step (Zuluaga et al., 2013). Most relevant is
recent work by (Golovin and Zhang, 2020) that introduces
random hypervolume scalarizations and when combined
with our generalization bounds, one can directly derive a
O(k2d/

√
T + T−1/O(k)) convergence bound for Gaussian

Process bandits.

1.1. Our Contributions

We show, perhaps surprisingly, that a simple ensemble of
hypervolume scalarizations, first introduced in (Golovin
and Zhang, 2020), are theoretically optimal to minimize
hypervolume regret and are empirically competitive for gen-
eral multiobjective optimization. Specifically, we show that
the hypervolume scalarization has sharp level curves that

allows for the targeting of a specific part of the Pareto fron-
tier, without any convexity assumptions or the need for
adaptively changing weights. Theoretically, we show that
exploring the Pareto frontier by choosing T maximizers of
randomly weighted hypervolume scalarizations achieves a
sublinear hypervolume regret rate of O(T−1/k), where T
is the number of points sampled. Our proofs follow from
novel arguments that combine the Lipschitz properties of
the hypervolume scalarizations with classic metric entropy
bounds for L-Lipschitz functions in Rk.

We observe that our derived sublinear hypervolume regret
rate of the hypervolume scalarization holds for any Pareto
frontier, regardless of the inherent multiobjective function
F or the underlying optimizer. Therefore, we emphasize
that analyzing these model-agnostic rates can be a general
theoretical tool to compare and analyze the effectiveness
of proposed multiobjective algorithms. In fact, although
many scalarizers will search the entire Pareto frontier as
T → ∞, the rate at which this convergence occurs can
differ significantly, implying that this framework paves the
road for a theoretical standard by which to judge the effec-
tiveness of advanced strategies, such as adaptively weighted
scalarizations. On the other hand, we show surprisingly that
no multiobjective algorithm, whether scalarized, adaptive,
or not, can beat the optimal hypervolume regret rates of ap-
plying single-objective optimization with the hypervolume
scalarization.

To accomplish this, we prove novel lower bounds showing
one cannot hope for a better convergence rate due to the
exponential nature of our regret, for any set of T points.
Specifically, we show that the hypervolume regret of any al-
gorithm after T actions is at least Ω(T−1/k), demonstrating
the necessity of the O(T−1/k) term up to small constants in
the denominator. As a corollary, we leverage the sublinear
regret properties of hypervolume scalarization to transfer
our lower bounds to the more general setting of scalarized
Bayes regret. Together, we demonstrate that for general
multiobjective optimzation, finding maximas of the hyper-
volume scalarizations with a uniform weight distribution
optimally finds the Pareto frontier asymptotically.
Theorem 1 (Informal Restatement of Theorem 6 and The-
orem 7). Let YT = {y1, ..., yT } be a set of T points in
Rk such that yi ∈ argmax

y∈Y
sHV
λi

(y) with λi ∼ S+ randomly

drawn i.i.d. from an uniform distribution andsHV are hy-
pervolume scalarizations. Then, the hypervolume regret
satisfies

HV(Y⋆)−HV(YT ) = O(T− 1
k )

where Y⋆ is the Pareto frontier andHV is the hypervolume
function. Furthermore, any algorithm for choosing these T
points must suffer hypervolume regret of at least Ω(T− 1

k ).

Next, we use a novel non-Euclidean analysis to prove im-



proved hypervolume regret bounds for our theoretical toy
model: the classic stochastic linear bandit setting. For
any scalarization and weight distribution, we propose a
new scalarized algorithm (Algorithm 1) for multiobjec-
tive stochastic linear bandit that combines uniform ex-
ploration and exploitation via an UCB approach to prov-
ably obtain scalarized Bayes regret bounds, which we then
combine with the hypervolume scalarization to derive op-
timal hypervolume regret bounds. Specifically, for any
scalarization sλ, we show that our algorithm in the lin-
ear bandit setting has a scalarized Bayes regret bound of
Õ(Lpk

1/pdT−1/2+T−1/k), where Lp is the Lipschitz con-
stant of the sλ(·) in the ℓp norm. Finally, by using hyper-
volume scalarizations and exploiting their ℓ∞-smoothness,
we completely remove the dependence on the number of ob-
jectives, k, which had a polynomial dependence in previous
regret bound given by (Golovin and Zhang, 2020).

Theorem 2 (Informal Restatement of Theorem 8). Let
AT ⊆ A be the actions generated by T rounds of Algo-
rithm 1, then our hypervolume regret is bounded by:

HVz(Θ
⋆A)−HVz(Θ

⋆AT ) ≤ Õ(dT− 1
2 + T− 1

k )

Guided by our theoretical analysis, we empirically evaluate
a diverse combination of scalarizations and weight distribu-
tions with our proposed algorithm for multiobjective linear
bandits. Our experiments show that for some settings of lin-
ear bandits, in spite of a convex Pareto frontier, applying lin-
ear or Chebyshev scalarizations naively with various weight
distributions leads to suboptimal hypervolume progress, es-
pecially when the number of objective increase to exceed
k ≥ 5. This is because the non-uniform curvature of the
Pareto frontier, exaggerated by the curse of dimensionality
and combined with a stationary weight distribution, hinders
uniform progress in exploring the frontier. Although one
can possibly adapt the weight distribution to the varying
curvature of the Pareto frontier when it is convex, we sug-
gest remediating the issue by simply adopting the use of
non-linear scalarizations that are more robust to the choice
of weight distribution and are theoretically sound.

For general multiobjective optimization, we perform em-
pirical comparisons on BBOB benchmarks for biojective
functions in a bayesian optimization setting, using classical
Gaussian Process models (Williams and Rasmussen, 2006).
When comparing EHVI with hypervolume scalarization ap-
proaches, we find that EHVI tends to limit its hypervolume
gain by over-focusing on the central portion of the Pareto
frontier, whereas the hypervolume scalarization encourages
a diverse exploration of the extreme ends. From our broader
analysis, we recommend the use of hypervolume scalariza-
tions as a simple, general, efficient, non-adaptive method to
perform various multiobjective optimization, even in com-
plex settings, such as reinforcement learning. We believe

that this is especially relevant given the modern era of learn-
ing algorithms that commonly makes tradeoffs between
multiple objectives such as fairness, privacy, latency.

2. Problem Setting and Notation
We assume, for sake of normalization, that ∥Θ⋆

i ∥ ≤ 1 and
that ∥at∥ ≤ 1, where ∥ · ∥ denotes the ℓ2 norm unless
otherwise stated. Other norms that are used include the
classical ℓp norms ∥ · ∥p and matrix norms ∥x∥M = x⊤Mx
for a positive semi-definite matrix M. For a scalarization
function sλ(x), sλ is Lp-Lipschitz with respect to x in the
ℓp norm on X if for x1, x2 ∈ X , |sλ(x1) − sλ(x2)| ≤
Lp∥x1−x2∥p, and analogously for λ. We let Sk−1

+ = {y ∈
Rk | ∥y∥ = 1, y > 0} be the sphere in the positive orthant
and by abuse of notation, we also let y ∼ Sk−1

+ denote that
y is drawn uniformly on Sk−1

+ .

For two outputs y, z ∈ Y ⊆ Rk, we say that y is Pareto-
dominated by z if y ≤ z and there exists j such that yj < zj ,
where y ≤ z is defined for vectors element-wise. A point
is Pareto-optimal if no point in the output space Y can
dominates it. Let Y⋆ denote the set of Pareto-optimal points
(objectives) in Y , which is also known as the Pareto frontier.
Our main progress metrics for multiobjective optimization
is given by the standard hypervolume indicator. For S ⊆ Rk

compact, let vol(S) be the regular hypervolume of S with
respect to the standard Lebesgue measure.

Definition 3. For Y ⊆ Rk, we define the (domi-
nated) hypervolume indicator of Y with respect to
reference point z as: HVz(Y) = vol({x |x ≥
z, x is dominated by some y ∈ Y})

We can formally phrase our optimization objective as trying
to rapidly minimize the hypervolume (psuedo-)regret. Let
A be our action space and for some general multi-objective
function F , let Y be the image of A under F . Let AT be
any matrix T actions and let YT = F (AT ) ⊆ Rk be the k
objectives corresponding. Then, the hypervolume regret of
actions AT , with respect to the reference point z, is given
by: Hypervolume-Regret(AT ) = HVz(Y⋆)−HVz(YT )

2.1. Scalarizations for Multiobjective Optimization

For multiobjective optimization, we generally only consider
monotone scalarizers that have the property that if y > z,
then sλ(y) > sλ(z) for all λ. Note this implies that an
unique optimal solution to the scalarized optimization is on
the Pareto frontier. A common scalarization used widely
in practice is the linear scalarization: sLIN

λ (y) = λ⊤y for
some chosen positive weights λ ∈ Rk. By Lagrange duality
and hyperplane separation of convex sets, one can show that
any convex Pareto frontier can be characterized fully by an
optimal solution for some weight settings.



However, linear scalarizations cannot recover the non-
convex regions of Pareto fronts since the linear level curves
can only be tangent to the Pareto front in the protruding con-
vex regions (see Figure 1). To overcome this drawback, an-
other scalarization that is proposed is the Chebyshev scalar-
ization: sCS

λ (y) = min
i
λiyi. Indeed, one can show that the

sharpness of the scalarization, due to its minimum operator,
can discover non-convex Pareto frontiers (Emmerich and
Deutz, 2018).

Figure 1. Comparisons of the scalarized minimization solutions
with various weights for a multiobjective problem with convex
and non-convex Pareto fronts. Different colors represent different
weights; the dots are scalarized optima and the corresponding
dotted lines represent level curves. Linear scalarization does not
have an optima in the concave region of the Pareto front for any set
of weights, but the non-linear scalarization, with its sharper level
curves, can discover the whole Pareto front (Emmerich and Deutz,
2018).

3. Hypervolume Scalarizations
In this section, we show the utility and optimality of a re-
lated scalarization known as the hypervolume scalarization,
sHV
λ (y) = min

i
(yi/λi)

k that was introduced in (Golovin and

Zhang, 2020). First, observe that this scalarization allows
you to target a specific part of the Pareto frontier, which
eliminates the need of adaptive targeting techniques that
heuristically update parameters of the optimization objec-
tives. The visualization of the non-linear level curves of the
scalarization provides intuition that our scalarization targets
the portion of the Pareto frontier in the direction of λ for
any λ > 0 (see Figure 2), as we can show that the tangent
point of the level curves of the scalarization is always on the
vector in the direction of λ.

Lemma 4. For any point y⋆ on the Pareto frontier of any
set Y that lies in the positive orthant, there exists λ > 0
such that y⋆ = argmax

y∈Y
sHV
λ (y). Furthermore, for any

α, λ > 0 such that αλ is on the Pareto frontier, then αλ ∈

argmax
y∈Y

sHV
λ (y).

Figure 2. The dotted red lines represent the level curves of the
hypervolume scalarization with weights λ = v. Hence, the scalar-
ization is able to dig into the Pareto frontier and discover b, whereas
the linear scalarization would prefer a or c. Furthermore, the op-
tima is exactly the Pareto point that is in the direction of v.

Furthermore, this scalarization additionally has the special
property that the expected scalarized value under a uniform
weight distribution on Sk−1

+ gives the dominated hypervol-
ume, up to a constant scaling factor. Intuitively, this lemma
says that the optima of the hypervolume scalarization over
some uniform choice of weights will be sufficiently diverse
for any Pareto set so as to capture its dominated hypervol-
ume.

Lemma 5 ((Golovin and Zhang, 2020)). Let YT =
{y1, ..., yT } be a set of T points in Rk. Then, the hyper-
volume with respect to a reference point z is given by:

HVz(YT ) = ck E
λ∼Sk−1

+

[
max
y∈YT

sHV
λ (y − z)

]

where ck = πk/2

2k Γ(k/2+1)
is a constant depending only on k.

While this lemma captures useful properties of the scalar-
ization in the infinite limit, we supplement it by showing
that finite asymptotic bounds on the strongly sublinear con-
vergence rate of using this scalarization in optimization. In
fact, while many scalarizations will eventually explore the
whole Pareto frontier in the infinite limit, the rate at which
the exploration improves the hypervolume is not known,
and in the worst case might be exponentially slow. We show
that the simple procedure of optimizing hypervolume scalar-
izations with a uniform weight distribution is a sublinear
hypervolume regret multiobjective algorithm in that it satis-
fies O(T−ϵ) hypervolume regret convergence rates when Y
is known. We note that this rate is agnostic of the underlying



optimization algorithm or objective function, meaning this
is a general property of the scalarization.

Our novel proof of convergence uses a symmetry argument
and exploits the Lipschitz properties of sHV

λ to derive gen-
eralization bounds via metric entropy. Proving smoothness
properties of our hypervolume scalarizations for any λ > 0
with λ normalized on the unit sphere is non-obvious as
sHV
λ (y) depends inversely on λi so when λi is small, sHV

λ

might change wildly. However, the crucial observation is
that λi being small makes it unlikely that it becomes the
minimum coordinate, implying that it is not contributing to
the scalarized value or its rate of change.

Theorem 6 (Sublinear Hypervolume Regret). Let YT =
{y1, ..., yT } be a set of T points in Rk such that yi ∈
argmax

y∈Y
sHV
λi

(y) with λi ∼ S+ i.i.d. drawn. Then with

probability at least 1− δ over the randomness of λi, the hy-
pervolume of YT with respect to a reference point z satisfies
sublinear hypervolume regret bounds

HVz(Y⋆)−HVz(YT ) = O(T− 1
k+1 +

√
ln(1/δ)T− 1

2 )

3.1. Lower Bounds and Optimality

The dominating factor in our derived convergence rate is
the O(T−1/(k+1)) term and we show that this cannot be
improved. Over all subsets YT ⊆ Y of size T , note that
our optimal convergence rate is given by the the subset that
maximizes the dominated hypervolume of YT , although
finding this is in fact a NP-hard problem due to reduction to
set cover. By constructing a lower bound via a novel packing
argument, we show that even this optimal set would incur
at least Ω(T−1/k) regret, implying that our convergence
rates, derived from generalization rates when empirically
approximating the hypervolume, are optimal.

Theorem 7 (Hypervolume Regret Lower Bound). There
exists a setting of linear objective parameters Θ⋆ and
A = {a : ∥a∥ = 1} such that for any actions AT , the
hypervolume regret at z = 0 after T rounds is

HVz(Θ
⋆A)−HVz(Θ

⋆AT ) = Ω(T− 1
k−1 )

3.2. Multiobjective Stochastic Linear Bandits

We propose a simple scalarized algorithm for linear bandits
and provide a novel ℓp analysis of the hypervolume regret
that removes the polynomial dependence on k in the scalar-
ized regret bounds. When combined with the ℓ∞ sharpness
of the hypervolume scalarization, this analysis gives an opti-
mal O(d/

√
T ) bound on the scalarized regret, up to log(k)

factors. This log dependence on k is perhaps surprising but
is justified information theoretically since each objective is
observed separately. Our scalarized algorithm works despite

of noise in the observations, which makes it difficult to even
statistically infer measures of hypervolume progress. Many
of the notation and intermediate theorems in this section are
given in the Appendix.

Algorithm 1: EXPLOREUCB(T,D, sλ): Scalarized
UCB for Linear Bandits
Input :number of maximum actions T , weight

distribution D , scalarization sλ
1 Initialize iteration counter n = 1
2 repeat
3 Play action ei ∈ E for i ≡ n mod d and increment

n← n+ 1
4 Let Cti be the confidence ellipsoid for Θi and let

UCBi(a) = maxθ∈Ci
θ⊤a

5 Sample λ ∼ D and play action that maximizes
a∗ = argmaxa∈A sλ(UCBi(a))

6 until number of actions exceed T

Theorem 8 (HyperVolume Regret of EXPLOREUCB). Let
z ∈ Rk be a reference point such that over all a ∈ A,
B = mina Θ

⋆a−z is positive. Then, with constant probabil-
ity, running Algorithm 1 with sHV

λ (y) and D = S+ gives hy-
pervolume regret bound ofHVz(Θ

⋆A)−HVz(Θ
⋆AT ) ≤

O

(
ck

(B+2)k

Bkk/2−1 d
√

log(kT )
T + ck

(B+2)2k+1

Bkk−1/2T 1/(k+1)

)
For k constant, the hypervolume regret satisfies

HVz(Θ
⋆A)−HVz(Θ

⋆AT ) ≤ Õ
(
dT−1/2 + T− 1

k+1

)

4. Experiments
In this section, we empirically justify our theoretical re-
sults by running Algorithm 1 with multiple scalarizations
and weight distributions in different settings of the multi-
objective stochastic linear bandits. Our empirical results
highlight the advantage of the hypervolume scalarization
with uniform weights in maximizing the diversity and hy-
pervolume of the resulting Pareto front when compared
with other scalarizations and weight distributions, especially
when there are a mild number of output objectives k. Our
experiments are not meant to show that scalarizations is
the only or even the best way to solve multiobjective op-
timization; rather, it is a simple yet competitive baseline
when optimal scalarizations and weight distributions are
chosen for solving multiobjective optimization in a variety
of settings.

4.1. Stochastic Linear Bandits

We compare the three widely types of scalarizations that
were previously mentioned: the linear, Chebyshev, and the



hypervolume scalarization. Note that we use slightly al-
tered form of our hypervolume scalarization as sHV

λ (y) =
min
i

yi/λi, which is a simply a monotone transform of the

proposed scalarization and does not inherently affect the
optimization. We set our reference point to be z = −2 in k
dimension space, since our action set ofA = {a : ∥a∥ = 1}
and our norm bound on Θ⋆ ensures that our rewards are
in [−1, 1]. In conjuction with the scalarizer, we use our
weight distribution D = S+, which samples vectors uni-
formly across the unit sphere. In addition, we also compare
this with the bounding box distribution methods that were
suggested by (Paria et al., 2018), which samples from the
uniform distribution from the min to the max each objective
and requires some prior knowledge of the range of each
objective (Hakanen and Knowles, 2017). We run our al-
gorithm with inherent dimension d = 4 for T = 100, 200
rounds with k = 2, 6, 10.

Figure 3. Comparisons of the cumulative hypervolume plots with
some anti-correlated θ. When the output dimension increase, there
is a clearer advantage to using the hypervolume scalarization over
the linear and Chebyshev scalarization. We find that the boxed
weight distribution does consistently worse than the uniform distri-
bution.

As expected, we find the hypervolume scalarization con-
sistently outperforms the Chebyshev and linear scalariza-
tions, with linear scalarization as the worst performing (see
Figure 3). Note that when we increase the output dimen-
sion of the problem by setting k = 10, the hypervolume
scalarization shows a more distinct advantage. The boxed
distribution approach of (Paria et al., 2018) does not seem to
fare well and consistently performs worse than its uniform
counterpart. While linear scalarization provides relatively
good performance when the number of objective k ≤ 5, it
appears that as the number of objectives increase in multi-
objective optimization, more care needs to be put into the
design of scalarization and their weights due to the curse
of dimensionality, since the regions of non-uniformity will
exponentially increase.

4.2. BBOB Functions

We empirically demonstrate the competitiveness of hyper-
volume scalarizations for Bayesian Optimization by compar-
ing them to the popular BO method of EHVI (Hupkens et al.,

2015). Running our proposed multiobjective algorithms on
the Black-Box Optimization Benchmark (BBOB) functions,
which can be paired up into multiple bi-objective optimiza-
tion problems (Tušar et al., 2016). Our goal is to use a wide
set of non-convex benchmarks to supplement our experi-
ments on our simple toy example of linear bandits. For
scalarized approaches, we use hypervolume scalarizations
with the scalarized UCB algorithm (Golovin and Zhang,
2020) with a constant standard deviation multiplier of 1.8
and all algorithms with use a Gaussian Process as the under-
lying model with a standard Matérn kernel that is tuned via
ARD (Williams and Rasmussen, 2006). Our objectives are
given by BBOB functions, which are usually non-negative
and are minimized. The input space is always a compact hy-
percube [−5, 5]n and the global minima is often at the origin.
For bi-objective optimization, given two different BBOB
functions f1, f2, we attempt to maximize the hypervolume
spanned by (−f1(xi),−f2(xi)) over choices of inputs xi

with respect to the reference point (−5,−5). We normalize
each function due to the drastically different ranges and add
random observation noise, as well as applying vectorized
shifts.

We run each of our algorithms in dimensions d = 8, 16, 24
and optimize for 160 iterations with 5 repeats. From our
results, we see that both EHVI and UCB with hypervolume
scalarizations are competitive on the BBOB problems but
the scalarized UCB algorithm seems to be able to explore
the extreme ends of the Pareto frontier, whereas EHVI tends
to favor points in the middle (see Figure 4). From our exper-
iments, this trend appears to be consistent across different
functions and is more prominent as the input dimensions d
increase, as shown by additional plots given in the appendix.

Figure 4. Comparisons of the hypervolume indicator and the op-
timization fronts with BBOB functions. The left plot tracks the
dominated hypervolume as a function of trials that were evaluated.
The blue/orange dots represent the frontier points of the UCB-
HV/EHVI algorithms respectively, over 5 repeats. Especially in
high dimensions, EHVI tends overly concentrate on points in the
middle of the frontier, limiting its hypervolume gain, while hyper-
volume scalarizations produce more diverse points.
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A. Additional Notation for Section 3.2
For various scalarizations and weight distributions, an re-
lated measure of progress that attempts to capture the re-
quirement of diversity in the Pareto front is scalarized
Bayes regret for some scalarization function sλ. For some
fixed scalarization with weights λ, sλ : Rk → R, we
can define the instantaneous scalarized (psuedo-)regret as
r(sλ, at) = maxa∈A sλ(Θ

⋆a)− sλ(Θ
⋆at)

Since the scalarized regret is only a function of a single
action at, it fails to capture the variety of solutions that
we would optimize for in the Pareto frontier. To capture
some notion of diversity, we must define progress with
respect to a set of past actions At. Generalizing the scalar-
ized regret above, we can formulate the Bayes regret as an
average of the scalarized regret over some distribution of
non-negative weight vectors, λ ∼ D. Specifically, we de-
fine the (scalarized) Bayes regret with respect to a set of ac-
tions At to be: BR(sλ,At) = Eλ∼D[maxa∈A sλ(F (a))−
maxa∈At

sλ(F (a))] = Eλ∼D[min
a∈At

r(sλ, a)]

Unlike previous notions of Bayes regret in literature, we are
actually calculating the Bayes regret of a reward function
that is maximized with respect to an entire set of actions At.
Specifically, by maximizing over all previous actions, this
captures the notion that during multi-objective optimization
our Pareto set is always expanding. We will see later that
this novel definition is the right one, as it generalizes to the
multi-objective setting in the form of hypervolume regret.

For theory, we use the classic stochastic linear bandit setting.
For the single-objective setting, in round t = 1, 2, ..., T , the
learner chooses an action at ∈ Rd from the action setA and
receives a reward yt = ⟨θ⋆, at⟩+ ξt where ξt is i.i.d. 1-sub-
Gaussian noise and θ⋆ ∈ Rd is the unknown true parameter
vector. In the multi-objective stochastic linear bandit setting,
the learner instead receives a vectorized reward yt = Θ⋆at+
ξt, where Θ⋆ ∈ Rk×d is now a matrix of k true parameters
and ξt ∈ Rk is a vector of independent 1-sub-Gaussian
noise. We also denote At ∈ Rd×t to be the history action
matrix, whose i-th column is ai, the action taken in round
i. Similarly, yt is defined analogously. Finally, for sake
of analysis, we assume that A contains an isotropic set of
actions and specifically, there is E ⊂ Awith size |E| = O(d)
such that

∑
i eie

⊤
i ⪰ 1

2I, where⪰ denotes the PSD ordering
on symmetric matrices. This assumption is not restrictive,
as it can be relaxed by using optimal design for least squares
estimators (Lattimore and Szepesvári, 2020) and the Kiefer-
Wolfrowitz Theorem (Kiefer and Wolfowitz, 1960), which
guarantees the existence and construction of an uniform
exploration basis of size O(poly(d)).

B. Additional Theorems for Section 3.2
By using the confidence ellipsoids given by the UCB algo-
rithm, we can determine each objective parameter Θ⋆

i , up to
a small error. To bound the scalarized regret, we utilize the
ℓp smoothness of sλ, Lp, to reduce the dependence on k to
be O(k1/p), which effectively removes the polynomial de-
pendence on k when p→∞. This is perhaps not surprising,
since each objective is observed independently and fully, so
the information gain scales with the number of objectives.
Lemma 9. Consider running EXPLOREUCB (Algorithm 1)
for T > max(k, d) iterations and for T even, let aT be
the action that maximizes the scalarized UCB in iteration
T/2. Then, with probability at least 1−δ, the instantaneous
scalarized regret can be bounded by

r(sλ, aT ) ≤ 10k
1
pLpd

√
log(k/δ) + log(T )

T

where Lp is the ℓp-Lipschitz constant for sλ(·).

Finally, we connect the expected Bayes regret with the em-
pirical average of scalarized regret via uniform convergence
properties of all functions of the form f(λ) = max

a∈A
sλ(Θ

⋆a).

By using sHV
λ and setting p = ∞, we derive our final fast

hypervolume regret rates for stochastic linear bandits, which
is the combination of the scalarized regret rates and the hy-
pervolume regret rates. Note that our analysis improve the
scalarized regret rates by removing the polynomial depen-
dence on k.
Theorem 10. Assume that for any a ∈ A, |sλ(Θ⋆a)| ≤ B
for some B and sλ is Lλ-Lipschitz with respect to the ℓ2
norm in λ. With constant probability, the Bayes regret of
running Algorithm 1 at round T can be bounded by

BR(sλ,AT ) ≤ O

(
k

1
pLpd

√
log(kT )

T
+

BLλ

T
1

k+1

)

C. Missing Proofs
Proof of Lemma 4. Let λ = y⋆/∥y⋆∥. Note that λ > 0
since y⋆ is in the positive orthant and for the sake of con-
tradiction, assume there exists z such that sλ(z) > sλ(y

⋆).
However, note that for any i, zi

λi
≥ mini

zi
λi

> mini
y⋆
i

λi
=

y⋆
i

λi
, where the last line follows since y⋆i /λi = ∥y⋆∥ for all

i by construction. Therefore, we conclude that y⋆ < z,
contradicting that y⋆ is Pareto optimal.

Finally, note that if αλ is on the Pareto frontier, then we
see that mini αλi/λi = α and furthermore, this min value
is achieved for all i. Therefore, since αλ is on the Pareto
frontier, any other point y ∈ Y has some coordinate j such
that yj < αλj , which implies that mini yi/λi < α.



Proof of 6. Let us first decompose

HVz(Y⋆) − HVz(YT ) ≤ |HVz(Y⋆) −∑T
i=1 maxy∈Y sλi

(y)| + |
∑T

i=1 maxy∈Y sλi
(y) −

HVz(YT )|

≤ |HVz(Y) −
∑

i maxy∈Y sλi
(y)| +

|
∑

i maxy∈YT
sλi(y)−HVz(YT )|

where the second inequality exploits the fact that yi ∈
argmax

y∈Y
sλi(y). We proceed to bound both parts separately

and we show that it suffices to prove uniform concentra-
tion of the empirical sum to the expectation, which is the
hypervolume by Lemma 5.

Let fY(λi) = maxy∈Y sλi(y). We let F = {fY : Y ⊆
A} be our class of functions over all possible output sets Y.
We will first demonstrate uniform convergence by bounding
the complexity of F . Specifically, by generalization bounds
from Rademacher complexities (Bartlett and Mendelson,
2002), over choices of λi ∼ D, we know that with probabil-
ity 1− δ, for all Y, we have the bound

∣∣∣∣∣ E
λ∼D

[fY]− 1

m

m∑
i=1

fY(λi)

∣∣∣∣∣ ≤ Rm(F) +
√

8 ln(2/δ)

m

where Rm(F) = Eλi∼D,σi

[
sup
f∈F

2
m

∑
i σif(λi)

]
, where

σi are i.i.d. ±1 Rademacher variables.

To bound Rm(F), we appeal to Dudley’s integral formula-
tion that allows us to use the metric entropy of F to bound

Rm(F) ≤ inf
α>0

(
4α+ 12

∫ ∞

α

√
log(N (ϵ,F , ∥ · ∥2))

m
dϵ

)

whereN denotes the standard covering number for F under
the ℓ2 function norm metric over λ ∈ D.

Since D is the uniform distribution over S+, this induces
a natural ℓ∞ function norm metric on F that is ∥f∥∞ =
supλ∈S+

|f(λ)|. By Lemma 14, sλ(y) is Lλ Lipschitz with
respect to the Euclidean norm in λ. Note that since the
maximal operator preserves Lipschitzness, fY(λ) is also
Lλ-Lipschitz with respect to λ ∈ Rk for any Y. Since F
contains Lλ-Lipschitz functions in Rk, we can bound the
metric entropy via a covering of λ via a Lipschitz covering
argument (see Lemma 4.2 of (Gottlieb et al., 2016)), so we
have

log(N (ϵ,F , ∥·∥2)) ≤ log(N (ϵ,F , ∥·∥∞)) ≤ (4Lλ/ϵ)
k log(8/k)

Finally, we follow the same Dudley integral computation of
Theorem 4.3 of (Gottlieb et al., 2016) to get that

Rm(F) ≤ inf
α>0

(
4α+ 12

∫ 2

α

√
(4Lλ/ϵ)k log(8/k)

T
dϵ

)

= O(Lλ/m
1/(k+1))

Therefore, we conclude that with probability at least 1− δ
over the independent choices of λi ∼ D, for all Y and
setting m = T

∣∣∣∣∣ E
λ∼D

[
max
a∈Y

sλ(Θ
⋆a)

]
− 1

T

T∑
i=1

max
a∈Y

sλi
(Θ⋆a)

∣∣∣∣∣
≤ O

(
BLλ

T 1/(k+1)

)
+

√
8 ln(2/δ)

T

Finally, we conclude by using Lemma 5 to replace the ex-
pectation by the hypervolume and by setting Y = Y,YT
respectively.

C.1. Proofs of Lipschitz Properties

We utilize the fact that if sλ is differentiable everywhere
except for a finite set, bounding Lipschitz constants is
equivalent to bounding the dual norm ∥∇sλ∥q, where
1/p + 1/q = 1, which follows from mean value theorem,
which we state as Proposition 11.

Proposition 11. Let f : X → R be a continuous function
that is differentiable everywhere except on a finite set, then
if ∥∇f(x)∥q ≤ Lp for all x ∈ X , f(x) is Lp-Lipshitz with
respect to the ℓp norm.

Lemma 12. Let sλ(y) = λ⊤y be the linear scalarization
with ∥λ∥ ≤ 1 and ∥y∥∞ ≤ 1. Then, we may bound Lp ≤
max(1, k1/2−1/p) and Lλ ≤

√
k and |sλ| ≤

√
k.

Proof of Lemma 12. Since ∇λsλ(x) = y, we use Propo-
sition 11 to bound Lλ ≤ maxy ∥y∥ ≤

√
k∥y∥∞ =

√
k.

Similarly, since ∇ysλ(y) = λ, we may bound for p ≤ 2,
Lp ≤ ∥λ∥q ≤ ∥λ∥ ≤ 1 for 1/p + 1/q = 1 and for p ≥ 2,
we may use Holder’s inequality to bound Lp ≤ ∥λ∥q ≤
k1/q−1/2∥λ∥ ≤ k1/2−1/p.

To bound the absolute value of sλ, note sλ(y) = λ⊤y ≤
√
k

for all since ∥y∥2 ≤
√
k∥y∥∞ ≤

√
k.

Lemma 13. Let sλ(y) = mini λiyi be the Chebyshev
scalarization with ∥λ∥ ≤ 1 and ∥y∥∞ ≤ 1. Then, we
may bound Lp ≤ 1 and Lλ ≤ 1 and |sλ| ≤ 1/

√
k.

Proof of Lemma 13. For a specific λ, y, let i⋆ be the optimal
index of the minimization. Then, the gradient ∇λsλ(x) is
simply zero in every coordinate except at i⋆, where it is



yi⋆ . Therefore, since we can only have a finite number of
discontinuities due to monotonicity, we use Proposition 11
to bound Lλ ≤ yi⋆ ≤ 1. Similarly, since∇ysλ(y) has only
one non-zero coordinate except at i⋆, which is λi⋆ , we may
bound for Lq ≤ λi⋆ ≤ 1.

To bound the absolute value of sλ, note that there must
exists λi < 1/

√
k as ∥λ∥ ≤ 1. Thus, mini λiyi < 1/

√
k

for ∥y∥∞ ≤ 1.

Lemma 14. Let sλ(y) = mini(yi/λi)
k be the hypervolume

scalarization with ∥λ∥ = 1 and 0 < Bl ≤ yi ≤ Bu. Then,

we may bound Lp ≤ Bk
u

Blkk/2−1 and Lλ ≤ Bk+1
u

Blk(k−1)/2 and

|sλ| ≤ Bk
u

kk/2 .

Proof of Lemma 14. For a specific λ, y, let i⋆ be the optimal
index of the minimization. Then, the gradient ∇λsλ(x)
is simply zero in every coordinate except at i⋆, which in
absolute value is k(yi⋆/λi⋆)

k(1/λi⋆).

Let j be the index such that λj is maximized and since
∥λ∥ = 1, we know that λj ≥ 1/

√
k. Therefore, we see

that since yi⋆/λi⋆ ≤ yj/λj ≤ yj/
√
k, we conclude that

1/λi⋆ ≤ (Bu/Bl)/
√
k.

Therefore, using Proposition 11, we have
Lλ ≤ k(yi⋆/λi⋆)

k(1/λi⋆) ≤ k(Bu/
√
k)k (Bu/Bl)√

k
=

Bk+1
u k(k+1)/2

Blk(k−1)/2

And similarly, since∇ysλ(y) has only one non-zero coordi-
nate except at i⋆, which is k(yi⋆/λi⋆)

k−1(1/λi⋆), we may
bound for

Lq ≤ k(yi⋆/λi⋆)
k−1(1/λi⋆) ≤ k(Bu/

√
k)k−1 (Bu/Bl)√

k
≤

Bk
u

Blkk/2−1

To bound the absolute value of sλ, note that sλ(y) ≤
(
yj

λj
)k ≤ Bk

u

kk/2 .

C.2. Proofs for Linear Bandits

The following lemma about the UCB ellipsoid is borrowed
from the original analysis of linear bandits.

Lemma 15 ((Abbasi-Yadkori et al., 2011)). Consider the
least squares estimator θ̂t = (Mt)

−1A⊤
t yt, where the co-

variance matrix of the action matrix is Mt = A⊤
t At + λI,

then with probability 1− δ,

∥θ̂t − θ∗∥Mt
≤
√
λ∥θ∗∥+

√
2 log(

1

δ
) + d log(T/λ)

Proof of Lemma 9. Let Θ̂T be the least squares estimate
of the true parameters after observing (AT ,yT ). Since

the noise ξt in each objective is independent and 1-sub-
Gaussian, by Lemma 15, if we let MT = A⊤

TAT + λI,
then with regularization λ = 1

∥Θ̂Ti −Θ⋆
i ∥MT

≤ 1 +
√

2 log(k/δ) + d log(T ) := DT

holds with probability at least 1 − δ/k. Note that this
describes the confidence ellipsoid, CTi = {θ ∈ Rd :

∥Θ̂Ti − θi∥MT
≤ DT } for ΘTi.

By the definition of the UCB maximization of at, we
see at, Θ̃t = argmaxa∈A maxθi∈CTi

sλ(Θ
⊤
i a). Note that

since Θ⋆ ∈ CT , we can bound the instantaneous scalarized
regret as:

r(sλ, at) = max
a∈A

sλ(Θ
⋆a)−sλ(Θ⋆at) ≤ sλ(Θ̃tat)−sλ(Θ⋆at)

By the Lipschitz smoothness condition, we conclude that
r(sλ, at) ≤ Lp∥(Θ̃t −Θ⋆)at∥p.

To bound the desired ℓp norm, first note that by triangle
inequality, ∥Θ̃t−Θ⋆∥MT

≤ 2DT . Since we apply uniform
exploration every other step and

∑
i eie

⊤
i ⪰ 1

2I for ei ∈ E
with size |E| = d, we conclude that MT ⪰ T

5dI. Therefore,
we conclude that ∥Θ̂Ti −Θ⋆

i ∥ ≤ 5
√

d/TDT := ET with
probability at least 1− δ/k. Since ∥at∥ ≤ 1, we conclude
by Cauchy-Schwarz, that |(Θ̂Ti −Θ⋆

i )at| ≤ ET . Together
with our Lipschitz condition, we conclude that

r(sλ, at) ≤ k1/pLpET ≤ 10k1/pLpd
√
(log(k/δ) + log(T ))/T

.

Proof of Theorem 10. For any set of actions A ⊆ A, we
define fA(λ) = maxa∈A sλ(Θ

⋆a). We let F = {fA :
A ⊆ A} be our class of functions over all possible action
sets and for any Bayes regret bounds, we will first demon-
strate uniform convergence by bounding the complexity of
F . Specifically, by generalization bounds from Rademacher
complexities (Bartlett and Mendelson, 2002), over choices
of λi ∼ D, we know that with probability 1− δ, for all A,
we have the bound

∣∣∣∣∣ E
λ∼D

[fA]− 1

m

m∑
i=1

fA(λi)

∣∣∣∣∣ ≤ Rm(F) +
√

8 ln(2/δ)

m

where Rm(F) = Eλi∼D,σi

[
sup
f∈F

2
m

∑
i σif(λi)

]
, where

σi are i.i.d. ±1 Rademacher variables.



To bound Rm(F), we appeal to Dudley’s integral formula-
tion that allows us to use the metric entropy of F to bound

Rm(F) ≤ inf
α>0

(
4α+ 12

∫ ∞

α

√
log(N (ϵ,F , ∥ · ∥2))

m
dϵ

)

whereN denotes the standard covering number for F under
the ℓ2 function norm metric over λ ∈ D.

Since D is the uniform distribution over S+, this induces
a natural ℓ∞ function norm metric on F that is ∥f∥∞ =
supλ∈S+

|f(λ)|. Since sλ(Θ
⋆a) is Lλ Lipschitz with re-

spect to the Euclidean norm in λ. Note that since the
maximal operator preserves Lipschitzness, fA(λ) is also
Lλ-Lipschitz with respect to λ ∈ Rk. Since F contains Lλ-
Lipschitz functions in Rk, we can bound the metric entropy
via a covering of λ via a Lipschitz covering argument (see
Lemma 4.2 of (Gottlieb et al., 2016)), so we have

log(N (ϵ,F , ∥·∥2)) ≤ log(N (ϵ,F , ∥·∥∞)) ≤ (4Lλ/ϵ)
k log(8/k)

Finally, we follow the same Dudley integral computation of
Theorem 4.3 of (Gottlieb et al., 2016) to get that

Rm(F) ≤ inf
α>0

(
4α+ 12

∫ 2

α

√
(4Lλ/ϵ)k log(8/k)

m
dϵ

)

= O(Lλ/m
1/(k+1))

Therefore, we conclude that with probability at least 1− δ
over the independent choices of λi ∼ D, for all A,

∣∣∣∣∣ E
λ∼D

[
max
a∈A

sλ(Θ
⋆a)

]
− 1

m

m∑
i=1

max
a∈A

sλi(Θ
⋆a)

∣∣∣∣∣

≤ O

(
BLλ

m1/(k+1)

)
+

√
8 ln(2/δ)

m

Finally, note that for T even, with constant probability,

BR(sλ,At) = E
λ∼D

[r(sλ,At)]

= E
λ∼D

[max
a∈A

sλ(Θ
⋆a)− max

a∈AT

sλ(Θ
⋆a)]

≤ 1

T/2

T/2∑
i=1

[
max
a∈A

sλi(Θ
⋆a)− max

a∈AT

sλi(Θ
⋆a)

]
+O

(
BLλ

T 1/(k+1)

)

≤ 1

T/2

T/2∑
i=1

[
max
a∈A

sλi
(Θ⋆a)− sλi

(Θ⋆a2i)

]
+O

(
BLλ

T 1/(k+1)

)

≤ 1

T/2

T/2∑
i=1

r(sλi , a2i) +O

(
BLλ

T 1/(k+1)

)

≤ O

(
k1/pLpd

√
log(kT )

T
+

BLλ

T 1/(k+1)

)

where the last line used Lemma 9 with δ = 1/T 2 and
applied a union bound over all O(T ) iterations.

Proof of!Theorem 8. Note that by Lemma 5, we connect
the Bayes regret to the hypervolume regret for D :

HVz(Θ
⋆A)−HVz(Θ

⋆At) = ck E
λ∼D

[max
a∈A

sλ(Θ
⋆a)−max

a∈AT

sλ(Θ
⋆a)]

where sλ(y) = mini(yi − zi/λi)
k.

Note that since ∥Θ⋆a∥∞ ≤ 1 for all a ∈ A and B is
maximal, we have B ≤ Θ⋆a − z ≤ B + 2. Therefore,
we conclude by Lemma 14 that sλ is Lipschitz with

Lp ≤
(B + 2)k

Bkk/2−1
, Lλ ≤

(B + 2)k+1

Bk(k−1)/2
, |sλ| ≤

(B + 2)k

kk/2

Finally, we combine this with Theorem 10 with p =∞ as
the optimal choice of p (since Lp does not depend on p) to
get our desired bound on hypervolume regret.

Proof of Theorem 7. We let A = {a : ∥a∥ ≤ 1} be the unit
sphere and Θ⋆

i = ei be the unit vector directions. Note that
in this case the Pareto frontier is exactly Sk−1

+ .

Consider a uniform discretization of the Pareto front by
taking an ϵ grid with respect to each angular component
with respect to the polar coordinates. Let p1, ..., pm be the
center (in terms of each of the k − 1 angular dimensions)



in the m = Θ((1/ϵ)k−1) grid elements. We consider the
output yT = Θ⋆AT and assume that for some grid element
i, it contains none of the T outputs yT . Since our radial
component r = 1, by construction of our grid in the angular
component, we deduce that mint ∥yt − pi∥∞ > ϵ/10 by
translating polar to axis-aligned coordinates.

Let ϵ′ = ϵ/10. Assume also that 1
k < pi < 1 − 1

k . Next,
we claim that the hypercube from pi − ϵ′/k2 to pi is not
dominated by any points in YT . Assume otherwise that
there exists yt such that yt ≥ pi−ϵ′/k2. Now, this combined
with the fact that since mint ∥yt − pi∥∞ > ϵ′ implies that
there must exist a coordinate such that ytj ≥ pj + ϵ′.

However, this implies that

k∑
i=1

y2ti ≥
∑
i̸=j

(pi − ϵ′/k2)2 + (pj + ϵ′)2

≥
∑
i

p2i − 2(ϵ′/k2)
∑
i ̸=j

pi + 2ϵ′pj > 1

where the last inequality follows since
∑

i pi < 1/
√
k and

pj > 1
k by assumption. However, this contradicts that

∥yt∥ ≤ 1, so it follows that pi − ϵ′ is not dominated.

Therefore, for any grid element such that pi > 1/k, if
there is no yt in the grid, we must have a hypervolume
regret of at least Ω(ϵ′k) = Ω(ϵk) be simply consider the
undominated hypervolume from pi to pi − ϵ′, which lies
entirely within the grid element. In fact, since there are
Θ((1/ϵ)k−1) such grid elements satisfying pi > 1/k, we
see that if T < O((1/ϵ)k−1), by pigeonhole, there must be
a hypervolume regret of at least Ω((1/ϵ)k−1ϵk) = Ω(ϵ)

Therefore, for any 1/2 > ϵ > 0, HVz(Θ
⋆A) −

HVz(Θ
⋆AT ) < ϵ implies that T = Ω((1/ϵ)k−1). Rear-

ranging shows that

HVz(Θ
⋆A)−HVz(Θ

⋆AT ) = Ω(T−1/(k−1))

D. Figures
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Dim: 24 Exp: ELLIPSOID_SEPARABLE 
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2.318
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Dim: 8 Exp: ELLIPSOID_SEPARABLE 
EHVI
UCB_HV

2.5 2.0 1.5 1.0 0.5 0.0
3.032
2.848
2.663
2.479
2.295
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1.926
1.742
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Dim: 24 Exp: ELLIPSOID_SEPARABLE:RASTRIGIN_SEPARABLE 
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UCB_HV

3.0 2.5 2.0 1.5 1.0 0.5
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2.051
1.921
1.790
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Dim: 24 Exp: ELLIPSOID_SEPARABLE:RASTRIGIN_SEPARABLE 
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UCB_HV
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17.565
17.950
18.335
18.720
19.105
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21.031
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Dim: 8 Exp: ELLIPSOID_SEPARABLE:RASTRIGIN_SEPARABLE 
EHVI
UCB_HV

2.5 2.0 1.5 1.0 0.5 0.0
2.230
2.091
1.952
1.813
1.674
1.535
1.396
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1.118
0.979
0.840
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Dim: 8 Exp: ELLIPSOID_SEPARABLE:RASTRIGIN_SEPARABLE 
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UCB_HV
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Dim: 16 Exp: ELLIPSOID_SEPARABLE:SCHWEFEL 
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UCB_HV

4 3 2 1 0
2.673
2.515
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2.197
2.039
1.880
1.721
1.563
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Dim: 16 Exp: ELLIPSOID_SEPARABLE:SCHWEFEL 
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16.447
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17.411
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Dim: 24 Exp: ELLIPSOID_SEPARABLE:SCHWEFEL 
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3.227
3.039
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2.474
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2.097
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1.721
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0.968
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0.403
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Dim: 24 Exp: ELLIPSOID_SEPARABLE:SCHWEFEL 

EHVI
UCB_HV
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15.641
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16.670
17.185
17.699
18.214
18.729
19.243
19.758
20.272
20.787
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Dim: 8 Exp: ELLIPSOID_SEPARABLE:SCHWEFEL 
EHVI
UCB_HV

4 3 2 1 0
4.338
4.084
3.831
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3.324
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2.818
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2.311
2.058
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1.552
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Dim: 8 Exp: ELLIPSOID_SEPARABLE:SCHWEFEL 
EHVI
UCB_HV
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# of Trials

18.428
18.813
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19.582
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20.351
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Dim: 16 Exp: ELLIPSOID_SEPARABLE:SPHERE 
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UCB_HV

2.0 1.5 1.0 0.5 0.0
1.975
1.861
1.748
1.635
1.521
1.408
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1.068
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0.842
0.728
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17.818
18.197
18.575
18.953
19.332
19.710
20.089
20.467
20.845
21.224
21.602
21.981
22.359
22.737
23.116
23.494
23.872
24.251
24.629
25.008

hy
pe

rv
ol

um
e
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1.728
1.635
1.542
1.449
1.356
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1.077
0.984
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Dim: 24 Exp: ELLIPSOID_SEPARABLE:SPHERE 
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19.788
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Dim: 16 Exp: RASTRIGIN_SEPARABLE 
EHVI
UCB_HV

2.5 2.0 1.5 1.0 0.5 0.0
5.241
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4.399
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3.838
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2.436
2.155
1.875
1.594
1.314
1.034
0.753
0.473
0.192
0.088

pa
re

to
_p

lo
t

Dim: 16 Exp: RASTRIGIN_SEPARABLE 
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Dim: 24 Exp: RASTRIGIN_SEPARABLE 
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4.046
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Dim: 24 Exp: RASTRIGIN_SEPARABLE 
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4.109
3.825
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14.939
15.315
15.691
16.067
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18.322
18.698
19.074
19.449
19.825
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Dim: 24 Exp: RASTRIGIN_SEPARABLE:SCHWEFEL 
EHVI
UCB_HV

3.0 2.5 2.0 1.5 1.0 0.5 0.0
5.240
4.962
4.684
4.407
4.129
3.851
3.574
3.296
3.018
2.741
2.463
2.185
1.908
1.630
1.352
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Dim: 24 Exp: RASTRIGIN_SEPARABLE:SCHWEFEL 
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UCB_HV
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13.858
14.368
14.879
15.389
15.899
16.409
16.920
17.430
17.940
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18.961
19.471
19.981
20.491
21.002
21.512
22.022
22.532
23.042
23.553
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Dim: 8 Exp: RASTRIGIN_SEPARABLE:SCHWEFEL 
EHVI
UCB_HV

3.0 2.5 2.0 1.5 1.0 0.5 0.0
5.244
4.961
4.678
4.395
4.113
3.830
3.547
3.264
2.981
2.698
2.415
2.132
1.849
1.566
1.283
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0.717
0.434
0.151
0.132

pa
re

to
_p

lo
t

Dim: 8 Exp: RASTRIGIN_SEPARABLE:SCHWEFEL 
EHVI
UCB_HV

0 20 40 60 80 100 120 140 160
# of Trials

16.975
17.278
17.581
17.885
18.188
18.491
18.794
19.097
19.401
19.704
20.007
20.310
20.614
20.917
21.220
21.523
21.826
22.130
22.433
22.736
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Dim: 16 Exp: RASTRIGIN_SEPARABLE:SPHERE 
EHVI
UCB_HV

2.5 2.0 1.5 1.0 0.5
2.201
2.076
1.950
1.825
1.700
1.574
1.449
1.323
1.198
1.072
0.947
0.821
0.696
0.571
0.445
0.320
0.194
0.069
0.057
0.182
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Dim: 16 Exp: RASTRIGIN_SEPARABLE:SPHERE 
EHVI
UCB_HV

0 20 40 60 80 100 120 140 160
# of Trials

16.393
16.708
17.023
17.337
17.652
17.967
18.282
18.597
18.912
19.227
19.542
19.857
20.172
20.487
20.802
21.117
21.432
21.746
22.061
22.376
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Dim: 24 Exp: RASTRIGIN_SEPARABLE:SPHERE 
EHVI
UCB_HV

2.00 1.75 1.50 1.25 1.00 0.75 0.50 0.25
2.126
2.012
1.897
1.783
1.669
1.554
1.440
1.325
1.211
1.096
0.982
0.867
0.753
0.639
0.524
0.410
0.295
0.181
0.066
0.048
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Dim: 24 Exp: RASTRIGIN_SEPARABLE:SPHERE 
EHVI
UCB_HV

0 20 40 60 80 100 120 140 160
# of Trials

17.438
17.789
18.139
18.489
18.839
19.190
19.540
19.890
20.240
20.590
20.941
21.291
21.641
21.991
22.341
22.692
23.042
23.392
23.742
24.092
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Dim: 8 Exp: RASTRIGIN_SEPARABLE:SPHERE 
EHVI
UCB_HV

2.5 2.0 1.5 1.0 0.5 0.0
3.433
3.232
3.030
2.829
2.627
2.426
2.224
2.022
1.821
1.619
1.418
1.216
1.014
0.813
0.611
0.410
0.208
0.006
0.195
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Dim: 8 Exp: RASTRIGIN_SEPARABLE:SPHERE 
EHVI
UCB_HV

0 20 40 60 80 100 120 140 160
# of Trials

15.61
16.20
16.80
17.39
17.99
18.58
19.17
19.77
20.36
20.96
21.55
22.15
22.74
23.33
23.93
24.52
25.12
25.71
26.31
26.90
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Dim: 16 Exp: SCHWEFEL 
EHVI
UCB_HV

1.2 1.0 0.8 0.6 0.4 0.2 0.0 0.2
1.743
1.633
1.524
1.414
1.304
1.195
1.085
0.975
0.866
0.756
0.646
0.537
0.427
0.317
0.208
0.098
0.012
0.121
0.231
0.341
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Dim: 16 Exp: SCHWEFEL 

EHVI
UCB_HV
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15.15
15.75
16.36
16.96
17.56
18.16
18.76
19.37
19.97
20.57
21.17
21.78
22.38
22.98
23.58
24.19
24.79
25.39
25.99
26.59
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Dim: 24 Exp: SCHWEFEL 
EHVI
UCB_HV

0.6 0.4 0.2 0.0 0.2
1.388
1.301
1.214
1.126
1.039
0.951
0.864
0.776
0.689
0.602
0.514
0.427
0.339
0.252
0.164
0.077
0.011
0.098
0.185
0.273
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Dim: 24 Exp: SCHWEFEL 
EHVI
UCB_HV
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# of Trials

14.75
15.41
16.08
16.75
17.42
18.08
18.75
19.42
20.09
20.75
21.42
22.09
22.76
23.42
24.09
24.76
25.43
26.09
26.76
27.43

hy
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Dim: 8 Exp: SCHWEFEL 
EHVI
UCB_HV

1.25 1.00 0.75 0.50 0.25 0.00 0.25
1.668
1.559
1.450
1.342
1.233
1.125
1.016
0.908
0.799
0.691
0.582
0.473
0.365
0.256
0.148
0.039
0.069
0.178
0.287
0.395

pa
re
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Dim: 8 Exp: SCHWEFEL 
EHVI
UCB_HV

0 20 40 60 80 100 120 140 160
# of Trials

16.512
16.989
17.467
17.944
18.421
18.898
19.376
19.853
20.330
20.808
21.285
21.762
22.240
22.717
23.194
23.672
24.149
24.626
25.103
25.581

hy
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Dim: 16 Exp: SCHWEFEL:SPHERE 
EHVI
UCB_HV

3.0 2.5 2.0 1.5 1.0 0.5 0.0
2.351
2.215
2.080
1.945
1.809
1.674
1.538
1.403
1.268
1.132
0.997
0.861
0.726
0.591
0.455
0.320
0.184
0.049
0.086
0.222
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Dim: 16 Exp: SCHWEFEL:SPHERE 
EHVI
UCB_HV

0 20 40 60 80 100 120 140 160
# of Trials

16.696
17.103
17.510
17.918
18.325
18.732
19.140
19.547
19.955
20.362
20.769
21.177
21.584
21.992
22.399
22.806
23.214
23.621
24.029
24.436

hy
pe

rv
ol

um
e

Dim: 24 Exp: SCHWEFEL:SPHERE 
EHVI
UCB_HV

2.5 2.0 1.5 1.0 0.5 0.0
2.116
1.996
1.877
1.757
1.637
1.517
1.397
1.277
1.157
1.037
0.917
0.797
0.677
0.557
0.437
0.317
0.197
0.077
0.043
0.163

pa
re

to
_p

lo
t

Dim: 24 Exp: SCHWEFEL:SPHERE 
EHVI
UCB_HV

0 20 40 60 80 100 120 140 160
# of Trials

15.52
16.08
16.65
17.21
17.77
18.34
18.90
19.46
20.03
20.59
21.16
21.72
22.28
22.85
23.41
23.97
24.54
25.10
25.67
26.23

hy
pe

rv
ol

um
e

Dim: 8 Exp: SCHWEFEL:SPHERE 
EHVI
UCB_HV

3.0 2.5 2.0 1.5 1.0 0.5 0.0
3.502
3.297
3.093
2.888
2.683
2.479
2.274
2.069
1.865
1.660
1.455
1.251
1.046
0.841
0.637
0.432
0.227
0.023
0.182
0.387

pa
re

to
_p

lo
t

Dim: 8 Exp: SCHWEFEL:SPHERE 

EHVI
UCB_HV

0 20 40 60 80 100 120 140 160
# of Trials

18.424
18.741
19.058
19.375
19.692
20.009
20.326
20.642
20.959
21.276
21.593
21.910
22.227
22.544
22.860
23.177
23.494
23.811
24.128
24.445

hy
pe

rv
ol

um
e

Dim: 16 Exp: SPHERE 
EHVI
UCB_HV

2.5 2.0 1.5 1.0 0.5 0.0
2.811
2.644
2.477
2.310
2.144
1.977
1.810
1.643
1.477
1.310
1.143
0.976
0.810
0.643
0.476
0.309
0.142
0.024
0.191
0.358

pa
re

to
_p

lo
t

Dim: 16 Exp: SPHERE 
EHVI
UCB_HV

0 20 40 60 80 100 120 140 160
# of Trials

17.857
18.158
18.459
18.760
19.061
19.362
19.663
19.965
20.266
20.567
20.868
21.169
21.470
21.771
22.073
22.374
22.675
22.976
23.277
23.578

hy
pe

rv
ol

um
e

Dim: 24 Exp: SPHERE 
EHVI
UCB_HV

2.0 1.5 1.0 0.5 0.0
2.752
2.601
2.450
2.299
2.148
1.997
1.846
1.695
1.544
1.393
1.242
1.091
0.940
0.789
0.638
0.487
0.336
0.185
0.033
0.118

pa
re

to
_p

lo
t

Dim: 24 Exp: SPHERE 
EHVI
UCB_HV

0 20 40 60 80 100 120 140 160
# of Trials

17.553
17.957
18.361
18.765
19.169
19.573
19.977
20.381
20.785
21.189
21.593
21.997
22.401
22.805
23.209
23.613
24.017
24.421
24.826
25.230

hy
pe

rv
ol

um
e

Dim: 8 Exp: SPHERE 
EHVI
UCB_HV

2.5 2.0 1.5 1.0 0.5 0.0
2.777
2.614
2.452
2.289
2.127
1.965
1.802
1.640
1.477
1.315
1.153
0.990
0.828
0.666
0.503
0.341
0.178
0.016
0.146
0.309

pa
re

to
_p

lo
t

Dim: 8 Exp: SPHERE 
EHVI
UCB_HV

All plot elements for noise MODERATE_ADDITIVE_GAUSSIAN



0 20 40 60 80 100 120 140 160
# of Trials

18.007
18.407
18.808
19.208
19.608
20.008
20.408
20.808
21.208
21.609
22.009
22.409
22.809
23.209
23.609
24.009
24.410
24.810
25.210
25.610

hy
pe

rv
ol

um
e

Dim: 16 Exp: ELLIPSOID_SEPARABLE 
EHVI
UCB_HV

3.0 2.5 2.0 1.5 1.0 0.5 0.0
3.340
3.143
2.946
2.749
2.552
2.355
2.158
1.961
1.764
1.567
1.370
1.173
0.976
0.779
0.582
0.385
0.188
0.009
0.206
0.403

pa
re

to
_p

lo
t

Dim: 16 Exp: ELLIPSOID_SEPARABLE 
EHVI
UCB_HV

0 20 40 60 80 100 120 140 160
# of Trials

18.142
18.498
18.854
19.210
19.566
19.922
20.278
20.634
20.990
21.346
21.702
22.058
22.414
22.770
23.126
23.482
23.838
24.193
24.549
24.905

hy
pe

rv
ol

um
e

Dim: 24 Exp: ELLIPSOID_SEPARABLE 
EHVI
UCB_HV

3.0 2.5 2.0 1.5 1.0 0.5 0.0
2.626
2.472
2.318
2.165
2.011
1.858
1.704
1.551
1.397
1.244
1.090
0.937
0.783
0.630
0.476
0.323
0.169
0.015
0.138
0.292

pa
re

to
_p

lo
t

Dim: 24 Exp: ELLIPSOID_SEPARABLE 
EHVI
UCB_HV

0 20 40 60 80 100 120 140 160
# of Trials

18.495
18.856
19.218
19.579
19.940
20.302
20.663
21.025
21.386
21.748
22.109
22.471
22.832
23.193
23.555
23.916
24.278
24.639
25.001
25.362

hy
pe

rv
ol

um
e

Dim: 8 Exp: ELLIPSOID_SEPARABLE 
EHVI
UCB_HV

2.5 2.0 1.5 1.0 0.5 0.0
3.032
2.848
2.663
2.479
2.295
2.111
1.926
1.742
1.558
1.374
1.190
1.005
0.821
0.637
0.453
0.268
0.084
0.100
0.284
0.468

pa
re

to
_p

lo
t

Dim: 8 Exp: ELLIPSOID_SEPARABLE 
EHVI
UCB_HV

0 20 40 60 80 100 120 140 160
# of Trials

16.976
17.337
17.699
18.061
18.423
18.785
19.146
19.508
19.870
20.232
20.593
20.955
21.317
21.679
22.040
22.402
22.764
23.126
23.487
23.849

hy
pe

rv
ol

um
e

Dim: 16 Exp: ELLIPSOID_SEPARABLE:RASTRIGIN_SEPARABLE 
EHVI
UCB_HV

2.5 2.0 1.5 1.0 0.5
2.128
1.998
1.868
1.739
1.609
1.479
1.350
1.220
1.091
0.961
0.831
0.702
0.572
0.442
0.313
0.183
0.053
0.076
0.206
0.336

pa
re

to
_p

lo
t

Dim: 16 Exp: ELLIPSOID_SEPARABLE:RASTRIGIN_SEPARABLE 
EHVI
UCB_HV

0 20 40 60 80 100 120 140 160
# of Trials

16.609
16.971
17.333
17.695
18.057
18.419
18.780
19.142
19.504
19.866
20.228
20.590
20.952
21.313
21.675
22.037
22.399
22.761
23.123
23.485

hy
pe

rv
ol

um
e

Dim: 24 Exp: ELLIPSOID_SEPARABLE:RASTRIGIN_SEPARABLE 
EHVI
UCB_HV

3.0 2.5 2.0 1.5 1.0 0.5
2.182
2.051
1.921
1.790
1.660
1.529
1.399
1.269
1.138
1.008
0.877
0.747
0.616
0.486
0.355
0.225
0.094
0.036
0.167
0.297

pa
re

to
_p

lo
t

Dim: 24 Exp: ELLIPSOID_SEPARABLE:RASTRIGIN_SEPARABLE 
EHVI
UCB_HV

0 20 40 60 80 100 120 140 160
# of Trials

17.565
17.950
18.335
18.720
19.105
19.491
19.876
20.261
20.646
21.031
21.416
21.801
22.186
22.571
22.956
23.341
23.726
24.111
24.496
24.881

hy
pe

rv
ol

um
e

Dim: 8 Exp: ELLIPSOID_SEPARABLE:RASTRIGIN_SEPARABLE 
EHVI
UCB_HV

2.5 2.0 1.5 1.0 0.5 0.0
2.230
2.091
1.952
1.813
1.674
1.535
1.396
1.257
1.118
0.979
0.840
0.701
0.562
0.423
0.284
0.145
0.006
0.133
0.272
0.411

pa
re

to
_p

lo
t

Dim: 8 Exp: ELLIPSOID_SEPARABLE:RASTRIGIN_SEPARABLE 
EHVI
UCB_HV

0 20 40 60 80 100 120 140 160
# of Trials

16.346
16.834
17.323
17.811
18.300
18.788
19.276
19.765
20.253
20.742
21.230
21.719
22.207
22.696
23.184
23.672
24.161
24.649
25.138
25.626

hy
pe

rv
ol

um
e

Dim: 16 Exp: ELLIPSOID_SEPARABLE:SCHWEFEL 
EHVI
UCB_HV

4 3 2 1 0
2.673
2.515
2.356
2.197
2.039
1.880
1.721
1.563
1.404
1.245
1.087
0.928
0.770
0.611
0.452
0.294
0.135
0.024
0.182
0.341

pa
re

to
_p

lo
t

Dim: 16 Exp: ELLIPSOID_SEPARABLE:SCHWEFEL 
EHVI
UCB_HV

0 20 40 60 80 100 120 140 160
# of Trials

16.447
16.929
17.411
17.893
18.375
18.857
19.338
19.820
20.302
20.784
21.266
21.748
22.230
22.712
23.194
23.676
24.158
24.639
25.121
25.603

hy
pe

rv
ol

um
e

Dim: 24 Exp: ELLIPSOID_SEPARABLE:SCHWEFEL 
EHVI
UCB_HV

4 3 2 1 0
3.227
3.039
2.851
2.662
2.474
2.286
2.097
1.909
1.721
1.533
1.344
1.156
0.968
0.780
0.591
0.403
0.215
0.027
0.162
0.350

pa
re

to
_p

lo
t

Dim: 24 Exp: ELLIPSOID_SEPARABLE:SCHWEFEL 

EHVI
UCB_HV

0 20 40 60 80 100 120 140 160
# of Trials

15.641
16.156
16.670
17.185
17.699
18.214
18.729
19.243
19.758
20.272
20.787
21.301
21.816
22.330
22.845
23.359
23.874
24.389
24.903
25.418

hy
pe

rv
ol

um
e

Dim: 8 Exp: ELLIPSOID_SEPARABLE:SCHWEFEL 
EHVI
UCB_HV

4 3 2 1 0
4.338
4.084
3.831
3.578
3.324
3.071
2.818
2.565
2.311
2.058
1.805
1.552
1.298
1.045
0.792
0.538
0.285
0.032
0.221
0.475

pa
re

to
_p

lo
t

Dim: 8 Exp: ELLIPSOID_SEPARABLE:SCHWEFEL 
EHVI
UCB_HV

0 20 40 60 80 100 120 140 160
# of Trials

18.428
18.813
19.197
19.582
19.967
20.351
20.736
21.121
21.505
21.890
22.274
22.659
23.044
23.428
23.813
24.198
24.582
24.967
25.351
25.736

hy
pe

rv
ol

um
e

Dim: 16 Exp: ELLIPSOID_SEPARABLE:SPHERE 
EHVI
UCB_HV

2.0 1.5 1.0 0.5 0.0
1.975
1.861
1.748
1.635
1.521
1.408
1.295
1.182
1.068
0.955
0.842
0.728
0.615
0.502
0.388
0.275
0.162
0.048
0.065
0.178

pa
re

to
_p

lo
t

Dim: 16 Exp: ELLIPSOID_SEPARABLE:SPHERE 
EHVI
UCB_HV

0 20 40 60 80 100 120 140 160
# of Trials

17.818
18.197
18.575
18.953
19.332
19.710
20.089
20.467
20.845
21.224
21.602
21.981
22.359
22.737
23.116
23.494
23.872
24.251
24.629
25.008

hy
pe

rv
ol

um
e

Dim: 24 Exp: ELLIPSOID_SEPARABLE:SPHERE 
EHVI
UCB_HV

1.75 1.50 1.25 1.00 0.75 0.50 0.25 0.00 0.25
1.728
1.635
1.542
1.449
1.356
1.263
1.170
1.077
0.984
0.891
0.798
0.705
0.612
0.519
0.426
0.333
0.240
0.147
0.054
0.039

pa
re

to
_p

lo
t

Dim: 24 Exp: ELLIPSOID_SEPARABLE:SPHERE 
EHVI
UCB_HV

0 20 40 60 80 100 120 140 160
# of Trials

17.978
18.431
18.883
19.335
19.788
20.240
20.692
21.145
21.597
22.050
22.502
22.954
23.407
23.859
24.311
24.764
25.216
25.668
26.121
26.573

hy
pe

rv
ol

um
e

Dim: 8 Exp: ELLIPSOID_SEPARABLE:SPHERE 
EHVI
UCB_HV

2.0 1.5 1.0 0.5 0.0
2.604
2.451
2.297
2.144
1.991
1.838
1.685
1.532
1.378
1.225
1.072
0.919
0.766
0.613
0.459
0.306
0.153
0.000
0.153
0.306

pa
re

to
_p

lo
t

Dim: 8 Exp: ELLIPSOID_SEPARABLE:SPHERE 
EHVI
UCB_HV

0 20 40 60 80 100 120 140 160
# of Trials

15.824
16.089
16.354
16.619
16.884
17.149
17.414
17.678
17.943
18.208
18.473
18.738
19.003
19.268
19.533
19.797
20.062
20.327
20.592
20.857

hy
pe

rv
ol

um
e

Dim: 16 Exp: RASTRIGIN_SEPARABLE 
EHVI
UCB_HV

2.5 2.0 1.5 1.0 0.5 0.0
5.241
4.960
4.680
4.399
4.119
3.838
3.558
3.277
2.997
2.716
2.436
2.155
1.875
1.594
1.314
1.034
0.753
0.473
0.192
0.088

pa
re

to
_p

lo
t

Dim: 16 Exp: RASTRIGIN_SEPARABLE 
EHVI
UCB_HV

0 20 40 60 80 100 120 140 160
# of Trials

15.522
15.769
16.016
16.262
16.509
16.756
17.003
17.250
17.497
17.743
17.990
18.237
18.484
18.731
18.978
19.224
19.471
19.718
19.965
20.212

hy
pe

rv
ol

um
e

Dim: 24 Exp: RASTRIGIN_SEPARABLE 
EHVI
UCB_HV

2.5 2.0 1.5 1.0 0.5
5.107
4.842
4.577
4.311
4.046
3.781
3.516
3.251
2.986
2.721
2.456
2.191
1.925
1.660
1.395
1.130
0.865
0.600
0.335
0.070

pa
re

to
_p

lo
t

Dim: 24 Exp: RASTRIGIN_SEPARABLE 

EHVI
UCB_HV

0 20 40 60 80 100 120 140 160
# of Trials

15.453
15.780
16.107
16.434
16.761
17.088
17.415
17.742
18.069
18.396
18.723
19.050
19.377
19.704
20.031
20.358
20.684
21.011
21.338
21.665

hy
pe

rv
ol

um
e

Dim: 8 Exp: RASTRIGIN_SEPARABLE 
EHVI
UCB_HV

2.5 2.0 1.5 1.0 0.5 0.0
5.245
4.961
4.677
4.393
4.109
3.825
3.540
3.256
2.972
2.688
2.404
2.120
1.835
1.551
1.267
0.983
0.699
0.414
0.130
0.154

pa
re

to
_p

lo
t

Dim: 8 Exp: RASTRIGIN_SEPARABLE 
EHVI
UCB_HV

0 20 40 60 80 100 120 140 160
# of Trials

14.880
15.294
15.707
16.121
16.535
16.949
17.363
17.776
18.190
18.604
19.018
19.431
19.845
20.259
20.673
21.087
21.500
21.914
22.328
22.742

hy
pe

rv
ol

um
e

Dim: 16 Exp: RASTRIGIN_SEPARABLE:SCHWEFEL 
EHVI
UCB_HV

2.5 2.0 1.5 1.0 0.5 0.0
5.238
4.962
4.687
4.412
4.136
3.861
3.585
3.310
3.035
2.759
2.484
2.208
1.933
1.658
1.382
1.107
0.831
0.556
0.281
0.005

pa
re

to
_p

lo
t

Dim: 16 Exp: RASTRIGIN_SEPARABLE:SCHWEFEL 
EHVI
UCB_HV

0 20 40 60 80 100 120 140 160
# of Trials

14.939
15.315
15.691
16.067
16.443
16.819
17.194
17.570
17.946
18.322
18.698
19.074
19.449
19.825
20.201
20.577
20.953
21.329
21.704
22.080

hy
pe

rv
ol

um
e

Dim: 24 Exp: RASTRIGIN_SEPARABLE:SCHWEFEL 
EHVI
UCB_HV

3.0 2.5 2.0 1.5 1.0 0.5 0.0
5.240
4.962
4.684
4.407
4.129
3.851
3.574
3.296
3.018
2.741
2.463
2.185
1.908
1.630
1.352
1.075
0.797
0.519
0.242
0.036

pa
re

to
_p

lo
t

Dim: 24 Exp: RASTRIGIN_SEPARABLE:SCHWEFEL 
EHVI
UCB_HV

0 20 40 60 80 100 120 140 160
# of Trials

13.858
14.368
14.879
15.389
15.899
16.409
16.920
17.430
17.940
18.450
18.961
19.471
19.981
20.491
21.002
21.512
22.022
22.532
23.042
23.553

hy
pe

rv
ol

um
e

Dim: 8 Exp: RASTRIGIN_SEPARABLE:SCHWEFEL 
EHVI
UCB_HV

3.0 2.5 2.0 1.5 1.0 0.5 0.0
5.244
4.961
4.678
4.395
4.113
3.830
3.547
3.264
2.981
2.698
2.415
2.132
1.849
1.566
1.283
1.000
0.717
0.434
0.151
0.132

pa
re

to
_p

lo
t

Dim: 8 Exp: RASTRIGIN_SEPARABLE:SCHWEFEL 
EHVI
UCB_HV

0 20 40 60 80 100 120 140 160
# of Trials

16.975
17.278
17.581
17.885
18.188
18.491
18.794
19.097
19.401
19.704
20.007
20.310
20.614
20.917
21.220
21.523
21.826
22.130
22.433
22.736

hy
pe

rv
ol

um
e

Dim: 16 Exp: RASTRIGIN_SEPARABLE:SPHERE 
EHVI
UCB_HV

2.5 2.0 1.5 1.0 0.5
2.201
2.076
1.950
1.825
1.700
1.574
1.449
1.323
1.198
1.072
0.947
0.821
0.696
0.571
0.445
0.320
0.194
0.069
0.057
0.182

pa
re

to
_p

lo
t

Dim: 16 Exp: RASTRIGIN_SEPARABLE:SPHERE 
EHVI
UCB_HV

0 20 40 60 80 100 120 140 160
# of Trials

16.393
16.708
17.023
17.337
17.652
17.967
18.282
18.597
18.912
19.227
19.542
19.857
20.172
20.487
20.802
21.117
21.432
21.746
22.061
22.376

hy
pe

rv
ol

um
e

Dim: 24 Exp: RASTRIGIN_SEPARABLE:SPHERE 
EHVI
UCB_HV

2.00 1.75 1.50 1.25 1.00 0.75 0.50 0.25
2.126
2.012
1.897
1.783
1.669
1.554
1.440
1.325
1.211
1.096
0.982
0.867
0.753
0.639
0.524
0.410
0.295
0.181
0.066
0.048

pa
re

to
_p

lo
t

Dim: 24 Exp: RASTRIGIN_SEPARABLE:SPHERE 
EHVI
UCB_HV

0 20 40 60 80 100 120 140 160
# of Trials

17.438
17.789
18.139
18.489
18.839
19.190
19.540
19.890
20.240
20.590
20.941
21.291
21.641
21.991
22.341
22.692
23.042
23.392
23.742
24.092

hy
pe

rv
ol

um
e

Dim: 8 Exp: RASTRIGIN_SEPARABLE:SPHERE 
EHVI
UCB_HV

2.5 2.0 1.5 1.0 0.5 0.0
3.433
3.232
3.030
2.829
2.627
2.426
2.224
2.022
1.821
1.619
1.418
1.216
1.014
0.813
0.611
0.410
0.208
0.006
0.195
0.397

pa
re

to
_p

lo
t

Dim: 8 Exp: RASTRIGIN_SEPARABLE:SPHERE 
EHVI
UCB_HV

0 20 40 60 80 100 120 140 160
# of Trials

15.61
16.20
16.80
17.39
17.99
18.58
19.17
19.77
20.36
20.96
21.55
22.15
22.74
23.33
23.93
24.52
25.12
25.71
26.31
26.90

hy
pe

rv
ol

um
e

Dim: 16 Exp: SCHWEFEL 
EHVI
UCB_HV

1.2 1.0 0.8 0.6 0.4 0.2 0.0 0.2
1.743
1.633
1.524
1.414
1.304
1.195
1.085
0.975
0.866
0.756
0.646
0.537
0.427
0.317
0.208
0.098
0.012
0.121
0.231
0.341

pa
re

to
_p

lo
t

Dim: 16 Exp: SCHWEFEL 

EHVI
UCB_HV

0 20 40 60 80 100 120 140 160
# of Trials

15.15
15.75
16.36
16.96
17.56
18.16
18.76
19.37
19.97
20.57
21.17
21.78
22.38
22.98
23.58
24.19
24.79
25.39
25.99
26.59

hy
pe

rv
ol

um
e

Dim: 24 Exp: SCHWEFEL 
EHVI
UCB_HV

0.6 0.4 0.2 0.0 0.2
1.388
1.301
1.214
1.126
1.039
0.951
0.864
0.776
0.689
0.602
0.514
0.427
0.339
0.252
0.164
0.077
0.011
0.098
0.185
0.273

pa
re

to
_p

lo
t

Dim: 24 Exp: SCHWEFEL 
EHVI
UCB_HV

0 20 40 60 80 100 120 140 160
# of Trials

14.75
15.41
16.08
16.75
17.42
18.08
18.75
19.42
20.09
20.75
21.42
22.09
22.76
23.42
24.09
24.76
25.43
26.09
26.76
27.43

hy
pe

rv
ol

um
e

Dim: 8 Exp: SCHWEFEL 
EHVI
UCB_HV

1.25 1.00 0.75 0.50 0.25 0.00 0.25
1.668
1.559
1.450
1.342
1.233
1.125
1.016
0.908
0.799
0.691
0.582
0.473
0.365
0.256
0.148
0.039
0.069
0.178
0.287
0.395

pa
re

to
_p

lo
t

Dim: 8 Exp: SCHWEFEL 
EHVI
UCB_HV

0 20 40 60 80 100 120 140 160
# of Trials

16.512
16.989
17.467
17.944
18.421
18.898
19.376
19.853
20.330
20.808
21.285
21.762
22.240
22.717
23.194
23.672
24.149
24.626
25.103
25.581

hy
pe

rv
ol

um
e

Dim: 16 Exp: SCHWEFEL:SPHERE 
EHVI
UCB_HV

3.0 2.5 2.0 1.5 1.0 0.5 0.0
2.351
2.215
2.080
1.945
1.809
1.674
1.538
1.403
1.268
1.132
0.997
0.861
0.726
0.591
0.455
0.320
0.184
0.049
0.086
0.222

pa
re

to
_p

lo
t

Dim: 16 Exp: SCHWEFEL:SPHERE 
EHVI
UCB_HV

0 20 40 60 80 100 120 140 160
# of Trials

16.696
17.103
17.510
17.918
18.325
18.732
19.140
19.547
19.955
20.362
20.769
21.177
21.584
21.992
22.399
22.806
23.214
23.621
24.029
24.436

hy
pe

rv
ol

um
e

Dim: 24 Exp: SCHWEFEL:SPHERE 
EHVI
UCB_HV

2.5 2.0 1.5 1.0 0.5 0.0
2.116
1.996
1.877
1.757
1.637
1.517
1.397
1.277
1.157
1.037
0.917
0.797
0.677
0.557
0.437
0.317
0.197
0.077
0.043
0.163

pa
re

to
_p

lo
t

Dim: 24 Exp: SCHWEFEL:SPHERE 
EHVI
UCB_HV

0 20 40 60 80 100 120 140 160
# of Trials

15.52
16.08
16.65
17.21
17.77
18.34
18.90
19.46
20.03
20.59
21.16
21.72
22.28
22.85
23.41
23.97
24.54
25.10
25.67
26.23

hy
pe

rv
ol

um
e

Dim: 8 Exp: SCHWEFEL:SPHERE 
EHVI
UCB_HV

3.0 2.5 2.0 1.5 1.0 0.5 0.0
3.502
3.297
3.093
2.888
2.683
2.479
2.274
2.069
1.865
1.660
1.455
1.251
1.046
0.841
0.637
0.432
0.227
0.023
0.182
0.387

pa
re

to
_p

lo
t

Dim: 8 Exp: SCHWEFEL:SPHERE 

EHVI
UCB_HV

0 20 40 60 80 100 120 140 160
# of Trials

18.424
18.741
19.058
19.375
19.692
20.009
20.326
20.642
20.959
21.276
21.593
21.910
22.227
22.544
22.860
23.177
23.494
23.811
24.128
24.445

hy
pe

rv
ol

um
e

Dim: 16 Exp: SPHERE 
EHVI
UCB_HV

2.5 2.0 1.5 1.0 0.5 0.0
2.811
2.644
2.477
2.310
2.144
1.977
1.810
1.643
1.477
1.310
1.143
0.976
0.810
0.643
0.476
0.309
0.142
0.024
0.191
0.358

pa
re

to
_p

lo
t

Dim: 16 Exp: SPHERE 
EHVI
UCB_HV

0 20 40 60 80 100 120 140 160
# of Trials

17.857
18.158
18.459
18.760
19.061
19.362
19.663
19.965
20.266
20.567
20.868
21.169
21.470
21.771
22.073
22.374
22.675
22.976
23.277
23.578

hy
pe

rv
ol

um
e

Dim: 24 Exp: SPHERE 
EHVI
UCB_HV

2.0 1.5 1.0 0.5 0.0
2.752
2.601
2.450
2.299
2.148
1.997
1.846
1.695
1.544
1.393
1.242
1.091
0.940
0.789
0.638
0.487
0.336
0.185
0.033
0.118

pa
re

to
_p

lo
t

Dim: 24 Exp: SPHERE 
EHVI
UCB_HV

0 20 40 60 80 100 120 140 160
# of Trials

17.553
17.957
18.361
18.765
19.169
19.573
19.977
20.381
20.785
21.189
21.593
21.997
22.401
22.805
23.209
23.613
24.017
24.421
24.826
25.230

hy
pe

rv
ol

um
e

Dim: 8 Exp: SPHERE 
EHVI
UCB_HV

2.5 2.0 1.5 1.0 0.5 0.0
2.777
2.614
2.452
2.289
2.127
1.965
1.802
1.640
1.477
1.315
1.153
0.990
0.828
0.666
0.503
0.341
0.178
0.016
0.146
0.309

pa
re

to
_p

lo
t

Dim: 8 Exp: SPHERE 
EHVI
UCB_HV

All plot elements for noise MODERATE_ADDITIVE_GAUSSIAN


