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“Walk to the door.” “Sit on the table that is near 
the sofa.”

“Walk to the table that is
near the sofa.”

“Stand up from the table.”

Figure 1. Generating human motions in 3D scenes from text descriptions. Our method can generate human motions containing accurate
human-object interactions in 3D scenes based on textural descriptions. Although our method is trained and tested on the HUMANISE
dataset, it can generalize to other scenes, e.g., the scenes in the PROX dataset. Left: test results on the HUMANISE dataset. Right:
generalization results on the PROX scenes.

Abstract

Generating human motions from textual descriptions has
gained growing research interest due to its wide range of
applications. However, only a few works consider human-
scene interactions together with text conditions, which is
crucial for visual and physical realism. This paper fo-
cuses on the task of generating human motions in 3D in-
door scenes given text descriptions of the human-scene in-
teractions. This task presents challenges due to the multi-
modality nature of text, scene, and motion, as well as the
need for spatial reasoning. To address these challenges, we
propose a new approach that decomposes the complex prob-
lem into two more manageable sub-problems: (1) language
grounding of the target object and (2) object-centric mo-
tion generation. For language grounding of the target ob-
ject, we leverage the power of large language models. For
motion generation, we design an object-centric scene rep-
resentation for the generative model to focus on the target
object, thereby reducing the scene complexity and facilitat-
ing the modeling of the relationship between human motions
and the object. Experiments demonstrate the better motion
quality of our approach compared to baselines and validate
our design choices. Code will be available at link.

The authors from Zhejiang University are affiliated with the State Key
Lab of CAD&CG. †Corresponding author.

1. Introduction

Human motion generation has been a long-standing prob-
lem due to its broad range of applications such as game
development, virtual reality, and movie production. Re-
cently, this area witnessed a paradigm shift from avatar an-
imation given rich user input [29] to learning-based motion
generation from high-level language prompts, e.g. text de-
scriptions about the desired motion [2, 3, 15, 18, 19, 39,
56, 74, 75]. However, most prior works on text-driven
motion synthesis do not consider human-scene interactions
[39, 56, 74, 75] while the scene context and physical con-
straints of the environment largely define the fidelity of the
generated human motions.

In this paper, we focus on generating motions from text
descriptions in 3D indoor scenes. Specifically, given a 3D
scan of the target scene and a text description of a human ac-
tion that interacts with the scene, we aim to generate natural
human motions that are consistent with the text description.

This problem presents several challenges, primarily due
to the multi-modality nature of text, scene, and human mo-
tion. In contrast to previous methods [2, 3, 56, 74, 75] fo-
cusing solely on textual descriptions of how human moves,
our task also includes texts that additionally describe the
spatial details in the given scene (e.g., sit on the armchair
near the desk). Therefore, this task requires spatial reason-
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ing skills [1], where the model should build a text-object
mapping to locate a specific object in 3D scenes aligned
with a natural language description. In addition, the gener-
ated motions should also be coherent with scene contexts.

As a pioneer work, HUMANISE [83] builds a condi-
tional variational autoencoder (cVAE) [41, 69] with sepa-
rate encoders of scenes and texts for multi-modality under-
standing. To enable spatial reasoning ability, they introduce
auxiliary tasks of directly regressing object centers to learn
3D visual grounding in an implicit manner. But they do not
explicitly utilize the predicted centers and thus the induc-
tive bias of visual grounding cannot be fully incorporated.
In addition, HUMANISE [83] encodes the entire scene with
a single point transformer [99]. Directly generating motions
with such a model is challenging, as 3D point clouds are in-
herently noisy and complex [48, 88], leading to the inability
to locate the target object. As suggested by [51], not every
point of the scene is relevant to the final human motions.
Therefore, it is also necessary to develop a more targeted
approach that focuses on the relevant parts of the scene to
improve the quality of motion generation.

To tackle the problems mentioned above, we propose a
novel approach that exploits the power of the large language
models (LLMs) [6, 42, 52]. Our key idea is to address the
challenging task of generating motion in a scene based on
textual cues by breaking it down into two smaller problems:
(1) language grounding of objects in 3D scenes and (2) gen-
erating motions with a focus on the target object. For lan-
guage grounding, rather than directly learning text-object
mapping, we propose to formulate it as question answering
and utilize the large prior knowledge of LLMs. Specifically,
we first construct scene graphs of 3D scenes and generate
their textual descriptions. Then we employ ChatGPT [52]
to analyze the relationship between scene descriptions and
input instructions and respond with 3D visual grounding an-
swers. Experiments prove the effectiveness of this strategy.

For motion generation, we design an object-centric rep-
resentation to help the generative model focus on the tar-
get object. Specifically, we convert point clouds around the
target object into volumetric sensors [70] to build object-
centric representation. Then we employ diffusion models
[57, 75] to synthesize human motions given object-centric
representation and texts. Compared with original scene
point clouds which might have various scales, object-centric
representation is more compact and robust to scales as ob-
jects in the same category are of similar size. Therefore, this
representation reduces scene complexity and facilitates the
modeling of the relationship between motions and objects.

We conducted thorough comparative and ablation exper-
iments on the HUMANISE dataset. The results demonstrate
that our method outperforms the baseline, reflected in more
accurate object grounding results and better motions that
align with the textual descriptions and scenes. We further

show that our approach can generalize to the PROX dataset
[22] without any fine-tuning.

2. Related work

2.1. Motion synthesis

Deep learning for motion synthesis. Deep learning meth-
ods for motion synthesis have attracted increasing atten-
tion in recent years [14, 21, 25, 28, 29, 50, 71, 91]. Var-
ious techniques, including MLP [29], mixture of experts
(MoE) [72, 91], and recurrent neural network (RNN) [21],
are employed to tackle this task. To generate diverse mo-
tion results, previous works explore cVAE [46, 96], GANs
[44, 61], normalizing flow [26], and diffusion models [75].

Text-driven motion generation. Recently, there has
been a growing interest in text-driven motion generation
[2, 56, 74]. This task takes natural language as input and
synthesizes human motions that align with instructions.
KIT-ML [58] is the first benchmark of this task. Some
works further annotate the AMASS dataset [49] with ac-
tion labels [59] and text [18]. To tackle this task, [2, 15, 74]
propose to learn a shared latent space for text and motion.
[56] employs transformer VAE [55] to generate diverse re-
sults. [19, 93] achieve better performance by discrete rep-
resentation with VQ-VAE [65, 78]. [12, 39, 75, 94] suc-
cessfully apply diffusion models in this direction. [5, 43]
further explore latent diffusion models [67]. Based on [75],
[38, 85] introduce sparse spatial control. [3, 60, 68] also
investigate long sequence motion generation. Other exist-
ing works [4, 37, 82, 98] leverage Large Language Models
(LLM) [6, 42, 53, 77] in the motion domain. [4] construct
compositional motions by combining different body parts
with LLM. [36, 98] regard motions as a kind of language
and finetune LLMs [63] with motion tokens [19, 93].

Scene-aware motion generation This direction is to gen-
erate human motions in a 3D scene [70, 80]. To synthesize
walking and sitting motions, [70] construct volumetric sen-
sors to encode object information and the surroundings of
the character. [23] extends it to synthesize motions with di-
verse sitting and lying styles. Furthermore, [95] proposes
to control sitting styles by hand contacts. To improve the
performance, [57] employs a hierarchical framework that
generates goal poses, milestones, and motion sequentially.
[73, 84] synthesize whole-body (body and hand fingers)
grasping motions with small objects. [16, 45, 71, 86] ex-
plore interactions with dynamic objects including manipu-
lation [16, 45] and carrying [86]. [8, 24] explore human-
object interactions with physically simulated characters.
These works mainly focus on one or two objects while oth-
ers [80, 81] consider a more complex scene input (e.g., point
clouds of the scene including walls and floors.). [80, 81]
adopt hierarchical frameworks and generate trajectory and



Stage 1: Locating the target object Stage 2: Generating human motions

(a) Input scene (b) Located object (c) Human trajectories (d) Human motions

“Walk to the desk that is
farest from the laptop.”

Figure 2. Overview of our two-stage pipeline. In the first stage, given an input scene and a text description (a), we use ChatGPT to locate
the target object (b). In the second stage, human motions are synthesized by first producing human trajectories (c) and then generating
local poses (d).

motion separately. [103] introduces gaze to help genera-
tion. [33] further employs diffusion models and [51] syn-
thesizes very long-term motions in scenes by dividing long
sequences into several short sequences. [101] designs a re-
inforcement learning pipeline to enable navigation in a com-
plex scene and interaction style control.

Text-driven scene-aware motion generation Only a few
works consider text and scenes simultaneously [38, 83,
101]. Although [101] enables text control of sitting styles
by [100], the text descriptions in our setting are used to se-
lect an object in a cluttered scene. [38] could avoid obsta-
cles during walking while our task needs to handle various
actions. The most relevant work to us is HUMANISE [83],
which employs a transformer VAE architecture with a two-
stream condition module for text and scenes. To accurately
localize target objects, they design auxiliary tasks like di-
rectly regressing object centers. In contrast to HUMANISE,
we propose a two-stage pipeline where we first localize the
target object with the help of ChatGPT [52] and then gener-
ate human motion using the object-centric representation.

2.2. 3D visual grounding.

In recent years, visual grounding in 3D scenes has been ex-
plored [1, 11, 76] and also tackled in 3D question answering
[13, 89]. Given the point cloud of 3D scenes, this task [1]
requires models to locate the target object according to text
instructions. Most works follow a two-stage scheme where
multiple bounding boxes [9, 66, 102] or segmentation re-
sults [31, 90] are first predicted and then selecting the object
according to language descriptions. [32] introduces multi-
view inputs, and [88] employs 2D semantics. [34] com-
bines bottom-up [47] and top-down [7] detection methods.
[48] designs a single-stage pipeline by progressively select-
ing key points. [20] extends [32] with the help of GPT [6]
to generate multi-view text inputs. More recently, [30] pro-
poses a neuro-symbolic framework with large language-to-
code models [10]. Most works only localize a single object
and [97] could localize a flexible number of objects. Differ-

ent from previous works which directly handle point clouds
or multi-view images, we convert the scene into textual de-
scriptions and leverage large language models to infer the
target object. Like [30], in this work, we also leverage large
language models for object localization.

3. Problem setup and preliminaries

In this section, we discuss the definition of the task and pre-
liminaries. We aim to generate human motion that is con-
sistent with both the text description and the given scene.

Text descriptions. The text description follows the tem-
plate in Sr3D [1] (e.g., “<sit on><the chair> [<in the cen-
ter of> <desk and bookshelf>]”). There are four actions
(walk, sit, stand up, and lie). The target represents the ob-
ject that the agents need to interact with, and the anchor ob-
jects help to determine the target. A certain type of target
furniture category usually has many instances in one scene,
while the anchor furniture should be unique. To specify the
exact target object, there are five types of spatial relations
[1] between the target and the anchor: horizontal proxim-
ity, vertical proximity, between, allocentric, and support.

Scene representations. The scene is denoted as a point
cloud of N points: S ∈ RN×6, containing the position and
normal direction information of each point.

Motion representations. The output motion sequence is
represented as a sequence of SMPL-X [54] body meshes M .
SMPL-X is a parametric human body model. In this work,
body parameters include body shape parameters β ∈ R10,
global translation r ∈ R3, 6D global orientation γ ∈ R6,
and 6D pose parameters of J joints θ ∈ RJ×6 [104]. Fol-
lowing [83], β is treated as a condition to model the effect
of body shape, and we omit it for ease of notation. Note that
start position and pose are also generated by the model.

Diffusion models. The diffusion [27] is defined as a
Markov noising process {xt}Tt=0 that follows q (xt | x0),
where x0 ∼ q (x0) is the data and xt is the noised data at



Room contains:
chair, backpack, monitor, end table, table, ottoman, 
board, printer.
Text description (from inputs)
Instruction:
You are an assistant that helps people find objects 
in a room ...
Few-shot examples:
{example_1};{example_2}.
Question:
Based on the text, infer the target object and anchor 
objects. Please answer in the following format ...

Stage 1: Narrowing down object search space

Text description:
sit on the chair that
is in the middle of 
the board and the 
end table.

Object relations (derived from the 
simplified scene graph from stage 1):
chair 0 is near the end table;
chair 2 is far from the board;
...
chair 0 is in between of the end table and the
board;
Text description (from inputs)
Target object (from stage 1)
Anchor objects (from stage 1)
Instruction:
You are an assistant that determine the target 
object from given object relations ...
Few-shot examples:
{example_1};
{example_2}.
Question:
Based on the given object relations and the 
text description, infer the target object. Please 
answer in the following format ...

Detected object bbx

Input

Response:
target: chair.
anchor: board, 
end tabel. Simplified scene graph

Prompt 1

Stage 2: Infering the target object

Response:
target: chair 0.

Target object bbx

Prompt 2

Output

Figure 3. Pipeline of localizing the target object. In stage 1, given the input text description and detected object bounding boxes (bbx),
we construct the first prompt asking ChatGPT the categories of target objects and anchor objects. Based on the response, the scene graph
can be simplified. In stage 2, we construct the second prompt with inputs and results from stage 1, including object relations derived from
the simplified scene graph. The second prompt is designed for asking ChatGPT to infer the target object. Finally, we can get the target
object bounding box from the response of ChatGPT.

noising step t. The formal definition is:

q (xt | x0) = N
(
xt;

√
ᾱtx0, (1− ᾱt) I

)
, (1)

where ᾱt are constants with monotonically decreasing
schedule. When ᾱt is small enough, we can approximate
xT ∼ N (0, I). In our context, we use conditional diffusion
models like [64, 75]. The training loss is defined as:

L = Et∈[1,T ],x0∼q(x0) [∥x0 −G(xt, t,C)∥] , (2)

where G is the generative model, and C is the condition.

4. Method

The overview of our method is shown in Fig. 2. In Sec. 4.1,
we leverage ChatGPT to localize the target object given a
3D scene and a textual description. Based on the accurate
localization, we can focus on the target object and employ
an object-centric generation pipeline to separately synthe-
size trajectories (Sec. 4.2) and motions (Sec. 4.3). Imple-
mentation details are discussed in Sec. 4.4.

4.1. Language grounding of objects in 3D scenes

Scene-aware motion generation from textual descriptions
requires the scene-understanding ability and build the re-
lationship between scenes and texts. Since the instructions
describe how the character moves and interacts with a single
target object, the majority of the scene might bear negligible
relevance to the final motions [51]. Motivated by this, we
propose to locate the target object to identify the most per-
tinent information. Inspired by the recent progress of LLM
[42, 52, 53], ChatGPT [52] is utilized to find the specific
objects in the given text. We first obtain textual descriptions
of scenes by building scene graphs. Then we feed them
with text instructions to ChatGPT with specially designed
prompts and parse the response to get target objects.

Spatial scene graph extraction. To utilize LLM, the ini-
tial step involves converting a 3D scene into text. This is
achieved by building a spatial scene graph. We utilize a
pre-trained 3D object detection model in [47] to provide 3D
box proposals. Subsequently, we follow the approach of [1]
to obtain the relationships between objects. Specifically, for



(a) Target object bbx (b) Target sensor

(c) Environment sensor (d) Traj sensor

Figure 4. The visualization of the environment sensor, target
sensor, and trajectory sensor. The target sensor (b) gives detailed
geometry of the target object. The environment sensor (c) gives
coarse spatial information around the target object. The trajectory
sensor (d) is located around the human.

every set of two objects, we can infer their relationships in
three types from their bounding boxes: horizontal proxim-
ity, vertical proximity, and support as mentioned in Sec. 3;
for every set of three objects, we can infer if one of them
is in between of the other two objects. As detection results
do not contain object poses, we do not construct allocentric
relations (e.g., “the shelf that is behind the sofa”). Then, we
build a scene graph, where each object is assigned as a node
in the graph, and edges between nodes represent the rela-
tionships between objects. By converting 3D scenes into
text, we can apply ChatGPT to extract meaningful insights
from the data.

Leveraging ChatGPT to localize the target object. A
simple approach is to directly input the entire scene graph
into ChatGPT and ask it to select the target objects. How-
ever, scenes may contain many objects, resulting in ex-
tremely long textural descriptions. We observe that Chat-
GPT is often confused in such settings and fails to respond
with the right answer. To narrow the search space, we first
employ ChatGPT to recognize objects that correlate to the
provided text. We then exclude the unrelated objects from
the scene graph, focusing solely on those with pertinent in-
formation, enabling us to pinpoint the target object effec-
tively. This approach has the advantage of reducing the
number of objects that need to be considered, making it eas-
ier for ChatGPT to identify the target object.

As shown in Fig. 3, we construct two prompts in se-
quence. Take “sit on the chair that is in the middle of the
board and the end table” as an example, we first need to nar-

row down the object category search space. In order to find
which type of objects we care about, we construct the first
prompt that asks ChatGPT to find out target objects and an-
chor objects. Target object is defined as the final object that
we want the agent to interact with, which in this case, is the
“table”. Anchor objects are the objects that help with de-
termining the target object, for there might be many chairs
in one scene. Based on the target object “chair” and anchor
objects “board” and “end table”, we can filter out all the un-
related objects in the scene, only keeping chairs, the board,
and the end table in our scene graph. Next, according to
the simplified scene graph, we can describe object relations
in text: every edge in the scene graph could be converted
to an edge sentence like “chair 4 is far from the end table
0”. Converting all edges to such edge sentences gives a
full description of the current scene. Finally, we construct a
second prompt by asking ChatGPT to infer the target object
from the accumulated edge sentences.

4.2. Diffusion-based trajectory generation

Given the localized object from ChatGPT, we first generate
the trajectory based on the instructions and then synthesize
local human poses. Trajectory is defined as a sequence of
characters’ translations and orientations. As suggested by
[51], not every point of the scene is relevant to the final
human motions. Inspired by NSM [70] and ManipNet [92],
we employ volumetric sensors (as shown in Fig. 4) around
the target object to represent the scene.

Object-centric scene representation. Denote the target
object center location as co = (cx, cy, cz). We transform
the point cloud of the scene S to an object-centered coor-
dinate axis centered at co. To recognize the surrounding
geometry of the target object, we create volumetric sensors
called Environment Sensor and Target Sensor.

Environment sensor. The environment sensor is centered
at co in a cubic shape with a volume of 4× 4× 4 m3, con-
taining 8 × 8 × 8 cubic voxels as shown in Fig. 4 (c). It
is constructed by collecting all occupancies os, center posi-
tions cv , and normal directions nv of each voxel to form a
feature vector E. Like [70], the scene occupancy os ∈ R1

in each voxel is defined based on the given scene mesh:

os =


1 if ds < 0,

0 if ds > as,

1− ds

as
otherwise,

(3)

where ds is the signed distance between the scene mesh and
the voxel center, and as is the voxel edge length. nv is
the normal direction of the closest scene point to the voxel
center. The environment sensor provides coarse scene ge-
ometry around the target object.

Target sensor. To capture the detailed geometry of the
target object, we further build a target sensor. As we already



obtain the 3D bounding box of the target object in Sec. 4.1,
we crop the point clouds according to the bounding box and
construct an 8×8×8 cubic volumes that cover the bounding
box, as shown in Fig. 4 (b). Target sensor T is in the same
form as the environment sensor E, except the target sensor
has a different voxel size, as visualized in Fig. 4 (b) and (c).

Given the constructed object-centric representations, we
follow [57] to employ a transformer decoder architecture
[79], which enables arbitrary length motions. As for the
text input, we use CLIP [62] text encoder to encode input
text to the text feature L. The time-step t is injected into
the decoder in sinusoidal position embeddings form [79].
In summary, the condition for this generation model is

Ct = {L,E, T}, (4)

where L is the text feature, E is the environment sensor, and
T is the target sensor. All the conditions are projected to
the same dimension D = 512 by MLPs and summed with
positional embeddings to form tokens. We use the simple
objective described in Eq. 2 to train the trajectory generation
model Gr to generate the trajectory r1:N with length N .

4.3. Diffusion-based motion completion

Given the trajectory from Sec. 4.2, the next step is to com-
plete the whole motion. Based on the generated trajecto-
ries, we construct a Trajectory Sensor O to explicitly reason
about the interaction between the character and scenes.

Trajectory sensor. The trajectory sensor is also a volu-
metric sensor which is similar to the form of the environ-
ment sensor but is designed for ego-centric perception [95]
as shown in Fig. 4 (d). Specifically, trajectory sensors are
positioned around characters in each frame. This sensor Oi

is centered at the predicted root position of the i-th frame
and faces to the i-th frame’s predicted root orientation, con-
taining 8 × 8 × 8 cubic voxels that store scene occupancy.
The occupancy calculation is the same as Eq. 3.

Another transformer-based conditional diffusion model
is used to synthesize local poses along trajectories. The con-
dition is defined as:

Cm = {L,E, T,O1, ..., ON}, (5)

where L, E, and T have the same meanings in Eq. 4. Sim-
ple objective described in Eq. 2 is used to train the motion
generation model Gm to generate global orientation γ1:N
and local poses θ1:N with length N .

4.4. Implementation details

Following [38, 57, 80, 81], we use separate diffusion mod-
els for the trajectory generation and the motion generation.
Because the HUMANISE dataset [83] contains a relatively
small number (51 minutes) of pure motion samples from the
AMASS dataset (3772 minutes) [49], we first pre-train the

models on the whole AMASS dataset for 200 epochs and
then fine-tune on the HUMANISE dataset for 200 epochs
to improve the motion quality. During pretraining, the text
feature L is set to all zeros. Both models are trained with
the AdamW optimizer [40], using a learning rate of 0.0001
on a single Nvidia RTX 3090 GPU. The batch size is set to
128. The version of ChatGPT is gpt-3.5-turbo. More details
can be found in the supplementary material.

5. Experiments
5.1. Evaluation metrics

We evaluate the generated motions in three aspects: scene-
conditional, action-conditional, and pure motion quality.

Scene-conditional motion quality. To evaluate how the
generated motion is aligned with the scene, we calculate
the body-to-goal distance (goal dist.) [83] to measure how
accurately the character interacts with target objects. How-
ever, goal dist. does not consider the consistency of the en-
tire motion and scene (e.g., sitting on the sofa with incorrect
orientation). To compensate for goal dist., a human per-
ceptual study (indicated by scene score) is performed by
randomly sampling 20 scenarios for each model, where ten
workers are required to score each sample.

Action-conditional motion quality. To measure how the
generated motion is aligned with the text, we follow [17] to
evaluate action recognition accuracy (accuracy), diversity,
and multimodality of the results. Calculating these metrics
relies on a pre-trained action recognition model [87] and we
train the recognition model on the HUMANISE dataset.

Pure motion quality. We evaluate the realism of generated
motions using the metric suggested by [17], namely Frechet
Inception Distance (FID). A lower FID indicates that gen-
erated motions are closer to the groundtruth motions. We
also perform a human perceptual study (indicated by qual-
ity score) to measure pure motion quality.

5.2. Generating human motion from text and scene

Our experiments are conducted on the HUMANISE dataset
[83]. Following the previous setting [83], there are 16.5k
motion sequences in 543 scenes for training and 3.1k mo-
tion sequences in 100 scenes for testing. We compare our
method with four baselines: (1) MDM∗ [75]: a diffusion-
based motion generator. (2) GMD∗ [38]: GMD proposes
various techniques for enhancing the control and quality of
MDM. We employ the single-stage setting of GMD∗. Sim-
ilar to HUMANISE, we use a point-transformer to provide
scene features for MDM∗and GMD∗. (3) GMDHC: we pro-
vide object centers predicted by HUMANISE (denoted by
HC) to guide the motion generation process in GMD by
adding a proximity loss to encourage the motion to be close
to the predicted object center. The proximity loss is defined



Methods Scene-conditional Action-conditional Pure motion quality

goal dist.↓ scene score↑ accuracy↑ diversity→ multimodality→ FID↓ quality score↑
Real 0.014 - 99.1% 4.82 2.28 0.00 -

MDM∗ 2.048 1.99 96.0% 4.83 2.57 0.16 2.45
GMD∗ 1.229 2.50 96.6% 4.91 2.28 0.24 2.64

GMDHC 1.130 2.49 96.4% 4.93 2.43 0.23 2.76
HUMANISE 0.995 2.33 89.7% 4.25 2.66 1.11 2.81

Ours 0.384 3.54 97.1% 4.78 2.31 0.12 3.50

Table 1. Quantitative results on the HUMANISE dataset. We compare our method with four baselines (please refer to Sec. 5.2) and the
real data. GMDHC means using HUMANISE’s predicted center to guide motion generation in GMD∗. Among the metrics, scene score and
quality score are perceptual studies. ↑ means higher is better and ↓ means lower is better. → means closer to the real data is better. Bold
indicates the best results. Underline indicates the second best.

Ground Truth HUMANISE MDM GMD GMD Ours
HC

“Walk to the door.”

“Stand up from the table.”

Figure 5. Qualitative results. We compare our method with groundtruth and four baselines (please refer to Sec. 5.2) given the same text
descriptions. Our method synthesizes motions that interact with the object precisely as the groundtruth data while the baselines fail.

as the distance from HC to the predicted human pelvis at
the interacting frame. (4) HUMANISE: we directly use
their released models.

The quantitative results are shown in Tab. 1. Our method
outperforms the baseline in terms of goal dist., scene score,
accuracy, FID, and quality score and achieves competitive
results in diversity and multimodality. The quantitative re-
sults show that our approach can generate better-quality mo-
tions and are more consistent with all the conditions. The
qualitative results are demonstrated in Fig. 5. Please refer
to the supplementary material for more visualizations.

5.3. Ablation study

Ablation of main components. Four variants are con-
structed to explore the effect of our design choice. (1)
“w/o localization”: the localization module is removed and
trajectories and motions are generated directly using scene
point clouds. Scene features are given as the same form
of MDM∗and GMD∗. (2) “w/o object-centric”: we re-
move our object-centric representation and predict motions
in the scene coordinate. The scene features of our sensors
are still employed. (3) “w/o two-stage”: trajectories and

motions are generated together. (4) “w/o diffusion”: we
employ cVAE instead of the diffusion model as the archi-
tecture. (5) “w/o pretrain”: the models are not pre-trained
on the AMASS dataset. As shown in Tab. 2, the localiza-
tion enhances the precise interaction ability and the object-
centric representation improves motion quality. Although
the (“w/o two-stage”) is more efficient and has competitive
performance metrics comparing to our method, it is prone
to collapse directly into the target position, lacking gradual
transition and realism.

The design choice of object localization. For object lo-
calization, we compare our method with two baselines and
five variants. (1) HUMANISE: predicts the object center
in the auxiliary task. (2) BUTD-DETR [34]: is a 3D visual
grounding method. (3) “ours w/o two-stage”: we employ a
one-stage question-answering process. (4) “ours w/o few-
shot”: the few-shot examples are not provided. (5) “ours
using text matching”: we compute CLIP similarities in-
stead of using ChatGPT. (6) “ours using LLaMA”: Chat-
GPT is replaced by LLaMA 2 7B model. (7) “ours us-
ing Mistral”: ChatGPT is replaced by Mistral 7B [35], an
open-source LLM. The prompts for LLaMA 2and Mistral



Variants Scene Action Pure

goal dist.↓ accuracy↑ diversity→ mm→ FID↓
Real 0.014 99.1% 4.82 2.28 0.00

w/o localization 0.592 74.5% 3.71 2.75 3.14
w/o object-centric 0.413 90.6% 4.13 2.63 1.01

w/o two-stage 0.385 97.2% 4.93 2.33 0.14
w/o diffusion 0.390 40.0% 3.69 3.86 3.61
w/o pretrain 0.392 82.6% 3.88 2.37 2.50

Ours 0.384 97.1% 4.78 2.31 0.12

Table 2. Ablation of main components. We compare our method
with five variants (please refer to Sec. 5.3). Among them, mm
indicates multimodality. Bold indicates the best results. Underline
indicates the second best.

7B are slightly adjusted. We evaluate these variants under
two scenarios: predicted detection [47] and groundtruth de-
tection. The metrics include the accuracy (acc.) and the
distance from predicted centers to the object center (center
dist.). “acc.” is the percentage of times with an IoU (Inter-
section over Union) higher than the threshold (0.25) follow-
ing [34]. The results are shown in Tab. 3. Since the results
of Mistral are only slightly behind of ChatGPT, ChatGPT
can be replaced by Mistral for better reproducibility, but
cannot be replaced by the text matching method. More-
over, if groundtruth detection is provided, our method can
achieve even better results.

The design choice of sensor density. Please refer to the
supplementary material.

5.4. Generalization

To validate the generalization ability of our method, we run
our method directly on the unseen PROX dataset [22] with-
out fine-tuning. We provide illustrations in Fig. 6. With our
localization method based on ChatGPT and motion genera-
tion method based on volumetric sensors, our pipeline can
easily generalize to other datasets. Please refer to the sup-
plementary material for more results.

6. Discussion
We have demonstrated that our approach could synthesize
motions with better quality and more precise interactions.
However, restricted by the dataset, the duration of motions
is relatively short (60% are around 1-3s), and most texts fol-
low the template [1] without detailed descriptions. We only
tackle static scenes and extending our method to interact
with moving objects is a future direction. We acknowledge
that leveraging LLMs has several problems. ChatGPT may
fail when the detector misses the objects and the behavior
of ChatGPT is regulated by prompts [37]. Despite we have
shown in Tab. 3 that ChatGPT can be replaced by an open
source LLM Mistral 7B, using LLMs instead of classical
parsing approaches is less efficient in the inference stage.

Variants Predicted detection GT detection

acc. ↑ center dist.↓ acc. ↑ center dist.↓
HUMANISE - 1.48 - -
BUTD-DETR 62.5 1.33 63.1 1.23

Ours w/o two-stage 49.0 1.34 58.5 1.10
Ours w/o few-shot 69.3 0.80 86.3 0.45

Ours using text matching 67.0 0.89 79.7 0.52
Ours using LLaMA 2 40.3 1.55 42.5 1.52
Ours using Mistral 7B 72.4 0.74 87.2 0.33

Ours using ChatGPT-3.5 75.6 0.61 90.5 0.37

Table 3. Design choices of object localization. We compare
our method with two baselines and five variants (please refer to
Sec. 5.3). Since HUMANISE directly regresses the coordinate of
centers without utilizing groundtruth detection, we do not calcu-
late acc. and only include their results under predicted detection.
Bold indicates the best results.

“Sit on the table that is near 
the shelf .”

“Walk to the table that is
near the sofa.”

“Stand up from the armchair.” “Lie on the sofa.”

Figure 6. Qualitative results of our method on the PROX
dataset. We run our method on the scenes from the PROX dataset
without fine-tuning. Results show that our method is capable to
generalize to unseen scenes and objects.

7. Conclusion

In this work, we introduce a novel method for generating
motion from text in a scene. To tackle this problem, we
propose a two-step approach. The first step involves 3D vi-
sual grounding, where we identify the target object. In the
second step, concentrating on the target object, we build a
diffusion-based motion generation method. Our approach
offers several advantages, including improved 3D visual
grounding accuracy and motion quality.
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