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Abstract

Conditional value-at-risk (CVaR) and value-at-risk (VaR) are popular tail-risk
measures in finance and insurance industries as well as in highly reliable, safety-
critical uncertain environments where often the underlying probability distributions
are heavy-tailed. We use the multi-armed bandit best-arm identification framework
and consider the problem of identifying the arm from amongst finitely many that has
the smallest CVaR, VaR, or weighted sum of CVaR and mean. The latter captures
the risk-return trade-off common in finance. Our main contribution is an optimal δ-
correct algorithm that acts on general arms, including heavy-tailed distributions, and
matches the lower bound on the expected number of samples needed, asymptotically
(as δ approaches 0). The algorithm requires solving a non-convex optimization
problem in the space of probability measures, that requires delicate analysis. En-
route, we develop new non-asymptotic, anytime-valid, empirical-likelihood-based
concentration inequalities for tail-risk measures.

1 Introduction

Tail risk is a common term used to quantify losses occurring due to rare events, and has been an
important topic in finance, insurance and other safety critical uncertain environments. [44] first
formalized the problem of identifying optimal investment in financial assets as a multi-criteria
optimization problem of maximizing the average return, while minimizing the risk (measured via
variance). Since then, several other risk measures have been considered. Lately, risk-measures based
on tails of the distribution, like the conditional value-at-risk (CVaR) and value-at-risk (VaR), have
gained popularity in financial regulations and risk management (see, [48, 47]), where the underlying
probability distributions are mostly heavy tailed (i.e. having infinite moment generating function for
all θ > 0). Informally, for a probability measure η, VaR at level π ∈ (0, 1) is the πth quantile for η,
i.e., the outcome below which there is exactly π mass. CVaR at level π is the conditional expectation
of η, conditioned on values beyond the VaR at level π. See Section 2 for precise definitions, and
[50, 46] for applications of these risk measures in finance and optimization. As opposed to VaR,
CVaR is a coherent risk-measure, and is a preferable metric (see, [5] for precise definition and
properties of coherence). Outside finance, these tail-risk measures are being used to control risk in
operations management, for example, in inventory management [4], supply chain management [51],
etc. Recently, coherent risk measures, especially CVaR, have also been used in connection with
fairness in machine learning [58].

The importance of these risk measures in the sequential decision making set-up has well been
acknowledged (see, [49, 42]). Typically in the stochastic multi-armed bandit (MAB) literature, the
quality of an arm is measured using its mean. Tight asymptotic and finite time guarantees exist for
different MAB problems with performance measured by the mean (see, [27, 36, 16, 13, 1, 7, 53]).
Also, see [12] for a survey of the variants of stochastic MAB problems. However, maximizing the
average reward is not always the primary desirable objective. In clinical trials, for example, the
treatment that is good on average might result in adverse outcomes for some patients. In finance, one
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is typically interested in balancing the mean return with the risk of extreme losses. Risk sensitivity
has been well studied in the online learning setting, where in each round, the player sees reward from
every arm (see, [24, 56]). However, there is very limited work which incorporates these risk-measures
into the MAB framework.

In this paper, we provide a systematic approach for identifying the distribution (or arm) from a given
finite set of distributions (or arms) with minimum tail-risk (as measured by CVaR or VaR, or by
a conic combination of mean and CVaR, which we will henceforth refer to as the “mean-CVaR”
objective). Adopting the best-arm identification (BAI) framework of the stochastic MAB problem,
we consider algorithms that generate samples from the given arms, and are δ-correct, i.e., identify
the correct answer (arm with minimum VaR, CVaR or mean-CVaR) with probability at least 1− δ,
for some pre-specified confidence level δ. While ensuring δ-correctness, the aim is to minimize the
number of samples needed by the algorithm before its termination. This is the typical fixed-confidence
setting of the BAI MAB problem (see, [37, 2]). Variants of this problem have been widely studied in
the literature, where the best-arm is the one with maximum mean (see, [43, 25, 6, 14, 26, 33, 27, 34]).

A relaxation of the pure exploration setting described above is the (ε, δ)-PAC setting, where the aim
is to output an ε-optimal arm (for an appropriate notion of ε-optimality), with probability at least
1− δ, while minimizing the number of samples generated. [59, 18, 32] consider the pure exploration
problem of identifying the arm with minimum risk in the (ε, δ)-PAC setting. While [59] consider
both VaR and CVaR as measures of risk, [18, 32] focus on the VaR-problem. Recently, [39] and
[35] have studied the BAI MAB problem with CVaR and mean-CVaR objectives, respectively, in
the closely related “fixed-budget” framework, in which the total number of samples the algorithm is
allowed to take is fixed, and the aim of the algorithm is to minimize the error-probability.

1.1 Outline of the approach and main assumption

As a warm-up, we first solve our minimum tail risk identification problems in the simple commonplace
setting of arm-distributions belonging to a canonical single parameter exponential family (SPEF) of
distributions. Each distribution in this family is uniquely identified with its parameter. We show that
both CVaR and VaR are monotonic functions of this parameter, as is the mean. Hence, finding the
best-(CVaR/VaR/mean-CVaR) arm reduces to finding the arm with the minimum mean.

Since risk-sensitive objectives are particularly important when there is a non-trivial probability of
occurrence of extreme outcomes, it is important to consider arm-distributions beyond canonical SPEF,
for which the above-mentioned equivalence breaks. We solve the VaR problem for arbitrary arm
distributions.

In contrast the CVaR problem is unlearnable in full generality: on the class of all arm distributions,
any δ-correct algorithm requires an infinite number of samples in expectation to identify the best arm
amongst any finite collection of arms (Remark 3.1). To avoid this, we impose a mild and standard
raw (1 + ε)-moment restriction on the arm-distributions. Let P(<) denote the collection of all the
probability distributions on the reals <, and let B and ε be positive constants. For risk measure CVaR
and for the mean-CVaR objective, we restrict the class of allowed arm distributions to

L =
{
η ∈ P(<) : Eη

(
|X|1+ε

)
≤ B

}
.

We discuss the choice of parameters in Section 1.3 below. For each tail measure, we prove information-
theoretic lower bounds on the sample complexity of any δ-correct algorithm, and use these to develop
a δ-correct algorithm whose sample complexity exactly matches the lower bound as δ → 0, for CVaR,
mean-CVaR, and VaR problems. The mean-CVaR problem is conceptually and technically similar to
the CVaR problem. Hence, for simplicity of presentation, we primarily focus on the CVaR setting
in the main text and give details of the mean-CVaR setting in Appendix I. We also spell out the
somewhat analogous analysis for the VaR setting towards the end (Section 4.2), with details deferred
Appendix to H.

1.2 Technical contributions

As is well known in the BAI MAB literature, the lower bound problem takes the underlying arm
distributions as inputs and solves for optimal weights that determine the proportion of samples that
should ideally be allocated to each arm. The proposed algorithm uses a plugin strategy that at each
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sequential stage, modulo mild forced exploration, uses the generated empirical distributions as a
proxy for the true distributions and arrives at weights that guide the sequential sampling strategy.

In order to highlight the technical challenges arising in our non-parametric case, we will need to
introduce two functionals next that are central to our lower bounds, algorithms, confidence intervals
etc.

Information distance for CVaR problem: Given η1, η2 in P(<), let KL(η1, η2) denote the KL-
divergence between them, i.e., KL(η1, η2) :=

∫
log dη1

dη2
(y)dη1(y). Furthermore, for the probability

measure η let cπ(η) denote its CVaR at the given confidence level π ∈ (0, 1) (see Section 2 for the
exact definition). Then, given η ∈ P(<) and x ∈ <, we define functionals KLU

inf : P(<)×< −→ <+,
and KLL

inf : P(<)×< −→ <+, where <+ denotes the non-negative reals, as

KLU
inf(η, x) := min

κ∈L: cπ(κ)≥x
KL(η, κ) and KLL

inf(η, x) := min
κ∈L: cπ(κ)≤x

KL(η, κ). (1)

See [2, 30, 15] for related quantities. These projection functionals appear in the lower bound (Section
3), and are central to our plugin algorithm.

Unlike their analogues in the mean case, KLU
inf and KLL

inf in (1) are not symmetric, and need to be
studied separately. In particular, KLU

inf is a convex optimization problem, while KLL
inf is not. This

is because cπ(·) is a concave function, whence, the CVaR constraint in the KLL
inf problem in (1)

renders the feasible region non-convex (see Section 2). CVaR can be expressed as the optimal value
of a minimization problem. This helped in re-expressing KLL

inf as minimization over 2 variables,
fixing one of which resulted in convex optimization over the other (see Section 3).

For proving δ-correctness, we develop a new concentration inequality for weighted sums of these
functionals (Proposition 4.2). Dual representations of these suggest natural candidates for super-
martingales, whose mixtures help us in proving the concentration result. Similar inequalities were
developed in [38, 20, 54] in different settings. See [40, Chapter 20] for an overview of the method of
mixtures. We also propose KLU

inf - and KLL
inf -based tight anytime-valid confidence intervals for CVaR

for heavy-tailed distributions, and show that classical confidence intervals derived using popular
truncation-based estimators can be recovered using our method, with only a minor overhead (see
Section 4.3).

Since distributions in L are not characterized by parameters, we work in the space of probability
measures instead of in the Euclidean space. A key and non-trivial requirement for the proof of
asymptotic optimality of the algorithm is the joint continuity of KLL

inf and KLU
inf in a well-chosen

metric, which should generate a topology that is sufficiently fine to ensure this continuity, but coarse
to ensure fast convergence of the empirical distributions to the true-arm distributions. We endow
P(<) with the topology of weak convergence, or equivalently, with the Lévy metric (see Section 2
for definitions). Another nuance in our analysis is that the empirical distributions may not lie in L.
This is handled by projecting these on to L under a suitable metric.

Our proposed algorithm is a plugin strategy that involves solving the lower bound problem using
the empirical distributions as a proxy for the actual arm distributions. This can be computationally
demanding especially as the underlying samples in the empirical distribution become large. To ease
the numerical burden we propose modifications that require solving the lower bound only order
log(n) many times till stage n of the algorithm (where n samples are generated). This modification
substantially reduces the computation burden. We show that it is optimal up to a constant (Appendix
K).

VaR problem: Our algorithm for CVaR, with KLL
inf and KLU

inf replaced by the corresponding
functionals with the VaR constraints instead, is asymptotically optimal for this problem in complete
generality (Section 4.2). Here, KLU

inf and KLL
inf have closed form representations. However, they are

no longer jointly-continuous in the Lévy metric, which introduces new technical challenges in the
analysis of the algorithm.

1.3 Regarding the choice of ε and B in our assumption

Firstly, BAI problems are important in simulation where the best model may need to be identified
amongst many intricate models in terms of a performance measure such as CVaR or VaR, using
minimal computational effort (see, [31]). Input distributions in simulation are known and may often
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involve heavy tails. In some cases, by the use of Lyapunov-function-based techniques, bounds on
moments of output random variables, B, can be determined. (see, e.g., [28] and references therein).
Secondly, consider rewards (returns) from a number of hedge funds. Each time some amount of
money is invested into a fund, a random return may be revealed from that fund but not from others.
To assume that these returns come from a class of parametric distributions or have known bounded
support can be a substantially inaccurate simplification. Typically, from historical analysis, it is
known that the distribution of securities have a particular tail index, say, (1 + ε). For stock returns,
extensive research suggests that (1 + ε) ∈ [2, 5]. For daily exchange rates and income and wealth
distributions we may have (1 + ε) ∈ (1, 2]. Extreme value theory, under reasonable dependence
structure amongst underlying securities, shows that a portfolio (a weighted sum) will also have the
same tail index of (1 + ε) (see, [19]). So the key approximation needed is in arriving at B. It is easy
to arrive at distributions η and κ whose (1 + ε)th moments are arbitrarily far while the KL distance
between them is arbitrarily close to zero. This makes it difficult to infer B from a given sample
of data without further restriction on the two distributions. One may take a pragmatic view and
approximate B by estimating the (1 + ε)th moment from observed samples and padding it up with a
reasonably large factor. A further set of distributional assumptions would be needed to justify the
above procedure to arrive at B. Again, verifying those assumptions will entail similar problems. In
practice, one may live with the above approximation even though in rare settings it may be inaccurate
and lead to sub-optimal allocations in our algorithm. One accepts this risk as one often accepts the
assumption that the distributions of the random samples from each arm are time stationary or are
independent, even though these may only be approximately correct.

2 Background

For K ≥ 2, letM = LK denote the collection of all K-vectors of distributions, ν = (ν1, . . . , νK),
such that for all i, νi belongs to L. Let µ ∈M be the given bandit problem, and π ∈ (0, 1) denote
the fixed confidence level. For η ∈ P(<), let Fη(y) = η((−∞, y]) denote the CDF function for η,
and let m(η) denote mean of measure η.

VaR, CVaR: With the above notation, VaR at level π for the distribution η, denoted as xπ(η),
equals min {z ∈ < : Fη(z) ≥ π} . Since Fη(·) is a non-decreasing and right-continuous function,
the minimum in the expression of VaR is always attained. Define CVaR at level π, cπ(η), as

cπ(η) =
Fη(xπ(η))− π

1− π
xπ(η) +

1

1− π

∞∫
xπ(η)

ydFη(y).
0

1

π

xπ(η)0

Fη(x)

If η has a density in a neighbourhood around xπ , then cπ(η) = Eη (X|X ≥ xπ(η)) , i.e., it measures
the average loss conditioned on the event that losses are larger than the VaR.

In the figure above, the total shaded area (green and blue regions, together) divided by 1− π denotes
the CVaR of the measure whose CDF function is displayed in red. To see this, observe that the first
term in the expression above, scaled by (1− π), equals the blue region. The integral in the second
term when simplified using integration by parts can be seen to equal the green region. There are
alternative formulations of CVaR, which we state without proofs.

cπ(η) =
1

1− π

∫
p∈[π,1]

xp(η)dp = min
x0∈<

{
x0 +

1

1− π
Eη ((X − x0)+)

}
(2)

= max
v∈M+(<)

1

1− π

∫
<

ydv(y) s.t. ∀y, dv(y) ≤ dη(y) and
∫
<

dv(y) = 1− π, (3)

where (x)+ denotes max {0, x} and M+(<) denotes collection of all non-negative measures on <.

From (2), since cπ(η) is a minimum of linear functions of η, it is a concave function of η. Thus, the
KLU

inf problem in (1) is a convex optimization problem, while the KLL
inf problem is not, since the

cπ(·) constraint makes the feasible region non-convex. See, [50] for a comprehensive tutorial on the
two tail-risk measures, and their properties.

Parametric case: Using the definition of VaR, it can be argued that xπ(ηθ) is a monotonically
increasing function of θ when ηθ belongs to a canonical SPEF with parameter θ, as is the mean. The
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first formulation in 2 then gives that cπ(ηθ) is also monotonically increasing. Thus, the problem of
identifying the best-(CVaR/VaR/mean-CVaR) arm is equivalent to identifying that with minimum
mean. See Appendix A for details.

However, the ranking in mean and in CVaR can be very different in general. To see this, fix π = 0.8,
and consider a 3-armed bandit instance, ν, with ν1 = 0.8δ0 + 0.2δ1, ν2 = 0.8δ0 + 0.2δ0.5, and
ν3 = 0.8δ−0.5 + 0.2δ2. Clearly, m(ν1) > m(ν2) > m(ν3), yet cπ(ν2) < cπ(ν1) < cπ(ν3).

General case: For η in class L, the moment-constraint limits the minimum and maximum possible
values of VaR and CVaR, as discussed in the following lemma (proof in Appendix B).
Lemma 2.1. For η ∈ L, cπ(η) ∈ D and xπ(η) ∈ C, where

D ,

[
−B

1
1+ε ,

(
B

1− π

) 1
1+ε

]
and C ,

[
−
(
B

π

) 1
1+ε

,

(
B

1− π

) 1
1+ε

]
.

Topology of weak convergence and the Lévy metric: Let φ be a bounded and continuous
function on <, δ > 0, and x ∈ <. Consider the topology on P(<), generated by the
base sets of the form U(φ, x, δ) =

{
η ∈ P(<) : |

∫
< φ(y)dη(y)− x| < δ

}
. Weak convergence

of a sequence κn to κ, denoted as κn
D
=⇒ κ, is convergence in this topology [see 23, Sec-

tion D.2]. It is equivalent to convergence in the Lévy metric on P(<), (denoted by dL), de-
fined next (see, [9, Theorem 6.8], [23, Theorem D.8]). For η, κ ∈ P(<), dL(η, κ) equals
inf {δ > 0 : Fη(x− δ)− δ ≤ Fκ(x) ≤ Fη(x+ δ) + δ, ∀x ∈ <} . Additionally, the metric space
(P(<), dL) is complete and separable.

3 Lower bound

We consider δ-correct algorithms for identifying the arm with minimum CVaR, acting on bandit
problems inM. While ensuring δ-correctness, the aim is to minimize the sample complexity, i.e.,
expected number of samples generated by the algorithm before it terminates. As is well known, the
δ-correctness property imposes a lower bound on the sample complexity of such algorithms.

Let µ ∈M denote the given bandit problem. Henceforth, for ease of notation, we assume without
loss of generality that the best-CVaR arm in µ is arm 1. Let ΣK denote the probability simplex in
<K , Aj denote the collection of all bandit problems inM which have arm j as the best-CVaR arm,
τδ be the stopping time for the δ-correct algorithm, Na(τ) denote the number of times arm a has
been sampled by the algorithm, and for a set S, let So denote its interior. It is easy to deduce using
standard arguments (see, e.g., [40, Theorem 33.5]) that for a δ-correct algorithm acting on µ ∈ A1,

E (τδ) ≥ V (µ)-1 log
1

4δ
where V (µ) = sup

t∈ΣK

inf
ν∈Ac1

K∑
a=1

ta KL(µa, νa), and Acj =M\Aj . (4)

Lemma 3.1. For µ ∈ A1, the inner minimization problem in V (µ) equals

min
j 6=1

inf
x≤y

{
t1 KLU

inf(µ1, y) + tj KLL
inf(µj , x)

}
,

and hence
V (µ) = sup

t∈ΣK

min
j 6=1

inf
x≤y

{
t1 KLU

inf(µ1, y) + tj KLL
inf(µj , x)

}
. (5)

Recall from (1) that the expressions in (4) and (5) above differ from those in the best-mean arm
setting in that the functionals KLL

inf and KLU
inf here are defined instead with the CVaR constraints.

Remark 3.1. Without any restriction on arm distributions for the CVaR-problem, for y ∈ < and
η ∈ L, KLU

inf(η, y) = 0. This is essentially because η can be perturbed in KL only slightly by
shifting an arbitrarily small mass from the lower tail to the extreme right, so that the CVaR constraint
is satisfied. Thus, without any restrictions, V (µ) = 0 (see, [2, Lemma 1, Theorem 3] for similar
results in selecting the arm with the largest mean setting). However, we later solve the VaR-problem
without such assumptions, i.e., arm distributions are allowed to be arbitrary probability measures in
<. The lower bound for the VaR problem is as in (4), with KLL

inf and KLU
inf in the representation in

(5) defined with VaR constraints, instead.
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A proof of Lemma 3.1 can be found in Appendix C.1. Let t∗ :M→ 2ΣK . In particular, for ν ∈M,
let t∗(ν) denote the set of maximizers in the V (ν) optimization problem in (5). A key nuance of
our algorithm and the related analysis is that the vector of empirical distributions may not belong to
the classM. The algorithm first projects the empirical distribution to class L, then solves for the
optimal t∗ in (5) for the projected distributions, and samples the arms in proportion to the computed
t∗ (Section 4). For appropriate choices of the projection maps, the following lemmas guarantee that
as the empirical distributions converge to the actual arm-distributions (in the weak topology), the t∗
computed by the algorithm converge to the optimal weights corresponding to µ.
Lemma 3.2. L is a compact set in the topology of weak convergence and the (Skorokhod transforms
of) its members form a uniformly integrable collection of random variables. When restricted to
L×Do, KLL

inf and KLU
inf are both jointly continuous functions of the arguments. Moreover, for fixed

x, KLU
inf(ν, x) is a convex function of ν.

Definition (Upper hemicontinuity) A set-valued function Γ : S → T is upper hemicontinuous at
s ∈ S if for any open neighbourhood V of Γ(s) there exists a neighbourhood U of s such that for all
x ∈ U , Γ(x) is a subsest of V .
Lemma 3.3. t∗ is an upper-hemicontinuous correspondence. For ν ∈Mo, t∗(ν) is a convex set.

In Lemma 3.2, we restrict to the interior of D as KLU
inf(·, B

1
1+ε (1 − π)

−1
1+ε ) and KLL

inf(·,−B
1

1+ε )
are not continuous (see, Remark C.2). In Lemma 3.3, we only need to eliminate distributions with
these extreme CVaRs (there are only two such distributions. See, Remark C.1). Lemma 3.3 and
Theorem 4.1 (optimality and δ-correctness of the proposed algorithm) hold for distributions with
CVaR in Do. For ease of notation, we restrict µ to lie in the interior ofM.

The proofs of the above two lemmas are technically challenging and involve nuanced analysis.
Detailed steps are given in Appendix C.2 and C.3. We first prove joint lower- and upper-semicontinuity
of the KL-projection functionals separately. These rely on various properties of the weak convergence
of probability measures in L, the dual representations for KLL

inf and KLU
inf (see Theorem 3.4),

properties of CVaR for probability measures in L, and the classical Berge’s theorem (see, [52])
for continuity of the optimal value and the set of optimizers for a parametric optimization problem.
We then use these to prove the continuity in Lemma 3.3. Convexity follows since t∗ is the set of
maximizers of a concave function over a convex, compact set.

Understanding the lower bound: Our proposed algorithm requires repeated evaluations of the lower
bound in (4) at its estimates of µ. To facilitate this, we now provide more tractable characterizations
of the two KL-projection functionals, and in particular, of (5). We also discuss the statistical and
computational implications of these alternative characterizations.

For η ∈ P(<), let Supp(η) denote the collection of points in the support of measure η. For v ∈ Do,
x0 ∈ C, λ ∈ <3, γ ∈ <2, and X ∈ <, set

gU (X,λ, v) = 1 + λ1v − λ2(1− π) + λ3(|X|1+ε −B)− (λ1X (1− π)
-1 − λ2)+,

and
gL(X,γ, v, x0) = 1− γ1(v − x0 − (X − x0)+ (1− π)

-1
)− γ2(B − |X|1+ε

).

Furthermore, define Ŝ(v) =
{
λ1 ≥ 0, λ2 ∈ <, λ3 ≥ 0 : ∀x ∈ <, gU (x,λ, v) ≥ 0

}
, andR2(x0, v)

to be
{
γ1 ≥ 0, γ2 ≥ 0 : ∀y ∈ <, gL(y,γ, v, x0) ≥ 0

}
. Notice that these are convex sets.

As shown in Theorem 3.4 below, gU (y, ·, v) and gL(y, ·, v, x0) are related to the dual formulations
of KLU

inf and KLL
inf , respectively, and the parameters λ and γ are the corresponding dual variables.

The sets Ŝ andR2 correspond to the feasible values of these dual variables.
Theorem 3.4. For η ∈ P(<) and v ∈ Do,

(a)
KLU

inf(η, v) = max
λ∈Ŝ(v)

Eη
(
log
(
gU (X,λ, v)

))
.

The maximum in this expression is attained at a unique point λ∗ ∈ Ŝ(v). The unique probability
measure κ∗ ∈ L that achieves infimum in the primal problem satisfies

dκ∗

dη
(y) =

1

gU (y,λ∗, v)
, for y ∈ Supp(η).
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Moreover, it has mass on at most 2 points outside Supp(η). Furthermore, for y′ ∈
{Supp(κ∗) \ Supp(η)}, gU (y′,λ∗, v) = 0.

(b)
KLL

inf(η, v) = min

x0∈[−(Bπ )
1

1+ε ,v]

max
γ∈R2(x0,v)

Eη
(
log
(
gL(X,γ, v, x0)

))
.

For a fixed x0, the maximum in the inner problem is attained at a unique γ∗ inR2(x0, v). The
unique probability measure κ∗ ∈ L achieving infimum in the primal problem satisfies

dκ∗

dη
(y) =

1

gL(y,γ∗, v, x0)
, for y ∈ Supp(η).

Moreover, size of the set {Supp(κ∗) \ Supp(η)} is at most 1, and for y′ ∈
{Supp(κ∗) \ Supp(η)}, gL(y′γ∗, v, x0) = 0.

These dual formulations help in reformulating the lower bound optimization problem in (5) as
optimization over reals. A computationally more efficient approach for this is to consider the joint
dual of the inner optimization problem in (5).

For η1, η2 ∈ P(<), and non-negative weights α1, α2, let

Z = inf
x≤y

{
α1 KLU

inf(η1, y) + α2 KLL
inf(η2, x)

}
. (6)

For y ∈ <, λ ∈ <2,ρ ∈ <2, and γ2 ∈ <, let

hL(y,λ, γ, ρ, x0) = 1− λ1 + γ2(|y|1+ε −B) + ρ1(x0 + (y − x0)+(1− π)-1),

and
hU (y,λ, γ, ρ) = 1 + λ1 + λ2(|y|1+ε −B)− (ρ2 + (ρ1y − ρ2)+(1− π)-1).

For x0 ∈ C, define the convex region Dx0
to be collection of λ1 ∈ <, ρ2 ∈ <, λ2 ≥ 0, γ2 ≥ 0, and

ρ1 ≥ 0, such that for all y ∈ <, hL(y,λ, γ, ρ, x0) ≥ 0 and hU (y,λ, γ, ρ) ≥ 0. As we show next,
these quantities are related to the dual formulation of (6).
Proposition 3.5. For η1, η2 ∈ P(<) and weights α1, α2 ∈ [0, 1], Z equals

min
x0∈C

max
(λ,γ,ρ)∈Dx0

α1Eη1
(
log
(
hU (X,λ, γ, ρ)

))
+ α2Eη2

(
log
(
hL(X,λ, γ, ρ, x0)

))
− α1 logα1 − α2 logα2 + (α1 + α2) log (α1 + α2)− (α1 + α2) log 2.

An application of above to the empirical distributions (ηa = µ̂a(t)) weighted by sample counts, i.e.,
αa = Na(t), for a ∈ {1, 2}, results in unweighted sums over the samples. Also observe that the
representation in Proposition 3.5 is 1 dimension smaller compared to that obtained by using Theorem
3.4 in (6), and hence, is faster to optimize numerically.

Recall that while KLU
inf is a convex optimization problem, KLL

inf is not (see Section 2). To handle
this, we use the min formulation for CVaR in 2 to turn it into a one-dimensional family of linear
constraints, which appears as the outer minx0

in the expression in (b) in Theorem 3.4, and Proposition
3.5 above, with the range constraint from Lemma 2.1. This renders the remanining problem as a
convex optimization problem. To simplify the CVaR constraint in KLU

inf , we use (3). Rest is the
Lagrangian duality. Complete proofs for Theorem 3.4, and Proposition 3.5, are given in Appendix D.

The equality in Proposition 3.5, and the dual formulations in Theorem 3.4, are important statistically
and computationally. First, our stopping rule will threshold the Z statistics to determine when to
safely stop. So we need to bound the deviations of Z. For this, we will use the dual formulations
from Theorem 3.4 in (6) to construct mixtures of super-martingales that dominate the deviations of
Z. Second, our sampling rule will sample according to the optimal proportions evaluated for the
empirical distribution vector, µ̂(t), in (5). For this, we use Proposition 3.5 in our experiments to solve
the inner optimization problem in (5). These will be made precise in Section 4.

Computing a gradient for the objective of the maximisation problem (5), seen as a function of the
sampling weights t, takes one Z evaluation per suboptimal arm. The inner maximisation over Dx0

is a constrained concave program, for which standard algorithms apply. The outer minx0
problem

requires a different approach, as it is not even quasiconvex. Empirically it does become quasiconvex
after seeing enough samples, so we employ a heuristic bisection search for which we measure the
impact on the error probability (there is none). Numerical results are presented in Section 4.4.
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4 The algorithm

Given a bandit problem µ ∈M, our algorithm is a specification of three things: a sampling rule, a
stopping rule, and a recommendation rule.

Sampling rule: At each iteration, the algorithm has access to the empirical distribution vector, µ̂(n).
It first projects µ̂(n) to LK in the Kolmogorov metric, dK , using the projection map, Π, defined
below. It then computes t∗ (Π (µ̂(n))) and allocates samples using the C-tracking rule of [27], which
we state in Appendix E for completeness. The map Π = (Π̃, . . . , Π̃), where Π̃ : P(<)→ L, is given
by

Π̃(η) ∈ argminκ∈L dK(η, κ), where dK(η, κ) := supx∈< |Fη(x)− Fκ(x)| .
We show in Appendix G that this projection has a simple form and can be computed easily.

Stopping rule: We use a modification of the generalized likelihood ratio test (GLRT) (see, [17])
as our stopping criterion. At any time, the vector of empirical distributions, µ̂(n), suggests an arm
with minimum CVaR (empirically best-CVaR arm), say arm i. This is our null hypothesis, which
we test against all the alternatives. Formally, the log of the GLRT statistic, denoted by Si(n), is
infν′∈Aci

∑K
a=1 Na(n) KL(µ̂a(n), ν′a). This is exactly the scaled inner optimization problem in the

expression of V (µ̂(n)) in (4), except that µ̂(n) may not belong toM (recall the Z statistic defined
in (6)). Let Zi(n) equal mina6=i infx≤y

{
Ni(n) KLU

inf(µ̂i(n), y) +Na(n) KLL
inf(µ̂a(n), x)

}
. It

equals Si(n) when µ̂(n) ∈M (Lemma 3.1). Our stopping rule corresponds to checking

Zi(n) ≥ β(n, δ) where β(n, δ) = log
(
(K − 1) δ-1)+ 5 log(n+ 1) + 2. (7)

Recommendation rule: After stopping, the algorithm outputs the arm with the minimum CVaR
of the corresponding empirical distribution, i.e., if τ is the stopping time of the algorithm, then it
outputs argmina cπ(µ̂a(τ)).

4.1 Theoretical guarantees

For a given confidence δ, let τδ denote the stopping time for the algorithm. The algorithm makes an
error if at time τδ, there is an arm j 6= 1 such that cπ(µ̂j(τδ)) < cπ(µ̂1(τδ)). Let the error event be
denoted by E .
Theorem 4.1. For δ > 0 and µ ∈Mo, the proposed algorithm with β(t, δ) chosen as in (7), satisfies

P (E) ≤ δ and lim sup
δ→0

Eµ (τδ)

log(1/δ)
≤ 1

V (µ)
.

We first sketch the proof for the δ-correctness part of the theorem. Proof ideas for sample complexity
are presented later in this section. The detailed proof for Theorem 4.1 can be found in Appendix F.

δ-correctness: Recall that the algorithm makes an error if at time τδ , the empirically best-CVaR arm
is not arm 1. As in the best-mean arm case, it can be argued that this probability is at most

K∑
i=2

P
(
∃n : Ni(n) KLU

inf(µ̂i(n), cπ(µi)) +N1(n) KLL
inf(µ̂1(n), cπ(µ1)) ≥ β

)
. (8)

See Appendix F for a proof of (8). The following proposition will be helpful in bounding each of the
summands above. Setting j = 1, and x = log K−1

δ in Proposition 4.2, along with β from (7), we get
that each summand in (8) is at most δ/(K − 1), proving that the proposed algorithm is δ-correct.
Proposition 4.2. For i ∈ [K], j ∈ [K], i 6= j, h(n) = 5 log(n+ 1) + 2, and x ≥ 0,

P
(
∃n : Ni(n) KLU

inf(µ̂i(n), cπ(µi)) +Nj(n) KLL
inf(µ̂j(n), cπ(µj))− h(n) ≥ x

)
≤ e−x.

A key step in proving Proposition 4.2 is constructing mixtures of super-martingales that dominate the
exponentials of Ni(n) KLU

inf(µ̂i(n), cπ(µi)) and Ni(n) KLL
inf(µ̂i(n), cπ(µi)). From Theorem 3.4(a)

and (2), it can be shown that for fixed dual-variables, the objective is a sum of logs of random variables
with mean at-most 1. Hence, its exponential is a non-negative candidate super-martingale. Since we
want to bound the maximum over the dual parameters, we construct a mixture of these candidates,
over the dual-parameters, and show that it dominates the exponential of Ni(n) KLU

inf(µ̂i(n), cπ(µi)).
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Sample complexity: Our sample complexity proof follows that of [27] for a parametric family.
However, we work with a more general non-parametric class, in which we establish continuity of the
KL-projection functionals (Lemma 3.2). Our proof also differs from that in [2] in that we only have
upper-hemicontinuity of the set of optimal sampling allocations (t∗) (Lemma 3.3). A nuance in our
analysis is that the empirical distribution may not belong to the class L, in which case we project
the empirical distribution onto that class, and the sampling rule uses this projected distribution to
compute t∗. Our careful choice of the projection map aids in the proof of this result.

Computational complexity: The computational cost of these KL-projection functionals, and hence,
that of the oracle weights, is linear in the number of samples taken (see, [2, 16, 30]). As a result, the
overall run-time is quadratic in τδ . We propose a modification in which we update the weights only
at geometrically spaced times. This modification improves the computational-cost to almost linear in
τδ , while its sample complexity is optimal up to a multiplicative constant depending on the choice of
geometrical-spacing factor, thus providing a controlled trade-off between the two costs. Recently,
[3] propose a similar yet different “doubling” trick in the regret-minimization setting. However, our
approach differs from theirs in that our update-times for weights are not random. We refer the reader
to Appendix K for details of the algorithm and proofs for its theoretical guarantees.

Mean-CVaR problem: We now extend the methodology for the CVaR problem to the more general
mean-CVaR problem. For a distribution η ∈ L (for example, a random loss in a financial investment),
the metric associated with the “badness” of a distribution is α1m(η) + α2cπ(η), for α1 > 0 and
α2 > 0, and the best-arm is the one with minimum value of this conic combination of mean and
CVaR. For α1 = 0 this is the CVaR-problem, which we have studied in this work. For α2 = 0, this is
the mean-problem, extensively studied in [2, 27].

As in (1), we can define corresponding KL-projection functionals, with the CVaR constraints replaced
with those on the modified metric. The above theory, with this updated KLL

inf and KLU
inf , gives the

corresponding results for this setting. In particular, the lower bound on E (τδ) for δ-correct algorithms
for mean-CVaR BAI is given by V (µ)-1 log 1

4δ , where V (µ) is defined in (5) with the updated KLU
inf

and KLL
inf .

Theorem 4.3 (Informal). For µ ∈ Mo, the proposed algorithm for CVaR, with KLU
inf and KLL

inf
defined with mean-CVaR constraints instead, is δ-correct and asymptotically optimal.

The proof of this theorem parallels that for CVaR above. We give the formal statement with proof-
details in Appendix I.

4.2 The VaR problem

In this section we present the main ideas for an analogous approach for the optimum VaR-problem.
Here, we will not impose any conditions (viz. membership in L) on the arm-distributions, as the
VaR lower bound is defined without it, i.e., arm distributions are allowed to be arbitrary probability
measures on <. For a probability measure η, let Fη(y), denote its CDF evaluated at y and F−η (y) =
limz↑y Fη(z) denote the left limit of the CDF. Moreover, for r, q ∈ (0, 1) let d2(r, q) denote the KL
divergence between the Bernoulli random variables with mean r and q. For y ∈ <, let KLL

inf(η, y)
and KLU

inf(η, y) be defined as in (1), with VaR constraints, instead. These simplify as follows.
Lemma 4.4. KLL

inf(η, y) = d2(min {Fη(y), π} , π) and KLU
inf(η, y) = d2(max

{
F−η (y), π

}
, π).

Unlike in the CVaR-problem, we show that KLL
inf and KLU

inf for the VaR problem are not jointly
continuous functionals (see Remark H.2). The discontinuity occurs at y being the jump points of Fη
in Lemma 4.4 above. However, we prove in Appendix H (Corollary H.3.1) that the set of optimal
proportions, t∗, is still upper-hemicontinuous and convex.

The algorithm for CVaR with KLU
inf and KLL

inf replaced by those in the lemma above, and setting

β(t, δ) = 6 log

(
1 + log

t

2

)
+ log

K − 1

δ
+ 8 log

(
1 + log

K − 1

δ

)
,

we get our algorithm for the VaR-problem.
Theorem 4.5 (Informal). The proposed algorithm for the VaR-problem is δ-correct and asymptotically
optimal.

We refer the reader to Appendix H for a detailed discussion of the VaR-problem and proofs.
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4.3 Tight KLinf -based confidence intervals for CVaR

We now present tight anytime-valid confidence interval for the CVaR of a distribution in L.
Let η̂n denote the empirical distribution corresponding to n samples from η ∈ L. Our
proposed upper (Un) and lower (Ln) confidence intervals for cπ(η) are of the form Un =
max

{
x ∈ < : nKLU

inf(η̂n, x) ≤ C
}

and Ln = min
{
x ∈ < : nKLL

inf(η̂n, x) ≤ C
}
, for an appro-

priately chosen threshold C ≈ log δ-1 + 3 log n. Similar confidence intervals for the mean of heavy-
tailed distributions were proposed in [3]. Let x̂π,n denote the πth quantile for η̂n. Recall that the pop-
ular truncation-based estimator for cπ(η) is given by ĉπ,n = n-1(1−π)-1∑

iXi1(x̂π,n ≤ Xi ≤ un),
for appropriately chosen truncation levels, un (see, [39]). Observe that there are 2 sources of error in
this estimator, first, the estimation of the quantile, and second, the estimation of the tail-expectation.
On the other hand, our confidence intervals do not rely on estimation of the true quantile, xπ. In
Appendix J, we show that even given the correct estimation of x̂π,n, confidence intervals for ĉπ,n
perform poorly compared to those based on KLU

inf and KLL
inf , in some applications.

4.4 Numerical Results

This is only a brief teaser section on the experiments, which are detailed in Appendix L. We are
interested in the question whether the asymptotic sample complexity result of Theorem 4.1 is
representative at reasonable confidence levels δ. Whether this is the case or not differs greatly
between pure exploration setups: [27] see state-of-the-art numerical results in Bernoulli arms for
Track-and-Stop with δ = 0.1, while [22] present a Minimum Threshold problem instance where the
Track-and-Stop asymptotics have not kicked in yet at δ = 10−20. Our experiments confirm that our
approach is indeed practical at moderate confidence δ.

In our experiments we implement a version of Track-and-Stop including C-tracking and forced
exploration and apply it to Fisher-Tippett (F (µ, σ, γ)), Pareto (P (µ, σ, γ)), and mixtures of Fisher-
Tippett arms (these heavy-tailed distributions arise in extreme value theory).

Figure 1: Histogram of stopping times among 1000 runs
on 3 arms, as a function of confidence δ. Vertical bars
(solid) indicate the lower bound (4), and (dashed) a version
adjusted to our stopping threshold (7), i.e., the n that solves
n = β(n, δ)V (µ)-1.

Figure 1 shows the distribution of
the stopping time as a function
of δ in a synthetic three-arm task:
arm 1 is a uniform mixture of
F (−1, 0.5, 0.4) and F (−3, 0.5,−0.4),
arm 2 is P (0, 0.2, 0.55) and arm 3 is
F (−0.5, 1, 0.1) with respective CVaRs
at quantile π = 0.6 being −0.1428,
0.974 and 1.547. We select ε = 0.7
and B = 4.5. This is a moderately
hard problem of complexity V -1(µ) =
49.7. We conclude that even at mod-
erate δ the average sample complexity
closely matches the lower bound, espe-
cially after adjusting it for the lower-
order terms in the employed stopping
threshold β(n, δ). This demonstrates
that our asymptotic optimality is in fact
indicative of the performance in prac-
tice.

We do additional experiments to show the dependence of the algorithm’s performance on the number
of arms and the input parameter B. We see that the average stopping time of our algorithm increases
linearly in the number of arms. Moreover, the sample complexity is sensitive to B, indicating the
importance of correctly estimating it. We refer to Appendix L for details of these experiments.

Conclusion: We developed asymptotically optimal algorithms that identify the arm with the
minimum risk, measured in terms of CVaR, VaR, or a conic combination of mean and CVaR. Our
algorithms operate in non-parametric settings with possibly heavy-tailed distributions. Although
similar plug-and-play algorithms have been developed in simpler settings, our algorithms for tail-risk
measures require more nuanced analysis. The techniques developed may be generalizable to a much
broader class of problems.
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